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Abstract

For a real number t, let st be the multiplicative arithmetic function defined

by st(p
α) =

α
∑

j=0

(−pt)j for all primes p and positive integers α. We show that

the range of a function s
−r is dense in the interval (0, 1] whenever r ∈ (0, 1]. We

then find a constant ηA ≈ 1.9011618 and show that if r > 1, then the range of

the function s
−r is a dense subset of the interval

(

1

ζ(r)
, 1

]

if and only if r ≤ ηA.

We end with an open problem.

Keywords: Dense; divisor function; alternating divisor function; range.
2010 Mathematics Subject Classification: Primary 11B05; Secondary 11A25.

1 Introduction

Let N denote the set of positive integers. We will let pi be the i
th prime number,

and we will use ζ to denote the Riemann zeta function.

Consider a multiplicative arithmetic function s1 defined by

s1(p
α) =

α
∑

j=0

(−p)j (1.1)

for all primes p and positive integers α. This function, which appears as sequence
A061020 in Sloane’s Online Encyclopedia of Integer Sequences [2], serves as
an interesting variant of the well-known sum-of-divisors function σ. We may
generalize the function s1 to a class of functions st in the following very natural
fashion.

aColin Defant
18434 Hancock Bluff Rd.
Dade City, FL 33523

bThis work was supported by National Science Foundation grant no. 1262930.

1

http://arxiv.org/abs/1507.01128v1


2

Definition 1.1. For any real number t, let st be the multiplicative arithmetic
function defined by

st(p
α) =

α
∑

j=0

(−pt)j . (1.2)

for all primes p and positive integers α.

In this paper, we will concentrate on functions s−r for r > 0, so we will
always use r to denote a positive real number. Notice that, for any prime p

and nonnegative integer α, we have 1− p−r ≤ s−r(p
α) ≤ 1 because

α
∑

j=0

(−p−r)j

is an alternating series whose terms have strictly decreasing absolute values.
Therefore, if r > 1 and N is a positive integer with canonical prime factorization

N =
v
∏

j=1

q
βj

j , then we have

s−r(N) =
v
∏

j=1

s−r(q
βj

j ) ≥
v
∏

j=1

(1 − q−r
j ) >

∞
∏

j=1

(1− p−r
j ) =

1

ζ(r)
. (1.3)

Hence, for r > 1, the range of s−r is a subset of the interval ((ζ(r))−1, 1]. We
will soon show that, for r ∈ (0, 1], the range of s−r is a dense subset of (0, 1].
However, we will find that the range of s−2 is not dense in ((ζ(2))−1, 1]. Our
goal is to find a constant, which we will call ηA, such that if r > 1, then the
range of s−r is dense in ((ζ(r))−1, 1] if and only if r ≤ ηA.

2 Finding ηA

For the sake of convenience, we introduce a class of functions L−r, which we
define, for each r > 0, by L−r(n) = − log(s−r(n)) for all n ∈ N. Note that
the functions L−r take nonnegative values. Furthermore, for any prime p, we
see that (L−r(p

2α+1))∞α=0 forms a decreasing sequence, (L−r(p
2α))∞α=0 forms

an increasing sequence, and lim
α→∞

L−r(p
α) exists (because lim

α→∞

s−r(p
α) exists

by the Alternating Series test). This motivates us to define an ordering ≻
on the nonnegative integers as follows. If k1 and k2 are odd positive integers
with k1 < k2, then k1 ≻ k2. If k1 and k2 are even nonnegative integers with
k1 < k2, then k2 ≻ k1. If k1 is an odd positive integer and k2 is an even
nonnegative integer, then k1 ≻ k2. This ordering has the property that if
r > 0 and p is a prime, then, for any distinct nonnegative integers k1 and k2,
L−r(p

k1) > L−r(p
k2) if and only if k1 ≻ k2. We are now equipped to prove the

following theorem.

Theorem 2.1. If r ∈ (0, 1], then the range of s−r is a dense subset of (0, 1].
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Proof. We first observe that the range of s−r is dense in (0, 1] if and only if
the range of L−r is dense in [0,∞). To show that the range of L−r is dense

in [0,∞), we consider the subsums of the series

∞
∑

i=1

L−r(pi). We see that any

finite subsum of this series, say
v
∑

j=1

L−r(qj), is within the range of L−r because

v
∑

j=1

L−r(qj) = − log





v
∏

j=1

s−r(qj)



 = L−r





v
∏

j=1

qj



 . (2.1)

Hence, it suffices to show that

∞
∑

i=1

L−r(pi) is a divergent series whose terms

tend to 0. First, lim
i→∞

L−r(pi) = lim
i→∞

(− log(1− p−r
i )) = 0. Second, we know

that

∞
∑

i=1

L−r(pi) diverges because, for r ∈ (0, 1], we have

∞
∏

i=1

(1− p−r
i ) = 0.

Henceforth, we will focus on values of r that are greater than 1. We seek to
establish a necessary and sufficient condition for the range of a function s−r to
be dense in ((ζ(r))−1 , 1]. First, however, we need two lemmata.

Lemma 2.1. If r > 1, m ∈ N, and w ∈ {1, 2, . . . ,m}, then

1− p−r
w + p−2r

w ≤ 1− p−r
m + p−2r

m . (2.2)

Proof. Fix some r > 1. Define h : R → R by h(x) = 1 − x−r + x−2r. Then
h′(x) = rx−r−1(1−2x−r). If x ≥ 2, then h′(x) > 0. As 2 ≤ pw ≤ pm, the result
follows.

Lemma 2.2. Let r > 1 be a real number, and let p be a prime. For any positive

integer k, we have |L−r(p
k+2)− L−r(p

k)| < L−r(p
2).

Proof. For simplicity, we will write y = p−r. First, suppose k is odd. Then,
because (L−r(p

2α+1))∞α=0 is a decreasing sequence, we have

|L−r(p
k+2)− L−r(p

k)| = L−r(p
k)− L−r(p

k+2)

= log

(

1
∑k

j=0(−y)j

)

− log

(

1
∑k+2

j=0 (−y)j

)

= log

(

1 + y

1− yk+1

)

− log

(

1 + y

1− yk+3

)

= log

(

1− yk+3

1− yk+1

)

. (2.3)
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Because L−r(p
2) = log

(

1

1− y + y2

)

, we see that we simply need to show that

1− yk+3

1− yk+1
<

1

1− y + y2
.

Noting that 0 < y < 1
2 , we have yk < y and yk+3 < yk+2. Therefore,

y + yk + yk+3 < 2y + yk+2 + yk+4 < 1 + yk+2 + yk+4, so we have y2 + yk+1 +
yk+4 < y + yk+3 + yk+5. After adding 1 to each side and rearranging terms,
we get 1 − y + y2 − yk+3 + yk+4 − yk+5 < 1 − yk+1, which we may write as

(1 − y + y2)(1 − yk+3) < 1 − yk+1. Hence,
1− yk+3

1− yk+1
<

1

1− y + y2
, so we have

completed the proof for the case in which k is odd.

Now, suppose that k is even. Then, because (L−r(p
2α))∞α=0 is an increasing

sequence, we have

|L−r(p
k+2)− L−r(p

k)| = L−r(p
k+2)− L−r(p

k)

= log

(

1
∑k+2

j=0 (−y)j

)

− log

(

1
∑k

j=0(−y)j

)

= log

(

1 + y

1 + yk+3

)

− log

(

1 + y

1 + yk+1

)

= log

(

1 + yk+1

1 + yk+3

)

. (2.4)

Again, we have L−r(p
2) = log

(

1

1− y + y2

)

, so it suffices to show that

1 + yk+1

1 + yk+3
<

1

1− y + y2
. Because 0 < y < 1

2 , we have 1 − y2(k+1) < 1 −

y2(k+3). Therefore,
1 + yk+1

1 + yk+3
<

1− yk+3

1− yk+1
, and we have already shown that

1− yk+3

1− yk+1
<

1

1− y + y2
.

Theorem 2.2. If r > 1, then the range of s−r is dense in the interval

((ζ(r))−1 , 1] if and only if s−r(p
2
m) ≥

∞
∏

i=m+1

s−r(pi) for all positive integers m.

Proof. First, suppose there exists some positive integer m such that

s−r(p
2
m) <

∞
∏

i=m+1

s−r(pi). Let N be an arbitrary positive integer with canonical

prime factorization N =

v
∏

j=1

q
βj

j . If pw|N for some w ∈ {1, 2, . . . ,m}, then

s−r(N) ≤ 1−p−r
w +p−2r

w . By Lemma 2.1, we see that s−r(N) ≤ 1−p−r
m +p−2r

m =

4
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s−r(p
2
m). On the other hand, if pw ∤ N for all w ∈ {1, 2, . . . ,m}, then

s−r(N) = s−r





v
∏

j=1

q
βj

j



 =
v
∏

j=1

s−r(q
βj

j ) ≥
v
∏

j=1

s−r(qj) >
∞
∏

i=m+1

s−r(pi). (2.5)

This shows that there is no element of the range of s−r in the interval
(

s−r(p
2
m),

∞
∏

i=m+1

s−r(pi)

)

, so the range of s−r is not dense in ((ζ(r))−1 , 1].

To prove the converse, let us suppose that s−r(p
2
m) ≥

∞
∏

i=m+1

s−r(pi) for all

positive integersm. We will show that the range of L−r is dense in [0, log(ζ(r))),
which will prove that the range of s−r is dense in ((ζ(r))−1 , 1]. Choose some
arbitrary x ∈ (0, log(ζ(r))). We will construct a sequence (Cn)

∞

n=1 of elements
of the range of L−r such that lim

n→∞

Cn = x. First, define C0 = 0. Now, recall

the ordering ≻ that we defined at the beginning of this section. We will say that
a nonnegative integer k1 is larger than a nonnegative integer k2 with respect
to the ordering ≻ if and only if k1 ≻ k2. Let n be a positive integer. We will
ensure by construction that Cn−1 ≤ x. If Cn−1 + lim

k→∞

L−r(p
k
n) = x, then we

will define αn = −1. If Cn−1 + lim
k→∞

L−r(p
k
n) 6= x, then we will define αn to

be the nonnegative integer satisfying Cn−1 + L−r(p
αn
n ) ≤ x that is largest with

respect to the ordering ≻. In this case, we define Cn = Cn−1 + L−r(p
αn
n ). For

now, let us assume that x is such that Cn−1 + lim
k→∞

L−r(p
k
n) 6= x for all positive

integers n. In other words, αn ≥ 0 and Cn is defined for all positive integers n.

We first show that Cn is in the range of L−r for all positive integers n.
Indeed, we have

Cn =
n
∑

i=1

L−r(p
αi

i ) = L−r

(

n
∏

i=1

pαi

i

)

. (2.6)

Now, we defined (Cn)
∞

n=1 to be a monotonic sequence with the property that
Cn ≤ x for all n ∈ N, so we may write lim

n→∞

Cn = γ ≤ x. Suppose, for the

sake of finding a contradiction, that γ < x. For each n ∈ N, we will let

Dn = L−r(pn) − L−r(p
αn
n ) and En =

n
∑

i=1

Di. Then Cn + En =

n
∑

i=1

L−r(pn),

so lim
n→∞

(Cn + En) = lim
n→∞

(

− log

(

n
∏

i=1

s−r(pi)

))

= log(ζ(r)). Therefore,

lim
n→∞

En = log(ζ(r)) − γ > log(ζ(r)) − x, so we may let m be the smallest posi-

tive integer such that Em > log(ζ(r))− x. If αm = 1 and m > 1, then Dm = 0,
implying that Em−1 = Em > log(ζ(r)) − x, which contradicts the minimality
of m. On the other hand, if αm = 1 and m = 1, then Em = 0 > log(ζ(r)) − x,
which is also a contradiction. Hence, αm 6= 1. If αm is odd, then we will let
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Am = L−r(p
αm−2
m ) − L−r(p

αm
m ). In this case, we see, by the definitions of Cm

and αm and the fact that αm−2 ≻ αm, that Am+Cm > x. If, on the other hand,
αm is even, then we may write Am = L−r(p

αm+2
m ) − L−r(p

αm
m ). Again, by the

definitions of Cm and αm and the fact that αm+2 ≻ αm, we have Am+Cm > x.
No matter the parity of αm, we have x − Cm < Am. Using Lemma 2.2, we see
that Am ≤ L−r(p

2
m), so x−Cm < L−r(p

2
m) = − log(s−r(p

2
m)). As we originally

assumed that s−r(p
2
m) ≥

∞
∏

i=m+1

s−r(pi), we have

x− Cm < − log(s−r(p
2
m)) ≤ − log

(

∞
∏

i=m+1

s−r(pi)

)

= log(ζ(r)) − (Cm + Em). (2.7)

This implies that Em < log(ζ(r)) − x, which is our desired contradiction. This
completes the proof of the case in which αn ≥ 0 for all n ∈ N.

Finally, let us assume that there is some positive integer n such that
Cn−1 + lim

k→∞

L−r(p
k
n) = x. In this case, simply let Cn−1+j = Cn−1 + L−r(p

j
n)

for all positive integers j. Then, as before, we see that Cn−1+j is always in
the range of L−r. Furthermore, lim

j→∞

Cn−1+j = Cn−1 + lim
j→∞

L−r(p
j
n) = x. This

completes the proof.

We now have a way to test whether or not the range of s−r is dense in
((ζ(r))−1 , 1] for a given r > 1. However, after a short lemma, we will be able to
simplify the problem even further.

Lemma 2.3. If j ∈ N\{1, 2, 4}, then pj+1

pj
<

√
2.

Proof. A simple manipulation of the corollary to Theorem 3 in [1] shows that
pj+1

pj
<

(j + 1)(log(j + 1) + log log(j + 1))

j log j
for all integers j ≥ 6. It is easy to

verify that
(j + 1)(log(j + 1) + log log(j + 1))

j log j
<

√
2 for all j ≥ 32. Therefore,

the desired result holds for j ≥ 32. A quick search through the values of
pj+1

pj
for j < 32 yields the desired result.

Theorem 2.3. If 1 < r ≤ 2, then the range of s−r is dense in the interval

((ζ(r))−1 , 1] if and only if s−r(p
2
m) ≥

∞
∏

i=m+1

s−r(pi) for all m ∈ {1, 2, 4}.

6
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Proof. Let us define a function F by F (m, r) = s−r(p
2
m)

m
∏

i=1

s−r(pi) so that the

inequality s−r(p
2
m) ≥

∞
∏

i=m+1

s−r(pi) is equivalent to F (m, r) ≥ (ζ(r))−1 . Due to

the validity of Theorem 2.2, we see that, in order to prove the result, it suffices
to show that if F (m, r) ≥ (ζ(r))−1 for all m ∈ {1, 2, 4}, then F (m, r) ≥ (ζ(r))−1

for all m ∈ N. Therefore, let us assume that r ∈ (1, 2] is such that F (m, r) ≥
(ζ(r))−1 for all m ∈ {1, 2, 4}.

If m ∈ N\{1, 2, 4}, then Lemma 2.3 tells us that pm+1 <
√
2pm ≤ r

√
2pm,

which means that we may write 2p−r
m+1 > p−r

m . As p−r
m − 1 is negative, we

have 2p−r
m+1(p

−r
m − 1) < p−r

m (p−r
m − 1), so we may write −2p−r

m+1 + 2p−2r
m+1 =

2p−r
m+1(p

−r
m+1 − 1) < 2p−r

m+1(p
−r
m − 1) < p−r

m (p−r
m − 1) = −p−r

m + p−2r
m . Therefore,

F (m+ 1, r) = s−r(p
2
m+1)s−r(pm+1)

m
∏

i=1

s−r(pi)

= (1− p−r
m+1 + p−2r

m+1)(1 − p−r
m+1)

m
∏

i=1

s−r(pi)

= (1− 2p−r
m+1 + 2p−2r

m+1 − p−3r
m+1)

m
∏

i=1

s−r(pi) < (1− 2p−r
m+1 + 2p−2r

m+1)

m
∏

i=1

s−r(pi)

< (1 − p−r
m + p−2r

m )
m
∏

i=1

s−r(pi) = s−r(p
2
m)

m
∏

i=1

s−r(pi) = F (m, r). (2.8)

Thus, ifm ∈ N\{1, 2, 4}, then F (m+1, r) < F (m, r). This means that F (3, r) >
F (4, r) ≥ (ζ(r))−1 . Furthermore, F (m, r) > (ζ(r))−1 for all integers m ≥ 5
because (F (m, r))∞m=5 is a decreasing sequence and lim

m→∞

F (m, r) = (ζ(r))−1 .

Using Mathematica 9.0, we may plot the graphs of (ζ(r))−1 , F (1, r), F (2, r),
and F (4, r). Doing so, we find that the graphs of F (2, r) and (ζ(r))−1 intersect at
a point r0 ≈ 1.9011618. Furthermore, we see that if r ∈ (1, r0], then F (m, r) ≥
(ζ(r))−1 for all m ∈ {1, 2, 4}. Therefore, if r ∈ (1, r0], then Theorem 2.3 tells us
that the range of s−r is dense in the interval ((ζ(r))−1 , 1]. One may also verify
that F (2, r) < (ζ(r))−1 for all r ∈ (r0, 3.2), so the range of s−r is not dense in
((ζ(r))−1 , 1] whenever r ∈ (r0, 3.2). This leads us to our final theorem.

Theorem 2.4. Let ηA be the unique number in the interval (1, 2) that satisfies
the equation

(1 − 2−ηA)(1− 3−ηA)(1 − 3−ηA + 3−2ηA) =
1

ζ(ηA)
. (2.9)
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If r > 1, then the range of the function s−r is dense in the interval

(

1

ζ(r)
, 1

]

if

and only if r ≤ ηA.

Proof. It is easy to see that the number ηA is simply the number r0 discussed in
the preceding paragraph. Therefore, in order to prove the theorem, it suffices (in

virtue of the preceding paragraph) to show that F (1, r) <
1

ζ(r)
for all r ≥ 3.2.

For r ≥ 3.2, we have 21−2r +
2

r − 1
< 1, so

21−2r +
2

r − 1
− 22−r

r − 1
+

22−2r

r − 1
− 1 + 2r < 2r. (2.10)

We may rearrange the left-hand-side of (2.10) to get

(

1 + 2r +
2

r − 1

)

(

1− 21−r + 21−2r
)

< 2r, (2.11)

from which we obtain
(

1 + 2r +
2

r − 1

)

(

1− 21−r + 21−2r − 2−3r
)

< 2r. (2.12)

Therefore, we have

F (1, r) = (1− 2−r)(1− 2−r + 2−2r) = 1− 21−r + 21−2r − 2−3r <
2r

1 + 2r + 2
r−1

=

(

1 +
1

2r
+

1

2r−1(r − 1)

)

−1

=

(

1 +
1

2r
+

∫

∞

2

1

xr
dx

)

−1

<
1

ζ(r)
. (2.13)

3 An Open Problem

In this paper, we have found necessary and sufficient conditions for the range
of a function s−r to be dense in ((ζ(r))−1, 1] (for r > 1). In other words, we
know exactly when the closure of the range of a function s−r will be the interval
[(ζ(r))−1, 1]. This point of view prompts the following more general question.
If we are given a positive integer L, then what are the values of r > 1 such
that the closure of the range of the function s−r is a disjoint union of exactly L

subintervals of [(ζ(r))−1 , 1]?

8



9

4 Acknowledgments

Dedicated to Miss Raleigh S. Howard.

The author would like to thank the unknown referee for his or her helpful
advice. The author would also like to thank Professor Peter Johnson for inviting
him to the 2014 REU in Algebra and Discrete Mathematics.

References

[1] Rosser; Schoenfeld. Approximate formulas for some functions of prime num-
bers. Illinois J. Math., 6 (1962), 64–94.

[2] The On-Line Encyclopedia of Integer Sequences, published electronically at
http://oeis.org, 2010.

[3] Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL (2012).

9

http://oeis.org

	1 Introduction
	2 Finding A
	3 An Open Problem
	4 Acknowledgments

