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Abstract

We consider graphs that represent pairwise
marginal independencies amongst a set of vari-
ables (for instance, the zero entries of a covari-
ance matrix for normal data). We characterize the
directed acyclic graphs (DAGs) that faithfully ex-
plain a given set of independencies, and derive al-
gorithms to efficiently enumerate such structures.
Our results map out the space of faithful causal
models for a given set of pairwise marginal inde-
pendence relations. This allows us to show the
extent to which causal inference is possible with-
out using conditional independence tests.

1 INTRODUCTION

DAGs and other graphical models encode conditional in-
dependence (CI) relationships in probability distributions.
Therefore, CI tests are a natural building block of algo-
rithms that infer such models from data. For example, the
PC algorithm for learning DAGs (Kalisch and Bühlmann,
2007) and the FCI (Spirtes et al., 2000) and RFCI
(Colombo et al., 2012) algorithms for learning maximal an-
cestral graphs are all based on CI tests.

CI testing is still an ongoing research topic, to which the
UAI community is contributing (e.g. Zhang et al., 2011;
Doran et al., 2014). But at least for continuous variables,
CI testing will always remain more difficult than test-
ing marginal independence for quite fundamental reasons
(Bergsma, 2004). Intuitively, the difficulty is that two vari-
ablesx andy could be dependent “almost nowhere”, e.g.,
for only a few values of the conditioning variablez. This
suggests a two-staged approach to structure learning: first
try to learn as much as possible from simpler independence
tests before applying CI tests. Here, we present a theoret-
ical basis for extracting as much information as possible
from the simplest kind of stochastic independence – pair-
wise marginal independence.

(a) (b) (c)

Figure 1: (a) Amarginal independence graphU whose
missing edges represent pairwise marginal independencies.
(b) A faithful DAG G entailing the same set of pairwise
marginal independencies asU . (c) A graph for which no
such faithful DAG exists.

More precisely, we will consider the following problem.
We are given the set of pairwise marginal independencies
that hold amongst some variables of interest. Such sets
can be represented as graphs whose missing edges corre-
spond to independencies (Figure 1a). We call such graphs
marginal independence graphs. We wish to find DAGs on
the same variables that entail exactly the given set of pair-
wise marginal independencies (Figure 1b). We call such
DAGs faithful. Sometimes no such DAGs exist (e.g., Fig-
ure 1c). Else, we are interested in finding the set ofall faith-
ful DAGs, hoping that this set will be substantially smaller
than the set of all possible DAGs on the same variables.
Those candidate DAGs could then be probed further by us-
ing joint marginal or conditional independence tests.

Other authors have represented marginal (in)dependencies
using bidirected graphs (Drton and Richardson, 2003;
Richardson, 2003; Drton and Richardson, 2008b), instead
of undirected graphs like we do here. We hope that
the reader is compensated for this small departure from
community standards by the lower amount of clutter
in our figures, and the greater ease to link our work
to standard graph theoretical results. We also em-
phasize that we model only pairwise, and not higher-
order joint dependencies. However, for Gaussian data,
pairwise independence entails joint independence. In
that case, our marginal independence graphs are equiv-
alent to covariance graphs(Cox and Wermuth, 1993;
Pearl and Wermuth, 1994; Drton and Richardson, 2003,
2008a; Peña, 2013), whose missing edges represent zero
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covariances.

Our results generalize the work of Pearl and Wermuth
(1994) who showed (but did not prove) how to findsome
faithful DAGs for a given covariance graph. We review
these and other connections to related work in Section 3
where we also link our problem to the theory of partially
ordered sets (posets). This connection allows us to iden-
tify certain maximal and minimal faithful DAGs. Based
on these “boundary DAGs” we then derive a characteri-
zation of all faithful DAGs (Section 4), and construct re-
lated enumeration algorithms (Section 5). We use these al-
gorithms to explore the combinatorial structure of faithful
DAG models (Section 6) which leads, among other things,
to a quantification of how much pairwise marginal inde-
pendencies reduce structural causal uncertainty. Finally,
we ask what happens when a set of independencies cannot
be explained by any DAG. How many additional variables
will we need? We prove that this problem is NP-hard (Sec-
tion 7).

Preliminary versions of many of the results presented in
this paper were obtained in the Master’s thesis of the sec-
ond author (Idelberger, 2014).

2 PRELIMINARIES

In this paper we use the abbreviationiff for the connective
“if and only if”. A graph G = (V,E) consists of a set
of nodes (variables)V and set of edgesE. We consider
undirected graphs (which we simply refer to as graphs),
directed graphs, and mixed graphs that can have both undi-
rected edges (denotes asx−y) and directed edges (denoted
asx → y). Two nodes areadjacentif they are linked by
any edge. Aclique in a graph is a node setC ⊆ V such
that allu, v ∈ C are adjacent. Conversely, anindependent
set is a node setI ⊆ V in which no two nodesu, v ∈ I
are adjacent. Amaximal cliqueis a clique for which no
proper superset of nodes is also a clique. For anyv ∈ V ,
the neighborhoodN(v) is the set of nodes adjacent tov
and theboundary Bd(v) is the neighborhood ofv including
v, i.e. Bd(v) = N(v) ∪ {v}. A nodev is calledsimpli-
cial if Bd(v) is a clique. Equivalently,v is simplicial iff
Bd(v) ⊆ Bd(w) for all w ∈ N(v) (Kloks et al., 2000).
A clique that contains simplicial nodes is called asimplex.
Every simplex is a maximal clique, and every simplicial
node belongs to exactly one simplex. Thedegreed(v) of
a nodev is |N(v)|. If for two graphsG = (V,E(G)) and
G′ = (V,E(G′)) we haveE(G) ⊆ E(G′), thenG is an
edge subgraphof G′ andG′ is anedge supergraphof G.
Theskeletonof a directed graphG is obtained by replacing
every edgeu→ v by an undirected edgeu− v.

A pathof lengthn− 1 is a sequence ofn distinct nodes in
which successive nodes are pairwise adjacent. Adirected
pathx → . . . → y consists of directed edges that all point
towardsy. In a directed graph, a nodeu is an ancestor

of another nodev if u = v or if there is a directed path
u → · · · → v. For each edgeu → v, we say thatu is
a parentof v andv is a child of u. If two nodesu, v in
a directed graph have a common ancestorw (which can
beu or v), then the pathu ← . . . ← w → . . . → v is
called atrekconnectingu andv. A DAG is calledtransitive
if, for all u 6= v, it contains an edgeu → v whenever
there is a directed path fromu to v. Given a DAGG, the
transitive closureis the unique transitive graph that implies
the same ancestor relationships asG, whereas thetransitive
reductionis the unique edge-minimal graph that implies the
same ancestor relationships.

In this paper we encounter several well-known graph
classes, e.g., chordal graphs and trivially perfect graphs.
We will give brief definitions when appropriate, but we di-
rect the reader to the excellent survey by Brandstädt et al.
(1999) for further details.

3 SIMPLE MARGINAL INDEPENDENCE
GRAPHS

In this section we define the class of graphs which can
be explained using a directed acyclic graph (DAG) on the
same variables. We will refer to such graphs assimple
marginal independence graphs(SMIGs).

Definition 3.1. A graphU = (V,E(U)) is called thesim-
ple marginal independence graph(SMIG), ormarginal in-
dependence graphof a DAG G = (V,E(G)) if for all
v, w ∈ V , v − w ∈ E(U) iff v andw have a common
ancestor inG. If U is the marginal independence graph of
G then we also say thatG is faithful to U . SMIG is the
set of all graphsU for which there exists a faithful DAG
G. Note that each DAG has exactly one marginal indepen-
dence graph.

Again, we point out that marginal independence graphs are
often called (and drawn as)bidirected graphsin the liter-
ature, though the term “marginal independence graph” has
also been used by various authors (e.g. Tan et al., 2014).

3.1 SMIGs and Dependency Models

In this subsection we recall briefly the general setting for
modeling (in)dependencies proposed by Pearl and Verma
(1987) and show the relationship between that model and
SMIGs. In the definitions belowV denotes a set of vari-
ables andX , Y andZ are three disjoint subsets ofV .

Definition 3.2 (Pearl and Verma (1987)). A dependency
modelM overV is any subset of triplets(X,Z, Y ) which
represent independencies, that is,(X,Z, Y ) ∈ M asserts
thatX is independent ofY givenZ.

A probabilistic dependency modelMP is defined in terms
of a probability distributionP over V . By definition



(X,Z, Y ) ∈ MP iff for any instantiationx̂, ŷ and ẑ of
the variables in these subsetsP (x̂ | ŷ ẑ) = P (x̂ | ẑ).

A directed acyclic graph dependency modelMG is defined
in terms of a DAGG. By definition(X,Z, Y ) ∈ MG iff
X and Y are d-separated byZ in G (for a definition of
d-separation by a setZ see Pearl and Verma (1987)).

We define amarginal dependency model, resp. marginal
probabilistic and marginal DAG dependency model, analo-
gously as Pearl and Verma (1987) with the restriction that
the second component of any triple(X,Z, Y ) is the empty
set. Thus, such marginal dependency models are sets of
pairs(X,Y ). It is easy to see that the following properties
are satisfied.

Lemma 3.3. LetM be a marginal probabilistic depen-
dency model or a marginal DAG dependency model. Then
M is closed under:

Symmetry:(X,Y ) ∈ M ⇔ (Y,X) ∈M and
Decomposition:(X,Y ∪W ) ∈M ⇒ (X,Y ) ∈M.

Moreover, ifM is a marginal DAG dependency model then
it is also closed under

Union: (X,Y ), (X,W ) ∈M ⇒ (X,Y ∪W ) ∈ M.

The marginal probabilistic dependency model is not closed
under union in general. For instance, consider two inde-
pendent, uniformly distributed binary variablesy andw
and letx = y ⊕ w, where⊕ denotes xor of two bits. For
the modelMP defined in terms of probability overx, y, w
we have that({x}, {y}) and({x}, {w}) belong toMP but
({x}, {y, w}) does not.

In this paper we willnot assume that the marginal inde-
pendencies in the data are closed under union. Instead, we
only consider pairwise independencies, which we formal-
ize as follows.

Definition 3.4. LetM be a marginal probabilistic depen-
dency model overV . Then the simple marginal indepen-
dence graphU = (V,E(U)) ofM is the graph in which
x− y ∈ E(U) iff ({x}, {y}) 6∈ M.

Thus, in general, marginal independence graphs do not
contain any information on higher-orderjoint independen-
cies present in the data. However, under certain com-
mon parametric assumptions, dependency models would
be closed under union as well. This holds, for instance,
if the data are normally distributed. In that case, marginal
independence is equivalent to zero covariance, pairwise in-
dependence implies joint independence, and marginal in-
dependence graphs become covariance graphs.

The following is not difficult to see.

Proposition 3.5. A marginal dependency modelM which
is closed under symmetry, decomposition, and union coin-
cides with the transitive closure of{({x}, {y}) : x, y ∈
V } ∩M over symmetry and union.

This Proposition entails that if the marginal dependencies

in the data are closed under these properties, then the entire
marginal dependency model is represented by the marginal
independence graph.

3.2 SMIGs and Partially Ordered Sets

To reach our aim of a complete and constructive character-
ization of the DAGs faithful to a given SMIG, it is useful
to observe that marginal independence graphs are invariant
with respect to the insertion or deletion of transitive edges
from the DAG. We formalize this as follows.

Definition 3.6. A (labelled)posetP is a DAG that is iden-
tical to its transitive closure.

Proposition 3.7. The marginal independence graphs of a
DAGG and its transitive closureP(G) are identical.

Proof. Two nodes are not adjacent in the marginal inde-
pendence graph iff they have no common ancestor in the
DAG. Transitive edges do not influence ancestral relation-
ships.

We thus restrict our attention to findingposetsthat are faith-
ful to a given SMIG. Note that faithful DAGs can then be
obtained by deleting transitive edges from faithful posets;
since no DAG obtained in this way can be an edge sub-
graph of two different posets, this construction is unique
and well-defined. In particular, by deletingall transitive
edges from a poset, we obtain a sparse graphical represen-
tation of the poset as defined below.

Definition 3.8. Given a posetP = (V,E), its transitive
reduction is the unique DAGGP = (V,E′) for which
P(G) = P andE′ is the smallest set whereE′ ⊆ E.

Transitive reductions are also known asHasse diagrams,
though Hasse diagrams are usually unlabeled. Different
posets can have the same marginal independence graphs,
e.g. the posets with Hasse diagramsP1 = x → y → z
andP2 = x← y → z. Similarly, Markov equivalence is a
sufficient but not necessary condition to inducing the same
marginal independence graphs (adding an edgex → z to
P2 changes the poset and the Markov equivalence class, but
not the marginal independence graph).

3.3 Recognizing SMIGs

We first recall existing results that show which graphs ad-
mit a faithful DAG at all, and how to find such DAGs if
possible. Note that many of these results have been stated
without proof (Pearl and Wermuth, 1994), but our connec-
tion to posets will make some of these proofs straightfor-
ward. The following notion related to posets is required.

Definition 3.9 (Bound graph (McMorris and Zaslavsky,
1982)). For a posetP = (V,E), the bound graphB =
(V,E′) of P is the graph wherex − y ∈ E′ iff x and y
share alower bound, i.e., have a common ancestor inP .



chordalSMIG

trivially
perfect

Figure 2: Relation between chordal graphs, trivially perfect
graphs, andSMIG. In graph theory,SMIG is known as
the class of (upper/lower)bound graphs(Cheston and Jap,
2006).

Theorem 3.10.SMIG is the set of all graphs for which
every edge is contained in a simplex.

Proof. This is Theorem 2 in Pearl and Wermuth (1994)
(who referred to simplexes as “exterior cliques”). Alter-
natively, we can observe that the marginal independence
graphU of a posetP (Definition 3.1) is equal to its bound
graph (Definition 3.9). The characterization of bound
graphs as “edge simplicial” graphs has been proven by
McMorris and Zaslavsky (1982) by noting that simplicial
nodes inU correspond to possible minimal elements inP .
We note that this result predates the equivalent statement in
Pearl and Wermuth (1994).

Though all bound graphs have a faithful poset, not all
bound graphs have one with the same skeleton; see Fig-
ure 1a,b for a counterexample. However, the graphs for
which a poset with the same skeleton can be found are
nicely characterizable in terms of forbidden subgraphs.

Theorem 3.11 (Pearl and Wermuth (1994)). Given a
graphU , a DAGG that is faithful toU and has the same
skeleton exists iffU is trivially perfect (i.e.,U has no
P4= nor aC4= as induced subgraph).

It is known that the trivially perfect graphs are the intersec-
tion of the bound graphs and the chordal graphs (Figure 2;
Cheston and Jap, 2006).

This nice result begs the question whether a similar char-
acterization is also possible forSMIG. As the following
observation shows, that is not the case.

Proposition 3.12. Every graphU is an induced subgraph
of some graphU ′ ∈ SMIG.

Proof. Take any graphU = (V,E) and construct a new
graphU ′ as follows. For every edgee = u − v in U , add
a new nodeve to V and add edgesve − u and ve − v.
ObviouslyU is an induced subgraph ofU ′. To see thatU ′

is in SMIG, consider the DAGG consisting of the nodes
in U ′ and the edgesv ← ve → u and for each newly added

node inU ′. ThenU is the marginal independence graph of
G.

The graph class characterization implies efficient recogni-
tion algorithms for SMIGs.

Theorem 3.13.It can be tested in polynomial time whether
a graphU is a SMIG.

Proof. Verifying the graphical condition of Theorem 3.10
amounts to testing whether all edges reside within a sim-
plex. However, knowing that SMIGs are bound graphs, we
can apply an efficient algorithm for bound graph recog-
nition that uses radix sort and simplex elimination and
achieves a runtime ofO(n+ sm) (Skowrońska and Sysło,
1984), wheres ≤ n is the number of simplexes in the
graph. This is typically better thanO(n3) because large
m implies smalls and vice versa. Alternatively, we can
apply known fast algorithms to find all simplicial nodes
(Kloks et al., 2000).

4 FINDING FAITHFUL POSETS

We now ask how to find faithful DAGs for simple marginal
independence graphs. We observed that marginal inde-
pendence graphs cannot distinguish between transitively
equivalent DAGs, so a perhaps more natural question is:
which posetsare faithful to a given graph? As pointed out
before, we can obtain all DAGs from faithful posets in a
unique manner by removing transitive edges. A further ad-
vantage of the poset representation will turn out to be that
the “smallest” and “largest” faithful posets can be charac-
terized uniquely (up to isomorphism); as we shall also see,
this is not as easy for DAGs, except for marginal indepen-
dence graphs in a certain subclass.

4.1 Maximal Faithful Posets

Our first aim is to characterize the “upper bound” of the
faithful set. That is, we wish to identify those posets for
which no edge supergraph is also faithful. We will show
that a construction described by Pearl and Wermuth (1994)
solves exactly this problem.

Definition 4.1. For a graphU = (V,E(U)), thesink graph
S(U) = (V,E(S(U))) is constructed as follows: for each
edgeu − v in U , add toE(S(U)): (1) an edgeu → v if
Bd(u) ( Bd(v); (2) an edgeu ← v if Bd(u) ) Bd(v); (3)
an edgeu− v if Bd(u) = Bd(v).

For instance, the sink graph of the graph in Figure 1a is the
graph in Figure 1b.

Definition 4.2 (Pearl and Wermuth (1994)). A sink orien-
tationof a graphU is any DAG obtained by replacing every
undirected edge ofS(U) by a directed edge.

We first need to state the following.



Lemma 4.3. Every sink orientation ofU is a poset.

Proof. Fix a sink orientationG and consider any chain
x → y → z. By construction, this implies that Bd(x) (

Bd(z). Hence, ifx andz are adjacent in the sink graph,
then the only possible orientation isx → z. There can
be two reasons whyx andz are not adjacent in the sink
graph: (1) They are not adjacent inU . But thenG would
not be faithful, sinceG implies the edgex − z. (2) The
edge was not added to the sink graph. But this contradicts
Bd(x) ( Bd(z).

This Lemma allows us to strengthen Theorem 2 by
Pearl and Wermuth (1994) in the sense that we can replace
“DAG” by “maximal poset” (emphasized):

Theorem 4.4.P is amaximal posetfaithful toU iff P is a
sink orientation ofU .

The following is also not hard to see.

Lemma 4.5. For a SMIGU , every DAGG that is faithful
to U is a subgraph of some sink orientation ofU .

Proof. Obviously the skeleton ofG cannot contain edges
that are not inU . So, supposex → y is an edge inG but
conflicts with the sink orientation; that is, the sink graph
contains the edgey → x. That is the case only if BdU (y)
is a proper subset of BdU (x). However, in the marginal
independence graph ofG, any node that is adjacent tox
(has a common ancestor) must also be adjacent toy. Thus,
the marginal independence graph ofG cannot beU .

Every maximal faithful poset forU can be generated by
first fixing a topological ordering ofS(U) and then generat-
ing the DAG that corresponds to that ordering, an idea that
has also been mentioned by Drton and Richardson (2008a).
This construction makes it obvious that all maximal faithful
posets are isomorphic.

For curiosity of the reader, we note thatS(U) can
also be viewed as acomplete partially directed acyclic
graph (CPDAG), which represents the Markov equiv-
alence class of edge-maximal DAGs that are faithful
with U . CPDAGs are used in the context of inferring
DAGs from data (Spirtes et al., 2000; Chickering, 2003;
Kalisch and Bühlmann, 2007), which is only possible up
to Markov equivalence.

4.2 Minimal Faithful Posets

A minimal faithful poset toU is one from which no further
relations can be deleted without entailing more indepen-
dencies than are given byU .

Definition 4.6. LetU = (V,E) be a graph and letI ⊆ V
be an independent set. ThenI→U is the poset consisting of
the nodes inI, their neighbors inU , and directed edges
i→ j for eachi, j wherej ∈ N(i).

(a) (b) (c) (d)

Figure 3: (a) A graphU with three simplicial nodesI (open
circles). (b) Its unique minimal faithful posetI→U . (c,d) The
unique faithful DAGs with minimum (c) or maximum (d)
numbers of edges.

For example, Figure 3b shows the uniqueI→U for the graph
in Figure 3a.

Theorem 4.7. Let U = (V,E) ∈ U . Then a posetP is a
minimal poset faithful toU iff P = I→U for a setI consist-
ing of one simplicial vertex for each simplex.

Proof. We first show that ifI is a set consisting of one sim-
plicial node for each simplex, thenI→U is a minimal faithful
poset. Every edgee ∈ E(U) resides in a simplex, so it is
either adjacent toI or both of its endpoints are adjacent to
somei ∈ I. In both cases,I→U impliese. Also I→U does not
imply more edges than are inU . Now, suppose we delete an
edgei→ x from I→U . This edge must exist inU , elsei was
not simplicial. But nowI→U no longer implies this edge.
Thus,I→U is minimal. Second, assume thatP is a mini-
mal faithful poset. AssumeP would contain a sequence
of two directed edgesx → y → z. ThenP would also
contain the edgex → z. But theny → z could be deleted
fromP without changing the dependency graph, andP was
not minimal. So,P does not contain any directed path of
length more than 1. Next, observe that for each simplex in
U , the nodes must all have a common ancestor inP . With-
out paths of length> 1, this is only possible if one nodei
in the simplex is a parent of all other nodes, and there are
no edges among the child nodes ofi. Finally, each suchi
must be a simplicial node inU ; otherwise, it would reside
in two or more simplexes, and would have to be the unique
parent in those simplexes. But then the children ofi would
form a single simplex inU .

Like the maximal posets, all minimal posets are thus iso-
morphic. We point out that the minimal posets contain no
transitive edges and therefore, they are also edge-minimal
faithful DAGs. However, this does not imply that min-
imal posets have the smallest possible number of edges
amongst all faithful DAGs (Figure 3). There appears to
be no straightforward characterization of the DAGs with
the smallest number of edges for marginal independence
graphs in general. However, a beautiful one exists for the
subclass of trivially perfect graphs.

Definition 4.8. A tree posetis a poset whose transitive re-
duction is a tree (with edges pointing towards the root).

Theorem 4.9. A connected SMIGU has a faithful tree
poset iff it is trivially perfect.



Proof. The bound graph of a tree poset is identical to its
comparability graph(Brandstädt et al., 1999), which is the
skeleton of the poset. Comparability graphs of tree posets
coincide with trivially perfect graphs (Wolk, 1965).

Since no connected graph onn nodes can have fewer edges
than the transitive reduction of a tree poset on the same
nodes (i.e.,n− 1), tree posets coincide with faithful DAGs
having the smallest possible number of edges.

How do we construct a tree for a given trivially perfect
graph? Every such graph must have acentral point, which
is a node that is adjacent to all other nodes. We set this node
as the sink of the tree, and continue recursively with the
subgraphs obtained after removing the central point. Each
subgraph is also trivially perfect and can thus be oriented
into a tree. After we are done, we link the sinks of the trees
of the subgraphs to the original central point to obtain the
full tree (Wolk, 1965).

5 FINDING FAITHFUL DAGS

If a given marginal independence graphU admits faithful
DAG models, then it is of interest to enumerate these. A
trivial enumeration procedure is the following: start with
the sink graph ofU , choose an arbitrary edgee, and form
all 2 or 3 subgraphs obtained by keepinge (if it is directed),
orientinge (if it is undirected), or deleting it. Apply the
procedure recursively to these subgraphs. During the recur-
sion, do not touch edges that have been previously chosen.
If the current graph is a DAG that is faithful toU , output it;
otherwise, stop the recursion.

However, we can do better by exploiting the results of the
previous section, which will allow us to derive enumeration
algorithms that generate representations of multiple DAGs
at each step.

5.1 Enumeration of Faithful DAGs

Having characterized the maximal and minimal faithful
posets, we are now ready to construct an enumeration pro-
cedure for all DAGs that are faithful to a given graph. We
first state the following combination of Theorem 4.4 and
Theorem 4.7.

Proposition 5.1. A DAG G = (V,E(G)) is faithful to a
SMIGU = (V,E(U)) iff (1) G is an edge subgraph of some
sink orientation ofU and (2) the transitive closure ofG is
an edge supergraph ofI→U for some node setI consisting
of one simplicial node for each simplex.

From this observation, we can derive our first construction
procedure for faithful DAGs.

Proposition 5.2. A DAG G is faithful to a SMIGU =
(V,E(U)) iff it can be generated by the following steps.
(1) Pick any setI ⊆ V consisting of one simplicial node

(a)

(b)

Figure 4: Example of the procedure in Proposition 5.2 that,
given a SMIG (a), enumerates all faithful DAGs (b). For
brevity, only the graphs that correspond to a fixed topolog-
ical ordering are displayed. Only one setI (open circles)
can be chosen in step (1). Thick edges and filled nodes
highlight the DAGG. Mandatory edges (solid) linkI to
the sources ofG; if any such edge was absent, one of the
relationships in the posetI→U would be missing. Optional
edges (dashed) are transitively implied from the mandatory
ones andG.

for each simplex. (2) Generate any DAG on the nodesV \I
that is an edge subgraph of some sink orientation ofU . (3)
Add any subset of edges fromI→U such that the transitive
closure of the resulting graph contains all edges ofI→U .

While step (3) may seem ambiguous, Figure 4 illustrates
that after step (2), the edges fromI→U decompose nicely
into mandatoryandoptionalones. This means that we can
in fact stop the construction procedure after step (2) and
output a “graph pattern”, in which some edges are marked
as optional. This is helpful in light of the potentially huge
space of faithful models, because every graph pattern can
represent an exponential number of DAGs.

5.2 Enumeration of Faithful Posets

The DAGs resulting from the procedure in Proposition 5.2
are in general redundant because no care is taken to avoid
generating transitive edges. By combining Propositions 5.1
and 5.2, we obtain an algorithm that generates sparse, non-
redundant representations of the faithful DAGs.

Theorem 5.3. A posetP is faithful toU = (V,E(U)) iff
it can be generated by the following steps. (1) Pick any set
I ⊆ V consisting of one simplicial node for each simplex.
(2) Generate a posetP on the nodesV \ I that is an edge
subgraph of some sink orientation ofU . (3) AddI→U toP .

A nice feature of this construction is that step (3) is unam-
biguous: every choice forI in step (1) andP in step (2)
yields exactly one poset. Figure 5 gives an explicit pseu-
docode for an algorithm that uses Theorem 5.3 to enumer-
ate all faithful posets.

Our algorithm is efficient in the sense that at every inter-



function FAITHFUL POSETS(U = (V (U), E(U)))
function L ISTPOSETS(G,S, R, I→U )

if G is acyclic and atransitivethen
OutputG ∪ I→U
if skeleton ofG ( skeleton ofS then

e← some edge consistent withE(S)\R
L ISTPOSETS(G,S, R ∪ {e}, I→U )
E(G)← E(G) ∪ {e}
L ISTPOSETS(G,S, R ∪ {e}, I→U )

for all node setsI of U consisting of one simplicial
node per simplexdo

G ← empty graph on nodes ofV (U) \ I
S ← sink graph ofU on nodes ofV (U) \ I
L ISTPOSETS(G,S, ∅, I→U )

Figure 5: Enumeration algorithm for faithful posets.

(a)

(b)

Figure 6: (a) A graphU and its sink graph. (b) Transitive
reductions of all 6 faithful posets that are generated by Al-
gorithm FAITHFUL POSETSfor the input graph (a).

nal node in its recursion tree, it outputs a faithful poset.
At every node we need to evaluate whether the current
G is acyclic and atransitive (i.e., contains no transitive
edges), which can be done in polynomial time. Also
simplexes and their simplicial vertices can be found in
polynomial time Kloks et al. (2000). Thus, our algorithm
is a polynomial delay enumeration algorithmsimilar to
the ones used to enumerate adjustment sets for DAGs
(Textor and Liśkiewicz, 2011; van der Zander et al., 2014).
Figure 6 shows an example output for this algorithm.

6 EXAMPLE APPLICATIONS

In this section, we apply the previous results to explore
some explicit combinatorial properties of SMIGs and their
faithful DAGs.

connected conn. unique
n graphs SMIGs DAG
2 1 1 0
3 2 2 1
4 6 4 1
5 21 10 2
6 112 27 4
7 853 88 10
8 11,117 328 27
9 261,080 1,460 90

10 11,716,571 7,799 366

Table 1: Comparison of the number of unlabeled connected
graphs withn nodes to the number of such graphs that are
also SMIGs. Forn = 13 (not shown), non-SMIGs outnum-
ber SMIGs by more than107 : 1.

6.1 Counting SMIGs

We revisit the question: when can a marginal independence
graph allow a causal interpretation (Pearl and Wermuth,
1994)? More precisely, we askhow manymarginal inde-
pendence graphs onn variables are SMIGs. We reformu-
late this question into a version that has been investigated
in the context of poset theory. Let theheightof a posetP
be the length of a longest path inP . The following is an
obvious implication of Theorem 4.7.

Corollary 6.1. The numberM(n) of non-isomorphic
SMIGs with n nodes is equal to the number of non-
isomorphic posets onn variables of height 1.

Enumeration of posets is a highly nontrivial problem, and
an intensively studied one. The online encyclopedia of
integer sequences (OEIS) tabulatesM(n) for n up to 40
(Wambach, 2015). We give the first 10 entries of the se-
quence in Table 1 and compare it to the number of graphs
in general (up to isomorphism). As we observe, the fraction
of graphs that admit a DAG on the same variables decreases
swiftly asn increases.

6.2 Graphs with a Unique Faithful DAG

From a causal inference viewpoint, the best we can hope
for is a SMIG to which only single, unique DAG is faithful.
The classical example is the graph·− ·− ·, which for more
than 3 nodes generalizes to a “star” graph. However, for
5 or more nodes there are graphs other than the star which
also induce a single unique DAG. Combining Lemma 4.5
and Theorem 4.7 allows for a simple characterization of all
such SMIGs.

Corollary 6.2. A SMIGU withn nodes has a unique faith-
ful DAG iff each of its simplexes contains only one simpli-
cial node and its sink orientation equalsI→U .

Based on this characterization, we computed the number of



n posets withn nodes faithful toCn

1 1 1
2 3 2
3 19 9
4 219 76
5 4,231 1,095
6 130,023 25,386
7 6,129,859 910,161
8 431,723,379 49,038,872
9 44,511,042,511 3,885,510,411

10 6,611,065,248,783 445,110,425,110

Table 2: Possible labelled posets onn variables before and
after observing a complete SMIGCn.

SMIGs with unique DAGs forn up till 9 (Table 1). Inter-
estingly, this integer sequence does not seem to correspond
to any known one.

6.3 Information Content of a SMIG

How much information does a marginal independence
graph contain? Let us denote the number of posets on
n variables byP (n). After observing a marginal inde-
pendence graphU , the number of models that are still
faithful to the data reduces to sizeP (n) − k(U), where
k(U) ≤ P (n) (indeed, quite oftenk(U) = P (n) as we
can see in Table 1). Of course, the numberk(U) strongly
depends on the structure of the SMIGU . But even in the
worst case whenU is a complete graph, the space of pos-
sible models is still reduced because not all DAGs entail a
complete marginal independence graph.

Thus, the following simple consequence of Theorem 4.7
helps to derive a worst-case bound on how much a SMIG
reduces structural uncertainty with respect to the model
space of posets withn variables.

Corollary 6.3. The number of faithful posets with respect
to a complete graph withn nodes isn times the number of
posets withn− 1 nodes.

Table 2 lists the number of possible posets before and after
observing a complete SMIG for up to 10 variables. In this
sense, atn = 10, the uncertainty is reduced about 15-fold.

We note that a similar but more technical analysis is possi-
ble for uncertainty reduction with respect to DAGs instead
of posets. We omit this due to space limitations.

7 MODELS WITH LATENT VARIABLES

In this section we consider situations in which a graphU
is not a SMIG (which can be detected using the algorithm
in Theorem 3.13). Similarly to the definition proposed in
Pearl and Verma (1987) for the general dependency mod-
els, to obtain faithful DAGs for such graphs we will extend

the DAGs with some auxiliary nodes. We generalize Defi-
nition 3.1 as follows.

Definition 7.1. Let U = (V,E(U)) be a graph and let
Q, with Q ∩ V = ∅, be a set of auxiliary nodes. A DAG
G = (V ∪ Q,E(G)) is faithful toU if for all v, w ∈ V ,
v − w ∈ E(U) iff v andw have a common ancestor inG.

The result below follows immediately from Proposi-
tion 3.12.

Proposition 7.2. For every graphU there exists a faithful
DAGU with some auxiliary nodes.

Obviously, ifU ∈ SMIG then there exists a faithful DAG
to U with Q = ∅. For U /∈ SMIG, from the proof of
Proposition 3.12 it follows that there exists a setQ of at
most |E(U)| nodes and a DAGG such thatG is faithful
to U with auxiliary nodesQ. But the problem arises to
minimize the cardinality ofQ.

Theorem 7.3. The problem to decide if for a given graph
U and an integerk, there exists a faithful DAG with at most
k auxiliary nodes, is NP-complete.

Proof. It is easy to see that the problem is in NP. To prove
that it is NP-hard, we show a polynomial time reduction
from the edge clique cover problem, that is known to be
NP-complete (Karp, 1972). Recall that the problem edge
clique cover is to decide if for a graphU and an integerk
there exist a set ofk subgraphs ofU , such that each sub-
graph is a clique and each edge ofU is contained in at least
one of these subgraphs?

Let U = (V,E) andk be an instance of the edge clique
cover problem, withV = {v1, . . . , vn}. We construct the
marginal independence graphU ′ as follows. LetW =
{w1, . . . , wn}. Then V (U ′) = V ∪ W and E(U ′) =
E ∪ {vi − wi : i = 1, . . . , n}. Obviously,U ′ can be
constructed fromU in polynomial time. We claim that
U = (V,E) can be covered by≤ k cliques iff forU ′ there
exists a faithful DAGG with at mostk auxiliary nodes.

Assume first thatU = (V,E) can be covered by at mostk
cliques, let us sayC1, . . . , Ck′ , with k′ ≤ k. Then we can
construct a faithful DAGG for U ′ with k′ auxiliary nodes
as follows. Its set of nodes isV (G) = V ∪W ∪Q, where
Q = {q1, . . . , qk′}. The edgesE(G) can be defined as

{wi → vi : i = 1, . . . , n} ∪
⋃

j

{qj → v : v ∈ Cj}.

It is easy to see thatG is faithful toU ′.

Now assume that a DAGG, with at mostk auxiliary nodes
Q, is faithful toU ′. From the construction ofU ′ it follows
that for all different nodesvi, vj ∈ V there is no directed
path fromvi to vj in G. If such a path exists, thenvi is an
ancestor ofvj in G. Sincevi−wi is an edge ofU ′, the nodes
vi andwi have a common ancestor inG, which must be also



a common ancestor ofwi andvj – a contradiction because
wi andvj are not incident inU ′. Thus, all treks connecting
pairs of nodes fromV in G must contain auxiliary nodes.

Next, we slightly modifyG: for eachwi we remove all in-
cident edges and add the new edgewi → vi. The resulting
graphG′, is a DAG which remains faithful toU ′. Indeed,
we cannot obtain a directed cycle in theG′ since nowi has
an in-edge and the originalG was a DAG. To see that the
obtained DAG remains faithful toU ′ note first that after
the modifications,wi andvi have a common ancestor inG
whereaswi andvj , with i 6= j, do not. Otherwise, it would
imply a directed path fromvi to vj sincewi is the only
possible ancestor of both nodes – a contradiction. Finally,
note that any trek connectingvi andvj in G cannot contain
a node fromW . Similarly, no trek betweenvi andvj in
G′ contains a node fromW . We get thatvi andvj have a
common ancestor inG iff they have a common ancestor in
G′.

Thus, inG′ the auxiliary nodesQ are incident toV , but not
to nodes fromW . Below we modifyG′ further and obtain
a DAGG′′, in which every auxiliary node is incident with
a node inV via an out-edge only. To this aim we remove
from G′ all edges going out from a node inV to a node
in Q.

Obviously, if vi and vj have a common ancestor inG′′,
then they also have a common ancestor inG′, because
E(G′′) ⊆ E(G′). The opposite direction follows from the
fact we have shown at the beginning of this proof that for
all different nodesvi, vj ∈ V there is no directed path from
vi to vj in G. This is true also forG′. Thus, if vi and
vj have a common ancestor, sayx, in G′ thenx ∈ Q and
there exist directed pathsx → y1 → . . . yr → vi and
x → y′1 → . . . y′r′ → vj such that also ally1, . . . , yr and
y′
1
, . . . , y′r′ belong toQ. But from the construction ofG′′ it

follows that both paths belong also toG′′.

SinceG′′ is faithful to U , for every auxiliary nodeQ the
subgraph induced by its childrenCh(Q) ∩ V in G′′ is a
clique in U ′. Moreover every edgevi − vj of the graph
U belongs to at least one such clique. Thus the subgraphs
induced byCh(q1) ∩ V, . . . ,Ch(qk′) ∩ V , with k′ ≤ k, are
cliques that coverU .

8 DISCUSSION

Given a graph that represents a set of pairwise marginal
independencies, which causal structures on the same vari-
ables might have generated this graph? Here we character-
ized all these structures, or alternatively, all maximal and
minimal ones. Furthermore, we have shown that it is possi-
ble to deduce how many exogenous variables (which corre-
spond to simplicial nodes) the causal structure might have,
and even to tell whether it might be a tree. For graphs that
do not admit a DAG on the same variables, we have studied

the problem of explaining the data with as few additional
variables as possible, and proved it to be NP-hard. This
may be surprising; the related problem of finding a mixed
graph that is Markov equivalent to a bidirected graph and
has as few bidirected edges as possible is efficiently solv-
able (Drton and Richardson, 2008a).

The connection to posets emphasizes that sets of faithful
DAGs have complex combinatorics. Indeed, if there are
no pairwise independent variables, then we obtain the clas-
sical poset enumeration problem (Brinkmann and McKay,
2002). Our current, unoptimized implementation of the al-
gorithm in Figure 5 allows us to deal with dense graphs up
to about 12 nodes (sparse graphs are easier to deal with).
We point out that our enumeration algorithms operate with
a “template graph”, i.e., the sink orientation. It is possible
to incorporate certain kinds of background knowledge, like
a time-ordering of the variables, into this template graph
by deleting some edges. Such further constraints could
greatly reduce the search space. Another additional con-
straint that could be used for linear models is the preci-
sion matrix (Cox and Wermuth, 1993; Pearl and Wermuth,
1994), though finding DAGs that explain a given precision
matrix is NP-hard in general (Verma and Pearl, 1993),

We observed that the pairwise marginal independencies
substantially reduce structural uncertainty even in the worst
case (Table 1). Causal inference algorithms could ex-
ploit this to reduce the number of CI tests. The PC algo-
rithm (Kalisch and Bühlmann, 2007), for instance, forms
the marginal independence graph as a first stage before per-
forming any CI tests. At that stage, it could be immediately
tested if the resulting graph is a SMIG, and if not, the algo-
rithm can terminate as no faithful DAG exists.

In summary, we have mapped out the space of causal struc-
tures that are faithful to a given set of pairwise marginal
independencies using constructive criteria that lead to well-
structured enumeration procedures. The central idea under-
lying our results is that faithful models for marginal inde-
pendencies are better described by posets than by DAGs.
Our results allow to quantify how much our uncertainty
about a causal structure is reduced when we invoke the
faithfulness assumption and observe a set of marginal in-
dependencies.

It future work, it would be interesting to extend our ap-
proach to small (instead of empty) conditioning sets, which
would cover cases where we only wish to perform CI tests
with low dimensionality.
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A. Brandstädt, J. P. Spinrad, et al.Graph classes: a survey,
volume 3. Siam, 1999.

G. Brinkmann and B. D. McKay. Posets on up to 16 points.
Order, 19(2):147–179, 2002.

G. A. Cheston and T. Jap. A survey of the algorithmic
properties of simplicial, upper bound and middle graphs.
Journal of Graph Algorithms and Applications, 10(2):
159–190, 2006.

D. M. Chickering. Optimal structure identification with
greedy search.Journal of Machine Learning Research,
3:507–554, 2003.

D. Colombo, M. H. Maathuis, M. Kalisch, and T. S.
Richardson. Learning high-dimensional directed acyclic
graphs with latent and selection variables.Annals of
Statistics, 40(1):294–321, 2012.

D. R. Cox and N. Wermuth. Linear dependencies repre-
sented by chain graphs.Statistical Science, 8(3):204–
283, 1993.

G. Doran, K. Muandet, K. Zhang, and B. Schölkopf. A
permutation-based kernel conditional independence test.
In Proceedings of UAI 2014, pages 132–141, 2014.

M. Drton and T. S. Richardson. A new algorithm for maxi-
mum likelihood estimation in gaussian graphical models
for marginal independence. InProceedings of UAI 2003,
pages 184–191, 2003.

M. Drton and T. S. Richardson. Graphical methods for ef-
ficient likelihood inference in gaussian covariance mod-
els. Journal of Machine Learning Research, 9:893–914,
2008a.

M. Drton and T. S. Richardson. Binary models for marginal
independence.Journal of the Royal Statistical Society,
Ser. B, 70(2):287–309, 2008b.

A. Idelberger. Generating causal diagrams from stochastic
dependencies (in German). Master’s thesis, Universität
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