
MODULAR CATALAN NUMBERS

NICKOLAS HEIN AND JIA HUANG

Abstract. The Catalan number Cn enumerates parenthesizations of x0 ∗ · · · ∗ xn where ∗ is a
binary operation. We introduce the modular Catalan number Ck,n to count equivalence classes
of parenthesizations of x0 ∗ · · · ∗ xn when ∗ satisfies a k-associative law generalizing the usual
associativity. This leads to a study of restricted families of Catalan objects enumerated by Ck,n

with emphasis on binary trees, plane trees, and Dyck paths, each avoiding certain patterns. We
give closed formulas for Ck,n with two different proofs. For each n ≥ 0 we compute the largest size
of k-associative equivalence classes and show that the number of classes with this size is a Catalan
number.

1. Introduction

Let X be a set with a binary operation ∗ : X2 → X and x0, . . . , xn be X-valued indeterminates.
A binary operation ∗ induces a map Xn+1 → X given by the expression x0 ∗ · · · ∗ xn and a choice
of an order to apply each ∗. The expression x0 ∗ · · · ∗ xn alone may be ambiguous, so it might not
define a map without using parentheses to record the order of operations. The number of ways to
parenthesize x0 ∗ · · · ∗ xn is the Catalan number Cn = 1

n+1

(
2n
n

)
which enumerates hundreds [19, 20]

of families of other natural objects. This Catalan number gives an upper bound for the number of
ways to interpret the meaning of x0 ∗ · · · ∗ xn.

When ∗ is associative, one has (x0 ∗ x1) ∗ x2 = x0 ∗ (x1 ∗ x2), and thus all parenthesizations of
x0 ∗ · · · ∗ xn are equal. We investigate a natural generalization of this case. Let k ≥ 1 be a positive
integer, and suppose ∗ is a left-to-right binary operation. We say a (left-to-right) binary operation
∗ is k-associative if

(x0 ∗ · · · ∗ xk) ∗ xk+1 = x0 ∗ (x1 ∗ · · · ∗ xk+1).

The results in this paper are also valid for right-to-left binary operations, subject to a reflection.
One may define a k-associative binary operation on any ring R with an element ω of multiplicative

order k by a ∗ b := ωa+ b. Consider the ring R = C and the primitive kth root of unity ω = e2πi/k

for a concrete example.
We say two parenthesizations are k-equivalent if they are equal by the k-associative property.

We define the (k-)modular Catalan number Ck,n to be the number of k-equivalence classes of
parenthesizations of x0 ∗ · · · ∗ xn. Since 1-associativity is the usual associativity, we have C1,n = 1.
The first nontrivial example is C2,3 = 4. We illustrate this by listing the C3 = 5 parenthesizations
for n = 3,

((x0∗x1)∗x2)∗x3, (x0∗x1)∗(x2∗x3), (x0∗(x1∗x2))∗x3, x0∗((x1∗x2)∗x3), x0∗(x1∗(x2∗x3)),
and observing the first and fourth parenthesizations are 2-equivalent.

Modular Catalan numbers appear elsewhere for small fixed values of k. The On-Line Encyclo-
pedia of Integer Sequences (OEIS) [23] sequence A005773 coincides with {C3,n}. This sequence
counts directed n-ominoes in standard position [4], n-digit base three numbers whose digits sum
to n, permutations of [n] := {1, 2, . . . , n} avoiding 1-3-2 and 123-4 [12], minimax elements in the
affine Weyl group of the Lie algebra so2n+1 (or sp2n) [13], and other objects as well. Rowland [17]
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2 NICKOLAS HEIN AND JIA HUANG

studied the case k = 4, and his point of view of pattern avoidance in binary trees is relevant to our
investigation. We found no results for k ≥ 5 in the literature.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C1,n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A000012
C2,n 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 A011782
C3,n 1 1 2 5 13 35 96 267 750 2123 6046 17303 49721 143365 414584 A005773
C4,n 1 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 441468 1467296 A159772
C5,n 1 1 2 5 14 42 131 420 1375 4576 15431 52603 180957 627340 2189430 new
C6,n 1 1 2 5 14 42 132 428 1420 4796 16432 56966 199444 704146 2504000 new
C7,n 1 1 2 5 14 42 132 429 1429 4851 16718 58331 205632 731272 2620176 new
C8,n 1 1 2 5 14 42 132 429 1430 4861 16784 58695 207452 739840 2658936 new
Cn 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 A000108

Table 1.1. Modular Catalan number Ck,n for n ≤ 14 and k ≤ 8.

A computation gives the data in Table 1.1 above. We highlight the entries Ck,k and Ck,k+1 which
satisfy the relationships Ck,k = Ck and Ck,k+1 = Ck − 1, and we list OEIS sequences that coincide
with {Ck,n}.

Our definition of Ck,n using k-associative binary operations and parenthesizations provides a
new perspective for these numbers. It is natural and works for all k ≥ 1. It is based on basic
concepts in algebra and has connections to many interesting combinatorial objects as well, as we
will observe in later sections. Our main result in this paper is Theorem 1.1 below, which gives
two closed formulas for the modular Catalan numbers. This generalizes previously known formulas
for Ck,n with 1 ≤ k ≤ 4. The first formula uses the evaluations of monomial symmetric functions
mλ, which can be rewritten as certain multinomial coefficients, for partitions λ inside a (k− 1)×n
rectangle. The second formula is a simple summation with alternating signs.

Theorem 1.1. For k, n ≥ 1 we have

Ck,n =
∑

λ⊆(k−1)n
|λ|<n

n− |λ|
n

mλ(1n) =
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

)(
2n− jk
n+ 1

)
.

To establish Theorem 1.1, we first study the connection of parenthesizations to binary trees and
plane trees in Section 2, which is summarized below.

Let T denote the set of all binary trees. We define a (left-to-right) binary operation ∧ : T ×T → T
where s ∧ t is the binary tree whose root has left and right subtrees s and t, respectively. There
is a natural bijection between the set of parenthesizations of x0 ∗ · · · ∗ xn and the set Tn of binary
trees with n internal nodes (i.e., with n + 1 leaves) by replacing each xi by a leaf labeled i and
replacing each ∗ by ∧. We define the k-associative order on Tn by

(t0 ∧ t1 ∧ · · · ∧ tk) ∧ tk+1 < t0 ∧ (t1 ∧ · · · ∧ tk+1)

where each ti is a binary tree. If k | k′ then the k′-associative order is weaker than the k-associative
order. In particular, any k-associative order is weaker than the 1-associative order, which is called
the Tamari order. Under the Tamari order, Tn becomes a lattice, called the Tamari lattice, which
has been widely investigated (see, e.g., [5, 6, 15]) since its introduction by Tamari [22]. We define
the k-components of Tn to be the connected components of Tn under the k-associative order, which
correspond to k-equivalence classes of parenthesizations of x0 ∗ · · · ∗ xn. The maximal and minimal
elements of a k-component are called k-maximal and k-minimal, respectively.

We also translate the k-associative order to plane trees, as they are in natural bijection with
binary trees. For our purposes, it is sometimes more convenient to deal with plane trees than
binary trees.
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We prove that each k-component of Tn contains a unique minimal element. Consequently, the
modular Catalan number Ck,n enumerates the k-minimal elements of Tn. This is closely related
the generalized Motzkin number Mk,n which counts k-maximal elements of Tn. We show that the
k-minimal and k-maximal elements of Tn may be described using subtree avoidance in binary trees
or degree constraints in plane trees.

Remarkably, Theorem 2.16 and Corollary 2.17 assert the number of largest k-components of Tn
is the Catalan number Cm, where m is the least positive integer congruent to n modulo k.

Next, in Section 3, we describe several restricted families of Catalan objects enumerated by Ck,n
and Mk,n, using bijections among them (see Proposition 3.2 and Proposition 3.3). This implies
that the generalized Motzkin numbers and modular Catalan numbers are interlaced,

C1,n ≤M1,n ≤ C2,n ≤M2,n ≤ · · · .

Section 4 includes a proof for Theorem 1.1 using generating functions and Lagrange inversion, as
well as other related results. We show the generating functions of Ck,n and Mk,n satisfy polynomial
equations and are closely related to each other, as seen in Proposition 4.6. We give the first formula
of Theorem 1.1 in Corollary 4.7 and the second in Theorem 4.8.

Corollary 4.7 and Theorem 4.8 give formulas for Mk,n, analogous to those for Ck,n of Theorem 1.1.
These formulas for Mk,n may be derived from work of Takács [21] on plane trees with degree
constraints. One may specialize these formulas to compute the Motzkin number Mn := M2,n

(see OEIS A001006), which counts permutations avoiding certain patterns [2, 12], standard Young
tableaux of height at most three [3], minimax elements in the affine Weyl group of the Lie algebra
sln+1 [13], and many other objects [19, Ex. 6.38]. For k = 3, . . . , 7, the sequences {Mk,n} coincide
with the OEIS sequences A036765, . . . ,A036769, respectively.

Our generating function approach to study k-minimal and k-maximal elements of Tn is also used
to prove Proposition 4.12, which shows the size of the largest k-components of Tn equals∑

0≤j≤n/k

n− jk
n

(
n+ j − 1

j

)
.

In Section 5 we use certain rotations of Dyck paths to give a more direct proof for Theorem 1.1,
with negative signs from sign-reversing involutions, and a similar proof for the above formula for
the size of the largest k-components of Tn.

It is well-known that the Catalan number Cn can be refined to the Narayana number

Nn,r :=
1

n

(
n

r

)(
n

r − 1

)
which enumerates plane trees with n+ 1 total nodes, of which r are internal, Dyck paths of length
2n with r peaks, and many other objects (see, e.g., [14, Ch. 2]). We provide similar refinements of
Ck,n and Mk,n in Section 6.

Finally, we provide remarks and questions in Section 7.

2. Parenthesizations and trees

In this section we study k-equivalence classes of parenthesizations via binary trees and plane
trees. A plane tree is a rooted tree such that the children of each node are linearly ordered from
left to right. The degree of a node is the number of its children. Degree-zero nodes are leaves, and
all others are internal nodes. A tree t whose edges and nodes are contained in t is a subtree of t. If
v is a node of t, then the (maximal) subtree rooted at v is the subtree of t whose nodes are v and
all descendants of v. The ith subtree of v is the subtree rooted at the ith child of v. A binary tree
is a plane tree whose nodes have degree either zero or two. We consider binary tree and plane tree
to be different objects in this paper.
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2.1. Binary trees. Denote by Tn the set of binary trees with n+ 1 leaves. Let s ∧ t be the binary
tree whose root has left and right subtrees s and t. There is a natural bijection between the set of
parenthesizations of x0 ∗ · · · ∗xn and Tn given by replacing each xi by a leaf labeled i and replacing
each ∗ by ∧.

Example 2.1. We list all binary trees in T3 and their corresponding parenthesizations in Figure 2.1.

0 1 2
3

0 1 2 3 0 1 2
3 0

1 2 3
0

1 2 3

l l l l l
((x0∗x1)∗x2)∗x3 (x0∗x1)∗(x2∗x3) (x0∗(x1∗x2))∗x3 x0∗((x1∗x2)∗x3) x0∗(x1∗(x2∗x3))

Figure 2.1. Correspondence between binary trees and parenthesizations

The left depth of node v of t is the number of left steps in the path from the root down to v.
Write δi(t) for the left depth of leaf i in binary tree t and call δ(t) := (δ0(t), . . . , δn(t)) the left depth
of tree t. The five binary trees in Example 2.1 have left depths (3, 2, 1, 0), (2, 1, 1, 0), (2, 2, 1, 0),
(1, 2, 1, 0), and (1, 1, 1, 0).

We construct a set Dn by setting D0 := {(0)} and recursively defining Dn for n ≥ 1 as follows:

Dn :=
⋃

1≤i≤n
{(a0 + 1, . . . , ai−1 + 1, b0, . . . , bn−i) | a ∈ Di−1 , b ∈ Dn−i} .

By induction on n, we have a surjection δ : Tn � Dn by t 7→ δ(t). To see δ is injective, let
(δ0, . . . , δn) ∈ Dn. Then (δ0−1, . . . , δi−1−1) ∈ Di−1 and (δi, . . . , δn) ∈ Dn−i for some i ∈ [n]. Since
(δ0− 1, . . . , δi−1− 1) = δ(s) for some s ∈ Ti−1, it follows that i is the smallest positive integer such
that δi−1 = 1. This implies δ is injective (and the union in the definition of Dn is disjoint).

Example 2.2. Let R be a ring with an element ω of multiplicative order k. Define a ∗ b := ωa+ b
for all a, b ∈ R. This gives a k-associative binary operation on R. A binary tree t with left depth
δ(t) = (δ0, . . . , δn) determines a parenthesization of x0∗· · ·∗xn which may be written

∑
0≤i≤n ω

δixi.
Thus the k-equivalence relation on parenthesizations of x0 ∗ · · · ∗ xn is the same as the congruence
relation modulo k on the left depths of binary trees in Tn. We will show that the same result holds
for any k-associative binary operation ∗.

We take the operation ∧ on trees to be a left-to-right operation so that r ∧ s ∧ t := (r ∧ s) ∧ t.
Let t0, . . . , tk+1 be binary trees, and suppose t ∈ Tn has subtree s := (t0∧ t1∧ · · ·∧ tk)∧ tk+1 rooted
at node v. Replacing s by s′ := t0 ∧ (t1 ∧ · · · ∧ tk+1) gives another binary tree t′ ∈ Tn. We call the

operation t 7→ t′ a right k-rotation at v and denote it by t
k−→ t′. We call the inverse operation a

left k-rotation at v. If t ∈ Tn may be obtained by applying finitely many left k-rotations to t′ ∈ Tn,
then we say t ≤ t′. The induced partial order on Tn is the k-associative order. The set Tn endowed
with the 1-associative order is the well-known Tamari lattice. Connected components of Tn under
the k-associative order are called k-components.

Example 2.3. The left poset in Figure 2.2 shows the Tamari order on T4, and the right poset
shows the 2-associative order on T4 with eight 2-components having cardinality 1, 1, 1, 1, 2, 2, 3, and
3 respectively.

Two parenthesizations of x0 ∗ · · · ∗ xn are k-equivalent if and only if their corresponding binary
trees are k-equivalent, which means they are in the same k-component of Tn.

Proposition 2.4. The modular Catalan number Ck,n enumerates the k-components of Tn.
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Figure 2.2. Tamari order and 2-associative order on T4

A right (respectively left) k-rotation is a composition of k right (respectively left) 1-rotations,
and hence corresponds to an upward (respectively downward) chain of length k in the Tamari
lattice. We illustrate this in Figure 2.3, decomposing a 3-rotation into three 1-rotations. Thus the

→ → →

Figure 2.3. Decomposition of a right 3-rotation into three right 1-rotations

k-associative order is weaker than the Tamari order. We generalize this below.

Proposition 2.5. If k = pk′ for a positive integer p, then a right (respectively, left) k-rotation
may be decomposed into a sequence of p right (respectively, left) k′-rotations. Consequently, the
k-associative order is weaker than the k′-associative order.

Proof. We prove this for right rotations, and the result for left rotations follows. Assume k = pk′

for some positive integer p and induct on p. The base case k = k′ is trivial. For k = (p+ 1)k′, we
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decompose a right k-rotation t0 ∧ t1 ∧ · · · ∧ tk+1
k−→ t0 ∧ (t1 ∧ · · · ∧ tk+1) into a right pk′-rotation

t0 ∧ t1 ∧ · · · ∧ tpk′+1 ∧ tpk′+2 ∧ · · · ∧ tpk′+k′+1
pk′−→ t0 ∧ (t1 ∧ · · · ∧ tpk′+1) ∧ tpk′+2 ∧ · · · ∧ tpk′+k′+1

followed by a right k′-rotation

t0 ∧ (t1 ∧ · · · ∧ tpk′+1) ∧ tpk′+2 ∧ · · · ∧ tpk′+k′+1
k′−→ t0 ∧ (t1 ∧ · · · ∧ tpk′+1 ∧ tpk′+2 ∧ · · · ∧ tpk′+k′+1).

Applying the inductive assumption to the above right pk′-rotation completes the proof. �

2.2. Plane trees. Contracting each northeast-southwest edge of a binary tree gives a plane tree.
This defines a bijection from binary trees with n + 1 leaves to plane trees with n + 1 (total)
nodes. It is essentially the inverse of the Knuth transform, which sends a plane tree to its left-child
right-sibling representation. See, e.g., [7, 9]. We give an example of our bijection in Figure 2.4.

0

1 2 3
4

5 6 7
8

←→

0

1

2

3

4

5

6

7 8

Figure 2.4. A bijection between binary trees and plane trees

Let T be the plane tree corresponding to some t ∈ Tn. The mapping t 7→ T associates leaf i of
t to node vi of T for 0 ≤ i ≤ n. As the leaves labeled 0, . . . , n are ordered left-to-right, the nodes
v0, . . . , vn are ordered according to the pre-order. This order may also be obtained by first labeling
the root of T and then labeling the nodes of the subtrees of the root recursively in the same way,
proceeding from the leftmost subtree to the rightmost one. We define the multi-degree of T to be
the degree vector d(T ) := (d0(T ), . . . , dn(T )), where di(T ) is the degree of vi for each i.

Proposition 2.6. Let t ∈ Tn be a binary tree with left depth δ(t) = (δ0, . . . , δn) and T be a plane
tree with multi-degree d(T ) = (d0, . . . , dn). If t corresponds to T via the above bijection, then

δi = d0 + · · ·+ di − i, ∀i ∈ {0, 1, . . . , n} .

Proof. As before, we label leaves 0, . . . , n of t left-to-right, and we label the corresponding nodes
v0, . . . , vn of T according to the pre-order. The equality δ0 = d0 is apparent from the construction
of the bijection. It remains to show that δi = δi−1 + di − 1 for all i ∈ [n].

First assume di−1 = 0. Then vi−1 of T has no children, so leaf i−1 of t is a right child. Thus
the shortest path from leaf i−1 to leaf i in t is one step northwest, one step northeast, one step
southeast, and p ≥ 0 steps southwest. Since the first and third steps of this do not count towards
left depth, δi = δi−1 − 1 + p. Using pre-order, we see node vi of T is an adjacent right sibling of
node vi−1 as vi−1 has no children. Consequently, the degree di of vi is the number of southwest
steps p given above. Substitution gives δi = δi−1 + di − 1.

Now suppose di−1 6= 0. Then, leaf i−1 of t is a left child, so the shortest path from leaf i−1 to
leaf i in t is one step northeast, one step southeast, and p ≥ 0 steps southwest. Since the second
step does not count towards left depth, we (again) have δi = δi−1 − 1 + p and p = di. �

The following result is stated in [21, (19) and (20)] without proof.

Proposition 2.7. The map T 7→ d(T ) is a bijection from plane trees with n+1 nodes to sequences
(d0, . . . , dn) of n + 1 nonnegative integers satisfying d0 + · · · + dn = n and d0 + · · · + di−1 ≥ i for
all i ∈ [n].



MODULAR CATALAN NUMBERS 7

Proof. Let T be a plane tree with multi-degree d(T ) = (d0, . . . , dn). Counting non-root nodes of T
gives d0+· · ·+dn = n. Suppose t is the corresponding binary tree with left depth δ(t) = (δ0, . . . , δn).
Since δi ≥ 1 unless i = n, Proposition 2.6 implies

d0 + · · ·+ di−1 = δi−1 + i− 1 ≥ i, ∀i ∈ [n].

To show d is a bijection, it suffices to construct its inverse. Let (d0, . . . , dn) be a sequence of
nonnegative integers satisfying d0 + · · ·+dn = n and d0 + · · ·+di−1 ≥ i for all i ∈ [n]. We construct
the unique plane tree T with d(T ) = (d0, . . . , dn). Let tree T0 have a single node, and mark that
node. For i = 1, . . . , n, we construct Ti by adding di−1 children to the most recently marked node
of Ti−1 and then marking the next node in Ti according to pre-order. This is possible at each step,
since d0 + · · ·+ di−1 ≥ i for all i ∈ [n]. The tree Tn constructed in the final step is the unique plane
tree with d(T ) = (d0, . . . , dn). �

We say two plane trees are k-equivalent if their corresponding binary trees are k-equivalent. We
also define an up (respectively down) k-slide on a plane tree T to be the operation induced by a
left (respectively right) k-rotation on the binary tree corresponding to T .

We describe a general up k-slide in more detail. Suppose T has nodes v0, . . . , vn, and let T1, . . . , T`
be the subtrees (ordered left-to-right) of a node vj with parent vi. If ` ≥ k, we may apply an up
k-slide at vj , giving another plane tree T ′ with n + 1 nodes by moving T`−k+1, . . . , T` to new
positions directly below vi and to the immediate right of vj . Although T`−k+1, . . . , T` are moved,
their positions in T and T ′ are the same according to the pre-order. Thus the relation between the
multi-degrees d(T ′) = (d′0, . . . , d

′
n) and d(T ) = (d0, . . . , dn) is

(1) d′i = di + k, d′j = dj − k, and d′h = dh ∀h /∈ {i, j} (i < j).

We give an example of an up 2-slide in Figure 2.5, which corresponds to the following change in
multi-degree: (1, 3, 0, 3, 0, 2, 0, 0, 0, 0) 7→ (1, 5, 0, 1, 0, 2, 0, 0, 0, 0).

7−→

Figure 2.5. Up 2-slide

Now suppose the roots of subtrees T1, . . . , T` are u1, . . . , u`, ordered left-to-right. If ` ≥ k+ 1 we
may apply a down k-slide at vj for any choice of h ∈ [`− k]. This gives a plane tree T ′′ by moving
Th+1, . . . , Th+k down so that they are rooted at uh while preserving pre-order.

The k-slides generate a partial order on plane trees, which is called the k-associative order as it
is equivalent to the k-associative order on binary trees. Note that an up (respectively down) k-slide
on a plane tree gives a smaller (respectively larger) plane tree in the k-associative order, since it
corresponds to a left (respectively right) k-rotation of the corresponding binary trees.

2.3. Results on modular Catalan numbers via trees. We say a plane tree or binary tree
is k-minimal or k-maximal if it is minimal or maximal in its k-equivalence class. We investigate
k-minimality and k-maximality for both types of trees.

Proposition 2.8. A plane tree is k-maximal (respectively k-minimal) if and only if every node
(respectively non-root node) has degree ≤ k (respectively < k). Furthermore, each k-equivalence
class of plane trees has a unique minimal representative.
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Proof. The definition of up and down k-slides immediately implies the first statement. By (1), two
plane trees k-equivalent to each other have congruent multi-degrees modulo k. This, together with
the first statement, implies the second statement. �

Let comb0 be the unique tree with a single node. We recursively define the left comb of length
k to be combk := combk−1 ∧ comb0 for k ≥ 1. The binary tree comb1

k := comb0 ∧ combk is useful
for calculating Ck,n. The figures below give comb4 and comb1

4.

Figure 2.6. comb4 and comb1
4

Proposition 2.8 and Proposition 2.6 give the following result, Proposition 2.9, via the bijection
between plane trees and binary trees.

Proposition 2.9. A binary tree is k-maximal (respectively k-minimal) if and only if it avoids
combk+1 (respectively comb1

k) as a subtree. Furthermore, each k-equivalence class of Tn has a
unique minimal representative.

Proposition 2.10. Two plane trees are k-equivalent if and only if their multi-degrees are congruent
modulo k.

Proof. The “only if” part follows from (1). For the “if” part, suppose T1 and T2 are two plane
trees with multi-degrees d(T1) ≡ d(T2) mod k. For i = 1, 2 let T ′i be the unique minimal tree
k-equivalent to Ti. Then d(T ′1) ≡ d(T ′2) mod k, which implies d(T ′1) = d(T ′2) by Proposition 2.8.
Hence T1 and T2 are both k-equivalent to the same minimal representative. �

Proposition 2.10 implies Proposition 2.11.

Proposition 2.11. Two binary trees are k-equivalent if and only if their left depths are congruent
modulo k.

Using Proposition 2.11, we compute {C2,n}.

Proposition 2.12. We have C2,n = 2n−1 for n ≥ 1.

Proof. Since any list in Dn is of the form (δ0, . . . , δn−2, 1, 0), and δi ≡ 0 or 1 mod 2 for each i,
the number of equivalence classes modulo 2 in Dn is at most 2n−1. We prove this upper bound
is sharp by induction on n. For this we assume C2,n−1 = 2n−2. Let t ∈ Tn−1 with left depth
δ(t) = (d0, . . . , dn−3, 1, 0). Giving two children to the leaf labeled n − 1 or to the leaf labeled
n − 2 of t ∈ Tn−1 gives two different trees in Tn whose left depths are (d0, . . . , dn−3, 1, 1, 0) and
(d0, . . . , dn−3, 2, 1, 0). Hence C2,n ≥ 2C2,n−1 = 2n−1. �

Define Tk,n to be the maximal subset of Tn whose members avoid comb1
k. That is, Tk,n is the set of

all k-minimal binary trees with n internal nodes. The next result is a consequence of Proposition 2.4
and Proposition 2.9.

Corollary 2.13. The modular Catalan number Ck,n enumerates Tk,n.

Equations (9) and (11) in Section 4 give closed formulas for Ck,n. Directly counting trees in Tn
containing comb1

k gives special cases of Equation (11): we have Ck,n = Cn for n ≤ k and

Ck,k+` = Ck+` −
(
k+2`
`−1
)

if k ≥ ` ≥ 1.

For k ≥ 0 we define the generalized Motzkin number Mk,n to be the number of binary trees
in Tn avoiding combk+1. When k ≥ 1 the number Mk,n enumerates k-maximal elements of Tn.
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Proposition 2.9 implies Mk−1,n ≤ Ck,n ≤ Mk,n. One sees that M0,0 = 1, M0,n = 0 for n ≥ 1, and
M1,n = 1 for n ≥ 0. More generally, Equations (8) and (10) of Section 4 are closed formulas for
Mk,n. These formulas could also be derived from work of Takács [21] on plane trees with degree
constraints. Directly counting trees in Tn containing combk+1 gives specializations of Equation (10):
we have Mk,n = Cn for n ≤ k and

Mk,k+` = Ck+` −
(
k+2`−1
`−1

)
if k ≥ `− 1 ≥ 0.

The following is a corollary to Proposition 2.10.

Corollary 2.14. The modular Catalan number Ck,n enumerates plane trees with n+1 nodes whose
non-root nodes have degree less than k. The generalized Motzkin number Mk,n enumerates plane
trees with n+ 1 nodes, each having degree no more than k.

We denote by [T ]k the k-equivalence class of a plane tree T . We next study the largest k-
equivalence classes. Let T be a plane tree with multi-degree d(T ) = (d0, . . . , dn). Assume dj ≥ 1
for some j ∈ [n]. By Proposition 2.7, subtracting 1 from dj and adding 1 back to d0 still gives a
multi-degree of some plane tree, which is denoted by φj(T ).

Lemma 2.15. Suppose T is a k-minimal plane tree with d(T ) = (d0, . . . , dn). Assume dj 6= 0 for
some j ∈ [n]. Then we have the following.
(i) The tree φj(T ) is also k-minimal.
(ii) Sending T ′ to φj(T

′) for all T ′ ∈ [T ]k gives an injection φj : [T ]k ↪→ [φj(T )]k.
(iii) The above injection φj is a bijection if and only if the multi-degree (a0, . . . , an) of every tree
in [φj(T )]k satisfies a0 + · · ·+ ai ≥ i+ 1 for all i ∈ {0, 1, . . . , j − 1}.

Proof. Let the multi-degree of φj(T ) be (e0, . . . , en). Then ei ≤ di for all i ∈ [n]. This implies
that φj(T ) is k-minimal by Proposition 2.10. If T ′ is k-equivalent to T then its multi-degree
d(T ′) = (d′0, . . . , d

′
n) satisfies d′j ≥ 1 since d′j ≡ dj mod k. Hence φj(T

′) is well defined and has

multi-degree (e′0, . . . , e
′
n) congruent to d(φj(T )) = (e0, . . . , en) modulo k. Then we have a well

defined map φj : [T ]k → [φj(T )]k, which is an injection since subtracting one from e′0 and adding
one back to e′j gives the unique preimage of φj(T

′). Combining this with Proposition 2.7 also shows

that there exists an inverse of the injection φj if and only if the multi-degree (a0, . . . , an) of each
tree in [φj(T )]k satisfies a0 + · · ·+ ai ≥ i+ 1 for all i ∈ {0, 1, . . . , j − 1}. �

Using Lemma 2.15 we can find all the largest k-equivalence classes in Tn. Let m be the smallest
positive integer congruent to n modulo k. A plane tree T with multi-degree d(T ) = (d0, . . . , dn) is
called k-admissible if

• (d0 − n + m, d1, . . . , dm) is the multi-degree of some plane tree with m + 1 nodes and
dm+1 = · · · = dn = 0, or equivalently,
• (d0 − n+m, d1, . . . , dm−1, dm + n−m, 0, . . . , 0) is the multi-degree of some tree in [T ]k.

If T is k-admissible then T is k-minimal since d1, . . . , dm < m ≤ k. For example, the unique plane
tree T (n, 0, . . . , 0) with multi-degree (n, 0, . . . , 0) is k-admissible, and for k = 3 and n = 6 the
k-admissible plane trees with n+ 1 nodes have the following multi-degrees:

(6, 0, 0, 0, 0, 0, 0), (5, 1, 0, 0, 0, 0, 0), (5, 0, 1, 0, 0, 0, 0), (4, 2, 0, 0, 0, 0, 0), (4, 1, 1, 0, 0, 0, 0).

Theorem 2.16. Fix n ≥ 0 and k ≥ 1. Let m be the smallest positive integer congruent to n modulo
k. Then a k-equivalence class of plane trees with n+ 1 nodes has the largest size if and only if its
minimal representative is k-admissible.

Proof. Lemma 2.15 gives a chain of injections from any k-equivalence class of plane trees with
n+ 1 nodes to [T (n, 0, . . . , 0)]k. Hence [T (n, 0, . . . , 0)]k has the largest size among all k-equivalence
classes of plane trees with n+ 1 nodes.
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Let T be a k-minimal plane tree with multi-degree d(T ) = (d0, . . . , dn) 6= (n, 0, . . . , 0). Then
dj ≥ 1 for some j ∈ [n]. Let (e0, . . . , en) be the multi-degree of φj(T ). Suppose the injection
φj : [T ]k ↪→ [φj(T )]k is a bijection and φj(T ) is k-admissible. We have

(e0 − n+m, e1, . . . , em−1, em + n−m, 0, . . . , 0) ≡ (e0, . . . , en) mod k

where the left hand side is the multi-degree of some tree in [φj(T )]k by definition of the k-
admissibility. This tree has a preimage under the bijection φj , and the multi-degree of the preimage
must be (d0 − n+m, d1, . . . , dm−1, dm + n−m, 0, . . . , 0). This implies T is k-admissible. Hence if
[T ]k has the same size as [T (n, 0, . . . , 0)]k then T must be k-admissible.

Now suppose T is indeed k-admissible. Then dj ≥ 1 implies j ≤ m. Thus φj(T ) also k-admissible
by definition. Let (e′0, . . . , e

′
n) be the multi-degree of any tree in [φj(T )]k. For any i < j we have

e′0 + · · ·+ e′i ≡ d0 − n+m+ d1 + · · ·+ di + 1 mod k.

Since T is k-admissible, we also have d0 − n + m + d1 + · · · + di ≥ i. Combining these with
i < j ≤ m ≤ k we obtain e′0 + · · · + e′i ≥ i + 1. Hence φj : [T ]k → [φj(T )]k is a bijection by
Lemma 2.15. This implies that any k-admissible plane tree represents a k-equivalence class of
equal size as T (n, 0, . . . , 0). �

Corollary 2.17. Fix n ≥ 0 and k ≥ 1. Let m be the smallest positive integer congruent to n
modulo k. Among all k-equivalence classes of plane trees with n+ 1 nodes, there are Cm many that
have the largest size, one of which is represented by T (n, 0, . . . , 0).

Finally, the size of the largest k-equivalence classes of plane trees with n+ 1 nodes will be given
in Proposition 4.12.

3. Connections with other objects

We explore Mk,n and Ck,n as they pertain to other Catalan objects. A Dyck path of (semi)length
2n is a diagonal lattice path from (0, 0) to (2n, 0) consisting of n up-steps U = (1, 1) and n down-
steps D = (1,−1) such that none of the path is below the x-axis. Every sequence d = (d0, . . . , dn)
of nonnegative integers corresponds to a lattice path

L(d) := Ud0DUd1 · · ·DUdn

which is a Dyck path if and only if d is the multi-degree of a plane tree. This gives a bijection
between plane trees with n+ 1 nodes and Dyck paths of length 2n.

A partition is a decreasing sequence of nonnegative integers λ = (λ1, . . . , λn). The size of λ is
|λ| := λ1 + · · · + λn and the length of λ is `(λ) := #{i ∈ [n] : λi > 0}. It is often convenient to
represent λ by its Young diagram, which has `(λ) many left-justified rows with λi boxes on the ith
row for i = 1, 2, . . . , `(λ). See Figure 3.1 below. Say a partition λ is bounded by another partition
µ and write λ ⊆ µ if the Young diagram of λ is contained in the Young diagram of µ. The partition
kn := (k, . . . , k) is a sequence of n copies of k.

A Dyck path of length 2n may also be written as L = UDe1UDe2 · · ·UDen . It corresponds to a
partition λ(L) := (λ1(L), . . . , λn(L)) whose jth part λj(L) := e1+ · · ·+en−j satisfies 0 ≤ λj ≤ n−j
for all j ∈ [n]. Thus L 7→ λ(L) gives a bijection between Dyck paths of length 2n and partitions
of the form λ = (λ1, . . . , λn) with 0 ≤ λj ≤ n − j for all j ∈ [n]. The Young diagram of λ(L) is
enclosed between Dyck paths L and UnDn. Thus λ(L) is bounded by (n− 1, n− 2, . . . , 1, 0).

There is also a simple bijection between Dyck paths of length 2n and 2 × n standard Young
tableaux. For each i ∈ [2n], if the ith step is up (respectively down) in the Dyck path then put i on
the top (respectively bottom) row of the corresponding tableau. See, e.g., [24] for more information
on Young diagrams and Young tableaux.

An example of the correspondence among plane trees with n+ 1 nodes, Dyck paths of length 2n,
partitions with n nonnegative parts bounded by (n− 1, n− 2, . . . , 1, 0), and 2× n standard Young
tableaux is given below (n = 4).
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T =

d(T ) = (2, 1, 0, 1, 0)

• •
• • • •

• • •
λ = (3, 1, 0, 0) 1 2 4 7

3 5 6 8

Figure 3.1. Correspondence among plane trees, Dyck paths, partitions, and tableaux

Now we discuss pattern avoidance for permutations. Denote by Sn the symmetric group con-
sisting of all permutations of [n], and write a permutation w ∈ Sn as a word w(1) · · ·w(n). Let
w ∈ Sn and u ∈ Sm with m ≤ n. Say w contains the pattern u(1)-u(2)-· · · -u(m) if there exists
1 ≤ r1 < · · · < rm ≤ m such that w(ri) < w(rj)⇔ u(i) < u(j) whenever 1 ≤ i < j ≤ m. Moreover,
if we omit a dash between u(j) and u(j + 1) in the above definition then w(rj) and w(rj+1) are
required to be adjacent entries of w, i.e., rj+1 = rj+1. Say w avoids a pattern if it does not contain
that pattern.

Given a word w = w1 · · ·wn of distinct numbers w1, . . . , wn, we construct a binary tree tr(w) ∈ Tn
whose internal nodes are labeled by w1, . . . , wn. Suppose wi is maximal among w1, . . . , wn. We
draw the root of tr(w), labeling it wi, and we recursively construct two binary trees tr(w1 · · ·wi−1)
and tr(wi+1 · · ·wn) and label their internal nodes. We then attach these trees to the root of tr(w) as
left and right subtrees. Restricting the map tr to Sn gives a poset surjection onto the Tamari lattice
Tn, where Sn is partially ordered by the weak order : u < v if the inversions of u are contained in
the inversions of v..

Conversely, for each t ∈ Tn, one obtains a permutation, denoted by tr−1(t), by labeling the
internal nodes with n, n−1, . . . , 1 according to the pre-order and then reading these labels following
the in-order. Here the in-order recursively lists first the left subtree of the root, next the root itself,
and last the right subtree of the root. One can check that tr(tr−1(t)) = t for any t ∈ Tn. Hence
tr : Sn � Tn is a poset surjection and tr−1 : Tn ↪→ Sn is a poset injection. Moreover, the image of
tr−1 is the set of (1-3-2)-avoiding permutations in Sn (cf. Exercise [19, 6.19.ff]).

Example 3.1. The left hand tree in Figure 3.2 is t = tr(26513874). One sees that tr−1(t) is the (1-
3-2)-avoiding permutation 67534821 and tr(67534821) = t by the right hand picture in Figure 3.2.

1

2
3

6

5 4

7

8

3

6
4

7

5 1

2

8

Figure 3.2. The maps tr and tr−1

The bijections described earlier lead to connections between the relevant Catalan objects and
the numbers Mk,n and Ck,n.

Proposition 3.2. For n ≥ 0 and k ≥ 1, Mk−1,n enumerates the following:

(1) binary trees with n internal nodes avoiding combk,
(2) plane trees with n+ 1 nodes, each having degree less than k,
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(3) Dyck paths of length 2n avoiding Uk (k consecutive up-steps).
(4) partitions bounded by (n− 1, n− 2, . . . , 1, 0) with each part occurring fewer than k times,
(5) 2× n standard Young tableaux avoiding k consecutive numbers in the top row, and
(6) permutations of [n] avoiding 1-3-2 and 12 · · · k.

Proof. That Mk−1,n enumerates the sets (1)–(5) follows directly from its definition and the de-
scriptions of the appropriate bijections. To reveal the more obscure result, that Mk−1,n counts
(6), we apply the involution w 7→ w−1 on permutations avoiding 1-3-2. Let t be a binary tree
corresponding to a (1-3-2)-avoiding permutation w ∈ Sn. If t contains combk then there exist
1 ≤ i1 < · · · < ik ≤ n with w(i1) < · · · < w(ik) consecutive increasing integers, say w(ij) = h + j
for some h ∈ [n− k] and all j ∈ [k]. Equivalently, if t contains combk then there exists h ∈ [n− k]
such that

w−1(h+ 1) < w−1(h+ 2) < · · · < w−1(h+ k).

Hence t avoids combk if and only if w−1 avoids 1-3-2 and 12 · · · k. �

Similarly one can prove the following result.

Proposition 3.3. For n ≥ 0 and k ≥ 1, Ck,n enumerates the following:

(1) the set Tk,n of binary trees with n internal nodes avoiding comb1
k,

(2) plane trees with n+ 1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding DUk (a down-step immediately followed by k up-steps),
(4) partitions bounded by (n− 1, n− 2, . . . , 1, 0) with each positive part occurring fewer than k

times,
(5) 2 × n standard Young tableaux which contain no list of k consecutive numbers in the top

row other than 1, 2, . . . , ` for any ` ∈ [n],
(6) permutations of [n] avoiding 1-3-2 and 23 · · · (k + 1)1.

Next we describe a well-known surjection from the Tamari lattice Tn to the Boolean lattice Bn−1
consisting of subsets of [n − 1] ordered by containment. Given t ∈ Tn, define des(t) to be the set
of all i ∈ [n − 1] such that the (i + 1)th leaf of t is a right child. In other words, if (d0, . . . , dn) is
the multi-degree of the plane tree corresponding to t then des(t) := {i ∈ [n − 1] : di > 0}. This
gives a poset surjection des : Tn � Bn−1. Moreover, for any permutation w ∈ Sn one can check
that des(tr(w)) equals the descent set {i ∈ [n− 1] : w(i) > w(i+ 1)} of w. For more details see, for
example, Loday and Ronco [11].

Now we define a map des−1 : Bn−1 → Tn as follows. Let S = {i1, . . . , ih} ∈ Bn−1, where
i1 < · · · < ih. Then des−1(S) is the binary tree whose corresponding plane tree has multi-degree
(d0, . . . , dn) satisfying d0 = n− |S|, di = 1 if i ∈ S, and dj = 0 if j ∈ [n] \ S.

Proposition 3.4. The map des−1 : Bn−1 → Tn is an order-preserving injection. In particular,
Bn−1 ∼= des−1(Bn−1) is a lattice isomorphism. Furthermore, des−1(Bn−1) = T2,n, and for each

S ∈ Bn−1, des−1(S) is the unique minimal element of the fiber {t ∈ Tn : des(t) = S} under the
Tamari order.

Proof. Suppose R ( S is a covering relation in the Boolean lattice Bn−1 with S \ R = {i}. Let
T and T ′ be plane trees corresponding des−1(R) and des−1(S). Then their multi-degrees satisfies
d0(T ) = d0(T

′) + 1, di(T ) = 0, di(T
′) = 1, and dj(T ) = dj(T

′) for all j ∈ [n] \ {i}. We may obtain

T from T ′ by a series of up 1-slides. Hence des−1(R) < des−1(S) in the Tamari order. This shows
that des−1 is order-preserving.

Next, let S ∈ Bn−1. One can check that des(des−1(S)) = S. Hence des−1 is injective and we
have the isomorphism Bn−1 ∼= des−1(Bn−1) of lattices.

The multi-degree of the plane tree corresponding to des−1(S) is 2-minimal by Proposition 2.8.
Hence des−1(S) ∈ T2,n. We have |Tk,n| = C2,n = 2n−1 = |Bn−1|. Thus des−1(Bn−1) = T2,n.
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Finally, let t ∈ Tn whose corresponding plane tree is T . If a non-root node of T has degree at
least 2 then applying an up 1-slide at this node gives another plane tree T ′ whose corresponding
binary tree t′ satisfies des(t′) = des(t). Thus any minimal element of the fiber {t ∈ Tn : des(t) = S}
avoids comb1

2 and must be the tree des−1(S). �

4. Closed formulas

We derive closed formulas for Ck,n and Mk,n from generating functions. Let PT n denote the set
of plane trees with n+1 nodes. Given T ∈ PT n with multi-degree d(T ) = (d0, . . . , dn), we define
xT := xd0 · · ·xdn . We define a generating function,

C(x, z) :=
∑
n≥0

∑
PT n

xT z
n+1 .

To study this generating function we need the following Lagrange inversion formula.

Theorem 4.1 (Stanley [19, Theorem 5.4.2]). Suppose that A(z) and B(z) are formal power series
in z such that A(0) = B(0) = 0 and A(B(z)) = z. If n and ` are integers then

n[zn]B(z)` = `[zn−`](z/A(z))n.

Proposition 4.2. For n ≥ 1 and ` ≥ 0 we have

[zn]C(x, z)` =
`

n

[
zn−`

] (
x0 + x1z + x2z

2 + · · ·
)n

(2)

=
`

n

∑
m0+m1+m2+···=n
m1+2m2+···=n−`

(
n

m0,m1,m2, . . .

)
xm0
0 xm1

1 xm2
2 · · · .(3)

Proof. If T is a plane tree whose root has degree ` then the multi-degree of T contains `, followed
by the multi-degrees of the ` subtrees of the root. Hence

(4) C(x, z) =
∑
`≥0

zx`C(x, z)`.

Applying Lagrange inversion to A(z) := z/(x0 + x1z + x2z
2 + · · · ) and B(z) := C(x, z) gives the

result. �

Corollary 4.3 ([19, Theorem 5.3.10]). Given nonnegative integers `,m0,m1,m2, . . . with m0 +
m1 + · · · = n ≥ 1, the number of plane trees with a root of degree ` and mi non-root nodes of degree
i for i = 0, 1, 2, . . . is

[znxm0
0 xm1

1 · · · ]C(x, z)` =


`

n

(
n

m0,m1,m2, . . .

)
, if m1 + 2m2 + · · · = n− `,

0, otherwise.

Remark 4.4. We use the Lagrange inversion formula to prove Proposition 4.2, which immediately
implies Corollary 4.3. Stanley directly proved Corollary 4.3 [19, Theorem 5.3.10] and used it as one
way to prove the Lagrange inversion formula [19, the second proof of Theorem 5.4.2].

Taking ` = 1 in Corollary 4.3 recovers a well-known result: if m0 + m1 + · · · = n ≥ 1 and
m1 + 2m2 + · · · = n − 1 then plane trees with mi nodes of degree i’s, or equivalently, Dyck paths
with mi occurrences U iD, for all i = 0, 1, 2, . . ., are enumerated by the Kreweras number [1, 10, 16]

Krew(0m01m12m2 · · · ) :=
1

n

(
n

m0,m1,m2, . . .

)
.
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Proposition 4.5. Let `, n ≥ 1 and let I be a set of nonnegative integers. Then the number of
plane trees whose multi-degree (d0, . . . , dn) satisfies d0 = ` and d1, . . . , dn ∈ I is

`

n

[
zn−`

](∑
i∈I

zi

)n
=
`

n

∑
∑

i∈I mi=n∑
i∈I imi=n−`

(
n

mi : i ∈ I

)
.

Proof. Taking xi = 1 for all i ∈ I and xj = 0 for all j /∈ I in (2) and (3) gives the result. �

Now we study Mk,n and Ck,n, as well as their generating functions

Mk(z) :=
∑
n≥0

Mk,nz
n+1 and Ck(z) :=

∑
n≥0

Ck,nz
n+1.

It follows from work of Rowland [17, Theorem 1] on binary trees that the generating functions
Mk(z) and Ck(z) are algebraic. In the same work, Rowland used Mathematica to compute explicit
polynomial equations satisfied by Mk(z) and Ck(z) for k ≤ 4. We generalize this to all k ≥ 1 using
the specialization C(1k+1, z) of C(x, z) at x0 = · · · = xk = 1 and xk+1 = xk+2 = · · · = 0.

Proposition 4.6. For k ≥ 0 we have

(5) Mk(z) = z + zMk(z) + zMk(z)
2 + · · ·+ zMk(z)

k.

For k ≥ 1 we have

(6) Ck(z) = z + zMk−1(z) + zMk−1(z)
2 + · · · = z/(1−Mk−1(z)) and

(7) (Ck(z)− z)k − Ck(z)k + Ck(z)
k−1 − zCk(z)k−2 = 0.

Proof. Since Mk(z) = C(1k+1, z), we deduce (5) from (4). Considering the subtrees of the root of
a plane tree we have (6), which implies Mk−1(z) = (Ck(z)− z)/(Ck(z)). Substituting this into (5)
gives (7). �

Let λ = (λ1, . . . , λn) be a partition with mi parts equal to i for i = 0, 1, 2, . . .. Then

• |λ| = n if and only if m1 + 2m2 + · · ·+ kmk = n, and
• λ ⊆ kn if and only if m0 + · · ·+mk = n and mk+1 = mk+2 = · · · = 0.

The monomial symmetric function mλ(x1, . . . , xn) is the sum of xe11 · · ·xenn for all rearrangement
(e1, . . . , en) of λ. Taking x1 = · · · = xn = 1 in mλ gives the multinomial coefficient

mλ(1n) =

(
n

m0,m1,m2, . . .

)
.

Corollary 4.7. For k, n ≥ 0, we have

(8) Mk,n =
1

n+ 1

∑
λ⊆kn+1

|λ|=n

mλ(1n+1) .

For k, n ≥ 1, we have

(9) Ck,n =
∑

λ⊆(k−1)n
|λ|<n

n− |λ|
n

mλ(1n) .

Proof. If the root of a plane tree has degree `, then deleting the root gives ` plane trees. Hence,
taking I = {0, 1, . . . , k} and ` = 1 in Proposition 4.5 gives a formula for Mk,n−1 which is equivalent
to (8). Combining (8) with (6) we have the formula (9) for Ck,n. �
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Theorem 4.8. For k ≥ 1 and n ≥ 0, we have

(10) Mk−1,n =
1

n+ 1

∑
0≤j≤n/k

(−1)j
(
n+ 1

j

)(
2n− jk

n

)
.

For k, n ≥ 1, we have

(11) Ck,n =
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

)(
2n− jk
n+ 1

)
.

Proof. By (2) we have

(12) [zn]C(1k, z)` =
`

n
[zn−`]

(1− zk)n

(1− z)n
=
`

n

∑
0≤j≤(n−`)/k

(−1)j
(
n

j

)(
2n− `− 1− jk

n− 1

)
.

Taking ` = 1 gives a formula for Mk−1,n−1 which is equivalent to (10). By (6) and (12),

Ck,n =
∑

1≤`≤n

`

n

∑
0≤j≤(n−`)/k

(−1)j
(
n

j

)(
2n− `− 1− jk

n− 1

)

=
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

) ∑
1≤`≤n−jk

`

(
2n− `− 1− jk

n− 1

)

=
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

)(
2n− jk
n+ 1

)
.

The last step above follows from the formula (taking a = 2n− jk, b = n+ 1, and r = 1)

(13)

(
a

b

)
=

∑
r≤`≤a−b+r

(
`

r

)(
a− `− 1

b− r − 1

)
which can be proved by choosing a subset of b elements from the set [a] with the number ` + 1
being the (r + 1)th smallest chosen element. �

Remark 4.9. It seems difficult in general to solve for Ck(z) directly from Equation (7). One can
apply Lagrange inversion to it and obtain a closed formula of Ck,n for k ≥ 3 and n ≥ 1. However,
the result is more complicated than our previous formulas (9) and (11).

Next, we derive from the proof of Theorem 4.8 a closed formula for the total number Dk,n of

intersection points between all Dyck paths of length 2n avoiding DUk and the x-axis.

Proposition 4.10. For k ≥ 1 and n ≥ 1 we have

Dk,n =
∑

0≤j≤(n−1)/k

(−1)j · 2
n

(
n

j

)(
2n− jk + 1

n+ 2

)
.

Proof. Since the number of intersection points between a Dyck path and the x-axis is one plus the
degree of the root of the corresponding plane tree, it follows from the proof of Theorem 4.8 that

Dk,n =
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

) ∑
1≤`≤n−jk

(`+ 1)`

(
2n− `− 1− jk

n− 1

)
.

Applying (13) with a = 2n− jk + 1, b = n+ 2, and r = 2 gives the result. �
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Remark 4.11. (i) Similarly to (6), the generating function Dk(z) :=
∑

n≥0Dk,nz
n+1 satisfies

Dk(z) =
∑
`≥0

(`+ 1)zMk−1(z)
` = z/(1−Mk−1(z))

2.

Since C(z) :=
∑

n≥0Cnz
n+1 satisfies C(z) = z +C(z)2, taking k →∞ in the above equation gives

lim
k→∞

Dk(z) = z/(1− C(z))2 = z/(z/C(z))2 = C(z)2/z = C(z)/z − 1

which recovers a well-known fact that the total number of intersection points between Dyck paths
of length 2n and the x-axis is the Catalan number Cn+1.

(ii) For k = 2 and k = 3, Proposition 4.10 gives a new interpretation for the sequences [23,
A045623, A036908]. In particular, for k = 2 and n ≥ 1, the formula in Proposition 4.10 can be
simplified to (n+ 3)2n−2, which enumerates various other interesting objects. Also, since M1(z) =

z/(1− z) and M2(z) = (1− z −
√

1− 2z − 3z2)/2z, we have

D2(z) =
z(1− z)2

(1− 2z)2
and D3(z) =

4z3

(3z − 1 +
√

1− 2z − 3z2)2
.

We do not find any result related to Proposition 4.10 for k ≥ 4 in the literature.

Finally, we provide a formula for the largest size of k-equivalence classes.

Proposition 4.12. The largest size of a k-equivalence class of plane trees with n+ 1 nodes is∑
0≤j≤n/k

n− jk
n

(
n+ j − 1

j

)
.

Proof. By Theorem 2.16, the plane tree with multi-degree (n, 0, . . . , 0) is the minimal element of a k-
equivalence class of the largest size. By Proposition 2.10, the plane trees with n+1 nodes belonging
to this k-equivalence class are those whose multi-degree is congruent to (n, 0, . . . , 0) modulo k.
Setting I = {0, k, 2k, . . .} and ` ∈ {n − jk : 0 ≤ j ≤ n/k} in Proposition 4.5 demonstrates that
such plane trees are enumerated by∑

0≤j≤n/k

n− jk
n

[zjk](1− zk)−n.

Applying a binomial expansion gives the result. �

5. Proofs by Dyck paths

We use Dyck paths to prove the closed formulas obtained in Section 4. Recall that every sequence
e = (e0, . . . , en) of nonnegative integers corresponds to a lattice path

L(e) := U e0DU e1 · · ·DU en

which is a Dyck path if and only if e is the multi-degree of a plane tree. Assume the length of the
lattice path L = L(e) is 2n. For each r ∈ {0, 1, . . . , n} we define a cyclic reordering of L,

L(r) := U e0DU er+1 · · ·DU enDU e1 · · ·DU er .
We note that L(0) = L(n). Suppose the lowest point on the subpath L′ = DU e1DU e2 · · ·DU en has
height h. For each i ∈ [e0], the line y = h+i−1 intersects L′, and the leftmost intersection point must
be the end point of the (ri + 1)th down-step of L for a unique integer ri = ri(L) ∈ {0, 1, . . . , n− 1}.
It follows that r1(L) > · · · > re0(L).

Lemma 5.1. Let L = U e0DU e1 · · ·DU en be a lattice path of length 2n. For 0 ≤ r ≤ n− 1, L(r) is
a Dyck path if and only if r ∈ {r1(L), . . . , re0(L)}.
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Proof. Decompose L into subpaths A = U e0 , B = DU e1 · · ·DU er and C = DU er+1 · · ·DU en .
Assume the initial point of C is (a, b), which is also the initial point of the (r + 1)th down-step of

L. This down-step becomes the first down-step of L(r). One can check that L(r) is a Dyck path if
and only if B is weakly above y = b and C is weakly above y = b − e0. This is also equivalent to
saying that the r = ri(L) for some i ∈ [e0]. The result follows. �

Example 5.2. Figure 5.1 shows a lattice path L and the lattice paths L(r) for r = 1, 2, 3. While
L(1) = L(3) is a Dyck path, L = L(2) is not.

•
• • •
• • • •

•

• •
• • • •
• • •

•
• • •
• • • •

•

• •
• • • •
• • •

L = U2DDUDDU L(1) = U2DUDDUD L(2) = U2DDUDDU L(3) = U2DUDDUD

Figure 5.1. Cyclic reorderings of a Dyck path

The above example shows that the same lattice path could appear multiple times in the multiset
{L(r) : 0 ≤ r ≤ n− 1}. This issue can be solved in the following way. Let I be a set of nonnegative
integers. We define LI,n,` to be the set of all pairs (L, i) where L = U `DU e1 · · ·DU en is a lattice
path of length 2n with e1, . . . , en ∈ I and i ∈ [`]. We represent (L, i) ∈ LI,n,` by marking the
ith up-step of L with a double line. We write LI,n,[n] for the union of sets LI,n,` with ` ∈ [n].

Similarly, we define L′I,n,` to be the set of all pairs (L′, j) where L′ = U `DU e1 · · ·DU en is a Dyck

path of length 2n with e1, . . . , en ∈ I and j ∈ [n]. We represent (L′, j) ∈ L′I,n,` by marking the jth

down-step of L′ with a double line. We write L′I,n,[n] for the union of sets L′I,n,` with ` ∈ [n].

Lemma 5.3. Let I be a set of nonnegative integers. Then for each ` ∈ [n] we have a bijection

LI,n,` → L′I,n,` defined by (L, i) 7→ (L(ri(L)), n− ri(L)).

Proof. If (L, i) ∈ LI,n,` then (L(ri(L)), n− ri(L)) ∈ L′I,n,` by Lemma 5.1. Conversely, suppose that

(L′, n−r) ∈ L′I,n,` where r ∈ {0, 1, . . . , n−1}. Then L = (L′)(n−r) satisfies L(r) = L′. By Lemma 5.1

we have r = ri(L) for a unique i ∈ [`] and thus (L, i) ∈ LI,n,`. The result follows. �

Example 5.4. The bijection in Lemma 5.3 is illustrated in Figure 5.2.

•
• • •
• • • •

•

↔
• •
• • • •
• • •

•
• • •
• • • •

•

↔
• •
• • • •
• • •

UUDDUDDU ↔ UUDUDDUD UUDDUDDU ↔ UUDUDDUD

Figure 5.2. The bijecion in Lemma 5.3

Now we may use Dyck paths to give alternate proofs of the main results of Section 4.

Another Proof of Proposition 4.5. Let I be a set of nonnegative integers and let ` ∈ [n]. Then

|LI,n,`| = `[zn−`]

(∑
i∈I

zi

)n
.

By Lemma 5.3, dividing this number by n gives the result. �
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We define Lj,k,n,` to be the set of all lattice paths U `DU e1 · · ·DU en of length 2n with j segments

U ei1 , . . . , U eij marked, each containing Uk, and with one up step U marked in U `. We write Lj,k,n,[n]
for the union of sets Lj,k,n,` with ` ∈ [n].

Another Proof of (10). Assume 0 ≤ j ≤ n/k. Each element of Lj,k,n+1,1 can be constructed in the
following way. First write down UD followed by 2n− jk empty spots. Arbitrarily fill in n of these
empty spots with D’s and the rest with U ’s. Then choose j of the n + 1 copies of D. Finally,
for each of the j chosen D’s, insert Uk immediately after it and mark the whole segment of U ’s
containing this Uk. It follows that

|Lj,k,n+1,1| =
(
n+ 1

j

)(
2n− jk

n

)
.

We assign a sign (−1)j to every element of Lj,k,n+1,1. If L = UDU e0DU e1 · · ·DU en ∈ Lj,k,n+1,1

and there exists an i ∈ {0, 1, . . . , n} such that ei ≥ k then let i be as small as possible. If the
segment U ei is not marked then we mark it; otherwise we unmark it. This defines a sign-reversing
involution on all elements in the union of the sets Lj,k,n+1,1 with 0 ≤ j ≤ n/k, except those avoiding

Uk. Thus, ∣∣L[k−1],n+1,1

∣∣ =
∑

0≤j≤n/k

(−1)j |Lj,k,n+1,1| .

By Lemma 5.3, dividing this number by n+ 1 gives Mk−1,n =
∣∣∣L′[k−1],n,[n]∣∣∣ =

∣∣∣L′[k−1],n+1,1

∣∣∣. �

Another Proof of (11). Assume 0 ≤ j ≤ (n − 1)/k. Every element of Lj,k,n,[n] can be constructed
in the following way. First write down 2n− jk empty spots and choose n+ 1 of them. Fill in the
first chosen spot with a marked U and the remaining with n copies of D. Then fill in the rest spots
by U ’s. Finally, choose j of the n copies of D’s and for each of them, insert Uk before it and mark
the entire segment of U ’s containing this Uk. Hence∣∣Lj,k,n,[n]∣∣ =

(
n

j

)(
2n− jk
n+ 1

)
.

We assign (−1)j to each element of Lj,k,n,[n]. If L = U e0DU e1D · · ·U en ∈ Lj,k,n,[n] and there
exists an i ∈ [n] such that ei ≥ k then let i be as small as possible. If the segment U ei is not marked
then we mark it; otherwise we unmark it. This defines a sign-reversing involution on all elements
in the union of the sets Lj,k,n,[n] with 0 ≤ j ≤ (n− 1)/k, except those avoiding DUk. Thus∑

1≤`≤n
`
∣∣L[k−1],n,`∣∣ =

∑
0≤j≤(n−1)/k

(−1)j
∣∣Lj,k,n,[n]∣∣ .

Dividing this number by n and using Lemma 5.3 we have the formula (11) for Ck,n. �

Another Proof of Proposition 4.12. If L = U e0DU e1 · · ·DU en be a lattice path of length 2n such
that k divides e1, . . . , en, then e1+· · ·+en = jk for some nonnegative integer j ≤ n/k and ` = n−jk.
If I = {0, k, 2k, . . .} then

|LI,n,n−jk| = (n− jk)

(
n+ j − 1

j

)
.

Hence the result follows from Lemma 5.3. �

6. Some refinements

The Catalan number Cn can be refined to the Narayana number

Nn,r :=
1

n

(
n

r

)(
n

r − 1

)
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which enumerates plane trees with n+ 1 total nodes, of which r are internal, or equivalently, Dyck
paths of length 2n with r local maxima, called peaks. We present similar refinements for Mk,n and
Ck,n.

Assume k ≥ 1 and 0 ≤ r ≤ n. We define Mk,n,r to be the number of plane trees with n + 1
nodes, of which r are internal, such that the degree of each node is no more than k. Similarly,
Ck,n,r denotes the number of plane trees with n+ 1 nodes, of which r are internal, such that each
non-root node has degree less than k. We have Mk,0,0 = Ck,0,0 = 1 and Mk,n,0 = Ck,n,0 = 0 for
n ≥ 1. Moreover, if n ≥ 1 then

Mk,n = Mk,n,1 + · · ·+Mk,n,n and Ck,n = Ck,n,1 + · · ·+ Ck,n,n.

To derive formulas for Mk,n,r and Ck,n,r, let I be a set of strictly positive integers and denote by

C
(`)
I,n,r the number of plane trees whose multi-degree (d0, . . . , dn) satisfies d0 = `, d1, . . . , dn ∈ I∪{0},

and |{i ∈ {0, . . . , n} : di > 0}| = r. We have

(14) Mk,n,r = C
(1)
[k],n+1,r+1 and Ck+1,n,r =

∑
`≥0

C
(`)
[k],n,r.

Proposition 6.1. Let I be a set of positive integers. For ` ≥ 0 and r ∈ {0, . . . , n− 1} we have

C
(`)
I,n,r+1 =

`

n

[
xrzn−`

](
1 + x

∑
i∈I

zi

)n
=
`

n

∑
∑

i∈I mi=r∑
i∈I imi=n−`

(
n

r

)(
r

mi : i ∈ I

)
.

Proof. This result follows from Proposition 4.2. One can also prove it in a similar way as the proof
of Proposition 4.5 provided in Section 5 using Dyck paths and Lemma 5.3. �

Remark 6.2. When I consists of all positive integers we have

C
(`)
I,n,r+1 =

`

n

[
xrzn−`

](
1 +

xz

1− z

)n
=
`

n

(
n

r

)
[zn−r−`](1− z)−r =

`

n

(
n

r

)(
n− `− 1

r − 1

)
and C

(1)
I,n+1,r+1 equals the Narayana number Nn,r.

Proposition 6.3. For k ≥ 1 and n ≥ 0 we have

Mk,n,r =
1

n+ 1

∑
λ⊆kn+1

|λ|=n
`(λ)=r

mλ(1n+1).

For k ≥ 0 and n ≥ 1 we have

Ck+1,n,r =
∑
λ⊆kn
|λ|<n
`(λ)=r

n− |λ|
n

mλ(1n).

Proof. The result follows from (14) and Proposition 6.1. �

Proposition 6.4. For k ≥ 1 and n ≥ 0 we have

Mk,n,r =
1

n+ 1

(
n+ 1

r

) ∑
0≤j≤(n−r)/k

(−1)j
(
r

j

)(
n− jk − 1

r − 1

)
.

For k ≥ 1 and n ≥ 1 we have

Ck+1,n,r =
∑

0≤j≤(n−r)/k

(−1)j

n

(
n

r − 1

)(
r − 1

j

)(
n− jk
r

)
.
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Proof. The proof is similar to the proof of Theorem 4.8. By Proposition 6.1 we have

C
(`)
[k],n,r+1 =

`

n

[
xrzn−`

](
1 +

xz(1− zk)
1− z

)n
=

`

n

(
n

r

)
[zn−`−r]

(
1− zk

1− z

)r
=

`

n

(
n

r

) ∑
0≤j≤(n−`−r)/k

(−1)j
(
r

j

)(
n− `− jk − 1

r − 1

)
.

This implies the desired formula for Mk,n,r = C
(1)
[k],n+1,r+1. Since Ck+1,n,r =

∑
`≥0C

(`)
[k],n,r, we have

Ck+1,n,r =
∑

1≤`≤n

`

n

(
n

r − 1

) ∑
0≤j≤(n−`−r+1)/k

(−1)j
(
r − 1

j

)(
n− `− 1− jk

r − 2

)

=
∑

0≤j≤(n−r)/k

(−1)j

n

(
n

r − 1

)(
r − 1

j

) ∑
1≤`≤n−r+1−jk

`

(
n− `− 1− jk

r − 2

)

=
∑

0≤j≤(n−r)/k

(−1)j

n

(
n

r − 1

)(
r − 1

j

)(
n− jk
r

)
.

Here the last step follows from (13). �

Another Proof. We first observe the number of peaks of a Dyck path L of length 2n to be one
greater than the number of local minimum points of L other than (0, 0) and (2n, 0). Call these
local minimum points valleys. Note this relation does not hold for the numbers of peaks and valleys
of a general lattice path. However, the operation L 7→ L(i) preserves the number of valleys.

Now recall the definition for Lj,k,n,` and Lj,k,n,[n] from Section 5. Write Lj,k,n,`,r and Lj,k,n,[n],r
for the maximal subsets of Lj,k,n,` and Lj,k,n,[n], respectively, whose members have exactly r − 1
valleys. We will constructively prove the following formulas:

(i) |Lj,k+1,n+1,1,r+1| =
(
n+ 1

r

)(
r

j

)(
n− 1− jk
r − 1

)
,

(ii) |Lj,k+1,n,[n],r| =
(

n

r − 1

)(
r − 1

j

)(
n− jk
r

)
.

Construction (i): Every element of Lj,k+1,n+1,1,r+1 can be constructed in the following way. First
write down a U followed by n+ 1 copies of D. Then insert an up-step immediately after r of these
down-steps so that there are r valleys. Next choose j of these r valleys and insert Uk right after
each of them. Finally partitioning n− r− jk up-steps into r possibly empty blocks and insert them
immediately after the r valleys.

Construction (ii): Every element of Lj,k,n,[n],r can be constructed in the following way. First
write n− jk up-steps and mark r of them. This partitions the n− jk up-steps into r+1 blocks: the
first one ends right before the first marked U , the second one starts from the first marked U and
ends right before the second marked U , and so on. All these blocks of U ’s are nonempty except
possibly the first one. Then choose r − 1 of n down-steps, put the first and second blocks of U ’s
before the first chosen U , the third block of U ’s after the first chosen U , the fourth block after
the second chosen U , and so on. Leave the first and second blocks of U ’s alone so that they still
contain a marked U . Finally, choose j of the remaining r − 1 blocks, append Uk to each of them,
and mark these j expanded blocks.

The rest of the proof is similar to the proofs for (10) and (11) in Section 5. �
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7. Remarks and Questions

7.1. Let ∗ be a binary operation defined on a set X and let x0, . . . , xn be X-valued indeterminates.
Denote by C∗,n the number of distinct functions from Xn+1 to X obtained by parenthesizing
x0 ∗ · · · ∗ xn. In general 1 ≤ C∗,n ≤ Cn, and if ∗ is k-associative then 1 ≤ C∗,n ≤ Ck,n. For
n ≥ 2 one has C∗,n = 1 if and only if ∗ is associative. If ∗ is the k-associative operation defined
in Example 2.2, then C∗,n = Ck,n by Proposition 2.11 (iv). Can one characterize when C∗,n = Cn
and when C∗,n = Ck,n for k > 1? Do other interesting numbers C∗,n arise from binary operations
we have not yet considered?

7.2. We have seen the modular Catalan number Ck,n enumerates several restricted families of
Catalan objects. There are many other families of Catalan objects, such as those presented in [20].
Elementary connections between some of these objects and those studied here lead to other re-
stricted families of Catalan object enumerated by Ck,n. For example, there is a bijection between
2 × n tableaux and chains in the Bruhat order of the Grassmannian of 2-planes in (n+2)-space
which we did not discuss. It may be interesting to extend our investigation by exploring some
less-elementary connections between Catalan objects.

7.3. We have seen that the poset of Tk,n consisting of all binary trees avoiding comb1
k under the

Tamari order is the same as the Tamari lattice Tn when k ≥ n and is isomorphic to the Boolean
lattice Bn−1 when k = 2. What can be said about this poset when 2 < k < n?

7.4. An exercise shows Cn+1/Cn → 4 as n → ∞. One may compare this to the asymptotic
behavior of the k-modular analogue Ck,n+1/Ck,n. There is not much to compare for k = 2 as
C2,n+1/C2,n = 2 for all n ≥ 1. Computer experimentation suggests limn→∞C3,n+1/C3,n = 3,
3 < limn→∞Ck,n+1/Ck,n < 4 for k ≥ 4, and

lim
n→∞

Mk−1,n+1

Mk−1,n
= lim

n→∞

Ck,n+1

Ck,n
.

Which, if any, of these suggestions are true?

7.5. The sequence C3,n is the OEIS sequence A005773, which enumerates various objects. Taking
k = 3 in (9) and assuming j is the number of 1’s in λ, one obtains

C3,n =
∑

1≤`≤n

`

n

∑
0≤j≤n−`

(
n

n+`−j
2 , j, n−`−j2

)

=
∑

0≤j≤n−1

∑
1≤`≤n−j

(
n− 1

j

)(
n− j
n−`−j

2

)
`

n− j

=
∑

0≤i≤n−1

(
n− 1

i

) ∑
1≤`≤i+1

(
i+ 1
i+1−`

2

)
`

i+ 1

=
∑

0≤i≤n−1

(
n− 1

i

) ∑
0≤r≤i/2

[(
i

r

)
−
(

i

r − 1

)]

=
∑

0≤i≤n−1

(
n− 1

i

)(
i

bi/2c

)
.

Here we assume
(
n
m

)
:= 0 whenever m is not a nonnegative integer. This formula for C3,n was

obtained by Gouyou-Beauchamps and Viennot [8] during their study of directed animals, and also
obtained by Panyushev [13] using the affine Weyl group of the Lie algebra sp2n or so2n+1. We do not
currently have an understanding of how these objects are related to the objects in Proposition 3.3.
Can one generalize the above formula for C3,n to Ck,n?
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7.6. Is each k-connected component of Tn (under the k-associative order) a meet-semilattice? Is
every interval in a k-connected component of Tn a lattice?
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