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Abstract

We compute the exact number, L(n), of solutions to the Langford
pairings problem for any positive integer n < 29 and the exact num-
ber of solutions to the Nickerson variant of the problem, N(n), for any
positive integer n < 26. These numbers correspond to the sequences
A014552, A059106 in Sloane’s Online Encyclopedia of Integer Sequences.
The exact value of these numbers were known for any positive integer
n < 27 for the A014552 sequence and for any positive integer n < 24
for the A059106 sequence. First we report that the number of Langford
pairings for n = 27 is L(27) = 111, 683, 611, 098, 764, 903, 232, and for
n = 28 it is L(28) = 1, 607, 383, 260, 609, 382, 393, 152. Next we report
that the number of solutions for the Nickerson variant of Langford pair-
ings for n = 24 is N(24) = 102, 388, 058, 845, 620, 672 and for n = 25 it is
N(25) = 1, 317, 281, 759, 888, 482, 688.

1 Historical Background

The Langford problem is named after C. D. Langford, a Scottish mathematician,
who devised the problem in 1958 after having observed his son playing with
colored blocks. He noticed that his son had arranged a set of six block, two
red, two blue, and two green, in such away that the pair of red blocks were
separated by a single block, the blue pair by two blocks, and the green pair by
three blocks. He further noticed that he could add a pair of yellow blocks to the
arrangement in away that would preserve the distances of the previous blocks
while having the yellow pair separated by four blocks.

He captured this idea using numbers and asked the question, Given a sequence
of 2n numbers {1, 1, 2, 2, . . . , n, n} find a permutation in which the two copies
of each number k are k units apart. For instance, when n = 4 the permutation
2, 3, 4, 2, 1, 3, 1, 4 would be a solution.
At about the same time while working on Steiner triple systems, Norwegian
mathematician T. H. Skolem, in 1957, proposed a similar problem, he asked if
it was possible to distribute the number {1, 2, . . . , 2n} in n pairs (ar, br) such
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that br − ar = r for r = 1, 2, . . . , n ?”. For instance when n = 4, the pairings
(1, 4), (2, 6), (3, 5), (7, 8) is one solution.
In 1966 Nickerson, unaware of Skolem’s problem, proposed a varient of Lang-
ford’s problem where the pair of numbers k are separated by exactly k−1 other
numbers. For instance when n = 4 the sequence 3, 4, 2, 3, 2, 4, 1, 1 is a solution.
Notice that if we consider the sequence as being placed in an array with 2n
positions and index from 1 to 2n then this sequence is the same as the Skolem
pairing.

1 2 3 4 5 6 7 8

3 4 2 3 2 4 1 1

The first natural question to asked is when do such pairings exist, that what
are the necessary and sufficient conditions for the existance such sequences. In
1959 Daveis answers this question for the Langford formulation, and showed
the sequence exists whenever n ≡ 0, 3 mod 4, following the observation that
that the pairs of number occupy the positions 1 to 2n in some order, the first
occurrence of k is at position ak and the second at ak + k + 1. Furthermore he
gave a method of construction such a sequence.

n = 4k − 1

4k-4, ..., 2k, 4k-2, 2k-3, ..., 1, 4k-1,
1, ..., 2k-3, 2k, ..., 4k-4, 2k-1,
4k-3, ..., 2k+1, 4k-2, 2k-2, ..., 2,
2k-1, 4k-1, 2, ..., 2k-2,
2k+1, ..., 4k-3

n = 4k

4k-4, ..., 2k, 4k-2, 2k-3, ..., 1, 4k-1,
1, ..., 2k-3, 2k, ..., 4k-4, 4k,
4k-3, ..., 2k+1, 4k-2,
2k-2, ..., 2, 2k-1, 4k-1, 2, ..., 2k-2,
2k+1, ..., 4k-3, 2k-1, 4k

Figure 1: Davies construction of a solution to the Langford pairing

In the case of the Skolem problem the existance question was answered by
Skolem himself in 1957. He showed that the pairings exists whenever n ≡ 0, 1
mod 4, following a similar observation that pairs of number occupy the positions
1 to 2n in some order, the first occurrence of k is at position ak and the second
at ak +k. And a method of construction such a sequence was presented as well.

n = 4k

(4k + r, 8k − r) for r = 0, 1, . . . , 2k − 1,
(2k + 1, 6k), (2k, 4k − 1),
(r, 4k − 1− r) for r = 1, 2, . . . , k − 1,
(k, k + 1),
(k + 2 + r, 3k − 1− r) for 0, 1, . . . , k − 3.

n = 4k + 1

(4k + 2 + r, 8k + 2− r) for r = 0, 1, . . . , 2k − 1,
(2k + 1, 6k + 2), (2k + 2, 4k + 1),
(r, 4k + 1− r) for r = 1, 2, . . . , k,
(k + 1, k + 2),
(k + 2 + r, 3k + 1− r) for r = 1, 2, . . . , k − 2.

Figure 2: Skolem’s construction of a solution to the Skolem pairing
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n A014552 A059106 A176127 A004075

1 0 1 0 1

2 0 0 0 0

3 1 0 2 0

4 1 3 2 6

5 0 5 0 10

6 0 0 0 0

7 26 0 52 0

8 150 252 300 504

9 0 1, 328 0 2, 656

10 0 0 0 0

11 17, 792 0 35, 584 0

12 108, 144 227, 968 216, 288 455, 936

13 0 1, 520, 280 0 3, 040, 560

14 0 0 0 0

15 39, 809, 640 0 79, 619, 280 0

16 326, 721, 800 700, 078, 384 653, 443, 600 1, 400, 156, 768

17 0 6, 124, 491, 248 0 12, 248, 982, 496

18 0 0 0 0

19 256, 814, 891, 280 0 513, 629, 782, 560 0

20 2, 636, 337, 861, 200 5, 717, 789, 399, 488 5, 272, 675, 722, 400 11, 435, 578, 798, 976

21 0 61, 782, 464, 083, 584 0 123, 564, 928, 167, 168

22 0 0 0 0

23 3, 799, 455, 942, 515, 488 0 7, 598, 911, 885, 030, 976 0

24 46, 845, 158, 056, 515, 936 102, 388, 058, 845, 620, 672 93, 690, 316, 113, 031, 872 204, 776, 117, 691, 241, 344

25 0 1, 317, 281, 759, 888, 482, 688 0 2, 634, 563, 519, 776, 965, 376

26 0 0 0 0

27 111, 683, 611, 098, 764, 903, 232* 0 223, 367, 222, 197, 529, 806, 464* 0

28 1, 607, 383, 260, 609, 382, 393, 152 ??? 3, 214, 766, 521, 218, 764, 786, 304 ???

Table 1: Langford number A014552, Nickerson’s variant A059106, A014552 =
2 x A014552, and Skolem number A059106 = 2 x A059106 for n > 1, * n = 27
was previously reported to be 111, 683, 606, 778, 027, 803, 456

In this note we are concered with the problem of counting the number solution.
In what follows we present a breif overview of algorithms for counting these
sequences, implementation and new results we found.

2 Counting Algorithms

There are in general three approaches to counting the number of pairings. First
the generate and count methods, second the algebraic method, and third a
method based on counting technique of inclusion exclusion. All the procedures
below will be given interms of counting the number of Langford pairing, counting
all solutions where reflected solutions are counted as distinct.

2.1 Miller’s Generate and Count

One method of counting is to generate all possible permutations of the 2n num-
bers in some order and count as each valid solution is generated. However this

is quit inefficient since there are (2n)!
2n permutations. A more efficient procedure

is to use a backtracking algorithm for generating the solutions in a systematic
way and counting them. One such procedure is given by Miller on his website
[1], and reproduced below. The alorithm proceeds by placing the pairs in de-
creasing order, starting with leftmost available position where the pair can fit
into. Once the pair is place it will try to palce the next smaller pair if it can
not be placed then the previously placed pair needs to be moved to the next
available valid position. The algorithm stops when all possible positions for the
largest pair have been explored.

• Let n be the number of pairs to be placed
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• Let A be an array with 2n positions holding the current (partial) arrang-
ment

• Let k keep track the pair of numbers that are to be placed into A

• Start by inserting the highest pair (k = n) into the first position. The
pair will fit because the arrangement is empty.

• Next, decrement k and find the left most position p where both A[p] and
A[p+ k + 1] are empty

• If such a position p is found, then let A[p] = A[p+ k + 1] = k.

– If the 1’s were just placed, a solution is reached, count it, and re-
move the 1’s, 2’s and 3’s from A, and continue scanning for the next
available placment of k = 3.

• If the kth pair can not be placed, forget about placing them, and increment
the value of k. remove k’s from A, and find a new placement for the kth

pair starting from the next position to the right.

– If k is incremented to beyond n, then the all the solutions have been
found and algorithm terminates

2.2 Godfrey’s Algebraic Method

An algebraic method for computing the number Langford pairings was proposed
by Godfrey. There is no official paper on the algorithm but the description of this
method appears in [9]. The problem is modeled by a polynomial where each term
represents the label and its position, and the number of pairings is then the co-
efficient of the term x1x2 . . . xn. Consider L(3), and X = (x1, x2, x3, x4, x5, x6),
then

F (3, X) = (x1x3 + x2x4 + x3x5 + x4x6)(x1x4 + x2x5 + x3x6)(x1x5 + x2x6)

each of the factors represents the possible ways in which a label and position
can appear in the solution. For instance 3 can appear either in the first and fifth
positions or in the second and sixth. When the polynomial is expanded then for
example a term like (x2x4)(x3x6)(x1x5) correspond to a sequence 3, 1, 2, 1, 3, 2,
and the coefficient to the term x1x2x3x4x5x6 will be the number of possible
pairings (twice that since symmetric solutions are considered the same).

F (3, X) = x
3
1x3x4x5 + x

3
2x4x5x6 + x1x2x3x

3
5 + x2x3x4x

3
6 + x

2
1x

2
3x5x6 + x

2
1x2x

2
4x5 + x

2
1x

2
4x5x6 + x

2
1x2x3x

2
5+

x
2
1x3x4x

2
5 + x1x

2
2x

2
4x6 + x1x

2
2x4x

2
5 + x

2
2x3x

2
5x6 + x

2
2x3x4x

2
6 + x

2
2x4x5x

2
6 + x1x

2
3x

2
5x6 + x1x2x

2
3x

2
6+

x2x
2
3x5x

2
6 + x1x2x

2
4x

2
6 + x

2
1x2x3x4x6 + x1x

2
2x3x5x6 + x1x2x4x

2
5x6 + x1x3x4x5x

2
6 + 2 x1x2x3x4x5x6

However computing the coefficient by expanding the polynomial is just as time

consuming as the generate and count methods since there are (2n−2)!
(n−2)! . To over

come this the variables x1, . . . , x2n are allowed to take on the values 1 and −1,
and the resulting values of (x1 × . . .× x2n)× F (X,n) are summed, it is easy to
see that the result is 22nL(n) (twice that incase symmetric solutions are counted
as the same)
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∑

(x1,...,x2n)∈{1,−1}

(
2n∏

i=1

xi

)
n∏

i=1

2n−i−1∑

k=1

xkxk+i+1 = 22nL(n)

Each of the terms in F other than x1x2 . . . x2n is missing at least one of the
variables (xk), then these terms when multiplied by xk result in zero after sum-
ming over xk = +1 and −1. The calculation costs 22n evaluations of F (n,X),
each evaluation takes O(n2) multiplications and additions.
In practice the cost of multiplications can be reduced to O(n) by going through
the {−1, 1}2n strings in Gray code order, there by replacing the multiplication
by an addition and subtraction.

2.3 Larsen’s Inclusion Exclusion Method

In 2009 Larsen [8] proposed a new algorithm based on the principle of inclusion
exclusion to count the number of pairings. Inclusion exclusion is a counting
technique for obtaining the number of elements in the union of sets. In its
general form the principle of inclusion exclusion for finite sets A1, . . . , An states
that the number of elements in the union of the sets is the sum of cardinalities
of set intersections, subtracting when the number of sets is even and adding
when its odd. ∣∣∣∣∣

n⋃

i=1

Ai

∣∣∣∣∣ =
∑

I⊆{1,...,n},I 6=∅
(−1)|I|−1

∣∣∣∣∣
⋂

i∈I

Ai

∣∣∣∣∣

It is common to generalize this form to count the number of elements that are
not in any of the subsets of Ai. This complementary form is obtained by letting
S be a finite universal set containing all of the Ai and letting Ai denote the
complement of Ai in S, then

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∣∣∣∣∣

n⋂

i=1

Ai

∣∣∣∣∣ =
∣∣∣∣∣S −

n⋃

i=1

Ai

∣∣∣∣∣

or ∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ =
∑

I⊆{1,...,n}
(−1)|I|

∣∣∣∣∣
⋂

i∈I

Ai

∣∣∣∣∣

where A∅ = S since intersecting with no sets will result in all the elements.
This is connected to the number of pairings by viewing each set Ai as the set
of (invalid) sequences that avoid the position i. Then A1 ∩ . . .∩An is the set of
sequences avoid no positions, and a valid solution to the problem. Then L(n)
can ne expressed in the follwoing form

L(n) =
∑

X⊆{1,...,2n}
(−1)|X|a(X)

where X denotes the positions to be avoided and a(X) is the function that
counts the set of solutions that avoid the positions in X . Let X be a binary
sequence (x1, . . . , x2n) ∈ {0, 1} where every 0 in the sequence is a disallowed
poisition. Then

a(X) =

n∏

k=1

2n−k−1∑

j=1

xjxj+k+1
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To compute L(n) need to sum over all binary strings of length 2n.

L(n) =
∑

(x1,...,x2n)∈{0,1}

(
(−1)

∑2n
i=1 xi

) n∏

k=1

2n−k−1∑

j=1

xjxj+k+1

There will be a total 22n computations of a(X), where each computation costs
O(n2) time. The total running time then is O(n222n).
As before the evaluation cost of a(X) can be reduced by going through the 22n

binary strings in Gray code order. The advantage using Larsen’s method over
Godfrey’s is that there is no longer an addition factor 22n. However Larsen’s
experiments show that Godfrey’s procedure is faster in practice.

3 Results

We implement Godfrey’s procedure for computing the number solutions to the
Langford and the Nickerson’s variant on NVIDIA’s CUDA parallel comput-
ing platform. The calcualtion is done modulo primes then the actual value
is obtained by chinese remainder theorem. We checked or implementation by
computing the previously known values. New results are found for the original
problem when n = 27, n = 28. We note that recently the 27th langford number
was reported, and does not match with our results. It is worth noting that our
results match in the order of magituide and the seven most significant digits.
We also found new results for the variant when n = 24, n = 25, and partially
computed the value for n = 28. These correspond to sequences A014552 and
A059106 in Sloane’s Online Encyclopedia of Integer Sequences. Additionally
the corresponding values for the sequence of number A176127 and A004075 in
the oeis are just twice that of A014552 and A059106 respectively, since in the
orignal problem refelected solutions were considered the same. The table below
shows the sequences along with our results in red.
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