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TWO NEW UNIMODAL DESCENT POLYNOMIALS

SHISHUO FU, ZHICONG LIN, AND JIANG ZENG

Abstract. The descent polynomials of separable permutations and derangements are
both demonstrated to be unimodal. Actually, we prove that the γ-coefficients of the first
are positive with an interpretation parallel to the classical Eulerian polynomial, while the
second is spiral, a property stronger than unimodality. Furthermore we conjecture that
they are both real-rooted.

1. Introduction

Many polynomials with combinatorial meanings have been shown to be unimodal, see
the recent survey of Brändén [3] or [9]. Recall that a polynomial h(t) =

∑d
i=0 hit

i of degree
d is said to be unimodal if the coefficients are increasing and then decreasing, i.e., there is
a certain index c such that

h0 ≤ h1 ≤ · · · ≤ hc ≥ hc+1 ≥ · · · ≥ hd.

Let p(t) = art
r+ar+1t

r+1+· · ·+ast
s be a real polynomial with ar 6= 0 and as 6= 0. It is called

palindromic (or symmetric) of darga n if n = r + s and ar+i = as−i for all i (see [18, 22]).
For example, the darga of 1+t and t are 1 and 2, respectively. Any palindromic polynomial
p(t) ∈ Z[t] can be written uniquely [2] as

p(t) =

⌊n
2
⌋∑

k=r

γkt
k(1 + t)n−2k,

where γk ∈ Z. If γk ≥ 0 then we say that it is γ-positive of darga n. It is clear that the
γ-positivity implies palindromic and unimodality.

Let [n] := {1, 2, . . . , n} and denote by Sn the set of all permutations of [n]. For a
permutation π ∈ Sn, an index i ∈ [n] is a decent (resp. double descent) of π if πi > πi+1

(resp. πi−1 > πi > πi+1), where π0 = πn+1 = +∞. Denote by des(π) and dd(π) the number
of descents and double descents of π, respectively. It is well known [3] that the Eulerian
polynomials [16] or the descent polynomial on Sn is γ-positive of darga n− 1. Moreover,

An(t) :=
∑

π∈Sn

tdes(π) =

⌊n−1
2
⌋∑

k=0

γAn,kt
k(1 + t)n−1−2k,(1.1)
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where γAn,k = #{π ∈ Sn : dd(π) = 0, des(π) = k}.
A permutation π is said to contain the permutation σ if there exists a subsequence of

(not necessarily consecutive) entries of π that has the same relative order as σ, and in this
case σ is said to be a pattern of π, otherwise, π is said to avoid σ. The set of permutations
avoiding patterns σ1, . . . , σr in Sn is denoted by Sn(σ1, . . . , σr). The Narayana polynomial
of order n can be defined as the descent polynomial over Sn(231), and it is also γ-positive
of darga n− 1, see [14, Proposition 11.14] for an equivalent statement:

Nn(t) :=
∑

π∈Sn(231)

tdes(π) =

⌊n−1
2
⌋∑

k=0

γNn,kt
k(1 + t)n−1−2k,(1.2)

where γNn,k = #{π ∈ Sn(231) : dd(π) = 0, des(π) = k}.
This work was partially motivated (see Remark 2.2) by the second author’s recent

proof [8] of a conjecture of Gessel [2, 13, 20], which states that for n ≥ 1, there exist
nonnegative integers γn,i,j, 0 ≤ i, j, j + 2i ≤ n− 1, such that

(1.3)
∑

σ∈Sn

sides(σ)tdes(σ) =
∑

i,j≥0

γn,i,j(st)
i(1 + st)j(s+ t)n−1−j−2i,

where ides(σ) denotes the number of descents of σ−1. Note that we recover Eulerian
polynomial and its γ-decomposition (1.1) by setting s = 1 in (1.3).

A permutation avoiding patterns 2413 and 3142 is called a separable permutation (see
Proposition 2.8). The number of separable permutations are counted by the large Schröder
numbers (see [15,21]). The first few numbers are 1, 2, 6, 22, 90, 394, 1806, see oeis:A006318.
For interested reader, see [12] for recent work of McNamara and Steingrímsson on separable
permutations from topological point of view.

Our first main result is the following γ-positivity for the descent polynomial of separable
permutations.

Theorem 1.1. We have

(1.4) Sn(t) :=
∑

π∈Sn(2413,3142)

tdes(π) =

⌊n−1
2
⌋∑

k≥0

γSn,kt
k(1 + t)n−1−2k,

where

γSn,k = #{π ∈ Sn(3142, 2413) : dd(π) = 0, des(π) = k}.(1.5)

In particular, the polynomial Sn(t) is γ-positive for n ≥ 1 and a fortiori, palindromic and
unimodal.

http://oeis.org/A006318
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For example, the first decompositions of Sn(t) read as follows:

S1(t) = 1,

S2(t) = 1 + t,

S3(t) = 1 + 4t+ t2 = (1 + t)2 + 2t,

S4(t) = 1 + 10t+ 10t2 + t3 = (1 + t)3 + 7t(1 + t),

S5(t) = 1 + 20t+ 48t2 + 20t3 + t4 = (1 + t)4 + 16t(1 + t)2 + 10t2,

S6(t) = 1 + 35t+ 161t2 + 161t3 + 35t4 + t5 = (1 + t)5 + 30t(1 + t)3 + 61t2(1 + t).

The palindrome Sn(t) = tn−1Sn(1/t) follows from the involution

π1π2 · · ·πn 7→ πnπn−1 · · ·π1

and the fact that Sn(2413, 3142) is invariant under this involution. Note that both (1.1)
and (1.2) can be proved using the modified Foata-Strehl action (see [2] or [9]) on Sn, but
since Sn(2413, 3142) is not invariant under this action, it is unclear how Theorem 1.1 could
be deduced by the same manner.

A derangement is a fixed-point free permutation. Consider the descent polynomial of
derangements:

Dn(t) :=
∑

π∈Dn

tdes(π),

where Dn is the set of derangements in Sn. The first few values of Dn(t) are listed as
follows:

D2(t) = t,

D3(t) = 2t,

D4(t) = 4t+ 4t2 + t3,

D5(t) = 8t+ 24t2 + 12t3,

D6(t) = 16t+ 104t2 + 120t3 + 24t4 + t5,

D7(t) = 32t+ 382t2 + 896t3 + 480t4 + 54t5.

The following spiral property implies the unimodality of Dn(t), which can be considered
as our second main result.

Theorem 1.2. Let Dn(t) =
∑

k≥1 dn,kt
k. Then, for n ≥ 1 and 1 ≤ k ≤ n− 1

(1.6) d2n,2n−k < d2n,k < d2n,2n−k−1 and d2n+1,k < d2n+1,2n−k < d2n+1,k+1

except that d4,1 = d4,2 = 4. In particular, the polynomial Dn(t) is unimodal for n ≥ 2.

The rest of this paper is organized as follows. Section 2 provides two alternative descrip-
tions of separable permutations, which we take the liberty to name as “Schröder words” and
“di-sk trees”. Utilizing these new models and a crucial bijection, a proof of Theorem 1.1
is given in Section 3. We shall prove Theorem 1.2 in Section 4 and supply two alternative
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π

πσ

σ
π ⊕ σ = π ⊖ σ =

Figure 1. The direct sum and skew sum operations.

proofs of the γ-positivity for Sn(t) in Section 5. The first one builds on a different action on
the di-sk trees, while the second one is based on further analysis on the generating function
for Sn(t). Finally we conclude with some remarks and conjectures.

2. Separable permutations, Schröder words and di-sk trees

We construct two alternative models for separable permutations. For the first model we
need to introduce two operations. The final output is a one-line expression we call Schröder
word, next we “anti-telescope” it to form the second model that we call direct-skew tree
(abbreviated as di-sk in the sequel). This one extra dimension we gained by switching to
planar trees will make our further investigation a lot clearer.

2.1. Direct sum and skew sum. We need two operations defined on all permutations.
The direct sum of the permutations π ∈ Sk and σ ∈ Sl, is a permutation in Sk+l denoted
by π ⊕ σ, point-wisely it satisfies

(π ⊕ σ)(i) =

{
π(i), for i ∈ [1, k];

σ(i− k) + k, for i ∈ [k + 1, k + l].

And similarly the skew sum of π and σ, denoted by π ⊖ σ,

(π ⊖ σ)(i) =

{
π(i) + l, for i ∈ [1, k];

σ(i− k), for i ∈ [k + 1, k + l].

If we use permutation matrix to represent both permutations, then the direct sum and the
skew sum are forming block anti-diagonal matrix and block diagonal matrix, respectively
(see Fig. 1). The following observation follows directly from the definition and it was the
motivation for studying these two operations and separable permutations.

Proposition 2.1. The direct sum preserves both descents and inverse descents, while the
skew sum increases both descents and inverse descents by 1. More precisely, we have

des(π ⊕ σ) = des(π) + des(σ), ides(π ⊕ σ) = ides(π) + ides(σ);

des(π ⊖ σ) = des(π) + des(σ) + 1, ides(π ⊖ σ) = ides(π) + ides(σ) + 1.

Remark 2.2. In an effort to find combinatorial interpretation of γn,i,j in (1.3), we restricted
our attention to the terms without s+ t, whose coefficients are γn,i,n+1−2i. This means we
need to consider operations on permutations that change both des and ides by the same
amount. In view of Proposition 2.1, this leads us naturally to the operations ⊕ and ⊖.
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The readers are invited to check the following computations using ⊕ and ⊖ and make
sure they understand the definition. Here and throughout the rest of the paper, we will
use one line notation for permutations unless otherwise stated.

Example 2.3.

123⊕ 21 = 12354, 21⊕ 123 = 21345,

123⊖ 21 = 34521, 21⊖ 123 = 54123,

(12⊖ 231)⊖ 3142 = 12⊖ (231⊖ 3142) = 896753142,

(1⊕ 1)⊖ 1 = 12⊖ 1 = 231, 1⊕ (1⊖ 1) = 1⊕ 21 = 132.

As suggested by Example 2.3, we see that both operations ⊕ and ⊖ are associative but
not commutative in general, nor do they associate with each other (i.e., for permutations
π, σ and τ we typically have (π⊕σ)⊖τ 6= π⊕ (σ⊖τ)), so when situation like this arises, it
is necessary to add parenthesis to indicate in what order we are executing these operations.
By convention, operations are taking place from left to right unless there are parenthesis.

2.2. Sweeping-algorithm. Bose, Buss and Lubiw [4] showed that it is possible to deter-
mine in polynomial time whether a given separable permutation is a pattern in a larger
permutation. But in practice, for a given permutation π, it is not so easy to see if it is
separable or not. We recall an algorithm, called sweeping-algorithm, that we believe first
appeared in [15], to verify a given permutation is separable or not and in case of yes, it
“decomposes” π into a bunch of 1, ⊕, ⊖ and parentheses with some conditions.

Definition 2.4 (Sweeping-algorithm). Starting with a permutation π = a1a2 · · · an in Sn.
View each ai as a block Bi.

(1) Read π from left to right and find the least j such that the two adjacent blocks Bj

and Bj+1 contain elements aj and aj+1, respectively, that are consecutive integers
(increasing or decreasing), then form a new block (Bj ⊕Bj+1) for increasing, (Bj ⊖
Bj+1) for decreasing. If no such j exists, then π is actually non-separable (see
Proposition 2.8 below).

(2) We repeat this process until no new blocks can be formed. As long as there are
two adjacent blocks satisfying (1), the process would continue and end with a single
block, which corresponds to the last executed operator and the outermost pair of
parentheses.

(3) We replace all the numbers with 1 (since their order has been coded by ⊕, ⊖ and
parenthesis) and call the final expression, denoted by sw(π), a Schröder word.

We try out our construction with one example, and the corresponding block decompo-
sition for its permutation matrix is depicted in Fig. 2 for better visualization, where black
dots stand for entry 1 in the matrix and empty slots are all 0s.
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Figure 2. Block decomposition of π = 984132756 using permutation matrix.

Example 2.5. Take π = 984132756, we need eight sweeps in this example:

sweep 1: (9⊖ 8)4132756

sweep 2: (9⊖ 8)41(3⊖ 2)756

sweep 3: (9⊖ 8)4
(
1⊕ (3⊖ 2)

)
756

sweep 4: (9⊖ 8)
(
4⊖

(
1⊕ (3⊖ 2)

))
756

sweep 5: (9⊖ 8)
(
4⊖

(
1⊕ (3⊖ 2)

))
7(5⊕ 6)

sweep 6: (9⊖ 8)
(
4⊖

(
1⊕ (3⊖ 2)

))(
7⊖ (5⊕ 6)

)

sweep 7: (9⊖ 8)
((
4⊖

(
1⊕ (3⊖ 2)

))
⊕
(
7⊖ (5⊕ 6)

))

sweep 8:
(
(9⊖ 8)⊖

((
4⊖

(
1⊕ (3⊖ 2)

))
⊕
(
7⊖ (5⊕ 6)

)))

final:
(
(1⊖ 1)⊖

((
1⊖

(
1⊕ (1⊖ 1)

))
⊕
(
1⊖ (1⊕ 1)

)))
= sw(π).

Remark 2.6. Note that associativity on single operator gives us (π⊕σ)⊕ τ = π⊕ (σ⊕ τ)
and (π⊖σ)⊖τ = π⊖(σ⊖τ). Since we always sweep from left to right in our decomposition,
it is not hard to see that we will always first get block (B1 ⊕B2)⊕B3 before we can form
B1⊕ (B2⊕B3), similarly for operator ⊖. More precisely, when a new block is formed from
three consecutive smaller blocks B1, B2, B3 in such a way that B2 and B3 first combine,
then together they combine with B1, we have the following restriction:

impossible: (B1 ⊕ (B2 ⊕B3)), (B1 ⊖ (B2 ⊖B3));(2.1)

possible: (B1 ⊕ (B2 ⊖ B3)), (B1 ⊖ (B2 ⊕B3)).

Definition 2.7. For n ≥ 1, let Wn be the set of all Schröder words of length n, namely,
one-line expressions composed of n copies of 1, n− 1 operators ⊕ or ⊖, and n− 1 pairs of
parentheses that satisfy restriction (2.1).

Note that we can naturally associate each pair of parenthesis in a Schröder word with a
unique operator ⊕ or ⊖ it is “parenting”.
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For more information on these two operators and on separable permutations in general
we refer to [1,10,19]. The following result is well known, see [4] and [10, page 57]. For the
reader’s convenience we sketch a proof via our sweeping-algorithm.

Proposition 2.8. For n ≥ 1, the sweeping-algorithm π 7→ sw(π) is a bijection between
Sn(2413, 3142) and Wn such that

i ∈ DES(π) := {i ∈ [n− 1] : πi > πi+1} ⇔ the ith operator in sw(π) is ⊖.

Proof. We first show that the algorithm is well defined, in other words, if the sequence of
blocks B1B2 . . . Br has no two consecutive integers in two adjacent blocks Bj and Bj+1,
then there is a pattern 2413 or 3142 in the starting permutation π.

We proceed by induction on n ≥ 1. For n ≤ 4, the algorithm is well defined except
the two permutations 2413 and 3142. Assume that n > 4 and the result is true for all
m < n. Note that each block is an interval {j, j+1, . . . , ℓ} with j ≤ ℓ. We order the blocks
according to their minima and relable the blocks according to their rank in this ordering.
Let a be the block with rank a.

• If B1 = 1 or Br = 1 , then we consider the subsequence B2 . . . Br or B1B2 . . . Br−1.
By the induction hypothesis, we are done.

• Otherwise, there are two neighbours for block 1 , say a 1 b , where we assume
b > a ≥ 3 (the case a > b is completely analogous due to symmetry). We first
find a unique c that meets the following criterion, if no such c exists we simply take
c = a:

i) a < c < b;
ii) c is to the left of a ;
iii) c is the largest integer satisfying both i) and ii).

We then have two claims:
Claim 1: All blocks 2 , 3 , · · · , a-1 , a+1 , · · · , c-1 are to the left of a .
Claim 2: If for some d > b, d is to the left of a , then d is to the left of all blocks 1

through c .

Clearly, if Claim 1 is false, then the pattern 3142 appears in the starting permutation π; if
Claim 2 is false, we have 2413 in π. Otherwise Claim 1 and 2 both hold and in this case
blocks 1 through c form a complete interval and by the induction hypothesis, we are done.

Now suppose we are given a Schröder word in Wn, we describe how we can find its
preimage under the sweeping-algorithm. Simply note that each pair of parentheses that
contain l copies of 1 should produce l consecutive integers (i, i + 1, · · · , i + l − 1) for
some i, 1 ≤ i ≤ n, and for two consecutive pairs of parentheses, we know which should
contain bigger integers by looking at the operator concatenating them. For instance, in
Example 2.5, we can reproduce “sweep 8” from “final” by first looking at the second ⊖ from
left, this is the last operator being executed in this expression. And we realize that the
two greatest numbers, namely 8 and 9 should be put in the first parenthesis, and the first
⊖ tells us 9 goes before 8, etc. And finally just drop all the operators and parentheses, we
arrive at a separable permutation in Sn(2413, 3142). Therefore our map is invertible for
any expression in Wn, so we get both injectivity and surjectivity.
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⊖

⊖

⊕

⊖

⊕

⊖

⊕

⊖
RC1 RC2 RC3

Figure 3. The right chains for π = 984132756.

Finally it is readily seen that if i ∈ DES(π) then the two blocks containing πi and πi+1,
respectively, must be concatenated by ⊖ according to the sweeping-algorithm and vice
versa. �

2.3. The di-sk trees. We first recall some standard vocabularies for trees [11, Section 2.3.1].

Definition 2.9. An (unlabelled) binary tree is defined recursively as follows. The empty
set ∅ is a binary tree. Otherwise a binary tree has a root vertex v, a left subtree T1, and
a right subtree T2, both of which are binary trees. We also call the root of T1 (if T1 is
nonempty) the left child and the root of T2 (if T2 is nonempty) the right child of the vertex
v. For the set of all binary trees with n− 1 vertices (or nodes), we denote it as Tn.

In what follows we use the in-order to compare nodes on trees (see [17, page 5]), namely,
starting with the root node, we recursively traverse the left subtree to parent then to the
right subtree if any.

Definition 2.10. Given a binary tree T , its right chain is any maximal chain composed
of right children except the first node, which is either the root or a left child. The length
of a right chain is the number of nodes on this chain. And the number of its right chains
is denoted as r(T ). Similary, the number of right chains with even (resp. odd) length is
denoted as re(T ) (resp. ro(T )). The order between two right chains is then decided by
comparing their first nodes.

Example 2.11. For our running permutation π = 984132756, the tree T (π) has three right
chains, with length being 1, 4 and 3 in this order, so ro(T (π)) = 2 and re(T (π)) = 1. See
Fig. 3.

Remark 2.12. Note that the right chain is decided only by the structure of the tree, so
Definition 2.10 extends naturally to labelled trees.

Definition 2.13. A binary tree is called a di-sk tree if it is labelled with ⊕ and ⊖ and the
labelling satisfies the following “right chain condition”:

The labelling on each right chain should alternate.(2.2)

The number of nodes in the di-sk tree T that are labelled as ⊖ is denoted by n⊖(T ). The
set of all di-sk trees with n− 1 nodes is denoted as DTn.
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(
(1⊖ 1)⊖

((
1⊖

(
1⊕ (1⊖ 1)

))
⊕
(
1⊖ (1⊕ 1)

)))

⊖

⊖

⊕

⊖ ⊖

⊕

⊖

⊕

⊖

⊖

⊕

⊖ ⊖

⊕

⊖

⊕

1

2

6

3 7

4

5

8

Figure 4. Schröder word, di-sk tree, and in-order tranversal.

Now we describe how to go from Schröder words to di-sk trees. One example using
our running permutation π = 984132756 is illustrated in Fig. 4. Given a Schröder word
w = (wL⊕wR) (resp. (wL⊖wR) ) in Wn, we convert it to be the labelled binary tree T (w) =
(T (wL),⊕, T (wR)) (resp. (T (wL),⊖, T (wR))), where wL and wR have been converted to
be the left subtree T (wL) and the right subtree T (wR) of the root ⊕ (resp. ⊖). It is clear
that the condition (2.1) on w is equivalent to the condition (2.2) on T (w). Thus, we can
call them both right chain condition from now on. The following result is clear from this
construction.

Proposition 2.14. The map w 7→ T (w) is a bijection from Wn to DTn such that

The ith operator in w is ⊖ ⇔ the ith node in T (w) is ⊖.(2.3)

Combining Propositions 2.8 and 2.14 we obtain the main result of this section.

Theorem 2.15. For n ≥ 1, the map π 7→ T (π) is a bijection from Sn(2413, 3142) to DTn

such that

i ∈ DES(π) ⇔ the ith node of T (π) is ⊖.

Moreover, for 0 ≤ k ≤ ⌊(n−1)/2⌋, it induces a bijection between the following two subsets:

S
S
n,k :={π ∈ Sn(3142, 2413) : dd(π) = 0, des(π) = k},

DT
2
n,k :={T ∈ DTn : T has no consecutive ⊖, its first node is ⊕ and n⊖(T ) = k}.

In view of Theorem 2.15, we immediately get another expression for Sn(t).

Corollary 2.16. For n ≥ 1,

(2.4) Sn(t) =
∑

T∈DTn

tn⊖(T ).
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lock hang hang

C2

ց

C2

ց
C2

ց

C1

ց
C1

ց

C1

ց

Figure 5. Two connection types between two chains C1 of length 3 and C2

of length 2.

3. Proof of Theorem 1.1

In this section, we first set up a bijection between two subsets of di-sk trees, and then use
this bijection together with a properly chosen weight on di-sk trees to prove Theorem 1.1.
To keep the length of our description at minimum, we make some conventions on our
terminology. We simply say “chain” when we mean “right chain”, and by “odd chain” we
mean “right chain with odd length”. For a given chain, we call its first node “terminal” and
refer to its other nodes as “non-terminal”. We use |C| to represent the length of a given
chain C.

Recall that we view any binary tree as chains hinged together by left edges. Given two
chains C1 and C2, C1 goes before C2 in order, we distinguish here two different ways they
can be connected by left edge. We recommend using Fig. 5 for visualization.

• Type A (lock): The terminals of C1 and C2 are connected.
• Type B (hang): The terminal of C2 is connected to a non-terminal of C1.

By “level” we mean the hierarchy observed by looking at the way how all chains are
hinged (either locked or hanged) to each other to form one tree. More precisely, we have
the following definition.

Definition 3.1. For a given (unlabelled) binary tree, we define the level of its chains
recursively. This definition extends to di-sk trees naturally.

(1) The first chain is always at level 0;
(2) If a chain is locked to a chain at level i, then this chain is defined to be also at

level i;
(3) If a chain is hanged to a chain at level i, then this chain is defined to be at level

i+ 1.

Remark 3.2. By our definition, all chains at level 0 must be locked to each other, so their
terminals will form a single left chain. While for i ≥ 1, chains at level i could break into
several groups, inside each group, chains are locked one by one, then together as a subtree
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they are hanged to some chain at level i− 1. In other words, the terminals of all chains at
level i could form more than one left chains. Because of this observation, when we say two
chains are at the “same level”, we implicitly require that they are inside the same group, so
that their terminals are on the same left chain.

Definition 3.3. Besides DT2
n,k, we now consider another subset of di-sk trees, namely for

n ≥ 1, 0 ≤ k ≤ ⌊(n− 1)/2⌋, we define

DT
1
n,k := {T ∈ DTn : ro(T ) = n− 1− 2k and all odd chains start with ⊕}.

Here ro(T ) is the number of odd right chains on the di-sk tree T .

We are ready to state our main results for this section.

Theorem 3.4. Let γSn,k be defined by (1.4). Then, γSn,k = |DT
1
n,k|.

Proof. According to Proposition 2.16, weighting each descent by t, each ascent by 1 in a
permutation is equivalent to weighting each ⊖ by t and each ⊕ by 1 on a di-sk tree. As
a direct result of this weighting and the right chain condition, each chain of length i will
give us ti/2 for i even and t(i−1)/2(1 + t) for i odd, where the factor (1 + t) comes from
two different labellings for each odd chain, namely one that begins with ⊕ (choose 1) and
one that begins with ⊖ (choose t). Then forcing the labelling on odd chains to begin
with ⊕ is essentially taking one representative, namely tk from the expansion of each term
tk(1 + t)n−1−2k. Therefore the subset DT1

n,k is enumerated by γSn,k. �

Remark 3.5. The weight we placed on the di-sk trees in the proof above can also be
described using group action. We will develope another group action in Section 5.1.

Theorem 3.6. There is a bijection between DT1
n,k and DT2

n,k. Consequently, Theorem 1.1
is true.

Proof. We quickly give the proof of the second part here, and postpone the bijection part
until we have made enough preparation. We have

γSn,k = |DT
1
n,k| = |DT

2
n,k| = |SS

n,k|,

wherein the three equalities from left to right follow respectively from Theorem 3.4, the
first part of this theorem and Theorem 2.15. �

We begin by constructing a map ψn,k from DT2
n,k to DT1

n,k and then show it is indeed a

bijection. For brevity, from now on we will fix some n ≥ 1 and 0 ≤ k ≤ ⌊n−1
2
⌋, and drop

all the n, k in the subscripts. It should be understood that the same construction applies
for all other n, k. We make a few quick observations on the map ψ and the two sets DT2

and DT1.

(1) The map ψ is simply identity on the intersection DT2 ∩DT1.
(2) For any T ∈ DT2 ∪DT1, the number of nodes labelled as ⊖ in T equals k, and the

rest n− 1− k nodes are all labelled as ⊕. Since k ≤ ⌊n−1
2
⌋, (n− 1− k)− k ≥ 0, so

T always has at least as many ⊕ as ⊖. And the difference between the numbers of
⊕ and ⊖ is always n− 1− 2k.
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(3) For any T ∈ DT2\DT1, it must have at least one odd chain that begins with ⊖.
Since even chains simply pair off ⊕ and ⊖, T must have at least n − 2k other
odd chains that begin with ⊕ to keep the difference between ⊕ and ⊖ still being
n− 1− 2k. In general, we have that ro(π) > n− 1− 2k and ro(π)− (n− 1− 2k) is
even.

(4) For any T ∈ DT1\DT2, it must either begin with ⊖, or it has a consecutive pair of
⊖, or its presents both incidence.

In view of (2), our map ψ should not change the labelling for the nodes but presumably
could change the position of the nodes. Moreover, observation (3) indicates that di-sk trees
in DT2\DT1 have “too many” odd chains, and the number of these extra odd chains is
even. The above analysis leads us to the following construction that is “cut-and-paste” in
nature. We still need to make two key observations before stating our map. Some cases
in the proof might seem redundant, but keep in mind that eventually we will construct a
bijection, so we try our best to develop two directions in a parallel way so that it will be
relatively easier for us to see why it is a bijection.

Lemma 3.7. Given a di-sk tree T ∈ DT2\DT1, if it has an odd chain C at level i which
begins with ⊖, then we can find a unique odd chain C∗ at the same level as C that begins
with ⊕, we call it the “adjoint” of C. See Fig. 6 to compare 6 different cases. Note that the
dash line means this portion of the tree could be of any type, including the empty set case.

Proof. We split the proof into 6 cases according to the level of C, the length of C∗ or C,
and the labelling of N .

I. The chain C is at level 0 and |C∗| = 1. We examine one-by-one the chains at level
0 that appear before C in order, starting from the closest one, say chain C1. If C1

is odd, then it must begin with and end with ⊕, because otherwise there will be two
consecutive ⊖, namely the tail of C1 and the head of C. In this case we are done and
C∗ := C1 is the adjoint for C. If C1 is even, then it must begin with ⊖ and end with
⊕ for the same reason (no consecutive ⊖), and C1 cannot be the first chain because
T ∈ DT

2\DT
1 so it begins with ⊕. Therefore we must have another chain locked

to C1, say C2, we carry out the same analysis on C2. This “scanning” will terminate
when we spot an odd chain, say Cj for the first time, then C1, C2, · · · , Cj−1 must all
be even, and Cj must begin with ⊕, we set C∗ := Cj and we are done.

II. The chain C is at level 0 and |C∗| > 1. We carry out exactly the same procedure
as last case. Actually this procedure does not depend on the value of |C∗|. The
reason we separate this case will become clear when we prove the analogous lemma
for DT1\DT2.

III. The chain C is at level i for i ≥ 1, N = ⊕ and |C∗| = 1. Here and in the sequel,
N is the node in a chain at level i− 1, from which the subtree containing C, say TC
is hanged. Since N = ⊕, the parent of N must be labelled ⊖ due to the right chain
condition. This will force the first node of TC to be labelled ⊕ (no consecutive ⊖).
Then we simply carry out the “scanning” on TC and reduce this case to the case I
above.
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IV. The chain C is at level i for i ≥ 1, N = ⊕ and |C∗| > 1. We carry out exactly the
same procedure as last case.

V. The chain C is at level i for i ≥ 1, N = ⊖ and |C∗| = 1. Then the parent of N must
be labelled ⊕ due to the right chain condition. So unlike cases III and IV, the subtree
TC does not have the “initial condition” (i.e., begins with ⊕) that we can use in our
argument. Therefore, instead of “searching down”, we actually look for its adjoint C∗

in the portion between C and N . The first step is to find the unique chain that is
closest to C while satisfying the following: i) at the same level as C; ii) comes after
C in order; iii) begins with ⊖. Denote the terminal of this chain by N∗, in the case
that this chain does not exist, simply set N := N∗. By the condition we put on N∗,
it is easy to see that all chains between C and N∗, at level i will begin with ⊕. In
particular, the chain locked to N∗ must be odd (no consecutive ⊖), this is our adjoint
C∗.

VI. The chain C is at level i for i ≥ 1, N = ⊖ and |C∗| > 1. We carry out exactly the
same procedure as last case.

�

Not surprisingly, we have a parallel lemma for DT1\DT2. We also provide Fig. 7 for
better illustration. Note that pair of consecutive ⊖ cannot exist in the same chain due to
the right chain condition.

Lemma 3.8. Given a di-sk tree T ∈ DT
1\DT

2, for each instance it presents that is against
the restriction on DT2 (see observation (4)), we claim that we can find a unique even chain
that we denote by L.

Proof. Analogous to Lemma 3.7, we prove case-by-case, each case corresponds to a case in
the proof of Lemma 3.7.

1. The di-sk tree T begins with ⊖. Then this first chain, say L1, must be even. If L1 is
locked to a chain that begins with ⊕ or if L1 is the last chain at level 0. Then we simply
take L := L1. Otherwise L1 must be locked to a chain that begins with ⊖, which has
to be an even chain. We denote this chain by L2. Then we similarly examine the chain
that L2 is locked to, say L3. If L3 begins with ⊕ then let L := L2, otherwise we move
up and consider L3, etc. This process will end if we arrive at the last chain at level 0,
say Lj ; or we arrive at some Lj (begins with ⊖), which is locked to Lj+1 (begins with
⊕), and all L1, L2, · · · , Lj−1 begin with ⊖. In either case, we set L := Lj .

2. The di-sk tree T has a pair of consecutive ⊖ at level 0, one ⊖ is the tail of an even chain,
say 1L, the other ⊖ is the head (terminal) of the even chain locked to 1L from above,
say L1. Then the procedure reduces to the case 1 simply by pretending L1 is the first
chain and finding L in a similar way.

3. The di-sk tree T has a pair of consecutive ⊖ that are in two chains at different level such
that one ⊖ is a non-terminal node in a chain at level i− 1, and the other ⊖ is the first
node in the chain (say L1) at level i. Again, we just proceed like in the first two cases,
start from L1 and find our L. Since N is labelled ⊕, this L must exist, the extreme case
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Figure 6. Six cases of finding the adjoint for C.

being that L is the chain hanged to N , and all chains at level i on this subtree begin
with ⊖.

4. The di-sk tree T has a pair of consecutive ⊖ at level i, i ≥ 1, and N = ⊕. As in Case
2, we denote the two chains involved by 1L and L1, then proceed like before to find L.
And again, we note that since N is labelled ⊕, this L must exist, the extreme case being
that L is the chain hanged to N , and all chains between 1L and N begin with ⊖.

5. The di-sk tree T has a pair of consecutive ⊖ at level i, i ≥ 1, N = ⊖, and all the chains
on the subtree at level i that appear before this pair will begin with ⊕. We denote the
second ⊖ in this pair by N∗, while for the first ⊖, the even chain that contains it will be
our L. Note that in this case L begins with ⊕ rather than ⊖.
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Figure 7. Six cases of finding L.

6. The di-sk tree T has a pair of consecutive ⊖ at level i, i ≥ 1, N = ⊖, and before this
pair, there exist at least one chain that begins with ⊖, and we denote the closest one by

1L. Like in Case 5, we denote the second ⊖ in this pair by N∗, while for the first ⊖, the
even chain that contains it will be our L. Also note that in this case L begins with ⊕
rather than ⊖.

�

Remark 3.9. Careful readers might be wondering if we have missed the case where for
the consecutive pair of ⊖, the first is in a chain at level i while the second is in a chain at
level i − 1. We remark here that actually this case is included in Case 5 and 6 as special
cases when N = N∗.
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Lemmas 3.7 and 3.8 are crucial in explaining where to apply our “cut and paste”, next
we describe how.

• Operation related to the forward map ψ. Take any T ∈ DT2\DT1. Starting from
level 0, we search for the first odd chain, say C, that begins with ⊖, find its adjoint
C∗ as explained in Lemma 3.7. In Cases I through IV, cut off the last node (labelled
⊕) in C∗, together with its left subtree if any, and attach it to the end of C (which
is labelled ⊖) from right. In Case V and VI, cut off instead the last node (labelled
⊖) in C, together with its left subtree if any, and attach it to the end of C∗ (which
is labelled ⊕) from right. In all cases, this operation will effectively turn both C
and C∗ into even chains, hence decrease ro(π) by 2. Actually in Case I, III and V,
one of C and C∗ will disappear. And after applying this operation, the new tree
still satisfies the right chain condition, therefore we still get a di-sk tree.

• Operation related to the backward map φ. Take any T ′ ∈ DT1\DT2. Starting from
level 0, we search for the first instance that is not allowed in DT2, choose accordingly
Cases 1 through 6 to find our L. In Cases 1, 3, 5, we cut off the last node in L, lock
it (from left) to the first chain at this level, making it the new first chain. While in
Cases 2, 4, 6, we cut off the last node in L, attach it (from right) to the end of 1L.
In all cases, this operation will effectively eliminate one instance that is forbidden
in DT

2 and creat an odd chain that begins with ⊖. Lastly, after applying this
operation, the new tree still satisfies the right chain condition, therefore we still get
a di-sk tree.

Let ψ(T ) (resp. φ(T ′)) be the final di-sk tree after we repeatedly apply the first (resp.
second) operation at all possible places. Both ψ and φ are trivially defined to be the
identity map on the intersection DT

2 ∩ DT
1. We see that the order in which we apply

these operations are essentially irrelevant. We prove this as a lemma, and then we finish
our proof of the main theorem.

Lemma 3.10. Both maps ψ and φ as defined above does not depend on the order we apply
the needed operations, in other words, one operation is independent from the other.

Proof. For ψ, simply note that if (C1, C
∗
1) and (C2, C

∗
2) are two pairs of odd chains that

begin with ⊖ and their adjoints, suppose C1 appears before C2, then either they are at
different levels; or they are at the same level, and C∗1 < C1 < C∗2 < C2 for Cases I, II, III,
IV, C1 < C∗1 < C2 < C∗2 for Cases V and VI. Here “A < B” means chain A appears before
chain B. Therefore the two operations applied on (C1, C

∗
1) and (C2, C

∗
2) respectively are

easily seen to be independent. Similarly for φ, since no odd chain begins with ⊖ in DT1,
there cannot be two forbidden incidences that share one common chain. �

Proof of Theorem 3.6. Thanks to Lemma 3.10, it will now suffice to prove these two op-
erations are inverse to each other in all six cases. This should be quite routine to check,
especially because we have arranged these cases in Fig. 6 and 7 so that Case I corresponds
to Case 1, Case II corresponds to Case 2, etc. It follows that ψ is indeed a bijection and
ψ−1 = φ. �
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Figure 8. Two di-sk trees related via ψ and φ.

Such a delicate construction deserve some examples and we offer one here. In Fig. 8
we presents two di-sk trees each with 40 nodes, that are related via our maps ψ and
φ. It requires applying our operation at five different places on the di-sk tree, covering
five different cases. We mark C and its adjoint C∗, as well as L and 1L for the reader’s
convenience.

4. Spiral property for Dn(t)

To prove the unimodality of Dn(t), we shall apply the following formula of Désarménien-
Foata [5] and Gessel-Reutenauer [7]:

(4.1)
∑

n≥2

Dn(t)

(1− t)n+1
zn =

∑

r≥1

tr−1

1− rz
(1− z)r.
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Lemma 4.1. The polynomial Dn(t) satisfies the following recurrence relation:

(4.2) Dn(t) = (−1)ntn−1 + (1 + (n− 1)t)Dn−1(t) + t(1− t)D′n−1(t).

Equivalently,

(4.3) dn,k =






1, if n is even and k = n− 1;

0, if n is odd and k = n− 1;

(k + 1)dn−1,k + (n− k)dn−1,k−1, if k 6= n− 1.

Proof. Extracting the coefficient of zn in both sides of (4.1) gives

(4.4)
Dn(t)

(1− t)n+1
=
∑

r≥1

tr−1

(
n∧r∑

k=0

(−1)k
(
r

k

)
rn−k

)
,

where n ∧ r = min{n, r}. If we set Tr(n) =
∑n∧r

k=0(−1)k
(
r
k

)
rn−k, then

Tr(n) =

{
rTr(n− 1), if 1 ≤ r ≤ n− 1;

rTr(n− 1) + (−1)n
(
r
n

)
, otherwise.

It then follows from (4.4) that

t

(
tDn−1(t)

(1− t)n

)′
=
∑

r≥1

trrTr(n− 1)

=
∑

r≥1

trTr(n)−
∑

r≥n

tr(−1)n
(
r

n

)

=
tDn(t)− (−t)n

(1− t)n+1
.

After simplifying we get (4.2). �

Remark 4.2. When t = 1, Eq. (4.2) reduces to the well-known recurrence relation

dn = (−1)n + ndn−1

for the number of derangement dn = #Dn. It is also reminiscent of the recurrence

(4.5) An(t) = (1 + (n− 1)t)An−1(t) + t(1− t)A′n−1(t)

for the Eulerian polynomials.

A desarrangement is a permutation whose first ascent is even, where an index i ∈ [n] is
an ascent of π ∈ Sn if πi < πi+1 (by convention πn+1 = +∞). For example, 653241 is a
desarrangement but 321564 is not. Let En be the set of all desarrangements in Sn.

A bijective proof of (4.3). By a result of Désarménien and Wachs [6, Corollary 3.3]) we
have

dn,k = {π ∈ En : ides(π) = k}.
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We say that an index i, 1 ≤ i ≤ n− 1, is an inverse descent of π ∈ Sn if i+1 appears to
the left of i in π. Clearly, the number of inverse descents of π is ides(π). When n is even,
the only desarrangement in En with n− 1 inverse descents is n(n− 1) · · · 21, so dn,n−1 = 1
in this case. In the n odd case, there is not desarrangement of length n with n− 1 inverse
descents and dn,n−1 follows. In the following, we can assume that 1 ≤ k < n− 1.

Let Sn−1×[n] := {(π, j) : π ∈ Sn−1, j ∈ [n]}. There is a natural bijection from Sn−1×[n]
to Sn defined by

(4.6) (π, j) 7→ σ = σ1 · · ·σn,

where σn = j and for i ∈ [n− 1], σi = πi + 1 if πi ≥ j, otherwise σi = πi. It is routine to
check that

ides(σ) =

{
ides(π), if j − 1 is an inverse descent of π;

ides(π) + 1, otherwise.

Recurrence relation (4.3) then follows from this property and the fact that in (4.6) if σ is a
desarrangement in En with k (k < n− 1) inverse descents then π is a desarrangement. �

From (4.2) we can readily deduce that deg(D2n+1(t)) = 2n − 1 and D2n(t) is a monic
polynomial of degree 2n− 1. Moreover, the coefficient of t in Dn(t) is 2n−2.

Proof of Theorem 1.2. It is easy to check that statement (1.6) is true for n ≤ 3. We proceed
to prove the statement by induction on n using recurrence (4.3).

Suppose that m ≥ 4 and statement (1.6) is true for n = m − 1. We first show that
d2m,2m−k < d2m,k < d2m,2m−k−1 for 1 ≤ k ≤ m−1. By the recurrence relation (4.3) for dn,k,
we have

(4.7) d2m,2m−k = (2m− k + 1)d2m−1,2m−k + kd2m−1,2m−k−1

if k 6= 1 and

(4.8) d2m,k = (k + 1)d2m−1,k + (2m− k)d2m−1,k−1

(4.9) d2m,2m−k−1 = (2m− k)d2m−1,2m−k−1 + (k + 1)d2m−1,2m−k−2.

Clearly, d2m,2m−1 = 1 < 22m−2 = d2m,1. It follows from (4.7) and (4.8) that, for k ≥ 2,

d2m,k − d2m,2m−k = (2m− k + 1)(d2m−1,k−1 − d2m−1,2m−k)

+ k(d2m−1,k − d2m−1,2m−k−1) + (d2m−1,k − d2m−1,k−1).

By the inductive hypothesis, the difference in every parenthesis in the above expression is
positive, which implies that d2m,k > d2m,2m−k. Similarly, by (4.8) and (4.9) we have

d2m,2m−k−1 − d2m,k = (2m− k)(d2m−1,2m−k−1 − d2m−1,k−1)

+ (k + 1)(d2m−1,2m−k−2 − d2m−1,k).

Again, by the inductive hypothesis, we deduce that d2m,2m−k−1 > d2m,k. This completes
the proof of the first part of statement (1.6) for n = m. It remains to show the second part
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of statement (1.6) for n = m, which is omitted due to the similarity. This completes the
proof of the theorem by induction. �

5. More on separable permutations

5.1. A second interpretation for γSn,k. In this section, we will develop a different group
action, together with certain “right chain index” (abbreviated as rc-index in the sequel) for
di-sk trees. We refer readers to [16, section 1.6.3] for introduction and backgrounds on min-
max trees and the cd-index that are defined for all permutations. Roughly speaking, the
ab-index and the cd-index can be viewed as a refined (or non-commutative) version of the
Eulerian polynomial and its γ-decomposition. Our construction of rc-index for separable
permutations is analogous to the cd-index for permutations.

Definition 5.1. Given a separable permutation π ∈ Sn(2413, 3142) and its corresponding
di-sk tree T (π), for 1 ≤ i ≤ n − 1, ψi will reverse (⊕ to ⊖ and ⊖ to ⊕) the labelling for
all the nodes on the i-th right chain, counting from left to right. The labelling on all other
nodes are fixed by ψi. We denote the new di-sk tree thus obtained by ψiT (π).

Note that there can be at most n− 1 such right chains. Since there are no restriction on
the left child labelling, and that all the right chains are hinged together by left edges, we
see these ψi act on di-sk trees independently. Hence we get the following result which is
similar to [16, section 1.6.3].

Fact 5.2. The operators ψi are commuting involutions and hence generate an abelian group
Gπ isomorphic to (Z/2Z)r(π), recall that r(π) = r(T (π)) is the number of right chains in
T (π) (see Definition 2.10 and Remark 2.12). Hence there are precisely 2r(π) different di-sk
trees ψT (π) for ψ ∈ Gπ.

Definition 5.3. Given a permutation ω ∈ Sn(2413, 3142) and an operator ψ ∈ Gω we de-
fine the permutation ψω by ψDT (ω) = DT (ψω). Two permutations ν, ω ∈ Sn(2413, 3142)

are said to be DT-equivalent, denoted ν
DT
∼ ω, if ν = ψω for some ψ ∈ Gω. The size of the

equivalence class [ω] is 2r(ω) due to Fact 5.2.

Remark 5.4. Recall that the ab-index (see [16, section 1.6.3]) for π = 984132756 is uD(π) =
abbababa, which is easily seen to match its Schröder word sw(π) if we delete all the 1s and
parentheses and replace ⊕ and ⊖ with a and b, respectively. In other words, our di-sk tree
is compatible with the original ab-indexing and we will get Sn(t) upon summing over all
ab-monomials for separable permutations and putting a = 1, b = t.

Proposition 5.5. Two separable permutations are DT-equivalent if and only if they have
the same tree structure, in other words, they reduce to the same unlabelled binary tree if we
delete all the labellings. Consequently, the number of equivalence classes is |Tn| = Cn−1.

Proof. Since the operators ψi only alter the labellings, not the underlying tree structure,
we get the “only if” part. Conversely, if two permutations ν, ω ∈ Sn(2413, 3142) have the
same tree structure for their corresponding di-sk trees, then clearly we can go from one
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labelling to another by applying ψi, 1 ≤ i ≤ n − 1 for at most n − 1 times, so we have

ν
DT
∼ ω. �

Now we proceed to define the rc-index for any di-sk tree (or equivalently, any separable
permutation). Define n− 1 noncommutative indeterminates as follows:

c1 = a+ b, c2 = ab+ ba, . . . , cn−1 = aba · · ·︸ ︷︷ ︸
n−1

+ bab · · ·︸ ︷︷ ︸
n−1

.

We assign a weight for each equivalence class [ω]. For 1 ≤ i ≤ r(ω), let fi := cl, where l is
the length of the i-th right chain in DT (ω). And then let Φ[ω] = Φ[ω](c1, c2, · · · , cn−1) :=
f1f2 · · · fr(ω). Our Φ[ω] is well-defined due to Proposition 5.5. We call it the rc-weight for
this equivalence class [ω]. We get the “global” rc-index by summing Φ[ω] over all different
equivalence classes.

Theorem 5.6. The equivalence relation
DT
∼ defined on Sn(2413, 3142) will give us a unified

weighted counting for both the Catalan numbers Cn and the large Schröder numbers Sn:

Φn = Φn(c1, c2, · · · , cn−1) :=
∑

Φ[ω],

where the sum is over all different equivalence classes. Φn is called the rc-index for
Sn(2413, 3142). In particular, we have Φn(1, 1, · · · , 1) = Cn−1 and Φn(2, 2, · · · , 2) = Sn.

Proof. The first evaluation is a direct result of Proposition 5.5. For the second one, putting
c1 = c2 = · · · = cn−1 = 2 means each equivalent class [ω] is counted by the weight 2r(ω),
which is exactly the size of this class (Fact 5.2), so summing up we get the total number
of di-sk trees, i.e. Sn. �

Analogous to the original cd-index for Sn, the number of distinct terms in Φn is a well
studied number c(n), the number of compositions of n. We list the first few values,

Φ1 = 1,

Φ2 = c1,

Φ3 = c21 + c2,

Φ4 = c31 + c1c2 + 2c2c1 + c3,

Φ5 = c41 + c21c2 + 2c1c2c1 + 3c2c
2
1 + 2c22 + c1c3 + 3c3c1 + c4,

Φ6 = c51 + c31c2 + 2c21c2c1 + 3c1c2c
2
1 + 4c2c

3
1 + 2c1c

2
2 + 3c2c1c2 + 5c22c1+

c21c3 + 3c1c3c1 + 6c3c
2
1 + 2c2c3 + 3c3c2 + c1c4 + 4c4c1 + c5.

One more thing to notice is that different equivalence classes might have the same rc-
weight, essentially because one can either “lock” or “hang” one chain to another, see Fig. 9
for example. And by expanding one monomial in c1, c2, . . . , cn−1 we typically do not recover
the original ab-index for permutations in this equivalence class, which is unfortunate. But
it is refined enough to give us another combinatorial interpretation for all the γ-coefficients,
which implies the positivity trivially.
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[984756132] [984132756] [981746523]

Figure 9. Three different di-sk trees have the same weight c1c4c3.

Theorem 5.7. Let γSn,k be defined by (1.4). Then,

γSn,k =
∑

T∈Tn

ro(T )=n−1−2k

2re(T ).(5.1)

Proof. Although by expanding rc-weight generally we will not get the original ab-index for
each permutation in this equivalence class, it does preserve the number of a’s and b’s, hence
the descent number, which is exactly how we weight each permutation in Sn(t), therefore
we have

Φn(c1, c2, · · · , cn−1)
∣∣
a=1,b=t

= Sn(t).

On the other hand, upon putting a = 1, b = t in Φn, each ci becomes either 2ti/2 when i is
even or t(i−1)/2(1+ t) when i is odd. Now suppose one term Φ[ω] = ck1ck2 · · · ckm, where m =

r(ω). Then upon evaluation it becomes 2re(ω)t(n−1−ro(ω))/2(1 + t)ro(ω), so we establish (5.1).
Note that this one compact term actually codify all 2r(ω) separable permutations that are
in the same equivalence class [ω]. �

We exemplify this new interpretation on S4(t) and the five unlabelled binary trees in T4

are depicted in Fig. 10.

Example 5.8. When n = 4, we have two terms in the γ-decomposition of S4(t), i.e.,
S4(t) = (1 + t)3 + 7t(1 + t).

• k = 0. We count binary trees with n− 1 = 3 nodes and n− 1− 2k = 3 right chains
of odd length, the only choice is (1, 1, 1) (right chains listed out with their length
from left to right), with no right chain of even length, and the way to hinge these
three right chains together is unique, i.e. locked up one by one. So we get γ4,0 = 1.

• k = 1. We count binary trees with 3 nodes and only one right chain of odd length,
the choices are (3), (1, 2) and (2, 1). There is only one way for (3), which is weighted
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(1,1,1) (3) (1,2) (2,1) (2,1)

Figure 10. Five binary trees in T4 and their right chain type.

by 1 (no even right chain), and there are 1 and 2 ways for (1, 2) and (2, 1), respec-
tively. And all of them are weighted by 2 (each have one right chain). So we get
γ4,1 = 1 + 2 · (1 + 2) = 7.

5.2. Generating function for Sn(t). In this section, we compute the generating function
for Sn(t) and provide another proof of its γ-positivity. To do this, let

S(1)
n (t) :=

∑

T∈DT
⊕
n

tn⊖(T ) and S(2)
n (t) :=

∑

T∈DT
⊖
n

tn⊖(T ),

where DT⊕n and DT⊖n are the set of all di-sk trees in DTn with root labeled by ⊕ and ⊖,

respectively. For convenience, we set S
(1)
1 (t) = S

(2)
1 (t) = 1. It follows from (2.4) that

(5.2) Sn(t) = S(1)
n (t) + S(2)

n (t)

if n ≥ 2.

Lemma 5.9. For n ≥ 2, we have

(5.3) S(1)
n (t) =

n−1∑

j=1

Sj(t)S
(2)
n−j(t) and S(2)

n (t) = t

n−1∑

j=1

Sj(t)S
(1)
n−j(t).

Proof. By the right chain condition, any di-sk tree in DT
⊕
n can be constructed from a root

labeled ⊕ by attaching a di-sk tree on the left branch and a di-sk tree with a root labeled ⊖
on the right branch. This gives the first expression in (5.3). The second expression in (5.3)
follows by similar decomposition of a di-sk tree in DT⊖n . �

Theorem 5.10. For n ≥ 2, we have the following recurrence relation for Sn(t):

(5.4) Sn(t) = (1 + t)Sn−1(t) + t

n−2∑

j=1

Sj(t)

(
Sn−j−1(t) +

n−j−1∑

i=1

Si(t)Sn−j−i(t)

)
.

Equivalently,

S(t, z) = z + (1 + t)zS(t, z) + tzS2(t, z) + tS3(t, z),

where S(t, z) :=
∑

n≥1 Sn(t)z
n.
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Proof. For n ≥ 1, let

S ′n(t) := tS
(1)
1 (t) + S

(2)
1 (t).

Note that S ′1(t) = 1 + t. It follows from (5.3) and (5.2) that, for n ≥ 2

(5.5) Sn(t) =

n−1∑

j=1

Sj(t)(S
(2)
n−j(t) + tS

(1)
n−j(t)) =

n−1∑

j=1

Sj(t)S
′
n−j(t)

and

S ′n(t) =

n−1∑

j=1

Sj(t)(tS
(2)
n−j(t) + tS

(1)
n−j(t))

= 2tSn−1(t) + t

n−2∑

j=1

Sj(t)Sn−j(t).

Substituting the latter into (5.5), we get (5.4). �

It is not hard to show that if A(t) and B(t) are γ-positive of darga m and n respectively,
then A(t)B(t) is γ-positive of darga m+n. The γ-positivity of Sn(t) then follows from (5.4)

by induction on n. Let Γn(x) :=
∑⌊n−1

2
⌋

k=0 γSn,kx
k be the γ-polynomial of Sn(t), where γSn,k

is defined by (1.4). Actually, the recurrence relation (5.4) for Sn(t) is equivalent to the
following recurrence for its γ-polynomial because

Sn(t) = (1 + t)n−1Γn(x), with x =
t

(1 + t)2
.

Corollary 5.11. The recurrence relation for Γn(x) is

Γn(x) = Γn−1(x) + x

n−2∑

j=1

Γj(x)

(
Γn−j−1(x) +

n−j−1∑

i=1

Γi(x)Γn−j−i(x)

)

with initial value Γ1(x) = 1.

6. Concluding remarks and open problems

The combinatorial interpretation for γSn,k that we established in Theorem 1.1 nicely par-

allels those for γAn,k and γNn,k, and note that Sn(231) ⊆ Sn(2413, 3142) ⊆ Sn. This in
particular will give as by-product, the γ-positivity for the complementary set. Namely, the
descent polynomials on permutations that contain at least one of the patterns (3142, 2413),
are also γ-positive. Similar result holds for Sn(231) and Sn\Sn(231). This observation
raises a natural question: are there any other subsets enjoy the same property? Or more
generally, is it possible to characterize all the subsets S ⊆ Sn such that the descent poly-
nomials on S and Sn\S are both γ-positive?

Regarding Gessel’s conjecture, we have the following conjectured inequality.
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Conjecture 6.1. Let γn,i,j be defined by (1.3). Then,

γn,k,n−1−2k ≥ γSn,k.

Let D̃n(t) be the descent polynomial on Sn\Dn. It follows from (4.2) and (4.5) that

D̃n(t) = (−t)n−1 + (1 + (n− 1)t)D̃n−1(t) + t(1− t)D̃′n−1(t),

since D̃n(t) = An(t)−Dn(t). By similar discussion as in the proof of Theorem 1.2, we can

show that D̃n(t) also has the spiral property, which implies the unimodality.
Finally the two polynomials Sn(t) and Dn(t) seem to be real-rooted basing on computa-

tional experiments. We pose this as a conjecture for further investigation.

Conjecture 6.2. The descent polynomials Sn(t) and Dn(t) are real-rooted for each n ≥ 2.
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