A FAMILY OF SEQUENCES OF BINOMIAL TYPE

WOJCIECH MŁOTKOWSKI, ANNA ROMANOWICZ

Abstract

For delta operator $a D-b D^{p+1}$ we find the corresponding polynomial sequence of binomial type and relations with Fuss numbers. In the case $D-\frac{1}{2} D^{2}$ we show that the corresponding Bessel-Carlitz polynomials are moments of the convolution semigroup of inverse Gaussian distributions. We also find probability distributions $\nu_{t}, t>0$, for which $\left\{y_{n}(t)\right\}$, the Bessel polynomials at t, is the moment sequence.

1. Introduction

A sequence $\left\{w_{n}(t)\right\}_{n=0}^{\infty}$ of polynomials is said to be of binomial type (see [10]) if $\operatorname{deg} w_{n}(t)=n$ and for every $n \geq 0$ and $s, t \in \mathbb{R}$ we have

$$
\begin{equation*}
w_{n}(s+t)=\sum_{k=0}^{n}\binom{n}{k} w_{k}(s) w_{n-k}(t) . \tag{1.1}
\end{equation*}
$$

A linear operator Q of the form

$$
\begin{equation*}
Q=\frac{c_{1}}{1!} D+\frac{c_{2}}{2!} D^{2}+\frac{c_{3}}{3!} D^{3}+\ldots \tag{1.2}
\end{equation*}
$$

acting on the linear space $\mathbb{R}[x]$ of polynomials, is called a delta operator if $c_{1} \neq 0$. Here D denotes the derivative operator: $D 1:=0$ and $D t^{n}:=n \cdot t^{n-1}$ for $n \geq 1$. We will write $Q=g(D)$, where

$$
\begin{equation*}
g(x)=\frac{c_{1}}{1!} x+\frac{c_{2}}{2!} x^{2}+\frac{c_{3}}{3!} x^{3}+\ldots \tag{1.3}
\end{equation*}
$$

There is one-to-one correspondence between sequences of binomial type and delta operators, namely if Q is a delta operator then there is unique sequence $\left\{w_{n}(t)\right\}_{n=0}^{\infty}$ of binomial type satisfying $Q w_{0}(t)=0$ and $Q w_{n}(t)=n \cdot w_{n-1}(t)$ for $n \geq 1$. These w_{n} are called basic polynomials for Q.

A natural way of obtaining a sequence of binomial type is to start with a function f which is analytic in a neighborhood of 0 :

$$
\begin{equation*}
f(x)=\frac{a_{1}}{1!} x+\frac{a_{2}}{2!} x^{2}+\frac{a_{3}}{3!} x^{3}+\ldots \tag{1.4}
\end{equation*}
$$

with $a_{1} \neq 0$. Then a binomial sequence appears in the Taylor expansion of $\exp (t \cdot f(x))$, namely

$$
\begin{equation*}
\exp (t \cdot f(x))=\sum_{n=0}^{\infty} \frac{w_{n}(t)}{n!} x^{n} \tag{1.5}
\end{equation*}
$$

[^0]and the coefficients of w_{n} are partial Bell polynomials of a_{1}, a_{2}, \ldots. More generally, we can merely assume that f (as well as g) is a formal power series. Then f is the composition inverse of $g: f(g(x))=g(f(x))=x$.

The aim of the paper is to describe the sequences of polynomials of binomial type, which correspond to delta operators of the form $Q=a D-b D^{p+1}$. Then we discuss the special case, $D-\frac{1}{2} D^{2}$, studied by Carlitz [3]. We find the corresponding semigroup of probability distributions an also the family of distributions corresponding to the Bessel polynomials.

2. The result

Theorem 2.1. For $a \neq 0, b \in \mathbb{R}$ and for $p \geq 1$ let $Q:=a D-b D^{p+1}$. Then the basic polynomials are as follows: $w_{0}(t)=1$ and for $n \geq 1$

$$
\begin{equation*}
w_{n}(t)=\sum_{j=0}^{\left[\frac{n-1}{p}\right]} \frac{(n+j-1)!b^{j}}{j!(n-j p-1)!a^{n+j}} t^{n-j p} . \tag{2.1}
\end{equation*}
$$

In particular $w_{1}(t)=t / a$.
Proof. We have to show that if $n \geq 1$ then $Q w_{n}(t)=n \cdot w_{n-1}(t)$. It is obvious for $n=1$, so assume that $n \geq 2$. Then we have

$$
\begin{aligned}
& a D w_{n}(t)= \\
& \sum_{j=0}^{\left[\frac{n-1}{p}\right]} \frac{(n+j-1)!(n-j p) b^{j}}{j!(n-j p-1)!a^{n-1+j}} t^{n-1-j p} \\
&= n\left(\frac{t}{a}\right)^{n-1}+\sum_{j=1}^{\left[\frac{n-1}{p}\right]} \frac{(n+j-1)!(n-j p) b^{j}}{j!(n-j p-1)!a^{n-1+j}} t^{n-1-j p}
\end{aligned}
$$

and

$$
b D^{p+1} w_{n}(t)=\sum_{j=0}^{\left[\frac{n-p-1}{p}\right]} \frac{(n+j-1)!(n-j p))^{j+1}}{j!(n-j p-p-1)!a^{n+j}} t^{n-1-j p-p} .
$$

Now we substitute $j^{\prime}:=j+1$:

$$
b D^{p+1} w_{n}(t)=\sum_{j^{\prime}=1}^{\left[\frac{n-1}{p}\right]} \frac{\left(n+j^{\prime}-2\right)!\left(n-j^{\prime} p+p\right) b^{j^{\prime}}}{\left(j^{\prime}-1\right)!\left(n-j^{\prime} p-1\right)!a^{n-1+j^{\prime}}} t^{n-1-j^{\prime} p} .
$$

If $j \geq 1$ and $j p+1<n$ then

$$
\begin{aligned}
& \frac{(n+j-1)!(n-j p)}{j!(n-j p-1)!}-\frac{(n+j-2)!(n-j p+p)}{(j-1)!(n-j p-1)!} \\
= & \frac{(n+j-2)![(n+j-1)(n-j p)-j(n-j p+p)]}{j!(n-j p-1)!} \\
= & \frac{n(n+j-2)!(n-j p-1)}{j!(n-j p-1)!}=\frac{n(n+j-2)!}{j!(n-j p-2)!}
\end{aligned}
$$

and if $j p+1=n$ then this difference is 0 . Therefore we have

$$
\begin{gathered}
\left(a D-b D^{p+1}\right) w_{n}(t)=n\left(\frac{t}{a}\right)^{n-1}+\sum_{j=1}^{\left[\frac{n-2}{p}\right]} \frac{n(n+j-2)!b^{j}}{j!(n-j p-2)!a^{n-1+j}} t^{n-1-j p} \\
=n \sum_{j=0}^{\left[\frac{n-2}{p}\right]} \frac{(n+j-2)!b^{j}}{j!(n-j p-2)!a^{n-1+j}} t^{n-1-j p}=n \cdot w_{n-1}(t),
\end{gathered}
$$

which concludes the proof.
Recall, that Fuss numbers of order p are given by $\binom{n p+1}{n} \frac{1}{n p+1}$ and the corresponding generating function

$$
\begin{equation*}
\mathcal{B}_{p}(x):=\sum_{n=0}^{\infty}\binom{n p+1}{n} \frac{x^{n}}{n p+1} \tag{2.2}
\end{equation*}
$$

is determined by the equation

$$
\begin{equation*}
\mathcal{B}_{p}(x)=1+x \cdot \mathcal{B}_{p}(x)^{p} . \tag{2.3}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\mathcal{B}_{2}(x)=\frac{1-\sqrt{1-4 x}}{2 x} . \tag{2.4}
\end{equation*}
$$

For more details, as well as combinatorial applications, we refer to [4].
Now we can exhibit the function f corresponding to the operator $a D-b D^{p+1}$ and to the polynomials (2.1).

Corollary 2.1. For the polynomials (2.1) we have

$$
\exp (t \cdot f(x))=\sum_{n=0}^{\infty} \frac{w_{n}(t)}{n!} x^{n},
$$

where

$$
\begin{equation*}
f(x)=\frac{x}{a} \cdot \mathcal{B}_{p+1}\left(\frac{b x^{p}}{a^{p+1}}\right) . \tag{2.5}
\end{equation*}
$$

Proof. Since f is the inverse function for $g(x):=a x-b x^{p+1}$, it satisfies $a f(x)=x+$ $b f(x)^{p+1}$, which is equivalent to

$$
\left(\frac{a f(x)}{x}\right)=1+\frac{b x^{p}}{a^{p+1}}\left(\frac{a f(x)}{x}\right)^{p+1} .
$$

Comparing with (2.3), we see that $a f(x) / x=\mathcal{B}_{p+1}\left(b x^{p} / a^{p+1}\right)$.
Alternatively, we could apply the formula $a_{n}=w_{n}^{\prime}(0)$ for the coefficients in (1.4).

3. The operator $D-\frac{1}{2} D^{2}$

One important source of sequences of binomial type are moments of convolution semigroups of probability measures on the real line. In this part we describe an example of such semigroup, which corresponds to the delta operator $D-\frac{1}{2} D^{2}$. For more details we refer to [3, 5, 7, 10] and to the entry A001497 in [11].

In view of (2.1), the sequence of polynomials of binomial type corresponding to the delta operator $D-\frac{1}{2} D^{2}$ is

$$
\begin{equation*}
w_{n}(t)=\sum_{j=0}^{n-1} \frac{(n+j-1)!t^{n-j}}{j!(n-j-1)!2^{j}}=\sum_{k=1}^{n} \frac{(2 n-k-1)!t^{k}}{(n-k)!(k-1)!2^{n-k}}, \tag{3.1}
\end{equation*}
$$

with $w_{0}(t)=1$. They are related to the Bessel polynomials

$$
\begin{equation*}
y_{n}(t)=\sum_{j=0}^{n} \frac{(n+j)!}{j!(n-j)!}\left(\frac{t}{2}\right)^{j}=e^{1 / t} \sqrt{\frac{2}{\pi t}} K_{-n-1 / 2}(1 / t), \tag{3.2}
\end{equation*}
$$

where $K_{\nu}(z)$ denotes the modified Bessel function of the second kind. Namely, for $n \geq 1$ we have

$$
\begin{equation*}
w_{n}(t)=t^{n} y_{n-1}(1 / t)=t^{n} e^{t} \sqrt{\frac{2 t}{\pi}} K_{1 / 2-n}(t) \tag{3.3}
\end{equation*}
$$

for $n \geq 0$.
Applying Corollary 2.1 and (2.4) we get

$$
\begin{equation*}
f(x)=x \cdot \mathcal{B}_{2}(x / 2)=1-\sqrt{1-2 x}=\sum_{n=1}^{\infty} \frac{a_{n}}{n!} x^{n}, \tag{3.4}
\end{equation*}
$$

where $a_{n}=(2 n-3)!$!. The function $f(x \mathrm{i})$ admits Kolmogorov representation (see formula (7.15) in [12]) as

$$
\begin{equation*}
1-\sqrt{1-2 x \mathrm{i}}=x \mathrm{i}+\int_{0}^{+\infty}\left(e^{u x \mathrm{i}}-1-u x \mathrm{i}\right) \frac{e^{-u / 2}}{\sqrt{2 \pi u^{3}}} d u \tag{3.5}
\end{equation*}
$$

with the probability density function $\sqrt{u} e^{-u / 2} / \sqrt{2 \pi}$ on $[0,+\infty)$. Therefore

$$
\phi(x)=\exp (1-\sqrt{1-2 x \mathrm{i}})
$$

is the characteristic function of some infinitely divisible probability measure. It turns out that the corresponding convolution semigroup $\left\{\mu_{t}\right\}_{t>0}$ is contained in the family of inverse Gaussian distributions, see 24.3 in [1].

Theorem 3.1. For $t>0$ define probability distribution $\mu_{t}:=\rho_{t}(u) d u$, where

$$
\begin{equation*}
\rho_{t}(u):=\frac{t \cdot \exp \left(\frac{-(u-t)^{2}}{2 u}\right)}{\sqrt{2 \pi u^{3}}} \tag{3.6}
\end{equation*}
$$

for $u>0$ and $\rho_{t}(u)=0$ for $u \leq 0$. Then $\left\{\mu_{t}\right\}_{t>0}$ is a convolution semigroup, $\exp (t-t \sqrt{1-2 x \mathrm{i}})$ is the characteristic function of μ_{t}, and $\left\{w_{n}(t)\right\}_{n=0}^{\infty}$, defined by (3.1), is the moment sequence of μ_{t}.

Proof. It is sufficient to check moments of μ_{t}. Substituting $u:=2 v$ and applying formula:

$$
\begin{equation*}
K_{p}(t)=\frac{1}{2}\left(\frac{t}{2}\right)^{p} \int_{0}^{\infty} \exp \left(-v-\frac{t^{2}}{4 v}\right) \frac{d v}{v^{p+1}} \tag{3.7}
\end{equation*}
$$

(see (10.32.10) in [9]), we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} u^{n} \frac{t \cdot \exp \left(\frac{-(u-t)^{2}}{2 u}\right)}{\sqrt{2 \pi u^{3}}} d u=\frac{t e^{t}}{\sqrt{2 \pi}} \int_{0}^{\infty} \exp \left(\frac{-u}{2}-\frac{t^{2}}{2 u}\right) u^{n-3 / 2} d u \\
= & \frac{t e^{t} 2^{n-1}}{\sqrt{\pi}} \int_{0}^{\infty} \exp \left(-v-\frac{t^{2}}{4 v}\right) v^{n-3 / 2} d v=\frac{t e^{t} 2^{n-1}}{\sqrt{\pi}} 2\left(\frac{t}{2}\right)^{n-1 / 2} K_{1 / 2-n}(t),
\end{aligned}
$$

which, by (3.3), is equal to $w_{n}(t)$.

4. Probability measures corresponding to the Bessel polynomials

In this part we are going to give some remarks concerning Bessel polynomials (3.2). First we compute the exponential generating function (cf. formula (6.2) in [5]).

Proposition 4.1. For the exponential generating function of the sequence $\left\{y_{n}(t)\right\}$ we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{y_{n}(t)}{n!} x^{n}=\frac{\exp \left(\frac{1}{t}-\frac{1}{t} \sqrt{1-2 t x}\right)}{\sqrt{1-2 t x}} \tag{4.1}
\end{equation*}
$$

Proof. By (3.3) we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{y_{n}(t)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{t^{n+1} w_{n+1}(1 / t)}{n!} x^{n}=\sum_{n=1}^{\infty} \frac{t^{n} w_{n}(1 / t)}{(n-1)!} x^{n-1} \\
& =\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{t^{n} w_{n}(1 / t)}{n!} x^{n}\right)=\frac{d}{d x} \exp \left(\frac{1}{t}-\frac{1}{t} \sqrt{1-2 t x}\right),
\end{aligned}
$$

which leads to (4.1).
Now we represent the Bessel polynomials (3.2) as a moment sequence.
Theorem 4.1. For $n \geq 0$ and $t>0$ we have

$$
\begin{equation*}
y_{n}(t)=\int_{0}^{\infty} u^{n} \frac{\exp \left(\frac{-(u-1)^{2}}{2 t u}\right)}{\sqrt{2 \pi t u}} d u \tag{4.2}
\end{equation*}
$$

Proof. Substituting $u:=2 t v$, applying (3.7) and (3.2) we get:

$$
\begin{gathered}
\int_{0}^{\infty} u^{n} \frac{\exp \left(\frac{-(u-1)^{2}}{2 t u}\right)}{\sqrt{2 \pi t u}} d u=\frac{e^{1 / t}}{\sqrt{2 \pi t}} \int_{0}^{\infty} u^{n-1 / 2} \exp \left(\frac{-u}{2 t}-\frac{1}{2 t u}\right) d u \\
=\frac{e^{1 / t}(2 t)^{n+1 / 2}}{\sqrt{2 \pi t}} \int_{0}^{\infty} v^{n-1 / 2} \exp \left(-v-\frac{1}{4 t^{2} v}\right) d v \\
=e^{1 / t} \sqrt{\frac{2}{\pi t}} K_{-n-1 / 2}(1 / t)=y_{n}(t)
\end{gathered}
$$

which concludes the proof.
Alternatively, we could apply Theorem 3.1 and relation (3.3).

Denote by ν_{t} the corresponding probability measure, i.e.

$$
\begin{equation*}
\nu_{t}:=\frac{\exp \left(\frac{-(u-1)^{2}}{2 t u}\right)}{\sqrt{2 \pi t u}} \chi_{(0,+\infty)}(u) d u \tag{4.3}
\end{equation*}
$$

Although $\left\{\nu_{t}\right\}_{t>0}$ is not a convolution semigroup, we will see that every ν_{t} is infinitely divisible.

Theorem 4.2. For $t>0$ we have

$$
\begin{equation*}
\nu_{t}=\gamma_{t} * \mathbf{D}_{t} \mu_{1 / t} \tag{4.4}
\end{equation*}
$$

where γ_{t} denotes the gamma distribution with shape $1 / 2$ and scale $2 t$:

$$
\begin{equation*}
\gamma_{t}=\frac{\exp \left(\frac{-u}{2 t}\right)}{\sqrt{2 \pi t u}} \chi_{(0,+\infty)}(u) d u \tag{4.5}
\end{equation*}
$$

and $\mathbf{D}_{t} \mu_{1 / t}$ is the dilation of $\mu_{1 / t}$ by t :

$$
\begin{equation*}
\mathbf{D}_{t} \mu_{1 / t}=\frac{\exp \left(\frac{-(u-1)^{2}}{2 t u}\right)}{\sqrt{2 \pi t u^{3}}} \chi_{(0,+\infty)}(u) d u . \tag{4.6}
\end{equation*}
$$

In particular, ν_{t} is infinitely divisible.
Proof. From Theorem 4.1 we see that the characteristic function of ν_{t} :

$$
\begin{equation*}
\psi_{t}(x)=\frac{\exp \left(\frac{1}{t}-\frac{1}{t} \sqrt{1-2 t x \mathrm{i}}\right)}{\sqrt{1-2 t x \mathrm{i}}} \tag{4.7}
\end{equation*}
$$

is the product of

$$
\frac{1}{\sqrt{1-2 t x \mathrm{i}}}
$$

the characteristic function of γ_{t} and

$$
\exp \left(\frac{1}{t}-\frac{1}{t} \sqrt{1-2 t x \mathrm{i}}\right)
$$

the characteristic function of $\mathbf{D}_{t} \mu_{1 / t}$, which proves (4.4). Since both γ_{t} and $\mathbf{D}_{t} \mu_{1 / t}$ are infinitely divisible, so is their convolution ν_{t}.

Let us list some interesting integer sequences which arise from the polynomials (3.1) and (3.2), together with their numbers in the On-line Encyclopedia of Integer Sequences [11] and the corresponding probability distribution. For their combinatorial applications we refer to [11]:
(1) A144301: $w_{n}(1)$, moments of μ_{1},
(2) A107104: $w_{n}(2)$, moments of μ_{2},
(3) A043301: $w_{n+1}(2) / 2$, moments of the density function $u \cdot \rho_{2}(u) / 2$,
(4) A080893: $2^{n} \cdot w_{n}(1 / 2)$, moments of the density function $\rho_{1 / 2}(u / 2) / 2$,
(5) A001515: $y_{n}(1)$, moments of ν_{1},
(6) A001517: $y_{n}(2)$, moments of ν_{2},
(7) A001518: $y_{n}(3)$, moments of ν_{3},
(8) A065919: $y_{n}(4)$, moments of ν_{4}.

References

[1] N. Balakrishnan, V. B. Nevzorov, A primer on statistical distributions, Wiley-Interscience, Hoboken, N. J. 2003.
[2] S. Bouroubi, M. Abbas, New identities for Bell polynomials, Rostock. Math. Kolloq. 61 (2006) 49-55.
[3] L. Carlitz, A Note on the Bessel Polynomials, Duke Math. J. 24 (2) (1957) 151-162.
[4] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York 1994.
[5] E. Grosswald, Bessel Polynomials, Lecture Notes in Mathematics. New York: Springer (1978).
[6] T. X. He, L. C. Hsu, P. J.-S. Shiue, Symbolization of generating functions; an application of the Mullin-Rota theory of binomial enumeration, An International Journal of Computers and Mathematics with Applications 54 (2007) 664-678.
[7] H. L. Krall, O. Frink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65 (1) (1948): 100-115.
[8] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Mathematics 308 (2008) 2450-2459.
[9] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge 2010.
[10] S. Roman, The umbral calculus, Academic Press, 1984.
[11] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, (2013), http://oeis.org/
[12] F. Steutel, K. van Harn, Infinite divisibility of probability distributions on the real line, Marcel Dekker 2004.

Instytut Matematyczny, Uniwersytet Wroceawski, Plac Grunwaldzki 2/4, 50-384 Wroceaw, Poland

E-mail address: mlotkow@math.uni.wroc.pl
E-mail address: annaromanowicz85@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05A40; Secondary 60E07, 44A60.
 Key words and phrases. Sequence of binomial type, Bessel polynomials, inverse Gaussian distribution.
 W. M. is supported by the Polish National Science Center grant No. 2012/05/B/ST1/00626, A. R. is supported by the Grant DEC-2011/02/A/ST1/00119 of National Centre of Science.

