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We consider graphs that represent pairwise
marginal independencies amongst a set of vari- (@) (b) ()
ables (for instance, the zero entries of a covari-
ance matrix for normal data). We characterize the
directed acyclic graphs (DAGSs) that faithfully ex-
plain a given set of independencies, and derive al-
gorithms to efficiently enumerate such structures.
Our results map out the space of faithful causal
models for a given set of pairwise marginal inde-
pendence relations. This allows us to show the
extent to which causal inference is possible with-
out using conditional independence tests.

Figure 1: (a) Amarginal independence graghi whose
missing edges represent pairwise marginal independencies
(b) A faithful DAG G entailing the same set of pairwise
marginal independencies &s (c) A graph for which no
such faithful DAG exists.

More precisely, we will consider the following problem.
We are given the set of pairwise marginal independencies
that hold amongst some variables of interest. Such sets
can be represented as graphs whose missing edges corre-
spond to independencies (Figlile 1a). We call such graphs
1 INTRODUCTION marginal independence graph#/e wish to find DAGs on

the same variables that entail exactly the given set of pair-
DAGs and other graphical models encode conditional inwise marginal independencies (Figlile 1b). We call such
dependence (CI) relationships in probability distribnio  DAGs faithful. Sometimes no such DAGs exist (e.g., Fig-
Therefore, Cl tests are a natural building block of algo-ure[dc). Else, we are interested in finding the setlidfith-
rithms that infer such models from data. For example, thdul DAGs, hoping that this set will be substantially smaller
PC algorithm for learning DAGs (Kalisch and Bilhimann, than the set of all possible DAGs on the same variables.
2007) and the FCI | (Spirtesetial.,, 2000) and RFCIThose candidate DAGs could then be probed further by us-
(Colombo et all, 2012) algorithms for learning maximal an-ing joint marginal or conditional independence tests.
cestral graphs are all based on Cl tests.
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Other authors have represented marginal (in)dependencies
Cl testing is still an ongoing research topic, to which theusing bidirected graphs. (Drton and Richardson, 2003;
UAI community is contributing (e.d. Zhang et al., 2011; IRichardsonl 2003; Drton and Richardson, 2008b), instead
Doran et al., 2014). But at least for continuous variablespf undirected graphs like we do here. We hope that
Cl testing will always remain more difficult than test- the reader is compensated for this small departure from
ing marginal independence for quite fundamental reasonsommunity standards by the lower amount of clutter
(Bergsma, 2004). Intuitively, the difficulty is that two var in our figures, and the greater ease to link our work
ablesx andy could be dependent “almost nowhere”, e.g.,to standard graph theoretical results. We also em-
for only a few values of the conditioning variable This  phasize that we model only pairwise, and not higher-
suggests a two-staged approach to structure learning: firsirder joint dependencies. However, for Gaussian data,
try to learn as much as possible from simpler independencgairwise independence entails joint independence. In
tests before applying CI tests. Here, we present a theorethat case, our marginal independence graphs are equiv-
ical basis for extracting as much information as possiblealent to covariance graphs(Cox and Wermuth, 1993;
from the simplest kind of stochastic independence — pairPearl and Wermuth, 1994; Drton and Richardson, 2003,
wise marginal independence. 2008a; Pefa, 2013), whose missing edges represent zero
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covariances. of another node if v = v or if there is a directed path
g For each edge — v, we say that is
a parentof v andwv is achild of w. If two nodesu, v in
a directed graph have a common ancestofwhich can
geu orv), then the pathy + ... «+ w — ... > vis
called atrek connecting: andv. A DAG is calledtransitive
if, for all u # v, it contains an edge — v whenever

Our results generalize the work of Pearl and Wermut
(1994) who showed (but did not prove) how to fisdme

faithful DAGs for a given covariance graph. We review
these and other connections to related work in Se¢fion
where we also link our problem to the theory of partially

ordered sets (posets). This connection allows us to ideqhere is a directed path fromto v. Given a DAGG, the

tify certain maximal and minimal faithful DAGs. Based transitive closuras the unique transitive graph that implies
on these “boundary DAGs” we then derive a characteri- d grap P

zation of all faithful DAGs (Sectioll4), and construct re- the same ancestor relationshipgiasvhereas theransitive

lated enumeration algorithms (Sectidn 5). We use these argaductionisthe uniqL!e edge—minimal graph thatimplies the

. . X : same ancestor relationships.
gorithms to explore the combinatorial structure of faithfu
DAG models (Sectiohl6) which leads, among other things)n this paper we encounter several well-known graph
to a quantification of how much pairwise marginal inde- classes, e.g., chordal graphs and trivially perfect graphs
pendencies reduce structural causal uncertainty. FjnallyVe will give brief definitions when appropriate, but we di-
we ask what happens when a set of independenciesatan rect the reader to the excellent survey by Brandstadt et al.
be explained by any DAG. How many additional variables(1999) for further details.
will we need? We prove that this problem is NP-hard (Sec-

tion(d). 3 SIMPLE MARGINAL INDEPENDENCE
Preliminary versions of many of the results presented in  GRAPHS
this paper were obtained in the Master’s thesis of the sec-

ond authori(ldelberger, 2014). In this section we define the class of graphs which can

be explained using a directed acyclic graph (DAG) on the
2 PRELIMINARIES same variables. We will refer to such graphssasple
marginal independence grapfSMIGS).

Definition 3.1. A graphi/ = (V, E(U{)) is called thesim-
ple marginal independence gra(®MIG), ormarginal in-

In this paper we use the abbreviatifinfor the connective
“if and only if”. A graph G = (V, E) consists of a set
of nodes (variablesy and set of edge&. We consider dependence grapbf a DAG G — (V. E(G)) if for all

undirected graphs (which we simply refer to as graphs) = .
directed graphs, and mixed graphs that can have both undb’w €V,v—w € EW)iff vandw have a common

. ancestor ing. If U is the marginal independence graph of
rected edges (denotesas y) ‘f.’md dlr_ected edge_s (denoted G then we also say thaj is faithful to &/. SMIG is the
asx — y). Two nodes ar@adjacentif they are linked by

d Acli . hi deset C V h set of all graphd/ for which there exists a faithful DAG
any ecge. iquein a grapn IS a node Set & ' suc G. Note that each DAG has exactly one marginal indepen-
that allu,v € C are adjacent. Conversely, ardependent

setis a node sef C V in which no two nodes,v € I dence graph.
are adjacent. Anaximal cliqueis a clique for which no
proper superset of nodes is also a clique. ForamyV,
the neighborhoodN (v) is the set of nodes adjacent to
and theboundary Bdv) is the neighborhood af including
v, i.e. Bd(v) = N(v) U {v}. A nodev is calledsimpli-
cial if Bd(v) is a clique. Equivalentlyy is simplicial iff
Bd(v) C Bd(w) for all w € N(v) (Kloksetal.[2000). 3:1 SMIGs and Dependency Models

A cligue that contains simplicial nodes is calledimplex In thi b : Il briefly th | ing f
Every simplex is a maximal clique, and every simplicial n this subsection we recall briefly the general setting for

de bel t il implex. T ed i modeling (in)dependencies proposed|by Pearl and Verma
gonoedes i(;'r}g;vs(vtie)i??or)/t\(l)vgeg?ggﬁseg)(: Tﬁgg(g)(;)ggd (1987) and show the relationship between that model and
G = (V,E(G)) \'Ne haveE(G) C E(G) t’heng isan SMIGs. In the definitions beloW denotes a set of vari-
¥ — ' ables andy, Y andZ are three disjoint subsets bt

Again, we point out that marginal independence graphs are
often called (and drawn agjdirected graphsn the liter-
ature, though the term “marginal independence graph” has
also been used by various authors (e.g. Tanlet al., 2014).

edge subgraplof G’ andG’ is anedge supergraphbf G.
Theskeletorof a directed graply is obtained by replacing Definition 3.2 (Pearl and Verma (1987))A dependency
every edge: — v by an undirected edge— v. model M overV is any subset of triplet&€X, Z, V') which

represent independencies, that (X, Z,Y) € M asserts

A pathof lengthn — 1 is a sequence of distinct nodes in that X is independent of givenZ.

which successive nodes are pairwise adjacentlirécted
pathz — ... — y consists of directed edges that all point A probabilistic dependency modék p is defined in terms
towardsy. In a directed graph, a nodeis anancestor of a probability distribution P over V. By definition



(X,Z,Y) € Mp iff for any instantiationz, § and 2 of  inthe data are closed under these properties, then the entir
the variables in these subsd®i | § 2) = P(& | 2). marginal dependency model is represented by the marginal

Adirected acyclic graph dependency moda}; is defined independence graph.

in terms of a DAGG. By definition(X, Z,Y) € Mg iff
X andY are d-separated byZ in G (for a definition of
d-separation by a sef see Pearl and Verma (1987)).

3.2 SMIGs and Partially Ordered Sets

To reach our aim of a complete and constructive character-
We define amarginal dependency model, resp. marginal iZation of the DAGs f_aithful to a given SMIG, it is u.sefull
probabilistic and marginal DAG dependency model, analol0 observe that marginal independence graphs are invariant
gously as Pearl and Verfria (1987) with the restriction thatVith respect to the insertion or deletion of transitive esige
the second component of any trigl&, Z, V) is the empty from the DAG. We formalize this as follows.

set. Thus, such marginal dependency models are sets Dlefinition 3.6. A (labelled)posetP is a DAG that is iden-
pairs(X,Y). Itis easy to see that the following properties tical to its transitive closure.

are satisfied. Proposition 3.7. The marginal independence graphs of a
Lemma 3.3. Let M be a marginal probabilistic depen- DAG G and its transitive closuré(G) are identical.
dency model or a marginal DAG dependency model. Then

Mis closed under: Proof. Two nodes are not adjacent in the marginal inde-
Symmetry(X,Y) e M < (Y, X) € Mand pendence graph iff they have no common ancestor in the
Decomposition(X,Y UW) e M = (X,Y) e M. DAG. Transitive edges do not influence ancestral relation-

Moreover, if M is a marginal DAG dependency model then ships. 0

it is also closed under
Union: (X,Y), (X, W) e M = (X, YUW) e M. We thus restrict our attention to findipgsetghat are faith-

. _— . ul to a given SMIG. Note that faithful DAGs can then be
The marginal probabilistic dependency model is not Closecg)btained by deleting transitive edges from faithful posets

under union in general. For instance, consider two inde-. X . .
. —_ . . since no DAG obtained in this way can be an edge sub-
pendent, uniformly distributed binary variablgsand w . . o .
and letz — y @ w, whered denotes xor of two bits. For graph of two different posets, this construction is unique
the moder def}ned in terms of probability over, y, w and well-defined. In particular, by deletiradl transitive
P )

edges from a poset, we obtain a sparse graphical represen-
we have thaf{z}, {y}) and({z}, {w}) belong tal.- but tation of the poset as defined below.
({z}, {y,w}) does not.

. ) o Definition 3.8. Given a posef? = (V, E), its transitive
In this paper we willnot assume that the marginal inde- (equctionis the unique DAGGp = (V,E') for which
pendencies in the data are closed under union. Instead, W8(G) = P and E' is the smallest set Whé@’ CE.

only consider pairwise independencies, which we formal-

ize as follows. Transitive reductions are also known ldasse diagrams

Definition 3.4. Let M be a marginal probabilistic depen- though Hasse diagrams are usually unlabeled. Different

dency model oveV. Then the simple marginal indepen- posets can have the same marginal independence graphs,

dence grapti/ = (V, E(U)) of M is the graph in which €.g. the posets with Hasse diagrafis= =z — y — =2

r—y € EBEU)iff ({z},{y}) ¢ M. andP; = z + y — z. Similarly, Markov equivalence is a
sufficient but not necessary condition to inducing the same

Thus, in general, marginal independence graphs do ngharginal independence graphs (adding an edge = to

contain any information on higher-ordeint independen-  p, changes the poset and the Markov equivalence class, but
cies present in the data. However, under certain comnot the marginal independence graph).

mon parametric assumptions, dependency models would

be closed under union as well. This holds, for instanceg 5 Recognizing SMIGs

if the data are normally distributed. In that case, marginal

independence is equivalent to zero covariance, pairwise inye first recall existing results that show which graphs ad-
dependence implies joint independence, and marginal inmit a faithful DAG at all, and how to find such DAGs if
dependence graphs become covariance graphs. possible. Note that many of these results have been stated
without proof (Pearl and Wermuth, 1994), but our connec-

The following is not difficult to see. ) - )
P ton 3.5 A inal d d &t which tion to posets will make some of these proofs straightfor-
roposition 2.>. A marginal dependency mod®t which -, The following notion related to posets is required.

is closed under symmetry, decomposition, and union coin- ~ = i

cides with the transitive closure d{{z}, {y}) : z,y € Def|’n|t|on 3.9 (Bound graph [(McMorris and Zaslavsky,

V} N M over symmetry and union. 1982)) For a posetP = (V, E), the bound graph3 =
(V, E") of P is the graph where: — y € E' iff z andy

This Proposition entails that if the marginal dependencieshare alower boundi.e., have a common ancestorh



SMIG chordal node ini{’. Thenl/ is the marginal independence graph of
g. O

X

trivially
perfect

The graph class characterization implies efficient recogni
tion algorithms for SMIGs.

Theorem 3.13.1t can be tested in polynomial time whether
a graphi{ is a SMIG.

Proof. Verifying the graphical condition of Theordm 3110

Figure 2: Relation between chordal graphs, trivially perfe @mounts to testing whether all edges reside within a sim-
graphs, anMIG. In graph theorySMIG is known as plex. However, knowing that SMIGs are bound graphs, we

the class of (upper/loweBound graphgCheston and Jap, can apply an efficient algorithm for bound graph recog-
2006). nition that uses radix sort and simplex elimination and

achieves a runtime @ (n + sm) (Skowrohska and Systo,
1984), wheres < n is the number of simplexes in the
Theorem 3.10. SMIG is the set of all graphs for which graph. This is typically better tha@(n?) because large

every edge is contained in a simplex. m implies smalls and vice versa. Alternatively, we can
apply known fast algorithms to find all simplicial nodes
Proof. This is Theorem 2 in_Pearl and Wermuth (1994) (Kloks et al., 2000). O

(who referred to simplexes as “exterior cliques”). Alter-

natively, we can observe that the marginal independencg FINDING FAITHFUL POSETS
graphi/ of a posetP (Definition[3.1) is equal to its bound
graph (Definition[31). ~The characterization of bound\ye now ask how to find faithful DAGs for simple marginal
graphs as “edge simplicial” graphs has been proven by,gependence graphs. We observed that marginal inde-
McMorris and Zaslavskyl (1982) by noting that simplicial yendence graphs cannot distinguish between transitively
nodes it/ correspond to possible minimal elementsin  gqyivalent DAGS, so a perhaps more natural question is:
We note that this result predates the equivalent statement iyhich posetsare faithful to a given graph? As pointed out
Pearl and Wermuth (1994). L pefore, we can obtain all DAGs from faithful posets in a
unigue manner by removing transitive edges. A further ad-
Though all bound graphs have a faithful poset, not allvantage of the poset representation will turn out to be that
bound graphs have one with the same skeleton; see Fighe “smallest” and “largest” faithful posets can be charac-
ure[la,b for a counterexample. However, the graphs foferized uniquely (up to isomorphism); as we shall also see,
which a poset with the same skeleton can be found argnis is not as easy for DAGs, except for marginal indepen-
nicely characterizable in terms of forbidden subgraphs.  dence graphs in a certain subclass.

Theorem 3.11 (Pearland Wermuth| (1994))Given a
graphi/, a DAGG that is faithful toi/ and has the same 4.1 Maximal Faithful Posets

skeleton exists ift/ is trivially perfect (i.e.,i/ has no ) o )
Py=——— noraC,= | as induced subgraph). Our first aim is to characterize the “upper bound” of the

faithful set. That is, we wish to identify those posets for
It is known that the trivially perfect graphs are the interse  Which no edge supergraph is also faithful. We will show
tion of the bound graphs and the chordal graphs (Figure 2hat a construction described by Pearl and Werhuth (1994)
Cheston and Jap, 2006). solves exactly this problem.

This nice result begs the question whether a similar charP€finition 4.1. Foragraphi/ = (V, E()), thesin.kgraph
acterization is also possible fSMIG. As the following S ) = (V. E(S(U))) is constructed as follows: for each

observation shows, that is not the case. edgeu — v in U, add to E(S(U)): (1) an edgeu — v if
- ) ) Bd(u) € Bd(v); (2) an edgeu + v if Bd(u) 2 Bd(v); (3)
Proposition 3.12. Every grapht/ is an induced subgraph 5, edgeu — v if Bd(u) = Bd(v).

of some grapli’ € SMIG.
For instance, the sink graph of the graph in Figure 1a is the
Proof. Take any grapli{ = (V, E) and construct a new graph in Figuréflb.

graph{ as follows. For every edge= u — v inl{, add  pefinition 4.2 (Pearl and Wermuth (1994))A sink orien-
a new nodev. to V and add edges. — v andve. — v.  tationof a graphi/ is any DAG obtained by replacing every

Obviouslyl{ is an induced subgraph of . To see that/’  yndirected edge a$(1/) by a directed edge.
is in SMIG, consider the DAG/ consisting of the nodes

in U’ and the edges < v. — u and for each newly added We first need to state the following.



Lemma 4.3. Every sink orientation af is a poset. NN NN LT N
o/ o o/ o

Proof. Fix a sink orientationG and consider any chain @) (b) ©) (d)

x — y — z. By construction, this implies that Bd) C

Bd(z). Hence, ifz andz are adjacent in the sink graph, Figure 3: (a) A graply with three simplicial nodes (open

then the only possible orientation is — 2. There can circles). (b) Its unique minimal faithful poséy’. (c,d) The

be two reasons why and z are not adjacent in the sink unique faithful DAGs with minimum (c) or maximum (d)

graph: (1) They are not adjacentZih But thenG would  numbers of edges.

not be faithful, sincej implies the edger — z. (2) The

edge was not added to the sink graph. But this contradicts

Bd(x) C Bd(z). O For example, Figuriel 3b shows the unigigg for the graph
in Figure[3a.

This Lemma allows us to strengthen Theorem 2 byTheorem 4.7. Lett/ = (V, E) € U. Then a poseP is a

Pearl and Wermuth (1994) in the sense that we can replagginimal poset faithful ta/ iff P = I; for a setl consist-

“DAG” by “maximal poset” (emphasized): ing of one simplicial vertex for each simplex.

Theorem 4.4. P is amaximal posefaithful tot/ iff P is a

sink orientation ot/. Proof. We first show that if’ is a set consisting of one sim-

plicial node for each simplex, the’ is a minimal faithful
poset. Every edge € E(U) resides in a simplex, so it is
either adjacent td or both of its endpoints are adjacent to
somei € I. In both casesl;;” impliese. Also I;;” does not
imply more edges than aredh Now, suppose we delete an
edgei — « from I;”. This edge must exist i1, elsei was
not simplicial. But nowl;;” no longer implies this edge.
Thus, I;;/ is minimal. Second, assume tH&tis a mini-
mal faithful poset. Assum#& would contain a sequence
of two directed edges — y — z. ThenP would also
contain the edge — z. But theny — z could be deleted
from P without changing the dependency graph, &naas
not minimal. So,P does not contain any directed path of

) ) length more than 1. Next, observe that for each simplex in
Every maximal faithful poset fot/ can be generated by U, the nodes must all have a common ancesta? iWith-

first fixing a topological ordering a$ (/) and then generat- out paths of length> 1, this is only possible if one nodie
ing the DAG that corresponds to that ordering, an idea thzg7
0]

. : the simplex is a parent of all other nodes, and there are
has also been mentioned|by Drton and Richardson (2008 P P

) : ) X X X edges among the child nodesiofrinally, each such
This construction makes it obvious that all maximal faithfu must be a simplicial node it1; otherwise, it would reside
posets are isomorphic. ' '

in two or more simplexes, and would have to be the unique
For curiosity of the reader, we note th&(i/) can parent in those simplexes. But then the childrehwbuld
also be viewed as aomplete partially directed acyclic form a single simplex /. O
graph (CPDAG), which represents the Markov equiv-

alence class of edge-maximal DAGs that are faithfull jke the maximal posets, all minimal posets are thus iso-

with /. CPDAGs are used in the context of inferring morphic. We point out that the minimal posets contain no

DAGs from datal(Spirtes etal., 2000; Chickefing. 2003;transitive edges and therefore, they are also edge-minimal
Kalisch and Biihimann, 2007), which is only possible upfajthful DAGs. However, this does not imply that min-

The following is also not hard to see.

Lemma 4.5. For a SMIGU, every DAGG that is faithful
toU is a subgraph of some sink orientationZof

Proof. Obviously the skeleton off cannot contain edges
that are not iri/. So, suppose — y is an edge irg but
conflicts with the sink orientation; that is, the sink graph
contains the edgg — «. That is the case only if Bd(y)

is a proper subset of Bdz). However, in the marginal
independence graph ¢f, any node that is adjacent to
(has a common ancestor) must also be adjacent ihus,
the marginal independence graphdofannot be/. O

to Markov equivalence. imal posets have the smallest possible number of edges
amongst all faithful DAGs (FigurE]3). There appears to
4.2 Minimal Faithful Posets be no straightforward characterization of the DAGs with

o ) ) ) the smallest number of edges for marginal independence
A minimal faithful poset td{ is one from which no further  4raphs in general. However, a beautiful one exists for the
relations can be deleted without entailing more indepeng,pclass of trivially perfect graphs.

dencies than are given By.
Definition 4.6. Let!{ = (V, E) be agraphandlef C V

be an independent set. Théx is the poset consisting of .
the nodes inZ, their neighbors in{, and directed edges Theorem 4.9. A connected SMIG{ has a faithful tree

i — j for eachi, j wherej € N (7). poset iff it is trivially perfect.

Definition 4.8. A tree poseis a poset whose transitive re-
duction is a tree (with edges pointing towards the root).



Proof. The bound graph of a tree poset is identical to its
comparability graphBrandstadt et al., 1999), which is the
skeleton of the poset. Comparability graphs of tree posets

coincide with trivially perfect graphs (Wolk, 1965). O m
Since no connected graph emodes can have fewer edges \l/ K , i\ f\
than the transitive reduction of a tree poset on the same () MEEEN M i<_ A .2_1‘

nodes (i.e.p — 1), tree posets coincide with faithful DAGs
having the smallest possible number of edges.

b

How do we construct a tree for a given trivially perfect ®
graph? Every such graph must haveeatral point which ~ Figure 4: Example of the procedure in Proposifion 5.2 that,
is a node that is adjacent to all other nodes. We set this nodgiven a SMIG (a), enumerates all faithful DAGs (b). For
as the sink of the tree, and continue recursively with thédrevity, only the graphs that correspond to a fixed topolog-
subgraphs obtained after removing the central point. Eacital ordering are displayed. Only one defopen circles)
subgraph is also trivially perfect and can thus be oriente¢an be chosen in step (1). Thick edges and filled nodes
into a tree. After we are done, we link the sinks of the treedhighlight the DAGG. Mandatory edges (solid) link to
of the subgraphs to the original central point to obtain thethe sources of; if any such edge was absent, one of the
full tree (Wolk,1965). relationships in the posdf,” would be missing. Optional

edges (dashed) are transitively implied from the mandatory

5 FINDING FAITHFUL DAGS ones andj.

If a given marginal ?nerepdence gralghadmits faithful ¢4, each simplex. (2) Generate any DAG on the nddes
DAG models, th_en it is of interest to enumerate these_. Ahatis an edge subgraph of some sink orientatiott of3)
trivial enumeration procedure is the following: start with p4q any subset of edges frafy’ such that the transitive
the sink graph o/, choose an arbitrary edgeand form  ¢j55yre of the resulting graph contains all edgedpf.

all 2 or 3 subgraphs obtained by keepin(f it is directed),

orientinge (if it is undirected), or deleting it. Apply the Wwhile step (3) may seem ambiguous, Figlire 4 illustrates
p_rocedure recursively to these subgraphs. Du_nng thetecuthat after step (2), the edges froffy decompose nicely
sion, do not touch edges that have been previously chosemto mandatoryandoptionalones. This means that we can

If the current graph is a DAG that is faithful 6, output it;
otherwise, stop the recursion.

However, we can do better by exploiting the results of th

€

in fact stop the construction procedure after step (2) and
output a “graph pattern”, in which some edges are marked
as optional. This is helpful in light of the potentially huge

space of faithful models, because every graph pattern can

previous section, which will allow us to derive enumeration :
algorithms that generate representations of multiple DAG&EPresent an exponential number of DAGs.
at each step.

5.2 Enumeration of Faithful Posets

5.1  Enumeration of Faithful DAGs The DAGs resulting from the procedure in Proposifiod 5.2

Having characterized the maximal and minimal faithful &€ in general redundant because no care is taken to avoid
posets, we are now ready to construct an enumeration prél€nerating transitive edges. By combining Proposifiofis 5.
cedure for all DAGs that are faithful to a given graph. We @d5.2, we obtain an algorithm that generates sparse, non-
first state the following combination of Theordm4.4 and"€dundant representations of the faithful DAGs.

Theoreni 4.77.

Proposition 5.1. A DAG G = (V, E(G)) is faithful to a
SMIGU = (V, E(U)) iff (1) G is an edge subgraph of some
sink orientation of/ and (2) the transitive closure &f is
an edge supergraph df,” for some node seftt consisting
of one simplicial node for each simplex.

Theorem 5.3. A posetP is faithful toid = (V, E(U)) iff

it can be generated by the following steps. (1) Pick any set
I C V consisting of one simplicial node for each simplex.
(2) Generate a posé? on the noded” \ I that is an edge
subgraph of some sink orientationéf (3) AddZ;;” to P.

A nice feature of this construction is that step (3) is unam-

From this observation, we can derive our first constructiorPiguous: every choice fof in step (1) andP in step (2)

procedure for faithful DAGs.

Proposition 5.2. A DAG G is faithful to a SMIGU =
(V,E(U)) iff it can be generated by the following steps.
(1) Pick any sel C V consisting of one simplicial node

yields exactly one poset. Figuré 5 gives an explicit pseu-
docode for an algorithm that uses Theofeni 5.3 to enumer-
ate all faithful posets.

Our algorithm is efficient in the sense that at every inter-



function FAITHFULPOSETYU = (V(U), E(U))) connected  conn. unique

function LISTPOSETHG, S, R, I;") n graphs SMIGs DAG
if G is acyclic and atransitivihen 2 1 1 0
Outputg U I;; 3 2 2 1
if skeleton ofG C skeleton ofS then 4 6 4 1
e + some edge consistent Wifi{(S) \ R 5 21 10 2
LISTPOSETHG, S, RU{e}, ;) 6 112 27 4
E(G) «+ E(G) U{e} 7 853 88 10
LISTPOSETHG, S, RU {e}, I;;) 8 11,117 328 27
for all node setd of i/ consisting of one simplicial 9 261,080 1,460 90
node per S|mp|eﬂo 10 11,716,571 7,799 366
G < empty graph on nodes &f(U/) \ 1 .
S + sink graph ot/ on nodes o/ (/) \ I Table 1: C_:omparlson of the number of unlabeled connected
LisTPOSETYG, S, 0, I;;) graphs withn nodes to the number of such graphs that are

also SMIGs. Fon = 13 (not shown), non-SMIGs outnum-
Figure 5: Enumeration algorithm for faithful posets. ~ Per SMIGs by more that0” : 1.

S

6.1 Counting SMIGs

We revisit the question: when can a marginal independence
graph allow a causal interpretation (Pearl and Wermuth,
() 1994)? More precisely, we astow manymarginal inde-
pendence graphs onvariables are SMIGs. We reformu-

y ’ late this question into a version that has been investigated
\ in the context of poset theory. Let theightof a posetP
* * * be the length of a longest path 7n. The following is an

obvious implication of Theorem 4.7.

. . Corollary 6.1. The numberM (n) of non-isomorphic
\ \ \ SMIGs withn nodes is equal to the number of non-
. 7 /<—0 isomorphic posets on variables of height 1.

Enumeration of posets is a highly nontrivial problem, and
(b) an intensively studied one. The online encyclopedia of
) o .. Iinteger sequences (OEIS) tabulafggn) for n up to 40
Figure 6: (a) A grapld/ and its sink graph. (b) Transitive (vampach| 2015). We give the first 10 entries of the se-
red_uctlons of all 6 faithful posets _that are generated by Al'quence in TablE]1 and compare it to the number of graphs
gorithm FAITHFUL PoseTsfor the input graph (a). in general (up to isomorphism). As we observe, the fraction
of graphs that admit a DAG on the same variables decreases

o . . _ swiftly asn increases.
nal node in its recursion tree, it outputs a faithful poset.

At every node we need to evaluate whether the current ) i i

G is acyclic and atransitive (i.e., contains no transitive®-2 Graphs with a Unique Faithful DAG
edges), which can be done in polynomial time. Also
simplexes and their simplicial vertices can be found in

polynomial time_Kloks et al.| (2000). Thus, our algorithm The classical example is the graph - — -, which for more

is a polynomial delay enumeratio_n algorithsimilar to than 3 nodes generalizes to a “star” graph. However, for

the ones usg}d .to _enumer'ate adjustment sets fo[ DAG§ or more nodes there are graphs other than the star which

(Textor and Liskiewidz, 2011; van der Zander €tlal., ‘2014).61ISO induce a single unique DAG. Combining Lerimd 4.5

Figure[® shows an example output for this algorithm. and Theorem 417 allows for a simple characterization of all
such SMIGs.

Corollary 6.2. A SMIGU with n nodes has a unique faith-

ful DAG iff each of its simplexes contains only one simpli-
In this section, we apply the previous results to explorecjal node and its sink orientation equalg’.
some explicit combinatorial properties of SMIGs and their

faithful DAGs. Based on this characterization, we computed the number of

From a causal inference viewpoint, the best we can hope
foris a SMIG to which only single, unique DAG is faithful.

6 EXAMPLE APPLICATIONS



n  posets with, nodes faithful toC', the DAGs with some auxiliary nodes. We generalize Defi-
1 1 1 nition[3.1 as follows.
;2; 13 g Definition 7.1. Let{ = (V, E(U)) be a graph and let
4 219 76 Q, withQ NV = 0, be a set of auxiliary nodes. A DAG
c 4.931 1095 G = (VUQ,E(@)) is faithful to/ if for all v,w € V,
5 130,023 25 386 v —w € E(U) iff v andw have a common ancestor ¢h
7 6,129,859 910,161 The result below follows immediately from Proposi-
8 431,723,379 49,038,872 tion[3.12.
9 44,511,042,511 3,885,510,411 " . .
10 6,611,065,248,783 445.110.425.110 Proposition 7.2. For every grapti{ there exists a faithful

DAG U with some auxiliary nodes.

Table 2: Possible labelled posetsonariables before and

after observing a complete SMIG, . Obviously, ifi/ € SMIG then there exists a faithful DAG

to Y with @ = (. Forid ¢ SMIG, from the proof of

Propositior 3.12 it follows that there exists a §giof at
SMIGs with unique DAGs for up till 9 (Table[1). Inter- most|E(U)| nodes and a DAG such thatg is faithful
estingly, this integer sequence does not seem to correspoit@ ¢/ with auxiliary nodes). But the problem arises to

to any known one. minimize the cardinality of).
Theorem 7.3. The problem to decide if for a given graph
6.3 Information Content of a SMIG U and an integek, there exists a faithful DAG with at most

) ) ) ) k auxiliary nodes, is NP-complete.
How much information does a marginal independence

graph contain? Let us denote the number of posets OB, It is easy to see that the problem is in NP. To prove
n variables byP(n). After observing a marginal inde- ¢ it js NP-hard, we show a polynomial time reduction
pendence grapt/, the number of models that are still o the edge clique cover problem, that is known to be

faithful to the data reduces to siz&(n) — k(U), where  \p_completel(Katd, 1972). Recall that the problem edge
k(U) < P(n) (indeed, quite ofterk(i{) = P(n) as We  (jique cover is to decide if for a grah and an integek

can see in Tablel1). Of course, the numb@r) strongly  yere exist a set of subgraphs of/, such that each sub-

depends on the structure of the SMIG But even inthe o9 is 5 clique and each edgebis contained in at least
worst case whel{ is a complete graph, the space of pos-j,a of these subgraphs?

sible models is still reduced because not all DAGs entail a _ .
complete marginal independence graph. Lettd = (V. E) andk be an instance of the edge clique
cover problem, with/ = {v1,...,v,}. We construct the

Thus, the following simple consequence of Theofeni 4'7marginal independence graph as follows. LetlV —

helps to derive a worst-case bound on how much a SMI wis...,wp}. ThenV(U') = VUW and EU') =
reduces structural uncertainty with respect to the mode U{v; —w; : i = 1,...,n}. Obviously,i{’ can be

space of posets with variables. constructed froni/ in polynomial time. We claim that
Corollary 6.3. The number of faithful posets with respect/ = (V, E) can be covered b¥. % cliques iff fori/’ there
to a complete graph with nodes is: times the number of  exists a faithful DAGG with at mostk auxiliary nodes.

posets with: — 1 nodes. Assume first that/ = (V, E') can be covered by at mokt

Tablel2 lists the number of possible posets before and aftéiques, let us say’s, . ..., G, Wlith K S/ k. Then we can
observing a complete SMIG for up to 10 variables. In thisconstruct a faithful DAGS for ¢/ with k" auxiliary nodes

sense, ab = 10, the uncertainty is reduced about 15-fold. as follows. Its set of nodes i§(G) = V. UW U Q, where

={q,...,q}. The edgeF(G) can be defined as
We note that a similar but more technical analysis is possi-Q o o'} ges(9)

ble for uncertainty reduction with respect to DAGs instead {4, 5 v, : i =1,...,n} U U{qj —v:ive ;)

of posets. We omit this due to space limitations. ;

7 MODELS WITH LATENT VARIABLES Itis easy to see that is faithful tol/’.

Now assume that a DAG, with at mostk auxiliary nodes
In this section we consider situations in which a graph Q, is faithful toZ/’. From the construction @f’ it follows
is not a SMIG (which can be detected using the algorithnthat for all different nodes;,v; € V there is no directed
in Theoren{3.13). Similarly to the definition proposed in path fromv; to v; in G. If such a path exists, then is an
Pearl and Vermel (1987) for the general dependency modancestor of; in G. Sincev; —w; is an edge of/’, the nodes
els, to obtain faithful DAGs for such graphs we will extend v; andw; have a common ancestordnwhich must be also



a common ancestor af; andv; — a contradiction because
w,; andv; are notincident id{’. Thus, all treks connecting
pairs of nodes fron¥ in G must contain auxiliary nodes.

Next, we slightly modifyG: for eachw; we remove all in-
cident edges and add the new edge— v;. The resulting
graphd’, is a DAG which remains faithful t&/’. Indeed,
we cannot obtain a directed cycle in tfesince now; has
an in-edge and the origingl was a DAG. To see that the
obtained DAG remains faithful t&/’ note first that after
the modificationsyw; andv; have a common ancestor ¢h
whereasv; andv;, with ¢ # j, do not. Otherwise, it would
imply a directed path fromy; to v; sincew; is the only

the problem of explaining the data with as few additional

variables as possible, and proved it to be NP-hard. This
may be surprising; the related problem of finding a mixed

graph that is Markov equivalent to a bidirected graph and
has as few bidirected edges as possible is efficiently solv-
able (Drton and Richardsan, 2008a).

The connection to posets emphasizes that sets of faithful
DAGs have complex combinatorics. Indeed, if there are
no pairwise independent variables, then we obtain the clas-
sical poset enumeration problem (Brinkmann and Mc¢Kay,
2002). Our current, unoptimized implementation of the al-
gorithm in Figurd b allows us to deal with dense graphs up

possible ancestor of both nodes — a contradiction. Finallyto about 12 nodes (sparse graphs are easier to deal with).

note that any trek connecting andv; in G cannot contain
a node fromW. Similarly, no trek betweem; andv; in
G’ contains a node frofl’. We get that; andv; have a
common ancestor i iff they have a common ancestor in
g'.

Thus, ing’ the auxiliary nodes) are incident td/, but not
to nodes froni¥. Below we modifyG’ further and obtain
a DAG G”, in which every auxiliary node is incident with
a node inV via an out-edge only. To this aim we remove
from G’ all edges going out from a node ¥ to a node
in Q.

Obviously, if v; and v; have a common ancestor g1’,
then they also have a common ancestoiGin because
E(G"”) C E(G’). The opposite direction follows from the
fact we have shown at the beginning of this proof that for
all different nodes;, v; € V there is no directed path from
v; to vj in G. This is true also foiG’. Thus, ifv; and
v; have a common ancestor, sayin G’ thenz € @ and
there exist directed paths — y; — ...y, — v; and
x — Yy} — ...y, — v; such that also al, ..., y, and
Y1, ..,y belongtoQ. But from the construction of” it
follows that both paths belong also .

SinceG” is faithful to U/, for every auxiliary nod&) the
subgraph induced by its childrédh(Q) NV in G” is a
clique inZ{’. Moreover every edge; — v; of the graph

U belongs to at least one such clique. Thus the subgraph

induced byCh(q1) NV, ...,Ch(gr) NV, with ¥ < k, are
cliques that covei/. O

8 DISCUSSION

We point out that our enumeration algorithms operate with
a “template graph”, i.e., the sink orientation. It is possib

to incorporate certain kinds of background knowledge, like
a time-ordering of the variables, into this template graph
by deleting some edges. Such further constraints could
greatly reduce the search space. Another additional con-
straint that could be used for linear models is the preci-
sion matrix (Cox and Wermuth, 1993; Pearl and Werinuth,
1994), though finding DAGs that explain a given precision
matrix is NP-hard in general (Verma and Pearl, 1993),

We observed that the pairwise marginal independencies
substantially reduce structural uncertainty even in thestwo
case (Tabld]l). Causal inference algorithms could ex-
ploit this to reduce the number of Cl tests. The PC algo-
rithm (Kalisch and Bithimamn, 2007), for instance, forms
the marginal independence graph as a first stage before per-
forming any Cl tests. At that stage, it could be immediately
tested if the resulting graph is a SMIG, and if not, the algo-
rithm can terminate as no faithful DAG exists.

In summary, we have mapped out the space of causal struc-
tures that are faithful to a given set of pairwise marginal
independencies using constructive criteria that lead tb we
structured enumeration procedures. The central ideaunder
lying our results is that faithful models for marginal inde-
pendencies are better described by posets than by DAGs.
Qur results allow to quantify how much our uncertainty
Bbout a causal structure is reduced when we invoke the
faithfulness assumption and observe a set of marginal in-
dependencies.

It future work, it would be interesting to extend our ap-
proach to small (instead of empty) conditioning sets, which
would cover cases where we only wish to perform Cl tests

Given a graph that represents a set of pairwise marginalith low dimensionality.

independencies, which causal structures on the same vari-
ables might have generated this graph? Here we character-
ized all these structures, or alternatively, all maximad an
minimal ones. Furthermore, we have shown that it is possi-
ble to deduce how many exogenous variables (which corre-
spond to simplicial nodes) the causal structure might have,
and even to tell whether it might be a tree. For graphs that
do not admit a DAG on the same variables, we have studied
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