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Abstract. We study a two-parameter family an(p, t) of deformations of the Fuss
numbers. We show a sufficient condition for positive definiteness of an(p, t) and prove
that some of the corresponding probability measures are infinitely divisible with respect
to the additive free convolution.

1. Introduction

The aim of the paper is to study a two-parameter family of sequences an(p, t), p, t ∈ R,
defined by (17), which can be regarded as deformation of the Fuss numbers. Assuming
that p ≥ 0 we prove that the sequence an(p, t) is positive definite if and only if p ≥ 1 and
g(p) ≤ t ≤ 2p/(p+1), where g(p) is defined by (25). We conjecture that the assumption
that p ≥ 0 is redundant.

The case t = 2p/(p + 1) is particularly interesting by connections with the work [6]
of M. Bousquet-Mélou and G. Schaeffer. They introduced the notion of constellation
as a tool for studying factorization problems in the symmetric groups. For p ≥ 2 a
p-constellation is a 2-cell decomposition of the oriented sphere into vertices, edges and
faces, with faces colored black and white in such a way that:

• all faces adjacent to a given white face are black and vice versa,
• the degree of any black face is p,
• the degree of any white face is a multiple of p.

A constellation is called rooted if one of the edges is distinguished.
The number of rooted p-constellations formed of n polygons, counted up to isomor-

phism, is given by

(1) Cp(n) :=

(
np

n

)
(p+ 1)pn−1

(np− n+ 1)(np− n+ 2)
,

p ≥ 2, n ≥ 1, see Corollary 2.4 in [6]. Some of these sequences appear in the On-line
Encyclopedia of Integer Sequences (OEIS) [26], namely: C2 = A000257, C3 = A069726,
C4 = A090374.

We will prove that the probability distribution η(p, t) corresponding to positive defi-
nite sequence an(p, t) is absolutely continuous, except for η(1, 1) = δ1, and the support
of η(p, t) is [0, pp(p−1)1−p]. The density function will be denoted fp,t(x). For p = 2 and
p = 3 we compute the R-transform of η(p, t). We prove that η(2, p) (resp. η(3, t)) is
infinitely divisible with respect to the additive free convolution if and only if 1 ≤ t ≤ 4/3
(resp. 1/2 ≤ t ≤ 3/2).

Finally, let us record some other sequences from OEIS which are related to this
work: A005807: 2an(2, 1/2) (sums of adjacent Catalan numbers), A007226: 2an(3, 1/2)
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(studied in [15]), A007054: 3an(2, 4/3) (super ballot numbers), A038629: 3an(2, 2/3),
A000139: 2an(3, 3/2), A197271: 5an(4, 8/5), A197272: 3an(5, 5/3). In Section 4 we also
encounter sequences A022558 and A220910.

2. Fuss numbers

The Fuss-Catalan numbers
(
np+1
n

)
1

np+1
have several combinatorial applications, see

[9, 7, 2, 27, 6, 24]. They count for example:

(1) the number of ways of subdividing a convex polygon, with n(p− 1) + 2 vertices,
into n disjoint p+ 1-gons by means of nonintersecting diagonals,

(2) the number of sequences (a1, a2, . . . , anp), where ai ∈ {1, 1− p}, with all partial
sums a1 + . . .+ ak nonnegative and with a1 + . . .+ anp = 0,

(3) the number of noncrossing partitions π of {1, 2, . . . , n(p − 1)}, such that p − 1
divides the cardinality of every block of π,

(4) the number of p-cacti formed of n polygons, see [6].

The generating function:

(2) Bp(z) :=
∞∑
n=0

(
np+ 1

n

)
zn

np+ 1

satisfies

(3) Bp(z) = 1 + zBp(z)p.

Recall also the Lambert’s formula for the Taylor expansion of the powers of Bp(z):

(4) Bp(z)r =
∞∑
n=0

(
np+ r

n

)
rzn

np+ r
.

These formulas remain true for p, r ∈ R and the coefficients
(
np+r
n

)
r

np+r
(understood to

be 1 for n = 0 and r
n!

∏n−1
i=1 (np+r− i) for n ≥ 1) are called two-parameter Fuss numbers

or Raney numbers, see [9, 13, 22, 12, 8].
In some cases the function Bp can be written explicitly, for example

B2(z) =
2

1 +
√

1− 4z
=

1−
√

1− 4z

2z
,

B3(z) =
3

3− 4 sin2 α
,

B3/2(z) =
3(√

3 cos β − sin β
)2 ,

where α = 1
3

arcsin
(√

27z/4
)

, β = 1
3

arcsin
(
3z
√

3/2
)
, see [16].

Fuss numbers also have applications in free probability and in the theory of random
matrices, as moments of the multiplicative free powers of the Marchenko-Pastur distri-
bution [1, 3, 13, 17, 18]. This implies that for p ≥ 1 the sequence

(
np+1
n

)
1

np+1
is positive

definite. More generally, the sequence
(
np+r
n

)
r

np+r
is positive definite if and only if either

p ≥ 0, 0 ≤ r ≤ p, or p ≤ 0, p − 1 ≤ r ≤ 0 or r = 0, see [13, 16, 12, 8]. The case
r = 0 is trivial, as it gives the sequence 1, 0, 0, 0, . . ., moments of δ0. The distributions
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corresponding to the second case, p ≤ 0, p − 1 ≤ r ≤ 0, are just reflections of those
corresponding to p ≥ 0, 0 ≤ r ≤ p. It is a consequence of the identity

(5)

(
np+ r

n

)
r(−1)n

np+ r
=

(
n(1− p)− r

n

)
−r

n(1− p)− r
.

For p > 1, r > 0 we have the following integral representation:(
np+ r

n

)
r

np+ r
=

∫ c(p)

0

xnWp,r(x) dx,

where where c(p) := pp(p− 1)1−p, and Wp,r can be described as:

(6) Wp,r(x) =
(sin(p− 1)φ)p−r−1 sinφ sin rφ

π (sin pφ)p−r
,

where

(7) x = ρ(φ) =
(sin pφ)p

sinφ (sin(p− 1)φ)p−1
, 0 < φ < π/p.

This function is nonnegative if and only if r ≤ p, see [10, 18, 8].
If p = k/l is a rational number, 1 ≤ l < k, then Wp,r can be expressed in terms of the

Meijer G-function (see [22, 14]):

(8) Wp,r(x) =
rpr

x(p− 1)r+1/2
√

2kπ
Gk,0
k,k

(
xl

c(p)l

∣∣∣∣α1, . . . , αk
β1, . . . , βk

)
,

x ∈ (0, c(p)) and the parameters αj, βj are given by:

αj =


j

l
if 1 ≤ j ≤ l,

r + j − l
k − l

if l + 1 ≤ j ≤ k,

(9)

βj =
r + j − 1

k
, 1 ≤ j ≤ k.(10)

Examples: Let us record formulas for the functionsWp,r for p = 2, 3, 3/2 and r = 1, 2.
In these cases Wp,r can be expressed as an elementary function, see [21, 22, 14].

W2,1(x) =
1

2π

√
4− x
x

,(11)

W2,2(x) =
1

2π

√
x(4− x),(12)

where x ∈ (0, 4). W2,1 is the density of the Marchenko-Pastur distribution and W2,2 is
the Wigner’s semicircle law translated by 2.
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W3,1(x) =
3
(

1 +
√

1− 4x/27
)2/3
− (4x)1/3

31/2π(4x)2/3
(

1 +
√

1− 4x/27
)1/3 ,(13)

W3,2(x) =
9
(

1 +
√

1− 4x/27
)4/3
− (4x)2/3

2π33/2(4x)1/3
(

1 +
√

1− 4x/27
)2/3 ,(14)

where x ∈ (0, 27/4).

W3/2,1(x) = 31/2

(
1 +

√
1− 4x2/27

)1/3
−
(

1−
√

1− 4x2/27
)1/3

2(2x)1/3π
(15)

+31/2(2x)1/3

(
1 +

√
1− 4x2/27

)2/3
−
(

1−
√

1− 4x2/27
)2/3

4π
,

W3/2,2(x) =
31/2(2x)5/3

8π

((
1 +

√
1− 4x2/27

)1/3
−
(

1−
√

1− 4x2/27
)1/3)

(16)

+
31/2(2x)1/3(x2 − 1)

4π

((
1 +

√
1− 4x2/27

)2/3
−
(

1−
√

1− 4x2/27
)2/3)

,

where x ∈ (0, 3
√

3/2). The function W3/2,2(x) is not nonnegative on its domain.

3. A family of sequences

For p, t ∈ R define sequence an(p, t) as an affine combination of
(
np+1
n

)
1

np+1
and(

np+2
n

)
2

np+2
:

an(p, t) :=

(
np+ 1

n

)
t

np+ 1
+

(
np+ 2

n

)
2(1− t)
np+ 2

(17)

=

(
np

n

)
n(2p− t− pt) + 2

(np− n+ 1)(np− n+ 2)
,(18)

in particular a0(p, t) = 1.
The generating function is

(19) tBp(z) + (1− t)Bp(z)2 =
∞∑
n=0

an(p, t)zn.
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For example:

tB2(z) + (1− t)B2(z)2 =
1− t+ 3tz − 2z − (1− t+ tz)

√
1− 4z

2z2
,

tB3(z) + (1− t)B3(z)2 =
9− 12t sin2 α(
3− 4 sin2 α

)2 ,
tB3/2(z) + (1− t)B3/2(z)2 =

9− 6t sin2 β + 6t
√

3 sin β cos β(√
3 cos β − sin β

)4
where α = 1

3
arcsin

(√
27z/4

)
, β = 1

3
arcsin

(
3z
√

3/2
)
.

We are going to study positive definiteness of an(p, t). First we observe

Proposition 3.1. If the sequence an(p, t) is positive definite then

(20) 2p− pt− t2 + 3t− 3 ≥ 0.

In particular t 6= 2 and either p ≤ −3 or p ≥ 1.

Proof. The left hand side is just a2(p, t)− a1(p, t)2. �

Examples.
1. For p = 1 we have an(1, t) = 1 + n− nt. Since a2(1, t)− a1(1, t)2 = −(t− 1)2, the

sequence an(1, t) is positive definite if and only if t = 1. Note that an(1, 1) = 1 is the
moment sequence of the one-point measure δ1.

2. For t = 2/(p+ 1) we get

an (p, 2/(p+ 1)) =

(
np

n

)
2

np− n+ 2
.

If p > 1 then this is product of two positive definite sequences:
(
np
n

)
(see [16, 25]) and

2/(np− n+ 2).
3. Similarly, for p > 1, t = 2p/(p+ 1) the sequence

an (p, 2p/(p+ 1)) =

(
np

n

)
2

(np− n+ 1)(np− n+ 2)
.

is positive definite. Note that from (1) we have

(21) Cp(n) =
(p+ 1)pn

2p
an

(
p,

2p

p+ 1

)
,

so for p ≥ 1 the sequence Cp(n) is positive definite.
The sequence an(p, t) is an affine combination of two sequences:

(
np+1
n

)
1

np+1
and(

np+2
n

)
2

np+2
. The former is positive definite for p ≥ 1 and the latter for p ≥ 2. This

implies, that an(p, t) is positive definite for p ≥ 2, 0 ≤ t ≤ 1. We are going to prove
something stronger. Note that if t1 ≤ t2 ≤ t3 and the sequences an(p, t1), an(p, t3) are
positive definite then so is an(p, t2) as their convex combination.

If we assume that p > 1 then

an(p, t) =

∫ c(p)

0

xnfp,t(x) dx,

where
fp,t(x) = tWp,1(x) + (1− t)Wp,2(x).
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Figure 1. The density function f3/2,1/5(x)

x
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Then the positive definiteness of an(p, t) is equivalent to the fact that fp,t is nonnegative
on (0, c(p)). For example the function

(22) f2,t(x) =
t+ x− tx

2π

√
4− x
x

is nonnegative on (0, 4) if and only if 0 ≤ t ≤ 4/3.
By (6) we can write

(23) fp,t(x) =
sin2 φ (sin(p− 1)φ)p−3

[
t sin(p− 1)φ+ 2(1− t) sin pφ cosφ

]
π (sin pφ)p−1

for x as in (7). Define

Ψp,t(φ) = t sin(1− 1/p)φ+ 2(1− t) sinφ cosφ/p(24)

= (2− t) sinφ cosφ/p− t cosφ sinφ/p

= (1− t) sin(1 + 1/p)φ+ sin(1− 1/p)φ.

Then the sequence an(p, t) is positive definite if and only if Ψp,t(φ) ≥ 0 for φ ∈ [0, π].
For p ≥ 1 put

(25) g(p) := min{t ∈ R : Ψp,t(φ) ≥ 0 for all 0 < φ < π}.

Since Ψp,t(π) = t sin(π/p) and Ψp,1(φ) = sin(1 − 1/p)φ, we have 0 ≤ g(p) ≤ 1 for all
p ≥ 1.

Proposition 3.2. The function g is continuous on [1,∞), g(1) = 1, g(p) = 0 for p ≥ 2
and is strictly decreasing on [1, 2]. In particular g(3/2) = 1/5.

Proof. For p = 1 we have Ψ1,t(φ) = (1− t) sin 2φ, which implies g(1) = 1. If p ≥ 2 then
Ψp,0(φ) = 2 sinφ cosφ/p is nonnegative for φ ∈ [0, π], which yields g(p) = 0.

Now observe, that for fixed t, φ, with 0 ≤ t ≤ 1, 0 < φ ≤ π, the function p 7→ Ψp,t(φ)
is strictly increasing on [1, 2]. Indeed, we can write

Ψp,t(φ) = 2(1− t) sinφ cosφ/p+ t sin(φ− φ/p)
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and if 0 < φ ≤ π then both the summands are increasing with p ∈ [1, 2]. This implies,
that g(p) is strictly decreasing on [1, 2].

To prove continuity of g assume that 1 ≤ p1 < p2 ≤ 2 and put t1 := g(p1), t2 := g(p2).
Then t1 > t2, Ψp1,t1(φ) ≥ 0 for all φ ∈ [0, π] and there is φ1, with p1π/(1+p1) < φ1 < π,
such that Ψp1,t1(φ1) = 0. Then we have that Ψp2,t1(φ) > 0 for all φ ∈ (0, π]. From the
third expression in (24) we have that

−c1 := sin(1 + 1/p1)φ1 < 0.

If we assume that (p2 − p1)φ1 < c1/2 then we have

|sin(1 + 1/p1)φ1 − sin(1 + 1/p2)φ1| ≤ (1/p1 − 1/p2)φ1 < c1/2

and, consequently, sin(1 + 1/p2)φ1 < −c1/2.
If we take t, with 0 ≤ t < t1, then

Ψp2,t(φ1) = Ψp2,t(φ1)−Ψp1,t1(φ1)

= (1− t1)
(

sin(1 + 1/p2)φ1 − sin(1 + 1/p1)φ1

)
+
(

sin(1− 1/p2)φ1 − sin(1− 1/p1)φ1

)
+(t1 − t) sin(1 + 1/p2)φ1 ≤ (2− t1)(p2 − p1)φ1 − (t1 − t)c1/2.

Hence, if

(2− t1)(p2 − p1)φ1 < (t1 − t)c1/2
then Ψp2,t(φ1) < 0. This implies that

g(p1)− g(p2) = t1 − t2 ≤ 2(2− t1)(p2 − p1)φ1/c1.

and proves continuity of g.
For p = 3/2 we can write

Ψ3/2,t(φ) =
sinφ/3

4

[
(1− t)

(
5− 8 sin2 φ/3

)2
+ 5t− 1

]
.

Note that
√

5/8 <
√

3/2 = sinπ/3, so, assuming that 0 ≤ t ≤ 1, Ψ3/2,t attains its

minimum on [0, π] at φ = 3 arcsin
√

5/8. This yields g(3/2) = 1/5. �

Now we are able to describe the domain of positive definiteness of the sequence
an(p, t), see Fig 2. The density function for the particular case p = 3/2, t = 1/5 is
illustrated in Fig. 1.

Theorem 3.3. Suppose that p ≥ 0. Then the sequence an(p, t) is positive definite if
and only if p ≥ 1 and

(26) g(p) ≤ t ≤ 2p

1 + p
.

Proof. Fix p ≥ 1. By the definition of g(p) the sequence an(p, t) is positive definite for
t = g(p) and not positive definite for t < g(p).

We have already observed, that for p ≥ 1 the sequence an(p, 2p/(p + 1)) is positive
definite. If t > 2p/(p + 1) then n(2p − t − pt) + 2 < 0 and consequently an(p, t) < 0
for all n sufficiently large. Alternatively, we have Ψ′p,t(0) = 2p− pt− t < 0 in this case,
which implies Ψp,t(x) < 0 for some x ∈ (0, π/p). �
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Figure 2. Domain of positive definiteness of the sequence an(p, t)
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4. Free transforms

Throughout this section we assume that p ≥ 1 and the sequence an(p, t) is positive
definite, i.e. g(p) ≤ t ≤ 2p/(p + 1). Denote by η(p, t) the corresponding distribution,
i.e. η(1, 1) = δ1 and η(p, t) = fp,t(x) dx on [0, pp(p − 1)1−p] for p > 1. We are going to
study relations of these measures with free probability.

Recall that for a compactly supported probability measure µ on R, with the moment
generating function

(27) Mµ(z) :=
∞∑
n=0

zn
∫
R
xn dµ(x) =

∫
R

1

1− xz
dµ(x),

the S- and R-transforms are defined by

(28) Mµ

(
z

1 + z
Sµ(z)

)
= 1 + z,

(29) 1 +Rµ (zMµ(z)) = Mµ(z).

Moreover, we have relation

(30) Rµ (zSµ(z)) = z.

The coefficients rn(µ) in the Taylor expansion Rµ(z) =
∑∞

n=1 rn(µ)zn are called free
cumulants of µ. It is known that µ is infinitely divisible with respect to the additive
free convolution if and only if the sequence {rn+2(µ)}∞n=0 is positive definite, see [28, 19].

For the distributions η(p, t) we have

Mη(p,t)(z) :=
∞∑
n=0

an(p, t)zn = tBp(z) + (1− t)Bp(z)2.

Now we are going to compute the S-transform of η(p, t).
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Proposition 4.1. For p > 1, g(p) ≤ t ≤ 2p/(p+ 1) we have

(31) Sη(p,t)(w) = (2 + 2w)1−p

(√
(2− t)2 + 4(1− t)w + t

)p
√

(2− t)2 + 4(1− t)w + 2− t
.

Proof. From (3) we can derive relation

Bp
(
z(1 + z)−p

)
= 1 + z,

see [13]. Therefore

Mη(p,t)

(
z(1 + z)−p

)
= t(1 + z) + (1− t)(1 + z)2.

If we substitute

t(1 + z) + (1− t)(1 + z)2 = 1 + w

then

z =

√
(2− t)2 + 4(1− t)w − 2 + t

2(1− t)
=

2w√
(2− t)2 + 4(1− t)w + 2− t

and

1 + z =

√
(2− t)2 + 4(1− t)w − t

2(1− t)
=

2(1 + w)√
(2− t)2 + 4(1− t)w + t

,

which combining with (28) yields (31). �

Now we are going to compute R-transform of η(p, t) for p = 2 and p = 3. We will
denote rn(p, t) := rn(η(p, t)).

4.1. The case p = 2. The density function f2,t is given by (22), 0 ≤ t ≤ 4/3. From
(31) we can compute the R-transform for p = 2:

Proposition 4.2. Rη(2,1) = z/(1− z) and for t 6= 1

Rη(2,t)(z) =
1− t− 2z + 3tz − z2 + (t− 1− z)

√
1 + z(2− 4t) + z2

2(t− 1)
.

Moreover, η(2, t) is infinitely divisible with respect to the additive free convolution if and
only if either t = 0 or 1 ≤ t ≤ 4/3.

Proof. First we find Rη(2,t)(z) by solving equation Sη(2,t)
(
Rη(2,t)(z)

)
Rη(2,t)(z) = z, equiv-

alent with (30), with the condition Rη(2,t)(0) = 0. In particular R2,0 = 2z + z2, which
implies that η(2, 0) is infinitely divisible with respect to the additive free convolution.

Now we can find:

r1(2, t) = 2− t,
r2(2, t) = 1 + t− t2,
r3(2, t) = 3t2 − 2t3,

r4(2, t) = −4t2 + 10t3 − 5t4.

Since

r2(2, t)r4(2, t)− r3(2, t)2 = t2(t− 1)(t− 2)(t2 − 2),

for 0 < t < 1 the distribution η(2, t) is not infinitely divisible with respect to the additive
free convolution.



10 WOJCIECH M LOTKOWSKI AND KAROL A. PENSON

For t 6= 1 we have

1 +Rη(2,t)(z) =
t− 1− 2z + 3tz − z2 + (t− 1− z)

√
1 + z(2− 4t) + z2

2(t− 1)

and 1 +Rη(2,1)(z) = 1/(1− z). Then for 1 < t ≤ 3/2 the function

1 +Rη(2,t)(1/z)

z
=

(t− 1)z2 − 2z + 3tz − 1 +
(
z(t− 1)− 1

)√
1 + z(2− 4t) + z2

2(t− 1)z3

is the Cauchy transform of the probability distribution

(1− tx+ x)
√

4t(t− 1)− (x− 2t+ 1)2

2π(t− 1)x3
dx,

on the interval

x ∈
[
2t− 1− 2

√
t2 − t, 2t− 1 + 2

√
t2 − t

]
.

Therefore for 1 < t ≤ 4/3

(32) rn(2, t) =

∫ 2t−1+2
√
t2−t

2t−1−2
√
t2−t

xn
(1− tx+ x)

√
4t(t− 1)− (x− 2t+ 1)2

2π(t− 1)x3
dx,

which proves that the sequence {rn+2(2, t)}∞n=0 is positive definite. �

Remark. Note, that for η(2, 0) the cumulant sequence is (2, 1, 0, 0, . . .), so the se-
quence {rn+2(2, 0)}∞n=0 = (1, 0, 0, . . .) is positive definite. Actually, η(2, 0), given by (12),
is a translation of the Wigner semicircle distribution 1

2π

√
4− x2 dx, x ∈ [−2, 2]. The

free additive infinite divisibility of η(2, 0) was overlooked in [16], Corollary 7.1, where
η(2, 0) was denoted µ(2, 2).

Example 1. Define a sequence an by a0 := 1 and an := 3n · rn(2, 4/3) for n ≥ 1:

1, 2, 5, 16, 64, 304, 1632, 9552, 59520, 388720, 2632864, . . . .

Applying (32) for t = 4/3 we obtain

(33) an =

∫ 9

1

xn
√

(x− 1)(9− x)3

2πx3
dx.

Its generating function is

(34)
∞∑
n=0

anz
n = 1 +Rη(2,4/3)(3z) =

1 + 18z − 27z2 +
√

(1− z)(1− 9z)3

2
.

Example 2. Now let us consider the binomial transform of an:

bn :=
n∑
k=0

(−1)n−k
(
n

k

)
ak.

The corresponding density function is that of the sequence an translated by −1, so

(35) bn =

∫ 8

0

xn
√
x(8− x)3

2π(x+ 1)3
dx.

For the generating function we have
∞∑
n=0

bnz
n =

∞∑
k=0

ak(−1)k
∞∑
n=k

(
n

k

)
(−z)n
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=
∞∑
k=0

ak
zk

(1 + z)k+1
=

1

1 + z

(
1 +Rη(2,4/3) (3z/(1 + z))

)
,

so from (34)

(36)
∞∑
n=0

bnz
n =

1 + 20z − 8z2 +
√

(1− 8z)3

2(1 + z)3
.

This proves that bn coincides with A022558 in OEIS:

1, 1, 2, 6, 23, 103, 512, 2740, 15485, 91245, 555662, . . . ,

which counts the permutations of length n which avoid the pattern 1342, see Theorem 2
in [5].

4.2. The case p = 3.

Proposition 4.3.

(37) Rη(3,t)(z) =
z(4− 7t+ 4t2 − 2z)− (t− 1)2 + (1− 2t+ t2 − tz)

√
1− 4tz

2(t+ z − 1)2

and the distribution η(3, t) is infinitely divisible with respect to the additive free convo-
lution if and only if 1/2 ≤ t ≤ 3/2.

Proof. The proof is similar as for p = 2. First we find Rη(3,t) by solving the equation

Sη(3,t)
(
Rη(3,t)(z)

)
Rη(3,t)(z) = z,

with the condition that Rη(3,t)(0) = 0. Then we find out that

1 +Rη(3,t)(z) =
(t− 1)2 + tz(4t− 3) + (1− 2t+ t2 − tz)

√
1− 4tz

2(t+ z − 1)2

is the moment generating function for the density

(38)
(t− x(t− 1)2)

√
4t− x

2π(tx− x+ 1)2
√
x

, x ∈ [0, 4t],

which is positive provided 1/2 ≤ t ≤ 3/2. �

Example. The sequence an = A220910(n):

1, 1, 3, 14, 83, 570, 4318, 35068, 299907, 2668994, 24513578, . . .

counts matchings avoiding the pattern 231, see [4] for details. Its generating function
equals

(39) M(z) =
∞∑
n=0

anz
n =

1 + 36z +
√

(1− 12z)3

2(1 + 4z)2
= 1 +Rη(3,3/2)(2z),

so we have an = 2n · rn(3, 3/2) for n ≥ 1. Therefore these numbers can be represented
as moments:

(40) an =

∫ 12

0

xn
√

(12− x)3

2π(x+ 4)2
√
x
dx.

Now we are going to prove a recurrence relation, which was was conjectured by
R. J. Mathar (see OEIS, entry A220910, Aug. 04 2013).
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Proposition 4.4. For n ≥ 2 we have

(41) nan = (8n− 34)an−1 + 24(2n− 3)an−2.

Proof. One can check that the generating function satisfies differential equation:

(1− 8z − 48z2)M ′(z) + (26− 24z)M(z) = 27.

The coefficient at zn−1 on the left hand side is equal to

nan − 8(n− 1)an−1 − 48(n− 2)an−2 + 26an−1 − 24an−2

for n ≥ 2, which gives (41). �

Now we will provide two formulas for an = A220910(n).

Proposition 4.5.

(42) an =
1− 8n

2
(−4)n +

(
2n

n

) n∑
k=0

3n+1(k + 1)
∏k−1

i=0 (n− i)
8(−3)k

∏k+1
i=0 (n− i− 1/2)

(43) =
(−4)n(1− 8n)

16

[
8−

n+1∑
k=0

(−3)k

k!

k−1∏
i=0

(i− 3/2)

]
+

(
2n

n

)
3n+3

32(n+ 1)
.

Proof. Putting x = 12t in (40) and applying formula (15.6.1) from [20] we get

an =
9 · 12n

2π

∫ 1

0

tn−1/2(1− t)3/2

(1 + 3t)2
dt(44)

=
27(2n)!3n

8n!(n+ 2)!
2F1(2, n+ 1/2; n+ 3 | − 3) .(45)

From (15.8.2) in [20] and from the identities

Γ(n− 3/2)

Γ(n+ 1/2)
=

4

(2n− 3)(2n− 1)
,

Γ(3/2− n)

Γ(5/2)
=

(−2)n+1(2n− 1)

3(2n− 1)!!
,

we have

2F1(2, n+ 1/2; n+ 3 | − 3) =
4(n+ 2)!

9n!(2n− 1)(2n− 3)
2F1(2,−n; 5/2− n | − 1/3)

+
(−2)n+1(n+ 2)!(2n− 1)

3n+3/2(2n− 1)!!
2F1(n+ 1/2,−3/2; n− 1/2 | − 1/3) .

Since

2F1(2,−n; 5/2− n | z) =
n∑
k=0

(k + 1)zk
k−1∏
i=0

n− i
n− 5/2− i

and

2F1(n+ 1/2,−3/2; n− 1/2 | z) =
(2n− 2nz − 2z − 1)

√
1− z

2n− 1
(see formula (15.4.9) in [20]), we obtain

2F1(2, n+ 1/2; n+ 3 | − 3) =
n!(n+ 2)!(8n− 1)(−4)n+1

(2n)!3n+3

+
4(n+ 1)(n+ 2)

9(2n− 1)(2n− 3)

n∑
k=0

k + 1

(−3)k

k−1∏
i=0

n− i
n− 5/2− i

,
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which leads to (42).
For the second formula we apply the identity

2F1(2, b; c | z) (1− z) = (bz − z − c+ 2) 2F1(1, b; c | z) + c− 1,

see (15.5.11) in [20], to (45) and get

2F1(2, n+ 1/2; n+ 3 | − 3) =
1− 8n

8
2F1(1, n+ 1/2; n+ 3 | − 3) +

n+ 2

4
.

Applying formula (123), page 462, from [23]:

2F1(1, b; m+ 1 | z) =
m!

zm(b− 1) . . . (b−m)

(
(1− z)m−b −

m−1∑
k=0

zk

k!

k−1∏
i=0

(b+ i−m)

)
,

with b = n+ 1/2, m = n+ 2, z = −3, and using the identity

4n+1n!(n+ 1/2− 1) . . . (n+ 1/2− n− 2) = 3(2n)!

we get (43). �
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