
Under consideration for publication in Theory and Practice of Logic Programming 1

A Logic Programming Playground for Lambda
Terms, Combinators, Types and Tree-based

Arithmetic Computations

PAUL TARAU
Department of Computer Science and Engineering

(e-mail: paul.tarau@unt.edu)

submitted ?; revised ?; accepted ?

Abstract

With sound unification, Definite Clause Grammars and compact expression of combinatorial gener-
ation algorithms, logic programming is shown to conveniently host a declarative playground where
interesting properties and behaviors emerge from the interaction of heterogenous but deeply con-
nected computational objects.

Compact combinatorial generation algorithms are given for several families of lambda terms,
including open, closed, simply typed and linear terms as well as type inference and normal order
reduction algorithms. We describe a Prolog-based combined lambda term generator and type-inferrer
for closed well-typed terms of a given size, in de Bruijn notation.

We introduce a compressed de Bruijn representation of lambda terms and define its bijections to
standard representations. Our compressed terms facilitate derivation of size-proportionate ranking
and unranking algorithms of lambda terms and their inferred simple types.

By taking advantage of Prolog’s unique bidirectional execution model and sound unification al-
gorithm, our generator can build “customized” closed terms of a given type. This relational view of
terms and their types enables the discovery of interesting patterns about frequently used type expres-
sions occurring in well-typed functional programs. Our study uncovers the most “popular” types that
govern function applications among a about a million small-sized lambda terms and hints toward
practical uses to combinatorial software testing.

The S and K combinator expressions form a well-known Turing-complete subset of the lambda
calculus. We specify evaluation, type inference and combinatorial generation algorithms for SK-
combinator trees. In the process, we unravel properties shedding new light on interesting aspects
of their structure and distribution. We study the proportion of well-typed terms among size-limited
SK-expressions as well as the type-directed generation of terms of sizes smaller then the size of their
simple types. We also introduce the well-typed frontier of an untypable term and we use it to design
a simplification algorithm for untypable terms taking advantage of the fact that well-typed terms are
normalizable.

A uniform representation, as binary trees with empty leaves, is given to expressions built with
Rosser’s X-combinator, natural numbers, lambda terms and simple types. Using this shared repre-
sentation, ranking/unranking algorithm of lambda terms to tree-based natural numbers are described.

Our algorithms, expressed as an incrementally developed literate Prolog program, implement a
declarative playground for exploration of representations, encodings and computations with uni-
formly represented lambda terms, types, combinators and tree-based arithmetic.

KEYWORDS: lambda calculus, de Bruijn notation, generation of lambda terms, type inference, com-
binatorics of lambda terms, ranking and unranking of lambda terms, normalization of de Bruijn

ar
X

iv
:1

50
7.

06
94

4v
1 

 [
cs

.L
O

] 
 2

4 
Ju

l 2
01

5



2 Paul Tarau

terms, SK-combinator calculus, generation of well-typed combinator expressions Rosser’s X-combinator,
tree-based numbering systems, bijective Gödel-numberings, logic programming as meta-language.

1 Introduction

This paper is an extended synthesis of (Tarau 2015b; Tarau 2015c; Tarau 2015a). It is orga-
nized as literate Prolog program and provides a comprehensive playground for both classic
algorithms working on lambda terms and combinators as well as a large number of new al-
gorithms and data representations covering their combinatorial generation, type inference
and their ranking/unranking to both standard and tree-represented natural numbers.

Logic programming provides a convenient metalanguage for modeling data types and
computations taken from other programming paradigms. Properties of logic variables, uni-
fication with occurs-check and exploration of solution spaces via backtracking facilitate
compact algorithms for inferring types or generating terms for various calculi. This holds
in particular for lambda terms and combinators (Barendregt 1984).

While possibly one of the most heavily researched computational objects, lambda terms
and combinators offer an endless stream of surprises to anyone digging just deep enough
below their intriguingly simple surface. Lambda terms provide a foundation to modern
functional languages, type theory and proof assistants and, as a sign of their lasting rele-
vance, they have been lately incorporated into mainstream programming languages includ-
ing Java 8, C# and Apple’s newly designed programming language Swift.

Generation of lambda terms has practical applications to testing compilers that rely on
lambda calculus as an intermediate language, as well as to the generation of random tests
for user-level programs and data types. At the same time, several instances of lambda
calculus are of significant theoretical interest given their correspondence with logic and
proofs.

The use of modern Prologs’ unification with occurs-check, backtracking mechanisms
and Definite Clause Grammars (DCGs) are instrumental in designing compact algorithms
for inferring simple types or for generating linear, linear affine or lambda terms with
bounded unary height as well as in implementing normalization algorithms.

Of particular interest are representations that are canonical up to alpha-conversion (vari-
able renamings), among which the most well-known ones are de Bruijn’s indices (de Bruijn
1972), representing bound variables as the number of binders to traverse to the lambda ab-
straction binding them. As a sequence of binders, in de Bruijn notation, can be seen as a
natural number expressed in unary notation, we introduce a compressed representation of
the binders that puts in a new light the underlying combinatorial structure of lambda terms
and highlights their connection to the Catalan family of combinatorial objects (Stanley
1986), among which binary trees are the most well known. The proposed compressed de
Bruijn notation also simplifies generation of some families of lambda terms.

A joke about the de Bruijn indices representation of lambda terms is that it can be used to
tell apart Cylons from humans (McBride 2010). Arguably, the compressed de Bruijn repre-
sentation that we introduce in here is taking their fictional use one step further. To alleviate
the legitimate fears of our (most likely, for now, human) reader, these representations will



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic3

be mapped bijectively to conventional ones. To be able to use the most natural representa-
tion for each of the proposed algorithms, we implement bijective transformations between
lambda terms in standard as well as de Bruijn and compressed de Bruijn representation.

A merit of our compressed representation is to simplify the underlying combinatorial
structure of lambda terms, by exploiting their connection to the Catalan family of com-
binatorial objects (Stanley 1986). This leads to algorithms that focus on their (bijective)
natural number encodings - known to combinatorialists as ranking/unranking functions
(Kreher and Stinson 1999) and to logicians as Gödel-numberings (Gödel 1931). Among
the most obvious practical applications, such encodings can be used to generate random
terms for testing tools like compilers or source-to-source program transformers. At the
same time, as our encodings are “size-proportionate”, they provide a compact serialization
mechanism for lambda terms.

To derive a bijection to N (seen as made of conventional bitstring-represented numbers),
that is size-proportionate, we will first extract a “Catalan skeleton” abstracting away the
recursive structure of the compressed de Bruijn term, then implement a bijection from it to
N. The “content” fleshing out the term, represented as a list of natural numbers, will have
its own bijection to N by using a generalized Cantor tupling / untupling function, that will
also help pairing / unpairing the code of the skeleton and the code of the content of the
term.

Combinators are closed lambda terms without bound variables. They actually predate
lambda calculus , being discovered in the 1920s by Schönfinkel and then independently
by Curry. With function application as their unique operation, and a convenient base, (for
instance, K = λx. λy. x and S = λ f . λg. λx.( f x) (g x)), they form a Turing-complete
subset of the lambda calculus. We will focus, using some essential Prolog ingredients, on
synergies between generation and type inference on the language of S and K combinators.
SK-combinator expressions are binary trees with leaves labeled S or K and internal nodes
representing function application. While working with a drastically simplified model of
computation, interesting patterns emerge, some of which may extend to the richer combi-
nator languages used in compilers for functional languages like Haskell and ML and proof
assistants like Coq and Agda.

Of particular interest are type inference algorithms and the possibility to melt them to-
gether with generators of terms of a limited size. Evaluation of SK-combinator expressions
has the nice property of always terminating on terms that have simple types. This sug-
gests looking into how this property (called strong normalization) can be used to simplify
untypable (and possibly not normalizable) terms through normalization of their maximal
typable subterms. At the same time, this suggests trying to discover some empirical hints
about the distribution of well-typed terms and the structure induced by typable subterms
of untypable terms.

We also follow some of the consequences of a very simple idea: what can happen if
combinators, their types, their computationally equivalent lambda terms would all share
the same basic representation as the natural numbers that have been used as encodings of
formulas and proofs in such important fundamental results as Gödel’s incompleteness the-
orems, as well as for mundane purposes like doing arithmetic operations in a programming
language.

We have shown in the past (Tarau 2014a; Tarau 2014d; Tarau 2014c; Tarau 2013) that



4 Paul Tarau

arithmetic operations and encodings of various data structures can be performed with tree-
based numbering systems in average time and space complexity that is comparable with the
traditional binary numbers. One of the properties that singles out such numbering systems
is their ability to favor objects with a regular structure on which representation size and
complexity of operations can be significantly better than with the usual bitstring represen-
tations. At the same time, we will take advantage of the fact that Rosser’s X-combinator
expressions (Fokker 1992) (a 1-point basis for combinatory logic) can also be hosted, to-
gether with function application nodes on top of our ubiquitous binary tree representation.
While the representation of X-combinator expressions and their types collapses with that
of binary trees representing natural numbers, with a few additional steps, we can also de-
rive size proportionate ranking and unranking algorithms for general lambda terms, this
time having tree-based natural numbers as targets.

Ranking and unranking of lambda terms (i.e., their bijective mapping to unique natural
number codes) has practical applications to testing compilers that rely on lambda calcu-
lus as an intermediate language, as well as in generation of random tests for user-level
programs and data types. At the same time, several instances of lambda calculus are of
significant theoretical interest given their correspondence with logic and proofs. This re-
sults in a shared representation of combinators, simple types, natural numbers and general
lambda terms defining a common declarative playground for experiments connecting their
computational properties. Prolog’s ability to support “relational” queries enables us to eas-
ily explore the population of de Bruijn terms up to a given size and answer questions like
the following:

1. How many distinct types occur for terms up to a given size?
2. What are the most popular types?
3. What are the terms that share a given type?
4. What is the smallest term that has a given type?
5. What smaller terms have the same type as this term?

The remaining of the paper (with the content of the most salient subsections also pointed
out) is organized as follows.

Section 2 introduces the compressed de Bruijn terms (2.5) and bijective transformations
from them to standard lambda terms.

Section 3 describes a type inference algorithms for lambda terms.
Section 4 describes generators for several classes of lambda terms, including closed,

simply typed, linear, affine as well as terms with bounded unary height and terms in the
binary lambda calculus encoding. Subsection 4.4 introduces a generator for lambda terms
in de Bruijn form. Subsection 4.13 introduces an algorithm combining term generation and
type inference.

Section 5 describes a normal order reduction algorithm for lambda terms relaying on
their de Bruijn representation.

Section 6 describes combinators with emphasis on the SK and X combinator bases.
SK-combinator trees together with a generator and an evaluation algorithm. Subsection
6.2 defines simple types for SK-combinator expressions and describes a type inference
algorithm on for SK-combinator trees. Subsection 6.3 introduces X-combinator trees to-
gether with a generator and an evaluation algorithm. Subsection 6.5 defines simple types



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic5

for X-combinator expressions via their equivalent lambda terms, describes type inference
algorithms for X-combinator expressions. It also explores consequences of expressions and
types sharing the same binary tree representation.

Section 7 describes size-proportionate bijective encodings of lambda terms and combi-
nators. Subsection 7.1 builds mappings from lambda terms to Catalan families of combina-
torial objects, with focus on binary trees representing their inferred types and their applica-
tive skeletons. These mappings lead in subsection 7.2 to size-proportionate ranking and
unranking algorithms for lambda terms and their inferred types. Subsection 7.3 interprets
X-combinator trees as natural numbers on which it defines arithmetic operations. Subsec-
tion 7.4 describes a bijection from lambda terms to binary trees implementing tree-based
arithmetic operations that leads to a different mechanism for size-proportionate ranking
and unranking algorithms for lambda terms.

Section 8 shows examples of applications of our declarative playground. Subsection 8.3
uses our combined term generation and type inference algorithm to discover frequently
occurring type patterns. Subsection 8.4 describes a type-directed algorithm for the gen-
eration of closed typable lambda terms. We also explore consequences that emerge from
interactions between such heterogeneous computational objects sharing the same binary
tree representation. Subsection 8.6 introduces the well-typed frontier of an untypable SK-
expression and describes a partial normalization-based simplification algorithm that termi-
nates on all SK-expressions.

Section 9 discusses related work and section 10 concludes the paper.
The paper is structured as a literate Prolog program. The code has been tested with

SWI-Prolog 6.6.6 and YAP 6.3.4.
It is available http://www.cse.unt.edu/~tarau/research/2015/play.pro.

2 Morphing between representations of lambda terms

Logic variables can be used in Prolog for connecting a lambda binder and its related
variable occurrences. This representation can be made canonical by ensuring that each
lambda binder is marked with a distinct logic variable. For instance, the lambda term
λa.((λb.(a(b b)))(λc.(a(c c)))) will be represented as l(A,a(l(B, a(A,a(B,B))),

l(C, a(A,a(C,C))))). It is however convenient in most algorithms to avoid any con-
fusion between variables in our meta-language (Prolog) and lambda variables. We will
achieve this by using the de Bruijn representation of lambda terms.

2.1 De Bruijn Indices

De Bruijn indices (de Bruijn 1972) provide a name-free representation of lambda terms.
All closed terms that can be transformed by a renaming of variables (α-conversion) will
share a unique representation. Variables following lambda abstractions are omitted and
their occurrences are marked with positive integers counting the number of lambdas until
the one binding them is found on the way up to the root of the term. We represent them
using the constructor a/2 for application, l/1 for lambda abstractions (that we will call
shortly binders) and v/1 for marking the integers corresponding to the de Bruijn indices.

For instance, the term l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))) is repre-

http://www.cse.unt.edu/~tarau/research/2015/play.pro


6 Paul Tarau

sented as l(a(l(a(v(1),a(v(0),v(0)))),l(a(v(1),a(v(0),v(0)))))), given that
v(1) is bound by the outermost lambda (two steps away, counting from 0) and the occur-
rences of v(0) are bound each by the closest lambda, represented by the constructor l/1.

We will also define the size of a lambda expression in de Bruijn form as the number of
its internal nodes, implemented by the predicate dbTermSize.

dbTermSize(v(_),0).

dbTermSize(l(A),R):-

dbTermSize(A,RA),

R is RA+1.

dbTermSize(a(A,B),R):-

dbTermSize(A,RA),

dbTermSize(B,RB),

R is 1+RA+RB.

2.2 Open and closed terms

A lambda term is called closed if it contains no free variables. The predicate isClosedB

defines this property for de Bruijn terms.

isClosedB(T):-isClosed1B(T,0).

isClosed1B(v(N),D):-N<D.

isClosed1B(l(A),D):-D1 is D+1,

isClosed1B(A,D1).

isClosed1B(a(X,Y),D):-

isClosed1B(X,D),

isClosed1B(Y,D).

Besides being closed, lambda terms interesting for functional languages and proof as-
sistants, are also well-typed. We will start with an algorithm inferring types directly on the
de Bruijn terms.

2.3 From de Bruijn to lambda terms with canonical names

The predicate b2l converts from the de Bruijn representation to lambda terms whose
canonical names are provided by logic variables. We will call them terms in standard
notation.

b2l(A,T):-b2l(A,T,_Vs).

b2l(v(I),V,Vs):-nth0(I,Vs,V).

b2l(a(A,B),a(X,Y),Vs):-b2l(A,X,Vs),b2l(B,Y,Vs).

b2l(l(A),l(V,Y),Vs):-b2l(A,Y,[V|Vs]).

Note the use of the built-in nth0/3 that associates to an index I a variable V on the list Vs.
As we initialize in b2l/2 the list of logic variables as a free variable Vs, free variables in
open terms, represented with indices larger than the number of available binders will also
be consistently mapped to logic variables. By replacing Vs with [] in the definition pf
b2l/2 one could enforce that only closed terms (having no free variables) are accepted.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic7

Example 1
illustrates the bijection defined by predicates l2b and b2l.

?- LT=l(A,l(B,l(C,a(a(A,C),a(B,C))))),l2b(LT,BT),b2l(BT,LT1),LT=LT1.

LT = LT1, LT1 = l(A, l(B, l(C, a(a(A, C), a(B, C))))),

BT = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))).

2.4 From lambda terms with canonical names to de Bruijn terms

Logic variables provide canonical names for lambda variables. An easy way to manipulate
them at meta-language level is to turn them into special “$VAR/1” terms - a mechanism
provided by Prolog’s built-in numbervars/3 predicate. Given that “$VAR/1” is distinct
from the constructors lambda terms are built from ( l/2 and a/2) this is a safe (and
invertible) transformation. To avoid any side effect on the original term, we will uniformly
rename its variables to fresh ones with Prolog’s copy term/2 built-in. We will adopt this
technique through the paper each time our operations would mutate an input argument
otherwise.

l2b(A,T):-copy_term(A,CA),numbervars(CA,0,_),l2b(CA,T,_Vs).

l2b(’$VAR’(V),v(I),Vs):-once(nth0(I,Vs,’$VAR’(V))).

l2b(a(X,Y),a(A,B),Vs):-l2b(X,A,Vs),l2b(Y,B,Vs).

l2b(l(V,Y),l(A),Vs):-l2b(Y,A,[V|Vs]).

2.5 A compressed de Bruijn representation of lambda terms

.
As a step further, we will not look into compressing blocks of lambdas. Iterated lamb-

das (represented as a block of constructors l/1 in the de Bruijn notation) can be seen as a
successor arithmetic representation of a number that counts them. So it makes sense to rep-
resent that number more efficiently in the usual binary notation. Note that in de Bruijn no-
tation blocks of lambdas can wrap either applications or variable occurrences represented
as indices. This suggests using just two constructors: v/2 indicating in a term v(K,N) that
we have K lambdas wrapped around the de Bruijn index v(N) or a/3 indicating in a term
a(K,X,Y) that K lambdas are wrapped around the application a(X,Y).

We call the terms built this way with the constructors v/2 and a/3 compressed de Bruijn
terms.

2.6 From de Bruijn to compressed

We can make precise the definition of compressed deBruijn terms by providing a bijective
transformation between them and the usual de Bruijn terms.

The predicate b2c converts from the usual de Bruijn representation to the compressed
one. It proceeds by case analysis on v/1, a/2, l/1 and counts the binders l/1 as it
descends toward the leaves of the tree. Its steps are controlled by the predicate up/2 that
increments the counts when crossing a binder.



8 Paul Tarau

b2c(v(X),v(0,X)).

b2c(a(X,Y),a(0,A,B)):-b2c(X,A),b2c(Y,B).

b2c(l(X),R):-b2c1(0,X,R).

b2c1(K,a(X,Y),a(K1,A,B)):-up(K,K1),b2c(X,A),b2c(Y,B).

b2c1(K, v(X),v(K1,X)):-up(K,K1).

b2c1(K,l(X),R):-up(K,K1),b2c1(K1,X,R).

up(From,To):-From>=0,To is From+1.

2.6.1 From compressed to de Bruijn

The predicate c2b converts from the compressed to the usual de Bruijn representation.
It reverses the effect of b2c by expanding the K in v(K,N) and a(K,X,Y) into K+1 l/1

binders (as counts start at 0). The predicate iterLam performs this operation in both cases,
and the predicate down/2 computes the decrements at each step. We will reuse the pred-
icates up/2 and down/2 that can be seen as abstracting away the successor/predecessor
operation.

c2b(v(K,X),R):-X>=0,iterLam(K,v(X),R).

c2b(a(K,X,Y),R):-c2b(X,A),c2b(Y,B),iterLam(K,a(A,B),R).

iterLam(0,X,X).

iterLam(K,X,l(R)):-down(K,K1),iterLam(K1,X,R).

down(From,To):-From>0,To is From-1.

Example 2
illustrates the bijection defined by the predicates b2c and c2b.

?- BT=l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),b2c(BT,CT),c2b(CT,BT1).

BT = BT1, BT1 = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),

CT = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))) .

A convenient way to simplify defining chains of such conversions is by using Pro-
log’s DCG transformation. For instance, the predicate c2l/2 converts from compressed
de Bruijn terms and standard lambda terms using de Bruijn terms as an intermediate step,
while l2c/2 works the other way around.

c2l --> c2b,b2l.

l2c --> l2b,b2c.

Closed terms can be easily identified by ensuring that the lambda binders on a given
path from root outnumber the de Bruijn index of a variable occurrence ending the path.
The predicate isClosedC does that for compressed de Bruijn terms.

isClosedC(T):-isClosedC(T,0).

isClosedC(v(K,N),S):-N<S+K.

isClosedC(a(K,X,Y),S1):-S2 is S1+K,isClosedC(X,S2),isClosedC(Y,S2).



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic9

3 Inferring simple types for lambda terms

3.1 Type Inference on standard terms with logic variables

Simple types, represented as binary trees built with the constructor “>/2” with empty leaves
representing the unique primitive type “x”, can be seen as a “Catalan approximation” of
lambda terms, centered around ensuring their safe and terminating evaluation (strong nor-
malization).

While in a functional language inferring types requires implementing unification with
occur check, as shown for instance in (Grygiel and Lescanne 2013), this operation is avail-
able in Prolog as a built-in. Also a “post-mortem” verification that unification has not
introduced any cycles is provided by the built-in acyclic term/1.

The predicate extractType/2 works by seeing each logical variable X as denoting its
type. As logic variable bindings propagate between binders and occurrences, this ensures
that types are consistently inferred.

extractType(X,TX):-var(X),!,TX=X. % this matches all variables

extractType(l(TX,A),(TX>TA)):-extractType(A,TA).

extractType(a(A,B),TY):-extractType(A,(TX>TY)),extractType(B,TX).

Instead of (inefficiently) using unification with occurs-check at each step, we ensure that at
the end, our term is still acyclic, with the built-in ISO-Prolog predicate acyclic term/1.

polyTypeOf(LTerm,Type):-

extractType(LTerm,Type),

acyclic_term(LTerm).

At this point, most general types are inferred by extractType as fresh variables, similar
to polymorphic types in functional languages, if one interprets logic variables as univer-
sally quantified. Such variables stand for any type expression, as schemata in the case of
propositional or predicate logic axioms.

Example 3
Type inference for canonically represented standard terms. Note the need to use copy term
to avoid binding the object-level variables.

?- polyTypeOf(l(X,a(X,l(Y,Y))),T).

X = ((A>A)>B),

Y = A,

T = (((A>A)>B)>B).

?- copy_term(l(X,a(X,l(Y,Y))),LT),polyTypeOf(LT,T).

LT = l((A>A)>B, a((A>A)>B, l(A, A))),

T = (((A>A)>B)>B).

However, as we are only interested in simple types, we will bind uniformly the leaves of
our type tree to the constant “x” representing our only primitive type, by using the predicate
bindTypeB/1.

bindTypeB(x):-!.

bindTypeB((A>B)):-bindTypeB(A),bindTypeB(B).

The simple type of a compressed de Bruijn term is then defined as:



10 Paul Tarau

hasType(CTerm,Type):-

c2l(CTerm,LTerm),

polyTypeOf(LTerm,Type),

bindTypeB(Type).

We can also define the predicate typable/1 that checks if a lambda term is well typed, by
trying to infer and then ignoring its inferred type.

typable(Term):-hasType(Term,_Type).

Example 4
illustrates typability of the term corresponding to the S combinator λx0. λx1. λx2.((x0 x2) (x1 x2))
and untypabilty of the term corresponding to the Y combinator λx0.( λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))),
in de Bruijn form.

?- hasType(a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),T).

T = ((x> (x>x))> ((x>x)> (x>x))) .

?- hasType(

a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),T).

false.

3.2 Type inference for lambda terms in de Bruijn notation

As lambda terms represent functions, inferring their types provides information on what
kind of argument(s) they can be applied to. For simple types, type inference is decidable
(Hindley and Seldin 2008) and it uses unification to recursively propagate type information
between application sites of variable occurrences covered by a given lambda binder. We
will describe next a type inference algorithm using de Bruijn indices in Prolog - a somewhat
unusual choice, given that logic variables can play the role of lambda binders directly. One
of the reasons we chose them is that they will be simpler to manipulate at meta-language
level, as they handle object-level variables implicitly. At the same time this might be useful
for other purposes, as we are not aware of any Prolog implementation of type inference
with this representation of lambda terms.

Simple types will be defined here also as binary trees built with the constructor “>/2”
with empty leaves, representing the unique primitive type “x”. Types can be seen as as
a “binary tree approximation” of lambda terms, centered around ensuring their safe and
terminating evaluation (strong normalization), as it is well-known (e.g., (Barendregt 1991))
that lambda terms that have simple types are strongly normalizing. When a term X has a
type T we say that the type T is inhabited by the term X.

While in a functional language inferring types requires implementing unification with
occur check, as shown for instance in the appendix of (Grygiel and Lescanne 2013), this is
readily available in Prolog.

The predicate boundTypeOf/3 works by associating the same logical variable, denoting
its type, to each of its occurrences. As a unique logic variable is associated to each leaf v/1
corresponding via its de Bruijn index to the same binder, types are consistently inferred.
This is ensured by the use of the built-in nth0(I,Vs,V0) that unifies V0 with the I-th
element of the type context Vs. Note that unification with occurs-check needs to be used to
avoid cycles in the inferred type formulas.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic11

deBruijnTypeOf(v(I),V,Vs):-

nth0(I,Vs,V0),

unify_with_occurs_check(V,V0).

deBruijnTypeOf(a(A,B),Y,Vs):-

deBruijnTypeOf(A,(X>Y),Vs),

deBruijnTypeOf(B,X,Vs).

deBruijnTypeOf(l(A),(X>Y),Vs):-

deBruijnTypeOf(A,Y,[X|Vs]).

At this point, most general types are inferred by deBruijnTypeOf as fresh variables,
similar to polymorphic types in functional languages, if one interprets logic variables as
universally quantified.

Example 5
Type inferred for the S combinator λx0. λx1. λx2.((x0 x2) (x1 x4)) in de Bruijn form.

?- X=l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),deBruijnTypeOf(X,T,0).

X = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),

T = ((A> (B>C))> ((A>B)> (A>C))).

However, as we are only interested in simple types of closed terms with only one basic
type, we will bind uniformly the leaves of our type tree to the constant “x” representing
our only primitive type, by using the predicate bindTypeB/1.

boundTypeOf(A,T):-deBruijnTypeOf(A,T0,[]),bindTypeB(T0),!,T=T0.

Example 6
Simple type inferred for the S combinator and failure to assign a type to the Y combinator
λx0.( λx1.(x0 (x1 x2)) λx2.(x1 (x2 x2))).

?- boundTypeOf(l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),T).

T = T = ((x> (x>x))> ((x>x)> (x>x))).

?- boundTypeOf(l(a(l(a(v(1), a(v(0), v(0)))),

l(a(v(1), a(v(0), v(0)))))),T).

false.

4 Generating families of lambda terms

We can see our compressed de Bruijn terms as binary trees decorated with integer labels.
The binary trees provide a skeleton that describes the applicative structure of the underlying
lambda terms. At the same time, types in the simple typed lambda calculus (Barendregt
1991) share a similar binary tree structure.

4.1 Generating binary trees

Binary trees are among the most well-known members of the Catalan family of combina-
torial objects (Stanley 1986), that has at least 58 structurally distinct members, covering
several data structures, geometric objects and formal languages.

We will build binary trees with the constructor >/2 for branches and the constant x for
its leaves. This will match the usual notation for simple types (Barendregt 1991) of lambda
terms that can be represented as binary trees.



12 Paul Tarau

4.1.1 Generating binary trees of given depth

A generator / recognizer of binary trees of a limited depth, counted by entry A003095 in
(Sloane 2014) is defined by the predicate genTreeByDepth/2.

genTreeByDepth(_,x).

genTreeByDepth(D1,(X>Y)):-down(D1,D2),

genTreeByDepth(D2,X),

genTreeByDepth(D2,Y).

Example 7
illustrates trees of depth at most 2 generated by the predicate genTreeByDepth.

?- genTreeByDepth(2,T).

T = x ;

T = (x>x) ;

T = (x> (x>x)) ;

T = ((x>x)>x) ;

T = ((x>x)> (x>x)).

4.1.2 Generating binary trees of given size

A generator / recognizer of binary trees of a fixed size (seen as the number of internal
nodes, counted by entry A000108 in (Sloane 2014)) is defined by the predicate genTree/2.

genTree(N,T):-genTree(T,N,0).

genTree(x)-->[].

genTree((X>Y))-->down,

genTree(X),

genTree(Y).

Note the creative use of Prolog’s DCG-grammar transformation. After the DCG expansion,
the code for genTree/3 becomes something like:

genTree(x,K,K).

genTree((X>Y),K1,K3):-down(K1,K2),

genTree(X,K2,K3),

genTree(K3,K4).

Given that down(K1,K2) unfolds to K1>0,K2 is K1-1 it is clear that this code ensures
that the total number of nodes N passed by genTree/2 to genTree/3 controls the size of
the generated trees. We will reuse this pattern through the paper, as it simplifies the writing
of generators for various combinatorial objects. It is also convenient to standardize on the
number of internal nodes as defining the size of our terms.

Example 8
illustrates trees with 3 internal nodes (built with the constructor “>/2”) generated by
genTree/2.

?- genTree(3,BT).

BT = (x> (x> (x>x))) ;

BT = (x> ((x>x)>x)) ;

BT = ((x>x)> (x>x)) ;

BT = ((x> (x>x))>x) ;

BT = (((x>x)>x)>x) .



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic13

The predicate tsize defines the size of a binary tree in terms of the number of its internal
nodes.

tsize(x,0).

tsize((X>Y),S):-tsize(X,A),tsize(Y,B),S is 1+A+B.

4.2 Generating Motzkin trees

Motzkin-trees (also called binary-unary trees) have internal nodes of arities 1 or 2. Thus
they can be seen as an abstraction of lambda terms that ignores de Bruijn indices at the
leaves. The predicate motzkinTree/2 generates Motzkin trees with L internal and leaf
nodes.

motzkinTree(L,T):-motzkinTree(T,L,0).

motzkinTree(u)-->down.

motzkinTree(l(A))-->down,motzkinTree(A).

motzkinTree(a(A,B))-->down,motzkinTree(A),motzkinTree(B).

Motzkin-trees are counted by the sequence A001006 in (Sloane 2014). If we replace the
first clause of motzkinTree/2 with motzkinTree(u)-->[], we obtain binary-unary
trees with L internal nodes, counted by the entry A006318 (Large Schröder Numbers) of
(Sloane 2014).

4.3 Generating closed lambda terms in standard notation

With logic variables representing binders and their occurrences, one can also generate
lambda terms in standard notation directly. The predicate genLambda/2 equivalent to
genStandard/2, builds a list of logic variables as it generates binders. When generating
a leaf, it picks nondeterministically one of the binders among the list of binders available,
Vs. As usual, the predicate down/2 controls the number of internal nodes.

genLambda(L,T):-genLambda(T,[],L,0).

genLambda(X,Vs)-->{member(X,Vs)}.

genLambda(l(X,A),Vs)-->down,genLambda(A,[X|Vs]).

genLambda(a(A,B),Vs)-->down,genLambda(A,Vs),genLambda(B,Vs).

To generate lambda terms of a given size, we can write generators similar to the ones for
binary trees in section 4.1. Moreover, we have the choice to use generators for standard, de
Bruijn or compressed de Bruijn terms and then bijectively morph the resulting terms in the
desired representation, as outlined is section 2.5.

4.4 Deriving a generator for lambda terms in de Bruijn form

We can derive a generator for closed lambda terms in de Bruijn form by extending a
Motzkin or unary-binary tree generator to keep track of the lambda binders. When reaching
a leaf v/1, one of the available binders (expressed as a de Bruijn index) will be assigned
to it nondeterministically.



14 Paul Tarau

The predicate genDBterm/4 generates closed de Bruijn terms with a fixed number of
internal (non-index) nodes, as counted by entry A220894 in (Sloane 2014).

genDBterm(v(X),V)-->

{down(V,V0)},

{between(0,V0,X)}.

genDBterm(l(A),V)-->down,

{up(V,NewV)},

genDBterm(A,NewV).

genDBterm(a(A,B),V)-->down,

genDBterm(A,V),

genDBterm(B,V).

The range of possible indices is provided by Prolog’s built-in integer range generator
between/3, that provides values from 0 to V0. Note also the use of down/2 abstract-
ing away the predecessor operation and up/2 abstracting away the successor operation.
Together, they control the amount of available nodes and the incrementing of de Bruijn
indices at each lambda node.

Our generator of de Bruijn terms is exposed through two interfaces: genDBterm/2 that
generates closed de Bruijn terms with exactly L non-index nodes and genDBterms/2 that
generates terms with up to L non-index nodes, by not enforcing that exactly L internal
nodes must be used.

genDBterm(L,T):-genDBterm(T,0,L,0).

genDBterms(L,T):-genDBterm(T,0,L,_).

Inserting a down operation in the first clause of genDBterm/4will enumerate terms counted
by sequence A135501 instead of A220894, as this would imply assuming size 1 for vari-
ables. in (Sloane 2014).

Example 9
Generation of terms with up to 2 internal nodes.

?- genDBterms(2,T).

T = l(v(0)) ;

T = l(l(v(0))) ;

T = l(l(v(1))) ;

T = l(a(v(0), v(0))).

4.5 Deriving generators for closed terms in compressed de Bruijn form

A generator for compressed de Bruijn terms can be derived by using DCG syntax to compose
a generator for closed de Bruijn terms genDBterm and genDBterms and a transformer to
compressed terms b2c/2.

genCompressed --> genDBterm,b2c.

genCompresseds--> genDBterms,b2c.

4.6 Generators for closed terms in standard notation



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic15

genStandard-->genDBterm,b2l.

genStandards-->genDBterms,b2l.

Example 10
illustrates generators for closed terms in compressed de Bruijn and standard notation with
logic variables providing lambda variable names.

?- genCompressed(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)).

?- genStandard(2,T).

T = l(_G3434, l(_G3440, _G3440)) ;

T = l(_G3434, l(_G3440, _G3434)) ;

T = l(_G3437, a(_G3437, _G3437)).

4.7 Generating normal forms

Normal forms are lambda terms that cannot be further reduced. A normal form should not
be an application with a lambda as its left branch and, recursively, its subterms should
also be normal forms. The predicate nf/4 defines this inductively and generates all normal
forms with L internal nodes in de Bruijn form.

nf(v(X),V)-->{down(V,V0),between(0,V0,X)}.

nf(l(A),V)-->down,{up(V,NewV)},nf(A,NewV).

nf(a(v(X),B),V)-->down,nf(v(X),V),nf(B,V).

nf(a(a(X,Y),B),V)-->down,nf(a(X,Y),V),nf(B,V).

As we standardize our generators to produce compressed de Bruijn terms, we combine
nf/4 and the converter b2c/2 to produce normal forms of size exactly L (predicate nf/2)
and with size up to L (predicate nfs/2).

nf(L,T):-nf(B,0,L,0),b2c(B,T).

nfs(L,T):-nf(B,0,L,_),b2c(B,T).

Example 11
illustrates normal forms with exactly 2 non-index nodes.

?- nf(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)) .

The number of solutions of our generator replicates entry A224345 in (Sloane 2014) that
counts closed normal forms of various sizes.

4.8 Generation of linear lambda terms

Linear lambda terms (Grygiel et al. 2013) restrict binders to exactly one occurrence.
The predicate linLamb/4 uses logic variables both as leaves and as lambda binders and

generates terms in standard form. In the process, binders accumulated on the way down



16 Paul Tarau

from the root, must be split between the two branches of an application node. The predicate
subset and complement of/3 achieves this by generating all such possible splits of the
set of binders.

linLamb(X,[X])-->[].

linLamb(l(X,A),Vs)-->down,linLamb(A,[X|Vs]).

linLamb(a(A,B),Vs)-->down,

{subset_and_complement_of(Vs,As,Bs)},

linLamb(A,As),linLamb(B,Bs).

At each step of subset and complement of/3, place element/5 is called to distribute
each element of a set to exactly one of two disjoint subsets.

subset_and_complement_of([],[],[]).

subset_and_complement_of([X|Xs],NewYs,NewZs):-

subset_and_complement_of(Xs,Ys,Zs),

place_element(X,Ys,Zs,NewYs,NewZs).

place_element(X,Ys,Zs,[X|Ys],Zs).

place_element(X,Ys,Zs,Ys,[X|Zs]).

As usual, we standardize the generated terms by converting them with l2c to compressed
de Bruijn terms.

linLamb(L,CT):-linLamb(T,[],L,0),l2c(T,CT).

Example 12
illustrates linear lambda terms for L=3.

?- linLamb(3,T).

T = a(2, v(0, 1), v(0, 0)) ;

T = a(2, v(0, 0), v(0, 1)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = a(1, v(1, 0), v(0, 0)) ;

T = a(0, v(1, 0), v(1, 0)) .

4.9 Generation of affine linear lambda terms

Linear affine lambda terms (Grygiel et al. 2013) restrict binders to at most one occurrence.

afLinLamb(L,CT):-afLinLamb(T,[],L,0),l2c(T,CT).

afLinLamb(X,[X|_])-->[].

afLinLamb(l(X,A),Vs)-->down,afLinLamb(A,[X|Vs]).

afLinLamb(a(A,B),Vs)-->down,

{subset_and_complement_of(Vs,As,Bs)},

afLinLamb(A,As),afLinLamb(B,Bs).

Example 13
illustrates generation of affine linear lambda terms in compressed de Bruijn form.

?- afLinLamb(3,T).

T = v(3, 0) ;

T = a(2, v(0, 1), v(0, 0)) ;



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic17

T = a(2, v(0, 0), v(0, 1)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = a(1, v(1, 0), v(0, 0)) ;

T = a(0, v(1, 0), v(1, 0)) ;

Clearly all linear terms are affine. It is also known that all affine terms are typable.

4.9.1 Generating lambda terms of bounded unary height

Lambda terms of bounded unary height are introduced in (Bodini et al. 2011) where it
is argued that such terms are naturally occurring in programs and it is shown that their
asymptotic behavior is easier to study.

They are specified by giving a bound on the number of lambda binders from a de Bruijn
index to the root of the term.

boundedUnary(v(X),V,_D)-->{down(V,V0),between(0,V0,X)}.

boundedUnary(l(A),V,D1)-->down,

{down(D1,D2),up(V,NewV)},

boundedUnary(A,NewV,D2).

boundedUnary(a(A,B),V,D)-->down,

boundedUnary(A,V,D),boundedUnary(B,V,D).

The predicate boundedUnary/5 generates lambda terms of size L in compressed de
Bruijn form with unary hight D.

boundedUnary(D,L,T):-boundedUnary(B,0,D,L,0),b2c(B,T).

boundedUnarys(D,L,T):-boundedUnary(B,0,D,L,_),b2c(B,T).

Example 14
illustrates terms of unary height 1 with size up to 3.

?- boundedUnarys(1,3,R).

R = v(1, 0) ;

R = a(1, v(0, 0), v(0, 0)) ;

R = a(1, v(0, 0), a(0, v(0, 0), v(0, 0))) ;

R = a(1, a(0, v(0, 0), v(0, 0)), v(0, 0)) ;

R = a(0, v(1, 0), v(1, 0)) .

4.10 Generating terms in binary lambda calculus encoding

Generating de Bruijn terms based on the size of their binary lambda calculus encoding
(Wikipedia 2015) works by using a DCG mechanism to build the actual code as a list Cs
of 0 and 1 digits and specifying the size of the code in advance.

blc(L,T,Cs):-length(Cs,L),blc(B,0,Cs,[]),b2c(B,T).

blc(v(X),V)-->{between(1,V,X)},encvar(X).

blc(l(A),V)-->[0,0],{NewV is V+1},blc(A,NewV).

blc(a(A,B),V)-->[0,1],blc(A,V),blc(B,V).

Note that de Bruijn binders are encoded as 00, applications as 01 and de Bruijn indices
in unary notation are encoded as 00. . .01. This operation is preformed by the predicate
encvar/3, that, in DCG notation, uses down/2 at each step to generate the sequence of 1
terminated 0 digits.



18 Paul Tarau

encvar(0)-->[0].

encvar(N)-->{down(N,N1)},[1],encvar(N1).

Example 15
illustrates generation of 8-bit binary lambda terms (Cs) together with their compressed de
Bruijn form (T).

?- blc(8,T,Cs).

T = v(3, 1),

Cs = [0, 0, 0, 0, 0, 0, 1, 0] ;

T = a(1, v(0, 1), v(0, 1)),

Cs = [0, 0, 0, 1, 1, 0, 1, 0] .

Note that while not bijective, the binary encoding has the advantage of being a self-
delimiting code. This facilitates its use in an unusually compact interpreter.

4.11 Generating typable terms

The predicate genTypable/2 generates closed typable terms of size L. These are counted
by entry A220471 in (Sloane 2014).

genTypable(L,T):-genCompressed(L,T),typable(T).

genTypables(L,T):-genCompresseds(L,T),typable(T).

Example 16
illustrates a generator for closed typable terms.

?- genCompressed(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)).

4.12 Combining term generation and type inference

One could combine a generator for closed terms and a type inferrer in a “generate-and-test”
style as follows:

genTypedTerm1(L,Term,Type):-

genDBterm(L,Term),

boundTypeOf(Term,Type).

Note that when one wants to select only terms having a given type this is quite inefficient.
Next, we will show how to combine size-bound term generation, testing for closed terms
and type inference into a single predicate. This will enable efficient querying about what
terms inhabit a given type, as one would expect from Prolog’s multi-directional execution
model.

4.13 Generating closed well-typed terms of a given size

One can derive, from the type inferrer boundTypeOf, a more efficient generator for de
Bruijn terms with a given number of internal nodes.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic19

The predicate genTypedTerm/5 relies on Prolog’s DCG notation to thread together the
steps controlled by the predicate down. Note also the nondeterministic use of the built-in
nth0 that enumerates values for both I and V ranging over the list of available variables Vs,
as well as the use of unify with occurs check to ensure that unification of candidate
types does not create cycles.

genTypedTerm(v(I),V,Vs)-->

{

nth0(I,Vs,V0),

unify_with_occurs_check(V,V0)

}.

genTypedTerm(a(A,B),Y,Vs)-->down,

genTypedTerm(A,(X>Y),Vs),

genTypedTerm(B,X,Vs).

genTypedTerm(l(A),(X>Y),Vs)-->down,

genTypedTerm(A,Y,[X|Vs]).

Two interfaces are offered: genTypedTerm that generates de Bruijn terms of with exactly
L internal nodes and genTypedTerms that generates terms with L internal nodes or less.

genTypedTerm(L,B,T):-

genTypedTerm(B,T,[],L,0),

bindTypeB(T).

genTypedTerms(L,B,T):-

genTypedTerm(B,T,[],L,_),

bindTypeB(T).

As expected, the number of solutions, computed as the sequence 1, 2, 9, 40, 238, 1564,
11807, 98529, 904318, 9006364, 96709332, 1110858977 . . . for sizes 1,2,3, . . . ,12, . . .
matches entry A220471 in (Sloane 2014). Note that the last 2 terms are not (yet) in the
A220471 in (Sloane 2014) as the generate and filter method used in (Grygiel and Lescanne
2013) is limited by the super-exponential growth of the closed lambda terms among which
the relatively few well-typed ones need to be found (e.g. more than 12 billion terms for
size 12). Interestingly, by interleaving generation of closed terms and type inference in the
predicate genTypedTerm the time to generate all the well-typed terms is actually shorter
than the time to generate all closed terms of the same size, e.g.. 3.2 vs 4.3 seconds for
size 9 with SWI-Prolog. As via the Curry-Howard isomorphism closed simply typed terms
correspond to proofs of tautologies in minimal logic, co-generation of terms and types
corresponds to co-generation of tautologies and their proofs for proofs of given length.

Example 17
Generation of well-typed closed de Bruijn terms of size 3.

?- genTypedTerm(3,Term,Type).

Term = a(l(v(0)), l(v(0))),

Type = (x>x) ;

Term = l(a(v(0), l(v(0)))),

Type = (((x>x)>x)>x) ;

Term = l(a(l(v(0)), v(0))),

Type = (x>x) ;

Term = l(a(l(v(1)), v(0))),



20 Paul Tarau

Type = (x>x) ;

Term = l(l(a(v(0), v(1)))),

Type = (x> ((x>x)>x)) ;

Term = l(l(a(v(1), v(0)))),

Type = ((x>x)> (x>x)) ;

Term = l(l(l(v(0)))),

Type = (x> (x> (x>x))) ;

Term = l(l(l(v(1)))),

Type = (x> (x> (x>x))) ;

Term = l(l(l(v(2)))),

Type = (x> (x> (x>x))) .

5 Normalization of lambda terms

Evaluation of lambda terms involves β -reduction, a transformation of a term like a(l(X,
A),B) by replacing every occurrence of X in A by B, under the assumption that X does not
occur in B and η-conversion, the transformation of an application term a(l(X,A),X) into
A, under the assumption that X does not occur in A.

The first tool we need to implement normalization of lambda terms is a safe substitution
operation. In lambda-calculus based functional languages this can be achieved through a
HOAS (Higher-Order Abstract Syntax) mechanism, that borrows the substitution operation
from the underlying “meta-language”. To this end, lambdas are implemented as functions
which get executed (usually lazily) when substitutions occur. We refer to (Pfenning and
Elliot 1988) for the original description of this mechanism, widely used these days for
implementing embedded domain specific languages and proof assistants in languages like
Haskell or ML.

While logic variables offer a fast and easy way to perform substitutions, they do not offer
any elegant mechanism to ensure that substitutions are capture-free. Moreover, no HOAS-
like mechanism exists in Prolog for borrowing anything close to normal order reduction
from the underlying system, as Prolog would provide, through meta-programming, only a
call-by-value model.

We will devise here a simple and safe interpreter for lambda terms supporting normal
order β -reduction by using de Bruijn terms, which also ensures that terms are unique up
to α-equivalence. As usual, we will omit η-conversion, known to interfere with things
like type inference, as the redundant argument(s) that it removes might carry useful type
information.

The predicate beta/3 implements the β -conversion operation corresponding to the
binder l(A). It calls subst/4 that replaces in A occurrences corresponding the the binder
l/1.

beta(l(A),B,R):-subst(A,0,B,R).

The predicate subst/4 counts, starting from 0 the lambda binders down to an occurrence
v(N). Replacement occurs at at level I when I=N.

subst(a(A1,A2),I,B,a(R1,R2)):-I>=0,

subst(A1,I,B,R1),

subst(A2,I,B,R2).

subst(l(A),I,B,l(R)):-I>=0,I1 is I+1,subst(A,I1,B,R).



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic21

subst(v(N),I,_B,v(N1)):-I>=0,N>I,N1 is N-1.

subst(v(N),I,_B,v(N)):-I>=0,N<I.

subst(v(N),I,B,R):-I>=0,N=:=I,shift_var(I,0,B,R).

When the right occurrence v(N) is reached, the term substituted for it is shifted such that
its variables are marked with the new, incremented distance to their binders. The predicate
shift var/4 implements this operation.

shift_var(I,K,a(A,B),a(RA,RB)):-K>=0,I>=0,

shift_var(I,K,A,RA),

shift_var(I,K,B,RB).

shift_var(I,K,l(A),l(R)):-K>=0,I>=0,K1 is K+1,shift_var(I,K1,A,R).

shift_var(I,K,v(N),v(M)):-K>=0,I>=0,N>=K,M is N+I.

shift_var(I,K,v(N),v(N)):-K>=0,I>=0,N<K.

Normal order evaluation of a lambda term, if it terminates, leads to a unique normal
form, as a consequence of the Church-Rosser theorem, elegantly proven in (de Bruijn 1972)
using de Bruijn terms. Termination holds, for instance, in the case of simply typed lambda
terms. Its implementation is well known; we will follow here the algorithm described in
(Sestoft 2002). We first compute the weak head normal form using wh nf/2.

wh_nf(v(X),v(X)).

wh_nf(l(E),l(E)).

wh_nf(a(X,Y),Z):-wh_nf(X,X1),wh_nf1(X1,Y,Z).

The predicate wh nf1/3 does the case analysis of application terms a/2. The key step is
the β -reduction in its second clause, when it detects an “eliminator” lambda expression
as its left argument, in which case it performs the substitution of its binder, with its right
argument.

wh_nf1(v(X),Y,a(v(X),Y)).

wh_nf1(l(E),Y,Z):-beta(l(E),Y,NewE),wh_nf(NewE,Z).

wh_nf1(a(X1,X2),Y,a(a(X1,X2),Y)).

The predicate to nf implements normal order reduction. It follows the same skeleton as
wh nf, which is called in the third clause to perform reduction to weak head normal form,
starting from the outermost lambda binder.

to_nf(v(X),v(X)).

to_nf(l(E),l(NE)):-to_nf(E,NE).

to_nf(a(E1,E2),R):-wh_nf(E1,NE),to_nf1(NE,E2,R).

Case analysis of application terms for possible β -reduction is performed by to nf1/3,
where the second clause calls beta/3 and recurses on its result.

to_nf1(v(E1),E2,a(v(E1),NE2)):-to_nf(E2,NE2).

to_nf1(l(E),E2,R):-beta(l(E),E2,NewE),to_nf(NewE,R).

to_nf1(a(A,B),E2,a(NE1,NE2)):-to_nf(a(A,B),NE1),to_nf(E2,NE2).

Therefore, the predicate evalDeBruijn

evalDeBruijn --> to_nf.

provides a Turing-complete lambda calculus interpreter working on de Bruijn terms. It is
guaranteed to compute a normal form, if it exists. The predicate evalStandard/2 works



22 Paul Tarau

on standard lambda terms, that in converts to de Bruijn terms and then back after evalua-
tion. The predicate evalCompressed/2 works in a similar way on compressed de Bruijn
terms. We express them as a composition of functions (first argument in, second out) using
Prolog’s DCG notation.

evalStandard-->l2b,to_nf,b2l.

evalCompressed-->c2b,to_nf,b2c.

Example 18
illustrates evaluation of the lambda term SKK =
(( λx0. λx1. λx2.((x0 x2) (x1 x2)) λx3. λx4.x3) λx5. λx6.x5) in compressed de Brijn form,
resulting in the definition of the identity combinator I = λx0.x0.

?- S=a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),K=v(2,1),

evalCompressed(a(0,a(0,S,K),K),R).

S = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

K = v(2, 1),

R = v(1, 0).

6 Combinators

Combinators are closed lambda terms placed exclusively as labels at the leaves of appli-
cation trees. Thus combinator expressions are lambda terms represented as binary trees
having applications as internal nodes and combinators as leaves. We will explore here two
families of combinator expressions, one well-known (SK-combinators) and another that
has been mostly forgotten for a more than a half century (Rosser’s X-combinator).

6.1 SK-Combinator Trees

A combinator basis is a set of combinators in terms of which any other combinators can
be expressed.

The most well known basis for combinator calculus consists of K = λx0. λx1.x0 and
S= λx0. λx1. λx2.((x0 x2) (x1 x2)). SK-combinator expressions can be seen as binary trees
with leaves labeled with symbols S and K, having function applications as internal nodes.
Together with the primitive operation of application, K and S can be used as a 2-point basis
to define a Turing-complete language.

6.1.1 Generating combinator trees

Prolog is an ideal language to define in a few lines generators for various classes of combi-
natorial objects. The predicate genSK generates SK-combinator trees with a limited num-
ber of internal nodes.

genSK(k)-->[].

genSK(s)-->[].

genSK(X*Y)-->down,genSK(X),genSK(Y).

Note the use of Prolog’s definite clause grammar (DCG) notation in combination with
the predicate down/2 that counts downward the number of available internal nodes.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic23

The predicate genSK/3 provides two interfaces: genSK/2 that generates trees with ex-
actly N internal nodes and genSKs/2 that generates trees with N or less internal nodes.

genSK(N,X):-genSK(X,N,0).

genSKs(N,X):-genSK(X,N,_).

Example 19
SK-combinator trees with up to 1 internal nodes (and up to 2 leaves).

?- genSKs(1,T).

T = k ;

T = s ;

T = k*k ;

T = k*s ;

T = s*k ;

T = s*s .

The predicate csize defines the size of an SK-combinator tree in terms of the number
of its internal nodes.

csize(k,0).

csize(s,0).

csize((X*Y),S):-csize(X,A),csize(Y,B),S is 1+A+B.

6.1.2 A Turing-complete evaluator for SK-combinator trees

An evaluator for SK-combinator trees recurses over application nodes, evaluates their sub-
trees and then applies the left one to the right one.

evalSK(k,k).

evalSK(s,s).

evalSK(F*G,R):-evalSK(F,F1),evalSK(G,G1),appSK(F1,G1,R).

In the predicate app, handling the application of the first argument to the second, we de-
scribe in the first two clauses the actions corresponding to K and S. The final clause returns
the unevaluated application as its third argument.

appSK((s*X)*Y,Z,R):-!, % S

appSK(X,Z,R1),

appSK(Y,Z,R2),

appSK(R1,R2,R).

appSK(k*X,_Y,R):-!,R=X. % K

appSK(F,G,F*G).

Example 20
Applications of SKK and SKS, both implementing the identity combinator I = λx.x.

?- appSK(s*k*k,s,R).

R = s.

?- appSK(s*k*s,k,R).

R = k.



24 Paul Tarau

6.1.3 De Bruijn equivalents of SK-combinator expressions

De Bruijn indices (de Bruijn 1972) provide a name-free representation of lambda terms.
All terms closed that can be transformed by a renaming of variables (α-conversion) will
share a unique representation. Variables following lambda abstractions are omitted and
their occurrences are marked with positive integers counting the number of lambdas until
the one binding them is found on the way up to the root of the term. We represent them
using the constructor a/2 for application, l/1 for lambda abstractions (that we will call
shortly binders) and v/1 for marking the integers corresponding to the de Bruijn indices.

For instance, λx0.( λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))) becomes l(a(l(a(v(1),

a(v(0),v(0)))), l(a(v(1), a(v(0), v(0)))))), corresponding to the fact that v(1)
is bound by the outermost lambda (two steps away, counting from 0) and the occurrences
of v(0) are bound each by the closest lambda, represented by the constructor l/1. The
predicates kB and sB define the K and S combinators in de bruijn form.

kB(l(l(v(1)))).

sB(l(l(l(a(a(v(2),v(0)),a(v(1),v(0))))))).

The predicate sk2b transforms an SK-combinator tree in its lambda expression form, in
de Bruijn notation, by replacing leaves with their de Bruijn form of the S and K combina-
tors and replacing recursively the constructor “*”/2 with the application nodes “a”/2.

sk2b(s,S):-sB(S).

sk2b(k,K):-kB(K).

sk2b((X*Y),a(A,B)):-sk2b(X,A),sk2b(Y,B).

Example 21
Expansion of some small SK-combinator trees to de Bruijn forms.

?- sk2b(k*k,R).

R = a(l(l(v(1))), l(l(v(1)))).

?- sk2b(k*s,R).

R = a(l(l(v(1))),l(l(l(a(a(v(2),v(0)),a(v(1),v(0))))))).

Clearly their de Bruijn equivalents are significantly larger than the corresponding combi-
nator trees, but it is easy to see that this is only by a constant factor, i.e. at most the size of
the S combinator.

A lambda term is called closed if it contains no free variables.

Proposition 1
The lambda terms equivalent to SK-combinators computed by sk2b are closed.

Proof
As the lambda term equivalent of the SK-combinator term is clearly a closed expression,
the proposition follows from the definition of sk2b, as it builds terms that apply closed
terms to closed terms.

This well-known property holds, in fact, for all combinator expressions. It follows that



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic25

combinator expressions have a stronger, hereditary closedness property: every subtree of a
combinator tree also represents a closed expression.

Besides being closed, lambda terms interesting for functional languages and proof as-
sistants are also well-typed. While the K and S combinators are known to be well-typed,
we would like to see how this property extends to SK-combinator trees. In particular, we
would like to have an idea on the asymptotic density of well-typed SK-combinator tree
expressions. We will take advantage of Prolog’s sound unification algorithm to define a
type inferrer directly on SK-terms.

6.2 Inferring simple types for SK-combinator trees

A natural way to define types for combinator expressions is to borrow them from their
lambda calculus equivalents. This makes sense, as they represent the same function i.e.,
they are extensionally the same. However, this is equivalent to just borrowing the well-
known types of the S and K combinators and then recurse over application nodes.

We will next describe an algorithm for inferring types directly on SK-combinator trees.

6.2.1 A type inference algorithm for SK-terms

Simple types will be defined here also as binary trees built with the constructor “>/2” with
empty leaves, representing the unique primitive type “x”. For brevity, we will mean simple
types when mentioning types, from now on. Types can be seen as as a “binary tree approx-
imation” of lambda terms, centered around ensuring their safe and terminating evaluation
(called strong normalization), as the following well known property states (Barendregt
1991).

Proposition 2
Lambda terms (and combinator expressions, in particular) that have simple types are strongly
normalizing.

When modeling lambda terms in a functional or procedural language, inferring types
requires implementing unification with occurs-check, as shown for instance in the appendix
of (Grygiel and Lescanne 2013). On the other hand this operation is readily available in
today’s Prolog systems.

skTypeOf(k,(A>(_B>A))).

skTypeOf(s,(((A>(B>C))> ((A>B)>(A>C) )))).

skTypeOf(A*B,Y):-

skTypeOf(A,T),

skTypeOf(B,X),

unify_with_occurs_check(T,(X>Y)).

At this point, most general types are inferred by skTypeOf as fresh variables, similar
to multi-parameter polymorphic types in functional languages, if one interprets logic vari-
ables as universally quantified.

Example 22
Type inferred for some SK-combinator expressions. Note the failure to infer a type for
SSI = SS(SKK).



26 Paul Tarau

?- skTypeOf((((k*k)*k)*k)*k,T).

T = (A>(B>A)).

?- skTypeOf((k*s)*k,T).

T = ((A> (B>C))> ((A>B)> (A>C))).

?- skTypeOf((s*s)*((s*k)*k),T).

false.

As we are only interested in simple types with only one base type, we will bind uni-
formly the leaves of our type tree to the constant “x” representing our only primitive type,
by using the predicate bindWithBaseType/1.

simpleTypeOf(A,T):-

skTypeOf(A,T),

bindWithBaseType(T).

% bind all variables with type ’x’

bindWithBaseType(x):-!.

bindWithBaseType((A>B)):-

bindWithBaseType(A),

bindWithBaseType(B).

Example 23
Simple type inferred for combinators KSK, B and C.

?- simpleTypeOf(k*s*k,T).

T = ((x> (x>x))> ((x>x)> (x>x))).

?- B=s*(k*s)*k,C=s*(B*B*s)*(k*k),simpleTypeOf(B,TB),simpleTypeOf(C,TC).

B = s* (k*s)*k,

C = s* (s* (k*s)*k* (s* (k*s)*k)*s)* (k*k),

TB = ((x>x)> ((x>x)> (x>x))),

TC = ((x> (x>x))> (x> (x>x))).

It is also useful to define the predicate typableSK that succeeds when a type can be in-
ferred.

typableSK(X):-skTypeOf(X,_).

6.3 Rosser’s X-combinator

We will know explore expressions built with a less well-known combinator, that provides
a 1-point basis for combinator calculi.

It is shown in (Goldberg 2004) that a countable number of (somewhat artificially con-
structed) 1-point bases exist for combinator calculi, but we will focus here on Rosser’s
X-combinator, one of the simplest 1-point bases that is naturally connected through mu-
tual definitions to the combinators K and S.

6.3.1 The X-combinator in terms of S and K and vice-versa

A derivation of Rosser’s X-combinator is described in (Fokker 1992).
Defined as X = λ f . f KSK, this combinator has the nice property of expressing both K

and S in a symmetric way.

K = (XX)X (1)



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic27

S = X(XX) (2)

Moreover, as shown in (Fokker 1992) the following holds.

KK = XX = λx0. λx1. λx2.x1 (3)

As a result, X-combinator expressions are within a (small, see Prop. 3) constant factor of
their equivalent SK-expressions.

Denoting “x” the empty leaf corresponding to the X-combinator and “>” the (non-
associative, infix) constructor for the binary tree’s internal nodes, the predicates sT, kT and
xxT define the Prolog expressions for the S, K and KK = XX combinators, respectively.

sT(x>(x>x)).

kT((x>x)>x).

xxT(x>x).

This symmetry is part of the motivation for choosing the X-combinator basis, rather than
any of the more well-known ones (see (Hindley and Seldin 2008)).

Generating the combinator trees As X-combinator trees are just plain binary trees, with
leaves denoted x and internal nodes denoted >, we can reuse the predicate genTree defined
in 4.1.2 to generate X-combinator trees with a given number of internal nodes.

6.3.2 An evaluator for the Turing-complete language of X-combinator trees

We can derive an evaluator for X-combinator trees from a well-known evaluator for SK-
combinator trees.

evalX((F>G),R):-!,evalX(F,F1),evalX(G,G1),appX(F1,G1,R).

evalX(X,X).

In the predicate appX/3 handling the application of the first argument to the second, we
describe in the first two clauses the actions corresponding to K and S. The final clause
returns the unevaluated application as its third argument.

appX((((x>x)>x)>X),_Y,R):-!,R=X. % K

appX((((x>(x>x))>X)>Y),Z,R):-!, % S

appX(X,Z,R1),

appX(Y,Z,R2),

appX(R1,R2,R).

%app((((x>x)>_X)>Y),_Z,R):-!,R=Y.

%app((x>x)>x,(x>x)>x,R):-!,app(x,x,R).

appX(F,G,(F>G)).

Note also the commented out clauses, that can shortcut some evaluation steps, using the
identity (3).

Example 24
Evaluation of SKK and SKX, equivalent implementations of the identity combinator I =
λx.x.

?- SKK=(((x>(x>x))>((x>x)>x))>((x>x)>x)),evalX(SKK>x,R).

SKK = (((x>(x>x))>((x>x)>x))>((x>x)>x)),

R = x.



28 Paul Tarau

?- SKX=(((x> (x>x))> ((x>x)>x))>x),evalX(SKX>x,R).

SKX = (((x> (x>x))> ((x>x)>x))>x),

R = x.

6.3.3 De Bruijn equivalents of X-combinator expressions

De Bruijn indices (de Bruijn 1972) provide a name-free representation of lambda terms.
All terms that can be transformed by a renaming of variables (α-conversion) will share
a unique representation. Variables following lambda abstractions are omitted and their
occurrences are marked with positive integers counting the number of lambdas until the
one binding them is found on the way up to the root of the term. We represent them us-
ing the constructor a/2 for application, l/1 for lambda abstractions (that we will call
shortly binders) and v/1 for marking the integers corresponding to the de Bruijn in-
dices. For instance, λx0.( λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))) becomes l(a(l(a(v(1),

a(v(0),v(0)))), l(a(v(1),a(v(0),v(0)))))), corresponding to the fact that v(1) is
bound by the outermost lambda (two steps away, counting from 0) and the occurrences
of v(0) are bound each by the closest lambda, represented by the constructor l/1.

We obtain the X-combinator’s definition in terms of S and K, in de Bruijn form, by using
the equation X f = f KSK derived from its lambda expression λ f . f KSK. The predicate xB
implements it.

xB(X):-F=v(0),kB(K),sB(S),X=l(a(a(a(F,K),S),K)).

The predicate t2b transforms an X-combinator tree in its lambda expression form, in
de Bruijn notation, by replacing leaves with the de Bruijn form of the X-combinator and
replacing recursively the constructor “>”/2 with the application nodes “a”/2.

t2b(x,X):-xB(X).

t2b((X>Y),a(A,B)):-t2b(X,A),t2b(Y,B).

Example 25
Expansion of small X-combinator trees to de Bruijn forms.

?- t2b(x,X).

X = l(a(a(a(v(0), l(l(v(1)))), l(l(l(a(a(v(2), v(0)),

a(v(1), v(0))))))), l(l(v(1))))).

?- t2b(x>x,XX).

XX=a(

l(a(a(a(v(0),l(l(v(1)))),l(l(l(a(a(v(2),v(0)),

a(v(1),v(0))))))),l(l(v(1))))),

l(a(a(a(v(0),l(l(v(1)))),l(l(l(a(a(v(2),v(0)),

a(v(1),v(0))))))),l(l(v(1)))))

).

Clearly their de Bruijn equivalents are significantly larger than the corresponding combi-
nator trees, but we will show that this is only by a constant factor. We will also see that
often normalization can bring down significantly the size of such expressions, given that
nodes like x>x are equivalent to smaller lambda expressions like λx0. λx1. λx2.x1.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic29

Proposition 3
The size of the lambda term equivalent to an X-combinator tree with N internal nodes is
15N+14.

Proof
Note that the an X-combinator tree with N internal nodes has N+1 leaves. The de Bruijn
tree built by the predicate t2b has also N application nodes, and is obtained by having
leaves replaced in the X-combinator term, with terms bringing 14 internal nodes each,
corresponding to x. Therefore it has a total of N + 14(N + 1) = 15N + 14 internal nodes.

Note also that the lambda terms equivalent to X-combinators computed by t2b are
closed, given that the lambda term equivalent to the X-combinator is a closed expression
and t2b builds terms that apply only closed terms to closed terms.

6.4 Comparing the two evaluators

While, as shown in subsection 6.3.2, X-combinator trees can be evaluated directly, it makes
sense to investigate if more compact equivalent normal forms can be obtained for them via
their mapping to lambda terms.

One can now compare the evaluation performed on X-combinator trees to that performed
on their corresponding lambda expressions. The predicate evalAsT first evaluates and then
converts while the predicate evalAsB first converts to a de Bruijn terms and then evaluates
it, with opportunities for additional reductions.

evalAsT --> evalX,t2b.

evalAsB --> t2b,evalDeBruijn.

We express these two predicates as a composition of functions (first argument in, second
out) using Prolog’s DCG notation.

Example 26
Additional reductions obtained from a term of size 29 to a term of size 3 on the de Bruijn
terms associated to an X-combinator expression.

?- evalAsT(x>x,R),dbTermSize(R,Size),write(Size),nl,fail.

29

?- evalAsB(x>x,R),dbTermSize(R,Size).

R = l(l(l(v(1)))),

Size = 3 .

Note however, as predicted by the Church-Rosser theorem (de Bruijn 1972; Barendregt
1984), applying normalization via evalDeBruijn to the result of evalAsT reaches the
same final normal form. This property is called confluence.

Example 27
Confluence of evaluation as X-combinator tree and as lambda term.

?- evalAsT(x>x,R),evalDeBruijn(R,FinalR).

R = a(l(a(a(a(v(0),...,l(l(v(1)))))),

FinalR = l(l(l(v(1)))) .



30 Paul Tarau

6.5 Inferring simple types for X-combinator trees

A natural way to define types for combinator expressions is to borrow them from their
lambda calculus equivalents. This makes sense, as they represent the same function i.e.,
they are extensionally the same.

We will start with an algorithm inferring types on the de Bruijn equivalents of X-
combinator trees.

6.5.1 Type trees as combinator trees

Besides being closed, lambda terms interesting for functional languages and proof assis-
tants are also well-typed. While the K and S combinators are known to be well-typed, we
would like to see how this property extends to X-combinator trees. In particular, we would
like to have an idea on the asymptotic density of well-typed X-combinator tree expressions,
that we will explore in subsection 8.7.

We can define the type of a combinator expression as the type of its lambda expression
translation. The predicate xtype defines a function from binary trees to binary trees map-
ping an X-combinator expression to its type, as inferred on its equivalent lambda term in
de Bruijn notation.

xtype(X,T):-t2b(X,B),boundTypeOf(B,T).

Observe that this only makes sense if the combinator basis is well-typed. Fortunately this
is the case of the X-combinator λx0.(((x0

λx1. λx2.x1) λx3. λx4. λx5.((x3 x5) (x4 x5))) λx6. λx7.x6).

Example 28
The X-combinator is well-typed.

?- xtype(x,T).

T = (((x> (x>x))> (((x> (x>x))> ((x>x)> (x>x)))> ((x> (x>x))>x)))>x).

6.5.2 Inferring types of X-combinator trees directly

The predicate xt, that can be seen as a “partially evaluated” version of xtype, infers the
type of the combinators directly.

xt(X,T):-poly_xt(X,T),bindTypeB(T).

xT(T):-t2b(x,B),boundTypeOf(B,T,[]).

poly_xt(x,T):-xT(T).

poly_xt(A>B,Y):-poly_xt(A,T),poly_xt(B,X),

unify_with_occurs_check(T,(X>Y)).

It proceeds by first borrowing the type of x from its de Bruijn equivalent. Then, after calling
poly xt to infer polymorphic types, it binds them to our simple-type representation by
calling bindTypeB.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic31

Example 29
Simple type inferred directly on X-combinator trees.

?- skkT(X),xt(X,DirectT),xtype(X,BorrowedT).

X = (((x> (x>x))> ((x>x)>x))> ((x>x)>x)),

DirectT = BorrowedT, BorrowedT = (x>x).

7 Size-proportionate bijective encodings of lambda terms and combinators

We will describe here two encodings. The first one, in subsections 7.1 and 7.2 does it “the
hard way” by working with bitstring-represented natural number codes. The second one,
in subsections 7.3 and 7.4 does it “the easy-way”, by defining an alternate, tree-based nat-
ural number representation to which fairly strait-forward bijections exist from combinator
expressions, lambda terms and types.

7.1 An encoding based on Cantor’s Nk to N bijection

We can see our compressed de Bruijn terms as binary trees decorated with integer labels.
The underlying binary trees provide a skeleton that describes the applicative structure of
the terms.

7.1.1 The Catalan family of combinatorial objects

Binary trees are among the most well-known members of the Catalan family of combina-
torial objects (Stanley 1986), that has at least 58 structurally distinct members, covering
several data structures, geometric objects and formal languages.

7.1.2 Size-proportionate encodings

In the presence of a bijection between two, usually infinite sets of data objects, it is possible
that representation sizes on one side or the other are exponentially larger that on the other.
Well-known encodings like Ackermann’s bijection for hereditarily finite sets to natural
numbers, defined as f ({}) = 0, f (x) = ∑a∈x 2 f (a), fall in this category.

We will say that a bijection is size-proportionate if the representation sizes for corre-
sponding terms on its two sides are “close enough” up to a constant factor multiplied with
at most the logarithm of any of the sizes.

Definition 1
Given a bijection between sets of terms of two datatypes denoted M and N, f : M → N,
let m(x) be the representation size of a term x ∈M and n(y) be the representation size of
y ∈ N. Then f is called size-proportionate if |m(x)−n(y)| ∈ O(log(max(m(x),n(y)))).

Informally we also assume that the constants involved are small enough such that the
printed representation of two data objects connected by the bijections is about the same.



32 Paul Tarau

7.1.3 The language of balanced parentheses

Binary trees are in a well-known size-proportionate bijection with the language of balanced
parentheses (Stanley 1986), from which we will borrow an efficient ranking/unranking
bijection. The reversible predicate catpar/2 transforms between binary trees and lists of
balanced parentheses, with 0 denoting the open parentheses and 1 denoting the closing
one.

catpar(T,Ps):-catpar(T,0,1,Ps,[]).

catpar(X,L,R) --> [L],catpars(X,L,R).

catpars(x,_,R) --> [R].

catpars((X>Xs),L,R)-->catpar(X,L,R),catpars(Xs,L,R).

Example 30
illustrates the work of the reversible predicate catpar/2.

?- catpar(((x>x)>(x>x)),Ps),catpar(T,Ps).

Ps = [0, 0, 0, 1, 1, 0, 1, 1], T = ((x>x)> (x>x)) .

Note the extra opening/closing parentheses, compared to the usual definition of Dyck
words (Stanley 1986), that make the sequence self-delimiting.

7.1.4 A bijection from the language of balanced parenthesis lists to N

This algorithm follows closely the procedural implementation described in (Kreher and
Stinson 1999).

The code of the helper predicates called by rankCatalan and unrankCatalan is pro-
vided in http://www.cse.unt.edu/~tarau/research/2015/dbr.pro. The details of
the algorithms for computing localRank and localunRank are described at http://
www.cse.unt.edu/~tarau/research/2015/dbrApp.pdf.

The predicate rankCatalan uses the Catalan numbers computed by cat in rankLoop

to shift the ranking over the ranks of smaller sequences, after calling localRank.

rankCatalan(Xs,R):-

length(Xs,XL),XL>=2,

L is XL-2, I is L // 2,

localRank(I,Xs,N),

S is 0, PI is I-1,

rankLoop(PI,S,NewS),

R is NewS+N.

The predicate unrankCatalan uses the Catalan numbers computed by cat in unrankLoop
to shift over smaller sequences, before calling localUnrank.

unrankCatalan(R,Xs):-

S is 0, I is 0,

unrankLoop(R,S,I,NewS,NewI),

LR is R-NewS,

L is 2*NewI+1,

length(As,L),

localUnrank(NewI,LR,As),

http://www.cse.unt.edu/~tarau/research/2015/dbr.pro
http://www.cse.unt.edu/~tarau/research/2015/dbrApp.pdf
http://www.cse.unt.edu/~tarau/research/2015/dbrApp.pdf


A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic33

As=[_|Bs],

append([0|Bs],[1],Xs).

The following example illustrates the ranking and unranking algorithms:

?- unrankCatalan(2015,Ps),rankCatalan(Ps,Rank).

Ps = [0,0,1,0,1,0,1,0,0,0,0,1,0,1,1,1,1,1],Rank = 2015

7.1.5 Ranking and unranking simple types

After putting together the bijections between binary trees and balanced parentheses with
the ranking/unranking of the later we obtain the size-proportionate ranking/unranking al-
gorithms for simple types.

rankType(T,Code):-

catpar(T,Ps),

rankCatalan(Ps,Code).

unrankType(Code,Term):-

unrankCatalan(Code,Ps),

catpar(Term,Ps).

Example 31
illustrates the ranking and unranking of simple types.

?- I=100, unrankType(I,T),rankType(T,R).

I = R, R = 100,

T = (((x>x)> ((x> (x>x))>x))>x) .

As there are O( 4n

n
3
2
)) binary trees of size n corresponding to 2n natural numbers of bitsize

up to n and our ranking algorithm visits them in lexicographic order, it follows that:

Proposition 4
The bijection between types and their ranks is size-proportionate.

7.1.6 Catalan skeletons of compressed de Bruijn terms

As compressed de Bruijn terms can be seen as binary trees with labels on their leaves and
internal nodes, their “Catalan skeleton” is simply the underlying binary tree. The predicate
cskel/3 extracts this skeleton as well as the list of the labels, in depth-first order, as
encountered in the process.

cskel(S,Vs, T):-cskel(T,S,Vs,[]).

cskel(v(K,N),x)-->[K,N].

cskel(a(K,X,Y),(A>B))-->[K],cskel(X,A),cskel(Y,B).

The predicates toSkel and fromSkel add conversion between this binary tree and lists
of balanced parenthesis by using the (reversible) predicate catpar.

toSkel(T,Skel,Vs):-

cskel(T,Cat,Vs,[]),

catpar(Cat,Skel).



34 Paul Tarau

fromSkel(Skel,Vs, T):-

catpar(Cat,Skel),

cskel(T,Cat,Vs,[]).

Example 32
illustrates the Catalan skeleton Skel and the list of variable labels Vs extracted from a
compressed de Bruijn term corresponding to the S combinator.

?- T = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

toSkel(T,Skel,Vs),fromSkel(Skel,Vs,T1).

T = T1, T1 = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

Skel = [0,0,0,1,1,0,1,1],Vs = [3,0,0,2,0,0,0,0,1,0,0] .

7.1.7 The generalized Cantor k-tupling bijection

As we we have already solved the problem of ranking and unranking lists of balanced
parentheses, the remaining problem is that of finding a bijection between the lists of labels
collected from the nodes of a compressed de Bruijn term and natural numbers.

We will use the generalized Cantor bijection between Nn and N as the first step in defin-
ing this bijection. The formula, given in (Cegielski and Richard 1999) p.4, looks as follows:

Kn(x1, . . . ,xn) =
n

∑
k=1

(
k−1+ sk

k

)
where sk =

k

∑
i=1

xi (4)

Note that
(n

k

)
represents the number of subsets of k elements of a set of n elements, that also

corresponds to the binomial coefficient of xk in the expansion of (x+y)n, and Kn(x1, . . . ,xn)

denotes the natural number associated to the tuple (x1, . . . ,xn). It is easy to see that the
generalized Cantor n-tupling function defined by equation (4) is a polynomial of degree n
in its arguments.

7.1.8 The bijection between sets and sequences of natural numbers

We recognize in the equation (4) the prefix sums sk incremented with values of k starting
at 0. It represents the “set side” of the bijection between sequences of n natural numbers
and sets of n natural numbers described in (Tarau 2009). It is implemented in the online
Appendix as the bijection list2set together with its inverse set2list. For example,
list2set transforms [2,0,1,5] to [2, 3, 5, 11] as 3=2+0+1,5=3+1+1,11=5+5+1 and
set2list transforms it back by computing the differences between consecutive members,
reduced by 1.

7.1.9 The Nn→ N bijection

The bijection Kn : Nn → N is basically just summing up a set of binomial coefficients.
The predicate fromCantorTuple implements the the Nn → N bijection in Prolog, us-
ing the predicate fromKSet that sums up the binomials in formula 4 using the predicate
untuplingLoop, as well as the sequence to set transformer list2set.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic35

fromCantorTuple(Ns,N):-

list2set(Ns,Xs),

fromKSet(Xs,N).

fromKSet(Xs,N):-untuplingLoop(Xs,0,0,N).

untuplingLoop([],_L,B,B).

untuplingLoop([X|Xs],L1,B1,Bn):-L2 is L1+1,

binomial(X,L2,B),B2 is B1+B,

untuplingLoop(Xs,L2,B2,Bn).

7.1.10 The N→ Nn bijection

We split our problem in two simpler ones: inverting fromKSet and then applying set2list
to get back from sets to lists.

We observe that the predicate untuplingLoop used by fromKSet implements the sum
of the combinations

(X1
1

)
+
(X2

2

)
+ . . .+

(XK
K

)
= N, which is nothing but the representation

of N in the combinatorial number system of degree K due to (Lehmer 1964). Fortunately,
efficient conversion algorithms between the conventional and the combinatorial number
system are well known, (Knuth 2005).

We are ready to implement the Prolog predicate toKSet(K,N,Ds), which, given the
degree K, indicating the number of “combinatorial digits”, finds and repeatedly subtracts
the greatest binomial smaller than N. It calls the predicate combinatoriallDigits that
returns these “digits” in increasing order, providing the canonical set representations that
set2list needs.

toKSet(K,N,Ds):-combinatoriallDigits(K,N,[],Ds).

combinatoriallDigits(0,_,Ds,Ds).

combinatoriallDigits(K,N,Ds,NewDs):-K>0,K1 is K-1,

upperBinomial(K,N,M),M1 is M-1,

binomial(M1,K,BDigit),N1 is N-BDigit,

combinatoriallDigits(K1,N1,[M1|Ds],NewDs).

upperBinomial(K,N,R):-S is N+K,

roughLimit(K,S,K,M),L is M // 2,

binarySearch(K,N,L,M,R).

The predicate roughLimit compares successive powers of 2 with binomials
( I

K

)
and finds

the first I for which the binomial is between successive powers of 2.

roughLimit(K,N,I, L):-binomial(I,K,B),B>N,!,L=I.

roughLimit(K,N,I, L):-J is 2*I,

roughLimit(K,N,J,L).

The predicate binarySearch finds the exact value of the combinatorial digit in the interval
[L,M], narrowed down by roughLimit.

binarySearch(_K,_N,From,From,R):-!,R=From.

binarySearch(K,N,From,To,R):-Mid is (From+To) // 2,binomial(Mid,K,B),

splitSearchOn(B,K,N,From,Mid,To,R).



36 Paul Tarau

splitSearchOn(B,K,N,From,Mid,_To,R):-B>N,!,

binarySearch(K,N,From,Mid,R).

splitSearchOn(_B,K,N,_From,Mid,To,R):-Mid1 is Mid+1,

binarySearch(K,N,Mid1,To,R).

The predicates toKSet and fromKSet implement inverse functions, mapping natural
numbers to canonically represented sets of K natural numbers.

?- toKSet(5,2014,Set),fromKSet(Set,N).

Set = [0, 3, 4, 5, 14], N = 2014 .

The efficient inverse of Cantor’s N-tupling is now simply:

toCantorTuple(K,N,Ns):-

toKSet(K,N,Ds),

set2list(Ds,Ns).

Example 33
illustrates the work of the generalized cantor bijection, on some large numbers:

?- K=1000,pow(2014,103,N),toCantorTuple(K,N,Ns),fromCantorTuple(Ns,N).

K = 1000, N = 208029545585703688484419851459547264831381665...567744,

Ns = [0, 0, 2, 0, 0, 0, 0, 0, 1|...] .

As the image of a tuple is a polynomial of degree n it means that the its bitsize is within
constant factor of the sum of the bitsizes of the members of the tuple, thus:

Proposition 5
The bijection between Nn and N is size-proportionate.

7.2 Ranking/unranking of compressed de Bruijn terms

We will implement a size-proportionate bijective encoding of compressed de Bruijn terms
following the technique described in (Tarau 2013). The algorithm will split a lambda tree
into its Catalan skeleton and the list of atomic objects labeling its nodes. In our case,
the Catalan skeleton abstracts away the applicative structure of the term. It also provides
the key for decoding unambiguously the integer labels in both the leaves (two integers)
and internal nodes (one integer). Our ranking/unranking algorithms will rely on the en-
coding/decoding of the Catalan skeleton provided by the predicates rankCatalan/2 and
unrankCatalan/2 as well as for the encoding/decoding of the labels, provided by the
predicates toCantorTuple/3 and fromCantorTuple/2.

The predicate rankTerm/2 defines the bijective encoding of a (possibly open) com-
pressed de Bruijn term.

rankTerm(Term,Code):-

toSkel(Term,Ps,Ns),

rankCatalan(Ps,CatCode),

fromCantorTuple(Ns,VarsCode),

fromCantorTuple([CatCode,VarsCode],Code).

The predicate rankTerm/2 defines the bijective decoding of a natural number into a (pos-
sibly open) compressed de Bruijn term.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic37

unrankTerm(Code,Term):-

toCantorTuple(2,Code,[CatCode,VarsCode]),

unrankCatalan(CatCode,Ps),

length(Ps,L2),L is (L2-2) div 2, L3 is 3*L+2,

toCantorTuple(L3,VarsCode,Ns),

fromSkel(Ps,Ns,Term).

Note that given the unranking of CatCode as a list of balanced parentheses of length
2*L+2, we can determine the number L of internal nodes of the tree and the number L+1
of leaves. Then we have 2*(L+1) labels for the leaves and L labels for the internal nodes,
for a total of 3L+2, value needed to decode the labels encoded as VarsCode.

It follows from Prop. 4 and Prop. 5 that:

Proposition 6
A compressed de Bruijn terms is size-proportionate to its rank.

Example 34
illustrates the “size-proportionate” encoding of the compressed de Bruijn terms corre-
sponding to the combinators S and Y.

?- T = a(3,a(0,v(0,2),v(0,0)),a(0,v(0, 1),v(0,0))),

rankTerm(T,R),unrankTerm(R,T1).

T = T1,T1 = a(3,a(0,v(0,2),v(0,0)),a(0,v(0, 1),v(0,0))),

R = 56493141 .

?- T=a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),

rankTerm(T,R),unrankTerm(R,T1).

T=T1,T1=a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),

R = 261507060 .

7.2.1 Generation of lambda terms via unranking

While direct enumeration of terms constrained by number of nodes or depth is straight-
forward in Prolog, an unranking algorithm is also usable for term generation, including
generation of random terms.

Generating open terms in compressed de Bruijn form Open terms are generated simply by
iterating over an initial segment of N with the built-in between/3 and calling the predicate
unrankTerm/2.

ogen(M,T):-between(0,M,I),unrankTerm(I,T).

Reusing unranking-based open term generators for more constrained families of lambda
terms works when their asymptotic density is relatively high.

Generating closed and well-typed terms in compressed de Bruijn form The extensive quan-
titative analysis available in the literature (Grygiel and Lescanne 2013; David et al. 2009;
David et al. 2010) indicates that density of closed and typed terms decreasing very quickly
with size, making generation by filtering impractical for very large terms.

The predicate cgen/2 generates closed terms by filtering the results of ogen/2 with the



38 Paul Tarau

predicate isClosedC and tgen generates typable terms by filtering the results of cgen/2
with typable/2.

cgen(M,IT):-ogen(M,IT),isClosedC(IT).

tgen(M,IT):-cgen(M,IT),typable(IT).

Example 35
Generation of well-typed terms via unranking.

?- tgen(200,T).

T = v(1, 0) ;

T = v(2, 0) ;

T = v(2, 1) ;

T = v(3, 0) ;

T = v(3, 1) ;

T = v(4, 0) ;

T = a(0, v(1, 0), v(1, 0)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = v(3, 2) ;

T = v(4, 1) .

false.

7.3 X-combinator trees as natural numbers

Gödel-numberings seen as injective mappings from formulas and proofs to natural numbers
have been used for important theoretical results in the past (Hartmanis and Baker 1974)
among which Gödel’s incompleteness theorems are the most significant (Gödel 1931).

In the form of ranking and unranking functions, bijections from families of combinato-
rial objects to natural numbers have been devised with often practical uses in mind, like
generation of random inputs for software testing.

Ensuring that such bijections are also size-proportionate, adds an additional challenge
to the problem, as the fast growth of the number of combinatorial objects of a given size
makes it difficult to impossible to associate to all of them comparably small unique natural
numbers. As another challenge, computation of the unranking function often involves some
form of binary or multiway tree search to locate the object corresponding to a given natural
number (Grygiel and Lescanne 2013; Tarau 2013), which precludes their use on very large
objects. Our solution described here consists in two steps, the second one involving an
arguably surprising twist.

First, we define a bijection between natural numbers and trees. Next we define arith-
metic operations directly on trees and ensure that they mimic exactly their natural number
equivalents. This turns our trees into natural numbers (they become yet another model or
Peano’s axioms), hence we can make them the target of ranking algorithms and the source
of unranking ones.

As we are now dealing with bijections between trees and tree-like data structures, mak-
ing them size proportionate becomes surprisingly easy. We will define such a bijection to
general lambda terms in section 7.4.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic39

7.3.1 A bijection from binary trees to natural numbers

The (big-endian) binary representation of a natural number can be written as a concatena-
tion of binary digits of the form

n = bk0
0 bk1

1 . . .bki
i . . .bkm

m (5)

with bi ∈ {0,1} and the highest digit bm = 1. The following hold.

Proposition 7
An even number of the form 0i j corresponds to the operation 2i j and an odd number of the
form 1i j corresponds to the operation 2i( j+1)−1.

Proof
It is clearly the case that 0i j corresponds to multiplication by a power of 2. If f (i) = 2i+1,
then it can be shown by induction that the i-th iterate of f , f i is computed as in the equation
(6)

f i( j) = 2i( j+1)−1 (6)

Observe that each block 1i in n, represented as 1i j in equation (5), corresponds to the
iterated application of f , i times, n = f i( j).

Proposition 8
A number n is even if and only if it contains an even number of blocks of the form bki

i in
equation (5). A number n is odd if and only if it contains an odd number of blocks of the
form bki

i in equation (5).

Proof
It follows from the fact that the highest digit (and therefore the last block in big-endian
representation) is 1 and the parity of the blocks alternate.

This suggests defining a cons operation on natural numbers as follows.

cons(i, j) =

{
2i+1 j if j is odd,

2i+1( j+1)−1 if j is even.
(7)

Note that the exponents are i+ 1 instead of i as we start counting at 0. Note also that
cons(i, j) will be even when j is odd and odd when j is even.

Proposition 9
The equation (7) defines a bijection c : N×N→ N+ = N−{0}.

Therefore cons has an inverse decons, that we will constructively define together with it.

cons(I,J,C) :- I>=0,J>=0,

D is mod(J+1,2),

C is 2^(I+1)*(J+D)-D.

The definition of the inverse decons relies on the dyadic valuation of a number n, ν2(n),
defined as the largest exponent of 2 dividing n, implemented as the helper predicate dyadicVal,
which computes the least significant bit of its first argument with help from the built-in lsb.



40 Paul Tarau

decons(K,I1,J1):-K>0,B is mod(K,2),KB is K+B,

dyadicVal(KB,I,J),

I1 is max(0,I-1),J1 is J-B.

dyadicVal(KB,I,J):-I is lsb(KB),J is KB // (2^I).

Example 36
The inverse cons and decons operations.

?- decons(2016,A,B),cons(A,B,N).

A = 4,

B = 63,

N = 2016.

We can compute a natural number from an X-combinator tree by mapping recursively
the “>” constructor to cons.

n(x,0).

n((A>B),K):-n(A,I),n(B,J),cons(I,J,K).

Similarly, we can build an X-combinator tree from a natural number by recursing over
decons.

t(0,x).

t(K,(A>B)):-K>0,decons(K,I,J),t(I,A),t(J,B).

Note the small codes corresponding to some interesting combinators.

Example 37
Encodings of combinators X, S, K and XX=KK.

?- n(x,N).

N = 0.

?- n(x>x,N).

N = 1.

?- sT(X),n(X,N).

X = (x> (x>x)), N = 2.

?- kT(X),n(X,N).

X = ((x>x)>x), N = 3.

Proposition 10
The predicates n and t define inverse functions between natural numbers and X-combinator
trees.

Proof
It follows from the fact that cons and decons implement inverse functions.

Example 38
The work of t and n on the first 8 natural numbers.

?- maplist(t,[0,1,2,3,4,5,6,7],Ts),maplist(n,Ts,Ns).

Ts = [x,x>x,x> (x>x), (x>x)>x, (x>x)> (x>x),

x> (x> (x>x)),x> ((x>x)>x), (x> (x>x))>x],

Ns = [0, 1, 2, 3, 4, 5, 6, 7].



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic41

7.3.2 Binary tree arithmetic

As we know for sure that natural numbers support arithmetic operations, we will try to
mimic their behavior with binary trees built with the constructor “>” and empty leaves x
that we have interpreted so far as X-combinator expressions and simple types.

The operations even and odd implement the observation following from of Prop. 8
that parity (staring with 1 at the highest block) alternates with each block of distinct 0 or 1
digits.

parity(x,0).

parity(_>x,1).

parity(_>(X>Xs),P1):-parity(X>Xs,P0),P1 is 1-P0.

even_(_>Xs):-parity(Xs,1).

odd_(_>Xs):-parity(Xs,0).

We will now specify successor and predecessor through two mutually recursive predi-
cates, s and p.

They first decompose their arguments as if using decons. Then, after transforming them
as a result of adding 1, they place back the results as if using the cons operation, both
emulated by the use of the constructor “>”. Note that the two functions work on trees with
steps corresponding to a block of 0 or 1 digits at a time. They are based on arithmetic
observations about the behavior of these blocks when incrementing or decrementing a
binary number by 1.

s(x,x>x).

s(X>x,X>(x>x)):-!.

s(X>Xs,Z):-parity(X>Xs,P),s1(P,X,Xs,Z).

After computing parity, the successor predicate s delegates the transformation of the blocks
of 0 and 1 digits to predicate s1 handling both the even and odd cases.

s1(0,x,X>Xs,SX>Xs):-s(X,SX).

s1(0,X>Ys,Xs,x>(PX>Xs)):-p(X>Ys,PX).

s1(1,X,x>(Y>Xs),X>(SY>Xs)):-s(Y,SY).

s1(1,X,Y>Xs,X>(x>(PY>Xs))):-p(Y,PY).

The predecessor function p inverts the work of s

p(x>x,x).

p(X>(x>x),X>x):-!.

p(X>Xs,Z):-parity(X>Xs,P),p1(P,X,Xs,Z).

After computing parity, the predecessor predicate p delegates the transformation of the
blocks of 0 and 1 digits to p1 handling separately the even and odd cases.

p1(0,X,x>(Y>Xs),X>(SY>Xs)):-s(Y,SY).

p1(0,X,(Y>Ys)>Xs,X>(x>(PY>Xs))):-p(Y>Ys,PY).

p1(1,x,X>Xs,SX>Xs):-s(X,SX).

p1(1,X>Ys,Xs, x>(PX>Xs)):-p(X>Ys,PX).

Proposition 11
Assuming parity information is kept explicitly, the operations s and p work on a binary
tree of size N in time constant on average and and O(log∗(N)) in the worst case



42 Paul Tarau

Proof
See (Tarau 2014b).

Proposition 12
The operations s and p implement successor and predecessor operations such that their
results correspond to the same operations on natural numbers,i.e., the following hold.

t(A,X),s(X ,Y ),B is A+1,n(Y,C)→ B =C (8)

t(A,X), p(X ,Y ),B is A−1,n(Y,C)→ B =C (9)

Proof
See (Tarau 2014b).

Example 39
s and p implement arithmetic correctly.

?- A=10,t(A,X),s(X,Y),B is A+1,n(Y,C).

A = 10,X = (x> (x> (x> (x>x)))),Y = ((x>x)> (x> (x>x))),

B = C, C = 11 .

Our binary trees can be seen as a model of Peano Arithmetic, in the same sense as
unary or binary arithmetic. Note also, that while any enumeration would provide unary
arithmetic, our representation implements the equivalent (or better) of binary arithmetic.
We refer to (Tarau 2014d) and (Tarau 2014c) for the description of algorithms covering all
the usual arithmetic operations with equivalent representations working on other members
of the Catalan family and to (Tarau 2014b) for a generic implementation using Haskell
type classes. Hence our X-combinator trees can provide an implementation of arithmetic
operations (including extension to integers and rational numbers). Moreover, they can also
become the target of ranking and unranking functions that associate unique natural number
codes to various combinatorial objects. In section 7.4 they will play this role for general
lambda terms.

We refer to (Tarau 2014b) for the development of a complete arithmetic system for the
Catalan family of combinatorial objects, of which binary trees are the most well known
instance.

7.4 A size-proportionate Gödel-numbering bijection for lambda terms

We are finally ready to define our simple, linear time, size-proportionate bijection between
tree-represented natural numbers and general lambda terms in de Bruijn notation.

7.4.1 Ranking and unranking de Bruijn terms to binary-tree represented natural numbers

The predicate rank defines a bijection from lambda expressions in de Bruijn notation to
binary trees, seen here as implementing natural numbers. Variables v/1 are represented
as trees with the left x as their left branch, lambdas l/1 as trees with x as their right
branch. To avoid ambiguity, ranks for application nodes will be incremented by one using
the successor predicate s/2.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic43

rank(v(0),x).

rank(l(A),x>T):-rank(A,T).

rank(v(K),T>x):-K>0,t(K,T).

rank(a(A,B),X1>Y1):-

rank(A,X),s(X,X1),

rank(B,Y),s(Y,Y1).

The predicate unrank defines the inverse bijection from binary trees, seen as natural num-
bers, to lambda expressions in de Bruijn notation. It works by case analysis on trees with
branches marked with x and decrements branches using predicate p/2 to ensure it inverts
the action of rank on application nodes. Note also that both predicates use the bijections t
and respective n to convert between tree-based naturals and their standard natural number
equivalents.

unrank(x,v(0)).

unrank(x>T,l(A)):-!,unrank(T,A).

unrank(T>x,v(N)):-!,n(T,N).

unrank(X>Y,a(A,B)):-

p(X,X1),unrank(X1,A),

p(Y,Y1),unrank(Y1,B).

Proposition 13
Assuming variable indices are small (word-size) integers, rank and unrank define a size-
proportionate bijection between lambda terms in de Bruijn form and X-combinator trees.
Their runtime is proportional to the size of their input.

Proof
If variable indices are fixed sized small integers, one can assume that t and n work in
constant time. Then, observe that each step of both predicates works in time proportional
to s or p for a total proportional to the number of internal nodes.

As an interesting variation, for very large terms, one could actually use binary tree-based
natural numbers for the indices of v/1 in de Bruijn terms, and completely bypass the use
of t and n, and thus lifting the assumption about variable indices being fixed size integers.

Example 40
Ranking and unranking of K and S combinators in de Bruijn form.

?- kB(K),rank(K,B),unrank(B,K1).

K = K1, K1 = l(l(v(1))),

B = (x> (x> ((x>x)>x))) .

?- sB(S),rank(S,B),unrank(B,S1).

S = S1, S1 = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),

B = (x> (x> (x> ((x> (((x> (x>x))>x)> (x>x)))> (x> (((x>x)>x)> (x>x))))))) .

8 Playing with the playground

The following quote from Donald Knuth, in answering a question of Frank Ruskey about
the short term economics behind research (http://www.informit.com/articles/article.

http://www.informit.com/articles/article.aspx?p=2213858


44 Paul Tarau

Size Slow x>x Slow x>(x>x) Fast x>x Fast x>(x>x) Fast x
1 39 39 38 27 15
2 126 126 60 109 36
3 552 552 240 200 88
4 3,108 3,108 634 1,063 290
5 21,840 21,840 3,213 3,001 1,039
6 181,566 181,566 12,721 19,598 4,762
7 1,724,131 1,724,131 76,473 81,290 23,142
8 18,307,585 18,307,585 407,639 584,226 133,554
9 213,940,146 213,940,146 2,809,853 3,254,363 812,730

Fig. 1. Number of logical inferences as counted by SWI-Prolog for our algorithms when
querying generators with type patterns given in advance

aspx?p=2213858) and prominently displayed at Mayer Goldberg’s home page at http://

www.little-lisper.org/website/, summarizes our motivation behind building this
declarative playground:

Everybody seems to understand that astronomers do astronomy because astronomy is interesting.
Why don’t they understand that I do computer science because computer science is interesting?

This being said, we will sketch here a few use cases, some of possible practical signifi-
cance.

8.1 Querying a generator for specific types

Coming with Prolog’s unification and non-deterministic search, is the ability to make more
specific queries by providing a type pattern, that selects only terms that match it, while
generating terms and inferring their types.

The predicate queryTypedTerm finds closed terms of a given type of size exactly L.

queryTypedTerm(L,QueryType,Term):-

genTypedTerm(L,Term,QueryType),

boundTypeOf(Term,QueryType).

Similarly, the predicate queryTypedTerm finds closed terms of a given type of size L or
less.

queryTypedTerms(L,QueryType,Term):-

genTypedTerms(L,Term,QueryType),

boundTypeOf(Term,QueryType).

Note that giving the query type ahead of executing genTypedTerm would unify with more
general “false positives”, as type checking, contrary to type synthesis, proceeds bottom-up.
This justifies filtering out the false positives simply by testing with the deterministic predi-
cate boundTypeOf at the end. Despite the extra call to boundTypeOf, the performance im-
provements are significant, as shown in Figure 1. The figure also shows that when the slow
generate-and-test predicate genTypedTerm1 is used, the result (in “logical-inferences-per-
second”) does not depend on the pattern, contrary to the fast queryTypedTerm that prunes
mismatching types while inferring the type of the terms as it generates them.

http://www.informit.com/articles/article.aspx?p=2213858
http://www.informit.com/articles/article.aspx?p=2213858
http://www.little-lisper.org/website/
http://www.little-lisper.org/website/


A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic45

Example 41
Terms of type x>x of size 4.

?- queryTypedTerm(3,(x>x),Term).

Term = a(l(v(0)), l(v(0))) ;

Term = l(a(l(v(0)), v(0))) ;

Term = l(a(l(v(1)), v(0))) .

?- queryTypedTerms(12,(x>x)>x,T).

false.

Note that the last query, taking about a minute, shows that no closed terms of type (x>x)>x
exist up to size 12. In fact, it is known that no such terms exist, as the corresponding logic
formula is not a tautology in minimal logic.

8.2 Same-type siblings

Given a closed well-typed lambda term, we can ask what other terms of the same size or
smaller share the same type. This can be interesting for finding possibly alternative imple-
mentations of a given function or for generation of similar siblings in genetic programming.

The predicate typeSiblingOf lists all the terms of the same or smaller size having the
same type as a given term.

typeSiblingOf(Term,Sibling):-

dbTermSize(Term,L),

boundTypeOf(Term,Type),

queryTypedTerms(L,Type,Sibling).

Example 42
?- typeSiblingOf(l(l(a(v(0),a(v(0),v(1))))),T).

T = l(l(a(v(0), v(1)))) ; % <= smaller sibling

T = l(l(a(v(0), a(v(0), v(1))))) .

8.3 Discovering frequently occurring type patterns

The ability to run “relational queries” about terms and their types extends to compute
interesting statistics, giving a glimpse at their distribution.

8.3.1 The “Popular” type patterns

As types can be seen as an approximation of their inhabitants, we expect them to be shared
among distinct terms. As we can enumerate all the terms for small sizes and infer their
types, we would like to know what are the most frequently occurring ones. This can be
meaningful as a comparison base for types that are used in human-written programs of
comparable size. In approaches like (Palka et al. 2011), where types are used to direct the
generation of random terms, focusing on the most frequent types might help with genera-
tion of more realistic random tests.

Figure 2 describes counts for terms and their types for small sizes. It also shows the first
two most frequent types with the count of terms they apply to.



46 Paul Tarau

Term size Types Terms Ratio 1-st frequent 2-nd frequent
1 1 1 1.0 1: x>x
2 1 2 0.5 2: x>(x>x)
3 5 9 0.555 3: x>(x>(x>x)) 3: x>x
4 16 40 0.4 14: x>(x>x) 4: x>x>(x>(x>x))
5 55 238 0.231 38: x>(x>(x>x)) 31: x>x
6 235 1564 0.150 201: x>(x>x) 80: x>x>(x>(x>x))
7 1102 11807 0.093 732: x>(x>(x>x)) 596: x>x
8 5757 98529 0.058 4632: x>(x>x) 2500: x>x
9 33251 904318 0.036 20214: x>(x>(x>x)) 19855: (x>x)>(x>x)

Fig. 2. Counts for terms and types for sizes 1 to 9 and the first two most frequent types

Count Type
23095 x>(x>x)

22811 (x>x)>(x>x)

22514 x>x>(x>x)

21686 x>x

18271 x> ((x>x)>x)

14159 (x>x)>(x>(x>x))

13254 ((x>x)>x)> ((x>x)>x)

12921 x> (x>x)>(x>x)

11541 (x>x)> ((x>x)>x)>x

10919 (x>(x>x))>(x>(x>x))

Fig. 3. Most frequent types, out of a total of 33972 distinct types, of 1016508 terms up to
size 9.

Figure 3 shows the “most popular types” for the about 1 million closed well-typed terms
up to size 9 and the count of their inhabitants.

We can observe that, like in some human-written programs, functions representing bi-
nary operations of type x>(x>x) are the most popular. Ternary operations x>(x>(x>x))
come third and unary operations x>x come fourth. Somewhat surprisingly, a higher order
function type (x>x)>(x>x) applying a function to an argument to return a result comes
second and multi-argument variants of it are also among the top 10.

8.3.2 Growth sequences of some popular types

We can make use of our generator’s efficient specialization to a given type to explore
empirical estimates for some types interesting to human programmers.

Contrary to the total absence of the type (x>x)>x among terms of size up to 12, “binary
operations” of type x>(x>x) turn out to be quite frequent, giving, by increasing sizes, the
sequence [0, 2, 0, 14, 12, 201, 445, 4632, 17789, 158271, 891635].

Transformers of type x>x, by increasing sizes, give the sequence [1, 0, 3, 3, 31, 78, 596,
2500, 18474, 110265]. While type (x>x)>x turns our to be absent up to size 12, the type
(x>x)>(x>x), describing transformers of transformers turns out to be quite popular, as
shown by the sequence [0, 0, 1, 1, 18, 52, 503, 2381, 19855, 125599]. The same turns out to
be true also for (x>x)>((x>x)>(x>x)), giving [0, 0, 0, 0, 2, 6, 96, 505, 5287, 36769] and



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic47

((x>x)>(x>x)) > ((x>x)>(x>x)) giving [0, 0, 0, 0, 0, 6, 23, 432, 2450, 29924]. One
might speculate that homotopy type theory (The Univalent Foundations Program 2013),
that focuses on such transformations and transformations of transformations etc. has a rich
population of lambda terms from which to chose interesting inhabitants of such types!

Another interface, generating closed simply-typed terms of a given size, restricted to
have at most a given number of free de Bruijn indices, is implemented by the predicate
genTypedWithSomeFree.

genTypedWithSomeFree(Size,NbFree,B,T):-

between(0,NbFree,NbVs),

length(FreeVs,NbVs),

genTypedTerm(B,T,FreeVs,Size,0),

bindTypeB(T).

The first 9 numbers counting closed simply-typed terms with at most one free variable (not
yet in (Sloane 2014)), are [3, 10, 45, 256, 1688, 12671, 105743, 969032, 9639606].

Note that, as our generator performs the early pruning of untypable terms, rather than as
a post-processing step, enumeration and counting of these terms happens in a few seconds.

8.4 Generating closed typable lambda terms by types

In (Palka et al. 2011) a “type-directed” mechanism for the generation of random terms is
introduced, resulting in more realistic (while not uniformly random) terms, used success-
fully in discovering some GHC bugs.

We can organize in a similar way the interface of our combined generator and type
inferrer.

8.4.1 Generating type trees

The predicate genType generates binary trees representing simple types with a single base
type ‘‘x’’. As we represent types as binary trees with leaves x and internal nodes > we
can reuse the predicate genTree.

genType --> genTree.

genTypes --> genTrees.

Like genTree, it provides two interfaces, for generating types of exactly size N or up to
size N.

Next, we will combine this type generator with the generator that efficiently produces
terms matching each type pattern.

8.4.2 Generating lambda terms by increasing type sizes

The predicate genByType first generates types (seen simply as binary trees) with genType

and then uses the unification-based querying mechanism to generate all closed well-typed
de Bruijn terms with fewer internal nodes then their binary tree type.

genByType(L,B,T):-

genType(L,T),

queryTypedTerms(L,T,B).



48 Paul Tarau

Example 43
Enumeration of closed simply-typed de Bruijn terms with types of size 3 and terms of a
given type with at most 3 internal nodes.

?- genByType(3,B,T).

B = l(l(l(v(0)))),

T = (x> (x> (x>x))) ;

B = l(l(l(v(1)))),

T = (x> (x> (x>x))) ;

B = l(l(l(v(2)))),

T = (x> (x> (x>x))) ;

B = l(l(a(v(0), v(1)))),

T = (x> ((x>x)>x)) ;

B = l(l(a(v(1), v(0)))),

T = ((x>x)> (x>x)) ;

B = l(a(v(0), l(v(0)))),

T = (((x>x)>x)>x) .

Given that various constraints are naturally interleaved by our generator we obtain in a
few seconds the sequence counting these terms having types up to size 8, [1, 2, 6, 18, 84,
376, 2344, 15327]. Intuitively this means that despite of their growing sizes, types have an
increasingly large number of inhabitants of sizes smaller than their size. This is somewhat
contrary to what we see in human-written code, where types are almost always simpler and
smaller than the programs inhabiting them.

8.4.3 Generation of random lambda terms

Generation of random lambda terms, resulting from the unranking of random integers of
a give bit-size, is implemented by the predicate ranTerm/3, that applies the predicate
Filter repeatedly until a term is found for which the predicate Filter holds.

ranTerm(Filter,Bits,T):-X is 2^Bits,N is X+random(X),M is N+X,

between(N,M,I),

unrankTerm(I,T),call(Filter,T),

!.

Random open terms are generated by ranOpen/2, random closed terms by the predicate
ranClosed, random typable term by ranTyped and closed typable terms by closedTypable/2.

ranOpen(Bits,T):-ranTerm(=(_),Bits,T).

ranClosed(Bits,T):-ranTerm(isClosedC,Bits,T).

ranTyped(Bits,T):-ranTerm(closedTypable,Bits,T).

closedTypable(T):-isClosedC(T),typable(T).

Open terms based on unranking random numbers of 3000 bits of size above 1000, closed
terms of size above 55 for 150 bits and closed typable terms of size above 13 for 30 bits can
be generated within a few seconds. The limited scalability for closed and well-typed terms
is a consequence of their low asymptotic density, as shown in (David et al. 2009; Grygiel
and Lescanne 2013). We refer to (Grygiel and Lescanne 2013) for algorithms supporting
random generation of large lambda terms.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic49

Example 44
illustrates generation of some closed and well-typed terms in compressed de Bruijn form.

?- ranClosed(10,T).

T = a(1, a(0, v(0, 0), v(0, 0)), a(0, a(0, v(0, 0), v(0, 0)), v(1, 0))).

?- ranTyped(20,T).

T = a(3, v(3, 1), v(2, 0)).

8.5 Estimating the proportion of well-typed SK-combinator trees

Given the low density of closed well-typed lambda terms, an interesting question arises at
this point: what proportion of SK-combinator trees of a given size are well-typed? While
the analytic study of the asymptotic density has been successfully performed on several
families of lambda terms (Bodini et al. 2011; David et al. 2010; Grygiel et al. 2013; Grygiel
and Lescanne 2013), it is considered an open problem for well-typed terms. We will limit
ourselves here to empirically estimate it, as it is done in (Grygiel and Lescanne 2013)
for general lambda terms, where experiments indicate the extreme sparsity for very large
terms.

We can use our generator genSK to enumerate SK-combinator trees among which we
can then count the number of well-typed ones.

Example 45
Types inferred for terms with 2 internal nodes.

?- genSK(1,X),simpleTypeOf(X,T).

X = k*k,

T = (x> (x> (x>x))) ;

X = k*s,

T = (x> ((x> (x>x))> ((x>x)> (x>x)))) ;

X = s*k,

T = ((x>x)> (x>x)) ;

X = s*s,

T = (((x> (x>x))> (x>x))> ((x> (x>x))> (x>x))) .

Similarly, we can use it also to enumerate untypable terms.

Example 46
The smallest two untypable SK-expressions.

?- genSKs(2,X), \+typableSK(X).

X = s*s*k ;

X = s*s*s .

We can implement a generator for well-typed SK-trees, to be used to compute the ratio
between the number of well-typed SK-trees and the total number of SK-trees of size n, as
well as one for the untypable SK-trees.

genTypedSK(L,X,T):-genSK(L,X),simpleTypeOf(X,T).

genUntypableSK(L,X):-genSK(L,X),\+skTypeOf(X,_).

To compute the proportion of well-typed terms among terms of a given size we will also
need to count the number of SK-trees with n internal nodes.



50 Paul Tarau

Term size Well-typed Total Ratio
0 2 2 1
1 4 4 1
2 14 16 0.875
3 67 80 0.8375
4 337 448 0.752
5 1867 2688 0.694
6 10699 16896 0.633
7 63567 109824 0.578
8 387080 732160 0.528
9 2401657 4978688 0.482

Fig. 4. Proportion of well-typed SK-combinator terms

Proposition 14
There are 2n+1Cn SK-trees with n nodes, where Cn is the n-th Catalan number.

Proof
If follows from the fact that Cn counts the number of binary trees with n internal nodes,
each of which has n+1 leaves, each of which can be either S or K.

The predicate cat/2 computes the nth-Catalan number efficiently using the recurrence
C0 = 1,Cn =

2(2n−1)
n+1 Cn−1 (Stanley 1986).

cat(0,1).

cat(N,R):-N>0,

PN is N-1,

cat(PN,R1),

R is 2*(2*N-1)*R1//(N+1).

Figure 4 shows the counts for well-typed SK-combinator expressions and their ratio to
the total number of SK-trees of given size.

Somewhat surprisingly, a large proportion of well-typed SK-combinator terms is present
among the binary trees of a given size, indicating the possible existence of a lower bound
that might be easier to determine analytically than in the case of general lambda terms.

8.5.1 Generating typed SK-combinator trees by types

In (Palka et al. 2011) generation of random terms is guided by their types, resulting in more
realistic (while not uniformly random) terms, used successfully in discovering some GHC
bugs.

8.5.2 Generating SK-trees by increasing type sizes

The predicate genByType first generates simple types with genType and then uses the
unification-based querying mechanism to generate, for each of the types, its inhabitant
SK-trees with fewer internal nodes then their their type.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic51

genByTypeSK(L,X,T):-

genType(L,T),

genSKs(L,X),

simpleTypeOf(X,T).

The number of such terms grows quite fast, the sequence describing the number of terms
with sizes smaller or equal than the size of their types up to 7 is 0, 3, 29, 250, 3381,

48968, 809092.

Example 47
Enumeration of closed simply-typed de SK combinator trees with types of size 2 and less
then 2 internal nodes.

?- genByTypeSK(2,B,T).

B = k,

T = (x> (x>x)) ;

B = k*k*k,

T = (x> (x>x)) ;

B = k*k*s,

T = (x> (x>x)) .

8.6 The well-typed frontier of an untypable SK-expression

As in the case of lambda terms, untypable SK-expressions become the majority as soon
as the size of the expression reaches some threshold, 9 in this case. This actually turns
out to be a good thing, from a programmer’s perspective: types help with bug-avoidance
partly because being “accidentally well-typed” becomes a low probability event for larger
programs.

Driven by a curiosity somewhat similar to that about distribution and density properties
of prime numbers, one would want to decompose an untypable SK-expression into a set of
maximal typable ones. This makes sense, as, contrary to lambda expressions, SK-trees are
uniquely built with application operations as their internal nodes.

Definition 2
We call well-typed frontier of a combinator tree set of its maximal well-typed subtrees.

Note also, that contrary to general lambda terms, SK-terms are hereditarily closed i.e.,
every subterm of a SK-expression is closed. Consequently, the well-typed frontier is made
of closed terms.

Definition 3
We call typeless trunk of a combinator tree the subtree starting from the root from which the
members of its well-typed frontier have been removed and replaced with logic variables.

8.6.1 Computing the well-typed frontier

The well-typed frontier of a combinator tree and its typeless trunk are computed together
by the predicate The predicate wellTypedFrontier . It actually proceeds by separating
the trunk from the frontier and marking with fresh logic variables the replaced subtrees.
These variables are added as left sides of equations with the frontiers as their right sides.



52 Paul Tarau

wellTypedFrontier(Term,Trunk,FrontierEqs):-

wtf(Term, Trunk,FrontierEqs,[]).

wtf(Term,X)-->{typableSK(Term)},!,[X=Term].

wtf(A*B,X*Y)-->wtf(A,X),wtf(B,Y).

Example 48
Well-typed frontier and typeless trunk of the untypable term SSI(SSI) (with I represented
as SKK).

?- wellTypedFrontier(s*s*(s*k*k)*(s*s*(s*k*k)),

Trunk,FrontierEqs).

Trunk = A*B* (C*D),

FrontierEqs = [A=s*s, B=s*k*k, C=s*s, D=s*k*k].

The list-of-equations representation of the frontier allows to easily reverse their separa-
tion from the trunk by a unification based “grafting” operation.

The predicate fuseFrontier implements this reversing process while the predicate
extractFrontier extracts from the frontier-equations the components of the frontier
without the corresponding variables marking their location in the trunk.

fuseFrontier(FrontierEqs):-maplist(call,FrontierEqs).

extractFrontier(FrontierEqs,Frontier):-

maplist(arg(2),FrontierEqs,Frontier).

Example 49
Extracting and grafting back the well-typed frontier to the typeless trunk.

?- wellTypedFrontier(s*s*(s*k*k)*(s*s*(s*k*k)),

Trunk,FrontierEqs),

extractFrontier(FrontierEqs,Frontier),

fuseFrontier(FrontierEqs).

Trunk = s*s* (s*k*k)* (s*s* (s*k*k)),

FrontierEqs = [s*s=s*s, s*k*k=s*k*k,

s*s=s*s, s*k*k=s*k*k],

Frontier = [s*s, s*k*k, s*s, s*k*k] .

Note that after grafting back the frontier, the trunk becomes equal to the term that we have
started with.

8.6.2 A comparison of the sizes of the well-typed frontier and the typeless trunk

An interesting question arises at this point: how do the sizes of the frontier and the trunk
compare?

Figure 5 compares the average sizes of the frontier and the trunk for terms up to size 8.
This indicates that, while the size of the frontier dominates for small terms, it decreases
progressively. This leaves the following open problem: does the average ratio of the fron-
tier and the trunk converge to a limit as the size of the terms increases? More empirical
information on this can be obtained by studying what happens for randomly generated
large SK-trees.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic53

Term size Avg. Trunk-size Avg. Frontier-size % Trunk % Frontier
1 0 1 0 100
2 0.13 1.88 6.25 93.75
3 0.26 2.74 8.75 91.25
4 0.47 3.53 11.77 88.23
5 0.71 4.29 14.11 85.89
6 0.97 5.03 16.24 83.76
7 1.27 5.73 18.11 81.89
8 1.58 6.42 19.76 80.24

Fig. 5. Comparison of sizes of the typeless trunk and the well-typed frontier of SK-terms,
by size.

8.6.3 Simplification as normalization of the well-typed frontier

Given that well-typed terms are strongly normalizing, we can simplify an untypable term
by normalizing the members of its frontier, for which we are sure that evalSK terminates.
Once evaluated, we can graft back the results to the typeless trunk, as implemented the
predicate simplifySK.

simplifySK(Term,Trunk):-

wellTypedFrontier(Term,Trunk,FrontierEqs),

extractFrontier(FrontierEqs,Fs),

maplist(evalSK,Fs,NormalizedFs),

maplist(arg(1),FrontierEqs,Vs),

Vs=NormalizedFs.

The following question arises at this point: are there terms that are not normalizable that
can be simplified by extracting and simplifying their well-typed frontier and then grafting
it back? Combinatorial search, using the genSK predicate finds them starting at size 8.

Example 50
Simplifying some untypable terms for which normalization is non-terminating.

?- Term= s*s*s* (s*s)*s* (k*s*k),

simplifySK(Term,Trunk).

Term = s*s*s* (s*s)*s* (k*s*k),

Trunk = s*s*s* (s*s)*s*s.

?- Term= k* (s*s*s* (s*s)*s* (k*s*k)),

simplifySK(Term,Trunk).

Term = k* (s*s*s* (s*s)*s* (k*s*k)),

Trunk = k* (s*s*s* (s*s)*s*s).

Note that, as expected, while simplification does not bring termination to the normalization
predicate evalSK/2, it shows the existence of non-terminating computations for which a
terminating simplification is possible.

8.6.4 Discussion

While the well-typed (and closed) frontier does not make sense for general lambda terms
where closed terms may have open subterms, it makes sense for other combinator or su-



54 Paul Tarau

percombinator languages (Peyton Jones 1987), some with practical uses in the compilation
of functional languages.

Among the open problems we leave for future research, is to find out if concepts like
the well-typed frontier of a richer combinator-language can be used for suggesting a fix to
a program in a typed functional programming language, or to produce more precise error
messages in case of type errors. For instance, it would be interesting to know if a minimal
well-typed alternative can be be inferred and suggested to the programmer on a type error.

If one replaces the unify with occurs check in predicate skTypeOf with the cyclic
term unification (that most modern Prologs use by default), one can observe that every
combinator expression passes the test! The predicate uselessTypeOf implements this
variation.

uselessTypeOf(k,(A>(_B>A))).

uselessTypeOf(s,(((A>(B>C))> ((A>B)>(A>C))))).

uselessTypeOf((A*B),Y):-

uselessTypeOf(A,(X>Y)),

uselessTypeOf(B,X).

After defining the predicates notReallyTypable and sameAsAny

notReallyTypable(X):-uselessTypeOf(X,_).

sameAsAny(L,M):-genSK(L,M),notReallyTypable(M).

one can notice the identical behavior of sameAsAny and genSK, meaning that failing the
occurs-check is the exclusive reason of failure to infer a type. This happens in the presence
of a unique basic type “x”. However, in the case of a more realistic type system with
multiple basic types like Boolean, Int, String etc., the failure of type inference could
also be a consequence of mismatched basic types. Knowing more about these two reasons
for failure might suggest weakened type systems where some limited form of circularity
is acceptable, provided that no basic type mismatches occur. While strong normalization
would be sacrificed if such circular types were accepted, one might note that this is already
the case in practical languages, where fixpoint operators or recursive data type definitions
are allowed.

8.7 Estimating the proportion of well-typed X-combinator trees

. An interesting question arises at this point: what proportion of X-combinator trees of
a given size are well-typed? While the analytic study of the asymptotic density has been
successfully performed on several families of lambda terms (Bodini et al. 2011; Grygiel
et al. 2013; Grygiel and Lescanne 2013), it is considered an open problem for well-typed
terms. We will limit ourselves here to empirically estimate it, as it is done in (Grygiel and
Lescanne 2013) for general lambda terms, where experiments indicate extreme sparsity for
very large terms.

We can use our generator genTree to enumerate X-combinator trees among which we
can then count the number of well-typed ones.

Example 51
Types inferred for terms with 2 internal nodes.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic55

Term size Well-typed Total Ratio
0 1 1 1
1 1 1 1
2 2 2 1
3 5 5 1
4 12 14 0.8571
5 38 42 0.9047
6 113 132 0.8560
7 357 429 0.8321
8 1148 1430 0.8027
9 3794 4862 0.7803

10 12706 16796 0.7564
11 43074 58786 0.7327
12 147697 208012 0.7100

Fig. 6. Proportion of well-typed X-combinator terms

?- genTree(2,X),xtype(X,T).

X = (x> (x>x)),

T = ((x> (x>x))> ((x>x)> (x>x))) ;

X = ((x>x)>x),

T = (x> (x>x))

Figure 6 shows the counts for well-typed X-combinator expressions among the total
binary trees of given size. Note that the total column is given by the Catalan numbers
(entry A000108 in (Sloane 2014)), as binary trees are a member of the Catalan family of
combinatorial objects (Stanley 1986).

Somewhat surprisingly, a large proportion of well-typed X-combinator terms is present
among the binary trees of a given size, indicating the possible existence of a lower bound
that might be easier to determine analytically than in the case of general lambda terms.

8.8 Querying the generator for specific types

Coming with Prolog’s unification and non-deterministic search, is the ability to make more
specific queries by providing a type pattern, that selects only terms of a given type.

Example 52
Terms of type x>x of size 4.

?- genTypedB(4,Term,(x>x)).

Term = a(l(l(v(0))), l(v(0))) ;

Term = l(a(l(v(1)), l(v(0)))) ;

Term = l(a(l(v(1)), l(v(1)))) .

?- genTypedBs(12,T,(x>x)>x).

false.

Note that the last query, taking about a minute, shows that no closed terms of type (x>x)>x
exist up to size 12.

We can make use of our generator’s efficient specialization to a given type to explore
empirical estimates for some interesting function types.



56 Paul Tarau

Contrary to the total absence of type (x>x)>x among terms of size up to 12, “binary
operations” of type x>(x>x) turn out to be quite frequent, giving, by increasing sizes, the
sequence [0, 2, 0, 14, 12, 201, 445, 4632, 17789, 158271, 891635].

Transformers of type x>x, by increasing sizes, give the sequence [1, 0, 3, 3, 31, 78, 596,
2500, 18474, 110265, 888676]. While type (x>x)>x turns our to be absent up to size 12,
the type (x>x)>(x>x) describing transformers of transformers turns out to be quite pop-
ular, as shown by the sequence [1,1, 4, 11, 55, 227, 1315, 7066, 46731, 309499, 2358951].
The same turns out to be tree also for (x>x)>((x>x)>(x>x)), giving [0, 2, 1, 16, 29,
272, 940, 7594, 39075, 312797, 2115374] and ((x>x)>(x>x)) > ((x>x)>(x>x)) giv-
ing [1, 1, 5, 13, 73, 300, 1846, 10130, 69336, 469217, 3640134]. One might speculate
that homotopy type theory (The Univalent Foundations Program 2013), that focuses on
such transformations and transformations of transformations etc. has a rich population of
lambda terms from which to chose interesting inhabitants of such types!

8.9 Iterated types

Example 53
As an interesting coincidence, one might note that the binary tree representation of the type
of the K combinator is nothing but the S combinator itself.

?- kT(K),xtype(K,T),sT(S).

K = ((x>x)>x),

T = S, S = (x> (x>x)).

Given that X-combinator expressions and their inferred simple types are both repre-
sented as binary trees of often comparable sizes, one might be curious about what happens
if we iterate this process.

By interpreting a type as its identically represented X-combinator expression, one can
ask the question: is the type expression itself well-typed? If so, is the set of distinct iterated
types starting from an X-combinator finite?

The predicate iterType applies the type inference operation at most K-times, until an
untypable term or a fixpoint is reached.

iterType(K,X, Ts, Steps):-

iterType(K,FinalK,X,[],Rs),

reverse(Rs,Ts),

Steps is K-FinalK.

iterType(K,FinalK,X,Xs,Ys):-K>0,K1 is K-1,

xtype(X,T),

\+(member(T,Xs)),

!,

iterType(K1,FinalK,T,[T|Xs],Ys).

iterType(FinalK,FinalK,_,Xs,Xs).

Example 54
Iterated types for K and S and I=SKK combinators.

?- kT(K),iterType(100,K,Ts,Steps).

K = ((x>x)>x),



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic57

Initial term size Average steps Average size
0 1 7
1 4 3
2 3 3.25
3 2.4 7.2799
4 2.5714 4.9476
5 2.8333 5.5087
6 2.5075 6.1571
7 2.4405 6.6171
8 2.3832 7.0235
9 2.3290 7.4627

10 2.2547 7.9913
11 2.1831 8.5392
12 2.1174 9.1143

Fig. 7. Average steps and term sizes of iterated types

Ts = [x> (x>x), (x> (x>x))> ((x>x)> (x>x)), (x>x)> (x>x)],

Steps = 3.

?- sT(S),iterType(100,S,Ts,Steps).

S = (x>(x>x)),

Ts = [(x> (x>x))>((x>x)> (x>x)),(x>x)>(x>x),x> (x>x)],

Steps = 3.

?- skkT(XX),iterType(100,XX,Ts,Steps).

XX = (((x> (x>x))> ((x>x)>x))> ((x>x)>x)),

Ts = [x>x, x> (x> (x>x)), x> (x>x),

(x> (x>x))> ((x>x)> (x>x)), (x>x)> (x>x)],

Steps = 5.

Figure 7 shows the average number of steps until a un-typable term is found or a fixpoint
is reached as well as the average size of the terms in the sequence of iterated types.

This matches the intuition that types are (smaller) approximations of programs and sug-
gests that the following holds.

Conjecture. The set of iterated types is finite for any X-combinator tree.

8.10 Self-typed terms

As X-combinator trees and their types share the same representation, it makes sense to
generate and count terms that are equal to their types. The predicate genSelfTypedT gen-
erates such “self-typed” terms.

genSelfTypedT(L,T):-genTree(L,T),xtype(T,T).

Example 55
Self-typed X-combinator trees of size 6.

?- genSelfTypedT(6,T).

T = (x> ((x>x)> ((x>x)> (x>x)))) ;



58 Paul Tarau

T = (x> (((x> (x>x))> (x>x))>x)) ;

T = ((x>x)> ((x> (x>x))> (x>x))) ;

T = ((x>x)> (((x>x)>x)> (x>x))).

The sequence [0, 0, 0, 1, 2, 4, 14, 34, 101, 315, 1017, 3325, 11042] counts the number of
self-typed terms by increasing sizes, up to size 13.

8.11 Two size-inflating injective functions from terms to terms

By composing transformations of X-combinator trees to their equivalent lambda expres-
sions two interesting (but injective only) mappings can be defined from X-combinator trees
to a subset of them (t2t) and from lambda terms to a subset of them (b2b).

b2b --> rank,t2b.

t2t --> t2b,rank.

Example 56
The injective mappings t2t and b2b can be used to generate significantly larger X-combinator
trees and lambda expressions.

?- between(0,3,N),t(N,T),t2t(T,NewT),tsize(T,S1),

tsize(NewT,S2),write(S1<S2),write(’ ’),fail;nl.

0<27 1<57 2<86 2<86

?- skkB(B),dbTermSize(B,S1),b2b(B,BB),dbTermSize(BB,S2),

write(S1<S2),nl,fail.

12<374

It is interesting at this point to see what happens to our building block – the X-combinator
– when going through some of these transformations.

Example 57
Transformations of the X-combinator via b2b, evalDeBruijn, boundTypeOf and n.

?- xB(X),b2b(X,XX),evalDeBruijn(XX,R),boundTypeOf(R,T),n(T,N).

X = l(a(a(a(...(l(v(1))))),

XX = a(l(a(a(a....l(l(v(1))))))))),

R = l(l(l(l(a(a(a(v(3), v(2)), v(0)), a(v(1), v(0))))))),

T = ((x> (x> (x>x)))> (x> ((x>x)> (x>x)))) .

N = 576

While b2b significantly inflates the de Bruijn term corresponding to the X-combinator,
normalization reduces it to a small, well-typed term. This suggests the use of our shared
representation for experiments with dynamic systems or genetic programming where ap-
plications of arithmetic, type inference and normalization operations are likely to create
interesting trajectories of evolution.

8.12 Evolution of a multi-operation dynamic system

Normalization, as the lambda calculus is is Turing-complete, is subject to non-termination.
However, simply-typed terms are strongly normalizing so it makes sense to play with com-
binations of arithmetic operations, type inference operations and normalization involving
X-term combinator trees as well as their lambda term equivalents.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic59

For instance, the predicate evalOrNextB ensures that evaluation only proceeds on lambda
terms for which we are sure it terminates with a new term and applies the successor predi-
cate “s” otherwise, borrowed via the rank and unrank operations.

evalOrNextB(B,EvB):-boundTypeOf(B,_),evalDeBruijn(B,EvB),EvB\==B,!.

evalOrNextB(B,NextB):-

rank(B,T),

s(T,NextT),

unrank(NextT,NextB).

We can observe the orbits of these dynamic systems (Katok and Hasselblatt 1995) starting
from a given lambda term in de Bruijn notation, for a given number of steps with the
predicate playWithB.

playWithB(Term,Steps,Orbit):-

playWithB(Term,Steps,Orbit,[]).

playWithB(Term,Steps,[NewTerm|Ts1],Ts2):-Steps>0,!,

Steps1 is Steps-1,

evalOrNextB(Term,NewTerm),

playWithB(NewTerm,Steps1,Ts1,Ts2).

playWithB(Term,_,[Term|Ts],Ts).

Note that ranking these terms to usual bitstring-represented integers would be intractable
given their super-exponential growth with depth. On the other hand, all the underlying
operations are linear time with ranking and unranking to natural numbers represented as
binary trees. These terms are rather large, but by computing the sizes of the terms one can
have a good guess on their evolution.

Figure 8 illustrates the evolution of this dynamic system starting from the X-combinator’s
lambda equivalent by plotting the tree sizes of the terms in its orbit. The plot indicates that
it is very likely that a repetitive pattern has developed.

Fig. 8. Term sizes in the orbit starting from the X-combinator

Figure 9 illustrates the evolution of this dynamic system starting from the term ω =

SII(SII) by plotting the tree sizes of the terms in its orbit. The plot indicates that it is very
unlikely that a repetitive pattern will develop.

Besides theoretical curiosity, one might use such operations for implementing genetic
programming algorithms.



60 Paul Tarau

Fig. 9. Term sizes in the orbit starting from the term ω

8.13 Memory savings through shared representations

Given that the ranking and unranking operations work in time proportional to the size
of our lambda terms, we will explore some of the memory management consequences
of a shareable representation of combinators, simple types, natural numbers and lambda
expressions.

We will look first at a well-known isomorphism that brings us a significantly more com-
pact memory representation.

8.13.1 A succinct representation of binary trees

Binary trees are in a well-known bijection with the language of of balanced parentheses,
both being a member of the Catalan family of combinatorial objects (Stanley 1986). The
reversible predicate t2p/2 transforms between binary trees and lists of balanced parenthe-
ses.

t2p(T,Ps):-t2p(T,0,1,Ps,[]).

t2p(X,L,R) --> [L],t2ps(X,L,R).

t2ps(x,_,R) --> [R].

t2ps((X>Xs),L,R) --> t2p(X,L,R),t2ps(Xs,L,R).

Example 58
The work of the reversible predicate t2p/2.

?- skkT(X),t2p(X,Ps),t2p(NewX,Ps).

X = NewX, NewX = (((x> (x>x))> ((x>x)>x))> ((x>x)>x)),

Ps = [0,0,0,0,1,0,1,1,0,0,1,1,1,0,0,1,1,1].

?- kB(B),rank(B,T),t2p(T,Ps).

B = l(l(v(1))),

T = (x> (x> ((x>x)>x))),

Ps = [0,0,1,0,1,0,0,1,1,1] .

Seen as a bitstring, the mapping to a list of balanced parentheses is a succinct representation
for our binary trees, if one wants to trade time complexity for space complexity. It is also a



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic61

self-delimiting prefix-free representation, uniquely decodable when read from left to right.
As one might notice, it is actually is a bifix code, i.e., it is also prefix-free when read from
right to left.

8.13.2 A practical shared memory representation

In a practical implementation, given the high frequency of small objects of any of our
kinds – numbers, lambda expressions, types and combinators, one might consider a hybrid
representation where small trees are represented within a machine word as balanced 0,1-
parentheses sequences and larger ones as cons-cells. 2-bit-tagged pointers could be used
to disambiguate interpretation as numbers, combinators types or lambda expressions but
their targets could be shared if structurally identical. Besides sharing static data or code ob-
jects, a shared representation is likely to also facilitate memory management by recycling
fragments of computations like β -reductions or arithmetic operations.

Graph-based representation of lambda terms has been used as early as (Lamping 1990)
to avoid redundant evaluation of redexes. In a similar way, one could fold our tree-based
representations into DAGs, providing uniform savings for combinators, types and tree-
based natural numbers.

9 Related work

The classic reference for lambda calculus is (Barendregt 1984). Various instances of typed
lambda calculi are overviewed in (Barendregt 1991).

Originally introduced in (de Bruijn 1972), the de Bruijn notation makes terms equiva-
lent up to α-conversion and facilitates their normalization (Kamareddine 2001). Their use
in this paper is motivated by their comparative simplicity rather than by efficiency con-
siderations, for which several abstract machines, used in the implementation of functional
languages, have been designed (Peyton Jones 1987). The compressed de Bruijn represen-
tation of lambda terms proposed in this paper (and (Tarau 2015c)) is novel, to our best
knowledge.

Lambda terms of bounded unary height are introduced in (Bodini et al. 2011). John
Tromp’s binary lambda calculus is only described through online code and the Wikipedia
entry at (Wikipedia 2015).

Generators for closed and well-typed lambda terms, as well as their normal forms, ex-
pressed as functional programming algorithms, are given in (Grygiel and Lescanne 2013),
derived from combinatorial recurrences. However, they are significantly more complex
than the ones described here in Prolog. On the other hand, we have not found in the liter-
ature generators for linear, linear affine terms and lambda terms of bounded unary height.
Normalization of lambda terms and its confluence properties are described in (Barendregt
1984) and (Kamareddine 2001) with functional programming algorithms given in (Sestoft
2002) and HOAS-based evaluation first described in (Pfenning and Elliot 1988).

In a logic programming context, unification of simply typed lambda terms has been
used in as the foundation of the programming language λProlog (Miller 1991; Nadathur
and Mitchell 1999) and applied to higher order logic programming (Miller and Nadathur
2012).



62 Paul Tarau

Various instances of typed lambda calculi are overviewed in (Barendregt 1991). Combi-
nators originate in Moses Schönfinkel’s 1924 paper, and independently, in Haskell Curry’s
work in 1927. A modern introduction to combinators and their relation to lambda calculus
is (Hindley and Seldin 2008) and a first application of an extended set of combinators in
the implementation of functional programming languages is (Turner 1979).

Combinatorics of lambda terms, including enumeration, random generation and asymp-
totic behavior has seen an increased interest recently (see for instance (Bodini et al. 2011;
Grygiel and Lescanne 2013; David et al. 2010; Grygiel et al. 2013)), partly motivated by
applications to software testing, given the widespread use of lambda terms as an inter-
mediate language in compilers for functional languages and proof assistants. Distribution
and density properties of random lambda terms are described in (David et al. 2009). In
(Palka et al. 2011; Fetscher et al. 2015), types are used to generate random terms for soft-
ware testing. The same naturally “goal-oriented” effect is obtained in the generator/type
inferrer for de Bruijn terms in subsection 4.13, by taking advantage of Prolog’s ability to
backtrack over possible terms, while filtering against unification with a specific pattern. In
(Tarau 2015b) generation algorithms for several sub-families of lambda terms are given
as well as a compressed deBruijn representation is introduced. In (Tarau 2015a) Rosser’s
X-combinator trees (Fokker 1992) are used as a uniform representation via bijections top
lambda terms in de Bruijn notation, types and a tree-based number representation.

Of particular interest are the results of (Grygiel and Lescanne 2013) where recurrence
relations and asymptotic behavior are studied for several families of lambda terms. Em-
pirical evaluation of the density of closed simply-typed general lambda terms described
in (Grygiel and Lescanne 2013) indicates extreme sparsity for large sizes. However, the
problem of their exact asymptotic behavior is still open. This has motivated our interest
in the empirical evaluation of the density of simply-typed X-combinator trees, where we
observed significantly higher initial densities and where there’s a chance that the also open
problem of their asymptotic behavior might be easier to tackle.

One-point combinator bases, together with a derivation of the X-combinator are de-
scribed in (Fokker 1992). In (Goldberg 2004) the existence of a countable number of 1-
point bases is proven. While esoteric programming languages exist based on similar 1-point
bases (Stay 2005), we have not seen any such development centered around Rosser’s X-
combinator, or type inference and normalization algorithms designed specifically for it, as
described in this paper.

Ranking and unranking algorithms for several classes of lambda terms are also described
in (Grygiel and Lescanne 2013),together with a type inference algorithm for de Bruijn
terms. Ranking and unranking of lambda terms can be seen as a building block for bijective
serialization of practical data types (Vytiniotis and Kennedy 2010) as well as for Gödel-
numbering schemes (Hartmanis and Baker 1974) of theoretical relevance. In fact, ranking
functions for sequences can be traced back to Gödel numberings (Gödel 1931) associated
to formulas.

While Gödel-numbering schemes for lambda terms have been studied in several theoret-
ical papers on computability, we are not aware of any size proportionate bijective encoding
as the one described in this paper.

Injective Gödel-numbering schemes for lambda terms in de Bruijn notation have been
described in the context of binary lambda calculus (Tromp 2014) and as a mechanism to



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic63

encode datatypes in (Vytiniotis and Kennedy 2010; Kobayashi et al. 2012). Both these
use prefix-free codes, ensuring unique decoding. A bijective Gödel-numbering scheme is
associated to the esoteric programming language Jot (Stay 2005), where every bitstring is
considered a valid executable expression. This is similar to ours in the sense that every
binary tree representing an X-combinator expression is executable. However, the use of a
binary tree based model of Peano’s axioms, playing the role of the set of natural numbers,
and the corresponding ranking and unranking algorithms as described in this paper are
novel.

The binary-tree based numbering system defined here is isomorphic to the ones in (Tarau
2014d; Tarau 2014c), where a similar treatment of arithmetic operations is specialized to
the language of balanced parentheses and multiway trees. In fact, such an encoding can be
used as a prefix-free succinct representation for our binary trees, if one wants to trade space
complexity for time complexity. Any enumeration of combinatorial objects (e.g., (Stanley
1986; Knuth 2006)) can be seen as providing unary Peano arithmetic operations implicitly.
By contrast, the tree-based arithmetic operations used in this paper have efficiency compa-
rable to the usual binary numbers, as shown in (Tarau 2014b). Note also that while (Tarau
2014d; Tarau 2014c) focus exclusively on arithmetic operations with members of the Cata-
lan family of combinatorial objects, of which our binary trees are an instance, their use in
this paper, as a target for ranking/unranking of lambda expressions, relies exclusively on
the successor and predecessor operations, adapted here to work on binary trees.

Univalent foundations of type theory (The Univalent Foundations Program 2013) have
recently emphasized isomorphism paths between objects as a means to unify equality and
equivalence between heterogenous data types sharing essential properties and behaviors
under transformations. While informal, our executable equivalences between combinators,
lambda terms, types and numbers might be useful as practical illustrations of these con-
cepts.

Some of the algorithms used in the paper, like type inference and normalization of com-
binators and lambda terms, are common knowledge (Kamareddine 2001; Sestoft 2002;
Barendregt 1984), although we are not aware, for instance, of Prolog implementations of
type inference working directly on de Bruijn terms or X-combinator trees. In (Tarau 2015b)
a type inference algorithm for standard terms using Prolog’s logic variables is given. To
make the paper self-contained, we have closely followed the normalization algorithm of
(Tarau 2015b) using a de Bruijn representation of lambda terms. We refer to (Tarau 2015b)
for a compressed de Bruijn representation and several Prolog algorithms that complement
our playground with generators for closed, linear, linear affine, binary lambda terms as well
as lambda terms of bounded binary height.

10 Conclusions

We have described compact (and arguably elegant) combinatorial generation algorithms
for several important families of lambda terms. Besides the newly introduced a compressed
form of de Bruijn terms we have used ordinary de Bruijn terms as well as a canonical rep-
resentation of lambda terms relying on Prolog’s logic variables. In each case, we have
selected the representation that was more appropriate for tasks like combinatorial genera-
tion, type inference or normalization. We have switched representation as needed, though



64 Paul Tarau

bijective transformers working in time proportional to the size of the terms. Our combina-
torial generation algorithms match the corresponding sequence of counts by size, given in
(Sloane 2014) as an empirical validation of their correctness.

We have described Prolog-based term and type generation and as well as type-inference
algorithms for de Bruijn terms. Among the possible applications of our techniques we
mention compilation and test generation for lambda-calculus based languages and proof
assistants. Our merged generation and type inference in an algorithm showed a mechanism
to build “customized closed terms of a given type”. This “relational view” of terms and
their types has enabled the discovery of interesting patterns about the type expressions
occurring in well-typed programs. We have uncovered the most “popular” types that govern
function applications among a about a million small-sized lambda terms.

We have also observed some interesting phenomena about frequently occurring types,
that seem to be similar to those in human-written programs and we have computed growth
sequences for the number of inhabitants of some “popular” types, for which we have not
found any study in the literature.

A significant contribution of this paper is the size-proportionate ranking/unranking al-
gorithm for lambda terms and the compressed de Bruijn representation that facilitated it.
The ability to encode lambda terms bijectively can be used as a “serialization” mechanism
in functional programming languages and proof assistants using them as an intermediate
language.

We have selected the minimalist pure combinator language built from applications of
combinators S and K to explore aspects of their generation and type inference algorithms.
While a draconian simplification of real-life programming languages, this well-known
and well-researched subset of lambda calculus has revealed some interesting new facts
about the density and distribution of their types. The new concepts of well-typed fron-
tier and typeless trunk of an untypable term can be generalized to realistic combinator
and supercombinator-based intermediate languages used by compilers for functional lan-
guages and proof assistants. As they give precise hints about the points where type infer-
ence failed, they are likely to be useful for debugging programs and give more meaningful
compile-time error messages. This also results in an ability to extend (sure) termination be-
yond simply-typed terms, by evaluating and then grafting back their well-typed frontier. By
sharing the representation of the Turing-complete language of X-combinator expressions,
natural numbers, lambda terms and their types, interesting synergies became available.

The paper has introduced a number of algorithms that, at our best knowledge, are novel,
at least in terms of their logic programming implementation, among which we mention
the type inference for de Bruijn terms using unification with occurs-check in subsection
6.2.1 and the integrated generation and type inference algorithm for closed simply typed
de Bruijn terms in section 4.13. Besides the ability to efficiently query for inhabitants of
specific types, our algorithms also support a from of “query-by-example” mechanism, for
finding (possibly smaller) terms inhabiting the same type as the query term. While the main
focus of the paper is the creation of a logic programming based declarative playground
for experiments with various classes of lambda terms, under the assumption of a shared
representation, the paper introduces several new concepts among which we mention:

• a compressed representation of de Bruijn terms in subsection 2.5



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic65

• X-combinator trees playing the role of both natural numbers and types in subsections
6.3.1, 6.5.1 and 7.3.1

• a bijection between natural numbers and binary trees (predicates t/2 and n/2 in
subsection 7.3.1) that is works consistently with their isomorphic arithmetic opera-
tions

• a concept of “iterated types” in subsection 8.9
• two size-inflating injective functions from terms to terms in subsection 8.11
• a multi-operation dynamic system combining normalization and arithmetic opera-

tions in subsection 8.12

The paper also describes algorithms that, at our best knowledge, are novel, at least in terms
of their logic programming implementation:

• integrated generation and type inference algorithm for closed simply-typed de Bruijn
terms in subsection 4.13

• successor and predecessor and arithmetic operations on binary trees in subsection
7.3.2

• ranking and unranking de Bruijn terms to/from binary-tree represented natural num-
bers in subsection 7.4.1

• direct type inference for X-combinator trees in subsection 6.5.2

While a non-strict functional language like Haskell could have been used for deriving
similar algorithms, the synergy between Prolog’s non-determinism, DCG transformation
and the availability of unification with occurs-check made the code embedded in the paper
significantly simpler and arguably clearer.

Future work is planned along the following lines. Enumeration or random generation
of binary trees can be extended to general lambda expressions and various data types ex-
pressed in terms of them. Functional languages like Scheme and Lisp, based on cons oper-
ations might be able to improve memory footprint of symbolic and numerical data through
shared representations of arithmetic operations and list or tree data structures. Small steps
in the normalization of combinator expressions or lambda trees can be mapped to possibly
interesting number sequences. Open problems related to the asymptotic density of typable
combinators and lambda terms might benefit from empirical estimates computable within
our framework for very large terms. Future work will also focus on studying how our re-
sults extend to other families of combinators and supercombinators that occur in practical
languages as well as on random SK-tree generation e.g.., by extending Rémy’s algorithm
(Rémy 1985) from binary trees to SK-combinator trees. This would allow fast generation
of very large SK-combinator expressions that could give better empirical estimates on the
asymptotic behavior of the concepts introduced in this paper and their properties. Also,
as a step toward more practical uses, lifting the concept of well-typed frontier to general
lambda terms (which are not hereditarily closed) seems possible by defining the frontier as
being a sequence of maximal well-typed closed lambda terms.

We hope that the techniques described in this paper, taking advantage of this unique
combination of strengths, recommend logic programming as a convenient meta-language
for the manipulation of various families of lambda terms and the study of their combinato-
rial and computational properties.



66 Paul Tarau

Acknowledgement

This research has been supported by NSF grant 1423324.

References

BARENDREGT, H. P. 1984. The Lambda Calculus Its Syntax and Semantics, Revised ed. Vol. 103.
North Holland.

BARENDREGT, H. P. 1991. Lambda calculi with types. In Handbook of Logic in Computer Science.
Vol. 2. Oxford University Press.

BODINI, O., GARDY, D., AND GITTENBERGER, B. 2011. Lambda-terms of bounded unary height.
In ANALCO. SIAM, 23–32.

CEGIELSKI, P. AND RICHARD, D. 1999. On arithmetical first-order theories allowing encoding and
decoding of lists. Theoretical Computer Science 222, 1-2, 55–75.

DAVID, R., GRYGIEL, K., KOZIK, J., RAFFALLI, C., THEYSSIER, G., AND ZAIONC, M. 2010.
Asymptotically almost all λ -terms are strongly normalizing. Preprint: arXiv: math. LO/0903.5505
v3.

DAVID, R., RAFFALLI, C., THEYSSIER, G., GRYGIEL, K., KOZIK, J., AND ZAIONC, M. 2009.
Some properties of random lambda terms. Logical Methods in Computer Science 9, 1.

DE BRUIJN, N. G. 1972. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser Theorem. Indagationes Mathemati-
cae 34, 381–392.

FETSCHER, B., CLAESSEN, K., PALKA, M. H., HUGHES, J., AND FINDLER, R. B. 2015. Mak-
ing random judgments: Automatically generating well-typed terms from the definition of a type-
system. In Programming Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 383–405.

FOKKER, J. 1992. The systematic construction of a one-combinator basis for lambda-terms. Formal
Aspects of Computing 4, 776–780.

GÖDEL, K. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I. Monatshefte für Mathematik und Physik 38, 173–198.

GOLDBERG, M. 2004. A construction of one-point bases in extended lambda calculi. Inf. Process.
Lett. 89, 6, 281–286.

GRYGIEL, K., IDZIAK, P. M., AND ZAIONC, M. 2013. How big is BCI fragment of BCK logic. J.
Log. Comput. 23, 3, 673–691.

GRYGIEL, K. AND LESCANNE, P. 2013. Counting and generating lambda terms. J. Funct. Pro-
gram. 23, 5, 594–628.

HARTMANIS, J. AND BAKER, T. P. 1974. On Simple Goedel Numberings and Translations. In
ICALP (2002-02-01), J. Loeckx, Ed. Lecture Notes in Computer Science, vol. 14. Springer, Berlin
Heidelberg, 301–316.

HINDLEY, J. R. AND SELDIN, J. P. 2008. Lambda-calculus and combinators: an introduction.
Vol. 13. Cambridge University Press Cambridge.

KAMAREDDINE, F. 2001. Reviewing the Classical and the de Bruijn Notation for calculus and Pure
Type Systems. Journal of Logic and Computation 11, 3, 363–394.

KATOK, A. AND HASSELBLATT, B. 1995. Introduction to the modern theory of dynamical systems.
Ency. of Math. and its App., vol. 54. Cambridge Univ. Press.

KNUTH, D. E. 2005. The Art of Computer Programming, Volume 4, Fascicle 3: Generating All
Combinations and Partitions. Addison-Wesley Professional.



A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic67

KNUTH, D. E. 2006. The Art of Computer Programming, Volume 4, Fascicle 4: Generating All
Trees–History of Combinatorial Generation (Art of Computer Programming). Addison-Wesley
Professional.

KOBAYASHI, N., MATSUDA, K., AND SHINOHARA, A. 2012. Functional Programs as Compressed
Data. ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation. ACM
Press.

KREHER, D. L. AND STINSON, D. 1999. Combinatorial Algorithms: Generation, Enumeration,
and Search. The CRC Press Series on Discrete Mathematics and its Applications. CRC PressINC.

LAMPING, J. 1990. An Algorithm for Optimal Lambda Calculus Reduction. In Conference Record
of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San Fran-
cisco, California, USA, January 1990. 16–30.

LEHMER, D. H. 1964. The machine tools of combinatorics. In Applied combinatorial mathematics.
Wiley, New York, 5–30.

MCBRIDE, C. 2010. I am not a number, I am a classy hack. Blog entry:
http://mazzo.li/epilogue/index.html%3Fp=773.html.

MILLER, D. 1991. Unification of simply typed lambda-terms as logic programming. In Proc. Int.
Conference on Logic Programming (Paris). MIT Press, 255–269.

MILLER, D. AND NADATHUR, G. 2012. Programming with Higher-Order Logic. Cambridge Uni-
versity Press, New York, NY, USA.

NADATHUR, G. AND MITCHELL, D. 1999. System Description: Teyjus A Compiler and Abstract
Machine Based Implementation of λProlog. In Automated Deduction CADE-16. Lecture Notes
in Computer Science, vol. 1632. Springer Berlin Heidelberg, 287–291.

PALKA, M. H., CLAESSEN, K., RUSSO, A., AND HUGHES, J. 2011. Testing an optimising com-
piler by generating random lambda terms. In Proceedings of the 6th International Workshop on
Automation of Software Test. AST’11. ACM, New York, NY, USA, 91–97.

PEYTON JONES, S. L. 1987. The Implementation of Functional Programming Languages (Prentice-
Hall International Series in Computer Science). Prentice-Hall, Inc., NJ, USA.

PFENNING, F. AND ELLIOT, C. 1988. Higher-order abstract syntax. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation. PLDI ’88.
ACM, New York, NY, USA, 199–208.

RÉMY, J.-L. 1985. Un procédé itératif de dénombrement d’arbres binaires et son application à leur
génération aléatoire. RAIRO - Theoretical Informatics and Applications - Informatique Théorique
et Applications 19, 2, 179–195.

SESTOFT, P. 2002. Demonstrating lambda calculus reduction. In The Essence of Computation, T. A.
Mogensen, D. A. Schmidt, and I. H. Sudborough, Eds. Springer-Verlag New York, Inc., New York,
NY, USA, 420–435.

SLOANE, N. J. A. 2014. The On-Line Encyclopedia of Integer Sequences. Published electronically
at https://oeis.org/.

STANLEY, R. P. 1986. Enumerative Combinatorics. Wadsworth Publ. Co., Belmont, CA, USA.
STAY, M. 2005. Very simple chaitin machines for concrete AIT. CoRR abs/cs/0508056.
TARAU, P. 2009. An Embedded Declarative Data Transformation Language. In Proceedings of 11th

International ACM SIGPLAN Symposium PPDP 2009. ACM, Coimbra, Portugal, 171–182.
TARAU, P. 2013. Compact Serialization of Prolog Terms (with Catalan Skeletons, Cantor Tupling

and Gödel Numberings) . Theory and Practice of Logic Programming 13, 4-5, 847–861.
TARAU, P. 2014a. Bijective Collection Encodings and Boolean Operations with Hereditarily Binary

Natural Numbers. In PPDP ’14: Proceedings of the 16th international ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming. ACM, New York, NY, USA.

TARAU, P. 2014b. A Generic Numbering System based on Catalan Families of Combinatorial Ob-
jects. CoRR abs/1406.1796.



68 Paul Tarau

TARAU, P. 2014c. Arithmetic and boolean operations on recursively run-length compressed natural
numbers. Scientific Annals of Computer Science 24, 2, 287–323.

TARAU, P. 2014d. Computing with Catalan Families. In Proceedings of Language and Automata
Theory and Applications, 8th International Conference, LATA 2014, A.-H. Dediu, C. Martin-Vide,
J.-L. Sierra, and B. Truthe, Eds. Springer, LNCS, Madrid, Spain,, 564–576.

TARAU, P. 2015a. On a Uniform Representation of Combinators, Arithmetic, Lambda Terms and
Types. In PPDP’15: Proceedings of the 17th international ACM SIGPLAN Symposium on Prin-
ciples and Practice of Declarative Programming, E. Albert, Ed. ACM, New York, NY, USA,
244–255.

TARAU, P. 2015b. On Logic Programming Representations of Lambda Terms: de Bruijn Indices,
Compression, Type Inference, Combinatorial Generation, Normalization. In Proceedings of the
Seventeenth International Symposium on Practical Aspects of Declarative Languages PADL’15,
E. Pontelli and T. C. Son, Eds. Springer, LNCS 8131, Portland, Oregon, USA, 115–131.

TARAU, P. 2015c. Ranking/Unranking of Lambda Terms with Compressed de Bruijn Indices. In
Proceedings of the 8th Conference on Intelligent Computer Mathematics, M. Kerber, J. Carette,
C. Kaliszyk, F. Rabe, and V. Sorge, Eds. Springer, LNAI 9150, Washington, D.C., USA, 118–133.

THE UNIVALENT FOUNDATIONS PROGRAM. 2013. Homotopy Type Theory. Institute of Advanced
Studies, Princeton. http://homotopytypetheory.org/2013/06/20/the-hott-book/.

TROMP, J. 2014. Binary lambda calculus and combinatory logic.
TURNER, D. A. 1979. A new implementation technique for applicative languages. Software: Prac-

tice and Experience 9, 1, 31–49.
VYTINIOTIS, D. AND KENNEDY, A. 2010. Functional Pearl: Every Bit Counts. ICFP 2010 : The

15th ACM SIGPLAN International Conference on Functional Programming. ACM Press.
WIKIPEDIA. 2015. Binary lambda calculus — wikipedia, the free encyclopedia. [Online; accessed

20-February-2015].

Appendix

Helper predicates for ranking and unranking balanced parentheses expressions

The predicate binDif computes the difference of two binomials.

binDif(N,X,Y,R):- N1 is 2*N-X,R1 is N - (X + Y) // 2, R2 is R1-1,

binomial(N1,R1,B1),binomial(N1,R2,B2),R is B1-B2.

The predicate localRank computes, by binary search the rank of sequences of a given
length.

localRank(N,As,NewLo):- X is 1, Y is 0, Lo is 0,

binDif(N,0,0,Hi0),Hi is Hi0-1,

localRankLoop(As,N,X,Y,Lo,Hi,NewLo,_NewHi).

After finding the appropriate range containing the rank with binDif, we delegate the work
to the predicate localRankLoop.

localRankLoop(As,N,X,Y,Lo,Hi,FinalLo,FinalHi):-N2 is 2*N,X< N2,!,

PY is Y-1, SY is Y+1, nth0(X,As,A),

(0=:=A-> binDif(N,X,PY,Hi1),

NewHi is Hi-Hi1, NewLo is Lo, NewY is SY

; binDif(N,X,SY,Lo1),

NewLo is Lo+Lo1, NewHi is Hi, NewY is PY

), NewX is X+1,

localRankLoop(As,N,NewX,NewY,NewLo,NewHi,FinalLo,FinalHi).

localRankLoop(_As,_N,_X,_Y,Lo,Hi,Lo,Hi).

http://homotopytypetheory.org/2013/06/20/the-hott-book/


A Logic Programming Playground for Lambda Terms Types and Tree-based Arithmetic69

rankLoop(I,S,FinalS):-I>=0,!,cat(I,C),NewS is S+C, PI is I-1,

rankLoop(PI,NewS,FinalS).

rankLoop(_,S,S).

Unranking works in a similar way. The predicate localUnrank builds a sequence of bal-
anced parentheses by doing binary search to locate the sequence in the enumeration of
sequences of a given length.

localUnrank(N,R,As):-Y is 0,Lo is 0,binDif(N,0,0,Hi0),Hi is Hi0-1, X is 1,

localUnrankLoop(X,Y,N,R,Lo,Hi,As).

localUnrankLoop(X,Y,N,R,Lo,Hi,As):-N2 is 2*N,X=<N2,!,

PY is Y-1, SY is Y+1,

binDif(N,X,SY,K), LK is Lo+K,

( R<LK -> NewHi is LK-1, NewLo is Lo, NewY is SY, Digit=0

; NewLo is LK, NewHi is Hi, NewY is PY, Digit=1

),nth0(X,As,Digit),NewX is X+1,

localUnrankLoop(NewX,NewY,N,R,NewLo,NewHi,As).

localUnrankLoop(_X,_Y,_N,_R,_Lo,_Hi,_As).

unrankLoop(R,S,I,FinalS,FinalI):-cat(I,C),NewS is S+C, NewS=<R,

!,NewI is I+1,

unrankLoop(R,NewS,NewI,FinalS,FinalI).

unrankLoop(_,S,I,S,I).

The bijection between finite lists and sets

The bijection list2set together with its inverse set2list are defined as follows:

list2set(Ns,Xs) :- list2set(Ns,-1,Xs).

list2set([],_,[]).

list2set([N|Ns],Y,[X|Xs]) :-

X is (N+Y)+1,

list2set(Ns,X,Xs).

set2list(Xs,Ns) :- set2list(Xs,-1,Ns).

set2list([],_,[]).

set2list([X|Xs],Y,[N|Ns]) :-

N is (X-Y)-1,

set2list(Xs,X,Ns).

The following examples illustrate this bijection:

?- list2set([2,0,1,4],Set),set2list(Set,List).

Set = [2, 3, 5, 10],

List = [2, 0, 1, 4].

As a side note, this bijection is mentioned in (Knuth 2005) with indications that it might
even go back to the early days of the theory of recursive functions.



70 Paul Tarau

Binomial Coefficients, efficiently

Binomial coefficients are given by the formula
(n

k

)
= n!

k!(n−k)! =
n(n−1)...(n−(k−1))

k! . By per-
forming divisions as early as possible to avoid generating excessively large intermediate
results, one can derive the binomialLoop tail-recursive predicate:

binomialLoop(_,K,I,P,R) :- I>=K, !, R=P.

binomialLoop(N,K,I,P,R) :- I1 is I+1, P1 is ((N-I)*P) // I1,

binomialLoop(N,K,I1,P1,R).

The predicate binomial(N,K,R) computes
(N

K

)
and unifies the result with R.

binomial(_N,K,R):- K<0,!,R=0.

binomial(N,K,R) :- K>N,!, R=0.

binomial(N,K,R) :- K1 is N-K, K>K1, !, binomialLoop(N,K1,0,1,R).

binomial(N,K,R) :- binomialLoop(N,K,0,1,R).


	1 Introduction
	2 Morphing between representations of lambda terms
	2.1 De Bruijn Indices
	2.2 Open and closed terms
	2.3 From de Bruijn to lambda terms with canonical names
	2.4 From lambda terms with canonical names to de Bruijn terms
	2.5 A compressed de Bruijn representation of lambda terms
	2.6 From de Bruijn to compressed

	3 Inferring simple types for lambda terms
	3.1 Type Inference on standard terms with logic variables
	3.2 Type inference for lambda terms in de Bruijn notation

	4 Generating families of lambda terms
	4.1 Generating binary trees
	4.2 Generating Motzkin trees
	4.3 Generating closed lambda terms in standard notation
	4.4 Deriving a generator for lambda terms in de Bruijn form
	4.5 Deriving generators for closed terms in compressed de Bruijn form
	4.6 Generators for closed terms in standard notation
	4.7 Generating normal forms
	4.8 Generation of linear lambda terms
	4.9 Generation of affine linear lambda terms
	4.10 Generating terms in binary lambda calculus encoding
	4.11 Generating typable terms
	4.12 Combining term generation and type inference
	4.13 Generating closed well-typed terms of a given size

	5 Normalization of lambda terms
	6 Combinators
	6.1 SK-Combinator Trees
	6.2 Inferring simple types for SK-combinator trees
	6.3 Rosser's X-combinator
	6.4 Comparing the two evaluators
	6.5 Inferring simple types for X-combinator trees

	7 Size-proportionate bijective encodings of lambda terms and combinators
	7.1 An encoding based on Cantor's Nk to N bijection
	7.2 Ranking/unranking of compressed de Bruijn terms
	7.3 X-combinator trees as natural numbers
	7.4 A size-proportionate Gödel-numbering bijection for lambda terms

	8 Playing with the playground
	8.1 Querying a generator for specific types
	8.2 Same-type siblings
	8.3 Discovering frequently occurring type patterns
	8.4 Generating closed typable lambda terms by types
	8.5 Estimating the proportion of well-typed SK-combinator trees
	8.6 The well-typed frontier of an untypable SK-expression
	8.7 Estimating the proportion of well-typed X-combinator trees
	8.8 Querying the generator for specific types
	8.9 Iterated types
	8.10 Self-typed terms
	8.11 Two size-inflating injective functions from terms to terms
	8.12 Evolution of a multi-operation dynamic system
	8.13 Memory savings through shared representations

	9 Related work
	10 Conclusions
	References

