Annular Non-Crossing Matchings

Paul Drube Puttipong Pongtanapaisan
Department of Mathematics and Statistics
Valparaiso University
\{paul.drube, puttipong.pongtanapaisan\}@valpo.edu

August 10, 2015

Abstract

It is well known that the number of distinct non-crossing matchings of n half-circles in the half-plane with endpoints on the x-axis equals the $n^{t h}$ Catalan number C_{n}. This paper generalizes that notion of linear non-crossing matchings, as well as the circular non-crossings matchings of Goldbach and Tijdeman, to non-crossings matchings of n line segments embedded within an annulus. We prove that the number of such matchings $|\operatorname{Ann}(n, m)|$ with n exterior endpoints and m interior endpoints correspond to an entirely new, one-parameter generalization of the Catalan numbers with $C_{n}=|\operatorname{Ann}(1, m)|$. We also develop bijections between specific classes of annular non-crossing matchings and other combinatorial objects such as binary combinatorial necklaces and planar graphs. Finally, we use Burnside's Lemma to obtain an explicit formula for $|\operatorname{Ann}(n, m)|$ for all $n, m \geq 0$.

1 Introduction

The Catalan numbers are arguably the most studied sequence of positive integers in mathematics. Among their seemingly countless combinatorial interpretations is an identification of the $n^{\text {th }}$ Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ with non-crossing matchings of $2 n$ points along the x -axis via n half-circles in the upper half-plane. In an effort to avoid confusion, we will sometimes refer to such arrangements as linear noncrossing matchings of order n. The $n^{\text {th }}$ Catalan number is also known to equal the number of ordered rooted trees with n non-root vertices. One bijection between these two interpretations is shown in Figure 1. That map involves placing a vertex in each region of the complement of a matching, with the "external" region receiving the root vertex, and then adding an edge if two regions are separated by a half-circle. For an extended treatment of the many different interpretations of Catalan numbers and the bijections between them, see 6].

Figure 1: The bijection between linear non-crossing matchings and ordered rooted trees.
Non-crossing matchings admit many interesting generalizations if one restricts curves to a subset of \mathbb{R}^{2} that is not the upper half-plane. One such modification is what we refer to as circular non-crossing matchings. In a circular non-crossing matching of order $n, 2 n$ distinct points on the unit circle are connected by a set of n non-intersecting smooth curves within the unit circle. Circular non-crossing matchings are considered equivalent if they differ by isotopies within the unit circle (including isotopies that "slide" endpoints), as long as those isotopies do not involve in curves or endpoints intersecting.

In particular, circular matchings related by rotation about the center of the unit circle are equivalent. However, matchings that can only be related via reflections are considered distinct. We henceforth refer to the number of circular non-crossing matchings of order n, modulo these relations, by \widetilde{C}_{n}.

One in-depth study of circular non-crossing matchings was undertaken by Goldbach and Tijdeman in [3]. In that work, an involved application of Burnside's Lemma showed that:

$$
\begin{equation*}
\widetilde{C}_{n}=\frac{1}{2 n}\left(\sum_{d \mid n} \phi(n / d)\binom{2 d}{d}\right)-\frac{1}{2} C_{n}+\frac{1}{2} C_{(n-1) / 2} \tag{1}
\end{equation*}
$$

where $\phi(k)$ is Euler's totient function and C_{k} is taken to be zero when k is not an integer, so that the final term only appears when n is odd.

Although not obvious from Equation 1, there is also a bijection between circular non-crossing matchings of order n and unrooted planar trees with $n+1$ nodes (n edges). For an illustration of this bijection, see Figure 2, Notice that this correspondence identifies \widetilde{C}_{n} with the $(n-1)^{s t}$ entry of A002995 [1]. See [4] for further discussion of the graph-theoretic interpretations of \widetilde{C}_{n}.

Figure 2: The bijection between circular non-crossing matchings and unrooted planar trees.
In this paper we introduce a new, two-parameter generalization of linear non-crossing matchings in which our smooth curves are embedded within an annulus. So let n, m be non-negative integers such that $n+m$ is even. We define an annular non-crossing matching of type (n, m) to be a collection of $\frac{n+m}{2}$ non-intersecting smooth curves within the annulus whose endpoints lie at $n+m$ distinct points along the annulus, with n of those endpoints on the exterior boundary of the annulus and m of those endpoints on the interior boundary of the annulus. Two annular matchings are considered equivalent if they differ by isotopies within the annulus (including isotopies that "slide" endpoints), as long as those isotopies don't result in curves or endpoints intersecting. Annular matchings that can only be related by reflections are considered distinct; also disallowed are isotopies where an edge must pass through the hole in the middle of the annulus. We denote the set of annular non-crossing matchings of type (n, m), modulo these relations, by $\operatorname{Ann}(n, m)$. If we wish to reference the larger collection of all annular non-crossing matchings with N total endpoints, no matter how those endpoints are partitioned between inner and outer boundary components, we write $\operatorname{Ann}(N)$. Thus $\operatorname{Ann}(N)=\{M \in \operatorname{Ann}(n, m) \mid n+m=N\}$ and $\operatorname{Ann}(N) \neq 0$ if and only if N is even.

In many settings, it will be advantageous to sub-divide annular matchings according to the the number of curves that do not isotope to half-circles on one boundary component. We define a cross-cut to be a curve in an annular non-crossing matching with one endpoint on the inside of the annulus and one endpoint on the outside of the annulus. We denote the set of annular non-crossing matchings of type (n, m) with precisely k cross-cuts by $A n n_{k}(n, m)$, so that $A n n(n, m)=\bigcup_{k} A n n_{k}(n, m)$. See Figure 3 for several quick examples.

Observe that every annular matching may be isotoped so that all of its cross-cuts appear as straight chords that meet both boundary circles at a right angle. Also notice that $\left|A n n_{k}(n, m)\right|=0$ unless $n-k$ and $m-k$ are both even. When working with an element of $A n n_{k}(n, m)$, we will sometimes refer to the $(n-k) / 2$ curves with both endpoints on the outside of the annulus as "external half-circles", and to the ($m-k) / 2$ curves with both endpoints on the inside of the annulus as "internal half-circles".

Figure 3: An element of $A n n_{2}(6,4)$, and an element of $A n n_{0}(6,0)$.

1.1 Outline of Results

The primary goal of this paper is to enumerate $|\operatorname{Ann}(n, m)|$ for arbitrary non-negative integers n and m. This will be accomplished by enumerating $\left|A n n_{k}(n, m)\right|$ for arbitrary n, m, k and then summing over k. Section 22 will begin the process with a series of basic results about annular non-crossing matchings, laying the theoretical framework for our subsequent enumerations. Along the way we will demonstrate a bijection between elements of $A n n_{k}(n, m)$ and sets of planar graphs that possess a single k-cycle and no cycles of any other size (Proposition [2.2, Theorem [2.5).

Section 3 presents our enumerative results. Subsection 3.1 begins with a consideration of the sets $A n n_{k}(2 n+k, k)$, a sub-case that we refer to as "maximal cross-cut annular matchings". Burnside's Lemma will be used to prove the following, which later appears as Theorem 3.1:

Theorem. Let n and k be non-negative integers, not both zero. Then:

$$
\left|A n n_{k}(2 n+k, k)\right|=\frac{1}{2 n+k} \sum_{d \mid(2 n+k, n)} \phi(d)\binom{(2 n+k) / d}{n / d}
$$

Where $\phi(d)$ is Euler's totient function and d runs over all common divisors of $2 n+k$ and n.
Subsection 3.1 will also exhibit a direct bijection between these maximal cross-cut annular matchings and binary combinatorial necklaces. If $N_{2}\left(n_{1}, n_{2}\right)$ denotes the number of binary combinatorial necklaces with n_{1} black beads and n_{2} white beads, then Theorem 3.3 will prove:

Theorem. Let n and k be non-negative integers. Then $\left|A n n_{k}(2 n+k, k)\right|=N_{2}(n+k, n)$.
Our results for $\left|A n n_{k}(2 n+k, k)\right|$ are then used in Subsection 3.2 to enumerate $\left|A n n_{k}(2 n+k, 2 m+k)\right|$ for the remaining choices of n, m, and k. In particular, Theorem 3.4 will show that:

Theorem. Let n, m, and k be non-negative integers with $m>0$. Then:

1. $\left|A n n_{k}(2 n+k, 2 m+k)\right|=\left|A n n_{0}(2 n, 0)\right| \cdot\left|A n n_{0}(2 m, 0)\right| \quad$ if $k=0$, and
2. $\left|A n n_{k}(2 n+k, 2 m+k)\right|=\frac{k}{(2 n+k)(2 m+k)} \sum_{d \mid(2 n+k, n, m)} \phi(d)\binom{(2 n+k) / d}{n / d}\binom{(2 m+k) / d}{m / d} \quad$ if $k>0$

Where $\phi(d)$ is Euler's totient function and summations run over all common divisors of the given integers.
We close the paper with an appendix of tables giving outputs for various $\operatorname{Ann}(n, m), A n n_{k}(n, m)$, and $\operatorname{Ann}(N)$, all calculated in Maple using Theorems 3.1 and 3.4 .

2 Basic Results About Annular Non-Crossing Matchings

In this section we present a series of foundational results about annular non-crossing matchings, some of which will be utilized to prove the more general enumerative results of Section 3. We also take the opportunity to draw bijections between annular matchings and various classes of planar graphs, and relate the number of "zero cross-cut" matchings in $\operatorname{Ann}(2 n, 0)$ to C_{n} and \widetilde{C}_{n}.

Proposition 2.1. Let n, m be non-negative integers. Then $\left|A n n_{k}(n, m)\right|=\left|A n n_{k}(m, n)\right|$ for all $k \geq 0$. In particular, $|\operatorname{Ann}(n, m)|=|\operatorname{Ann}(m, n)|$ for all $n, m \geq 0$.
Proof. Begin by isotoping elements of $A n n_{k}(n, m)$ and $A n n_{k}(m, n)$ so that all cross-cuts appear as straight chords orthogonal to the boundary circles. Reflection across the "core" of the annulus then maps every cross-cut to itself, and defines a bijection between $A n n_{k}(n, m)$ and $A n n_{k}(m, n)$ for any $k \geq 0$.

The primary use of Proposition 2.1 is that it will allow us to restrict our attention to $\operatorname{Ann}(n, m)$ and $A n n_{k}(n, m)$ such that $n \geq m$. Yet even within the realm where $n \geq m$, there will be specific "easy" choices for n and m that will prove to have the most useful combinatorial interpretations. The first of these special cases is $\operatorname{Ann}(2 n, 0)=A n n_{0}(2 n, 0)$, corresponding to the situation where all curves in the matchings are external half-circles.

Proposition 2.2. Let n be any non-negative integer. Then $|\operatorname{Ann}(2 n, 0)|$ equals the number of unrooted planar trees with a distinguished vertex and n additional vertices.

Proof. The required bijection is analogous to the constructions of Figures 1 and 2 for linear and circular matchings. We add one vertex for each region in the matching and connect two vertices with an edge if they are separated by a half-circle:

Here the distinguished vertex is placed in the sole region that borders the interior boundary of the annulus. In placing the edges for our graph, we disregard whether that edge would have passed through the hole in the center of the annulus (we treat the hole as part of the internal region). As the half-circles in our matchings may be cyclically rotated around the center of the annulus in "blocks", this gives us the desired notion of equivalence for our planar graphs.

The class of planar graphs from Proposition 2.2 is equivalent to rooted planar graphs with n nonroot vertices, as long as cyclic reordering of subtrees around the root vertex gives equivalent trees. This interpretation identifies $|\operatorname{Ann}(2 n, 0)|$ with the $n^{\text {th }}$ entry of A003239 [1]. See 4] and [5] for further bijections involving $|A n n(2 n, 0)|$.

Via the planar graph bijections of Section 1 and Proposition 2.2 it is immediate that $\widetilde{C}_{n} \leq|\operatorname{Ann}(2 n, 0)| \leq$ C_{n} for all $n \geq 0$. One can easily verify that $\widetilde{C}_{n}=|\operatorname{Ann}(2 n, 0)|=C_{n}$ for both $n=0$ and $n=1$. For $n=2$ we have $|\operatorname{Ann}(4,0)|=C_{2}=2$ yet $\widetilde{C}_{2}=1$. As shown in the following proposition, $n=2$ is the largest value of n for which any of the three quantities are equal:
Proposition 2.3. For all $n \geq 3$ we have $\widetilde{C}_{n} \lesseqgtr|\operatorname{Ann}(2 n, 0)| \lesseqgtr C_{n}$.
Proof. We define a map ϕ from the set of all linear non-crossings of order n to $\operatorname{Ann}(2 n, 0)$ by identifying the endpoints of the x -axis and placing the resulting circle as the outer boundary of the annulus. We then define a map ψ from $\operatorname{Ann}(2 n, 0)$ to the set of all circular non-crossing matchings of order n by "deleting" the hole in the middle of the annulus.

Both ϕ and ψ are clearly well-defined and surjective for all $n \geq 0$. To see that neither map is injective for $n \geq 3$, let A be some non-empty collection of half-circles and notice that:

With the zero cross-cuts case well-understood, we expand our attention to $A n n_{k}(n, m)$ with $k \geq 1$. In what follows we re-index variables to consider $A n n_{k}(2 n+k, 2 m+k)$, as this alternative notation explicitly references the presence of n external half-circles and m internal half-circles. The cases that will prove most useful are what we refer to as maximal cross-cut annular matchings. In maximal cross-cut annular matchings, the only endpoints on the interior boundary belong to cross-cuts. In our new notation this implies that $m=0$, so that we are dealing with sets of the form $A n n_{k}(2 n+k, k)$. Notice that the previously considered sets $\operatorname{Ann}(2 n, 0)=A n n_{0}(2 n+0,0)$ qualify as maximal cross-cut annular matchings.

When $k=1$, maximal cross-cut annular matchings are in bijection with the Catalan numbers. As shown in Figure 4, a bijection of such annular matchings with linear non-crossing matchings is realized by identifying the outer boundary of the annulus with the real line, in such a way that the outer endpoint of the sole cross-cut corresponds to $\pm \infty$.

Figure 4: The bijection between $A n n_{1}(2 n+1,1)$ and linear non-crossing matchings of order n.
Maximal cross-cut annular matchings will be directly enumerated in Subsection 3.1 for all $k \geq 0$, and those enumerations will be necessary building blocks for the general enumerations of Subsection 3.2. Although the full importance of the maximal cross-cut case will not become obvious until those subsections, we pause to prove one useful property shared by maximal cross-cut matchings and annular matchings with zero cross-cuts:

Proposition 2.4. Let n, m, k be non-negative integers. If $m=0$ or $k=0$ then:

$$
\left|A n n_{k}(2 n+k, 2 m+k)\right|=\left|A n n_{k}(2 n+k, k)\right|\left|A n n_{k}(2 m+k, k)\right|
$$

Proof. We define a map $\phi: A n n_{k}(2 n+k, 2 m+k) \rightarrow A n n_{k}(2 n+k, k) \oplus A n n_{k}(k, 2 m+k)$ that deletes internal half-circles in the first coordinate and deletes external half-circles in the second coordinate, as in the example below:

This map ϕ is clearly a bijection whenever $m=0$. To see that ϕ is a bijection when $k=0$, notice that the lack of cross-cuts in the $k=0$ case means that the internal half-circles and external half-circles may be isotoped independently around their respective boundary components and hence "do not interact".

It can be shown that the equality of Proposition [2.4 holds precisely when $n=0$ or $m=0$ or $k<2$. If $k \geq 2, n \geq 1$, and $m \geq 1$ all hold, the left side of the expression always proves to be strictly larger than the right side. However, only the $m=0$ and $k=0$ cases are needed in Section 3, motivating our omission of the more general result.

For our final result of this section, we adapt the planar graph bijection of Proposition 2.2 to the general case of $A n n_{k}(2 n+k, 2 m+k)$. Although the resulting language of Theorem 2.5 is arguably rather contrived, it combines with Proposition 2.2 to give a succinct geometric characterization of any subset of annular matchings that is not $A n n_{0}(2 n, 2 m)$ with $n, m>0$.

Theorem 2.5. Let n, m, k be non-negative integers and let $k \geq 1$. Then $\left|A n n_{k}(2 n+k, 2 m+k)\right|$ equals the number of connected planar graphs such that:

1. The only cycle in the graph is a single k-cycle.
2. There are n edges within the cycle.
3. There are m edges outside the cycle.

Proof. The methodology required is extremely similar to what has already been presented in Proposition 2.2. Notice that a collection of k cross-cuts produces a single k-cycle, as below:

Any internal half-circles are then in bijection with edges inside the k-cycle, while external half-circles are in bijection with edges outside the k-cycle.

3 Enumeration of Annular Matchings

We are now ready for the general enumerative results that form the core of this paper. Subsection 3.1 begins with an enumeration of maximal cross-cut annular matchings, and shows that those matchings are in bijection with certain types of binary combinatorial necklaces. Subsection 3.2 then collects all of our results to give an explicit formula for general $\left|A n n_{k}(2 n+k, 2 m+k)\right|$, thus allowing for the direct calculation of $|\operatorname{Ann}(a, b)|$ and $|A n n(N)|$.

3.1 Enumeration of $A n n_{k}(2 n+k, k)$ and Combinatorial Necklaces

Burnside's Lemma has already been mentioned as the method used in [3] to calculate the number of circular non-crossing matchings. Given that our annular non-crossing matchings possess a similar notion of rotational equivalence, it comes as little surprise that the lemma may also be applied to the enumeration of distinct matchings in the annulus. Recall that Burnside's Lemma (also known as the Cauchy-Frobenius Lemma) applies to any situation where a finite group G acts upon a set A. It asserts that the number of orbits $|A / G|$ with respect to the action equals the average size of the sets $A^{g}=\{a \in A \mid g a=a\}$ when ranging over all $g \in G$: that $|A / G|=\frac{1}{|G|} \sum_{g \in G}\left|A^{g}\right|$.

So fix $n, k \geq 0$, and let A equal the set of all non-crossing matchings in the annulus (prior to any notion of equivalence) with $2 n+k$ endpoints located at $\frac{2 \pi}{2 n+k}$ radian intervals about the exterior boundary and precisely k straight cross-cuts that meet both boundary components orthogonally. We may define a (left) action of $G=\mathbb{Z}_{2 n+k}$ on A whereby $g \cdot a$ is counter-clockwise rotation of a by $\frac{2 \pi g}{2 n+k}$ radians. Then $G / A=A n n_{k}(2 n+k, k)$, with distinct orbits in G / A corresponding to matchings that are equivalent via rotation. This sets up the following application of Burnside's Lemma:

Theorem 3.1. Let n and k be non-negative integers, not both zero. Then:

$$
\left|A n n_{k}(2 n+k, k)\right|=\frac{1}{2 n+k} \sum_{d \mid(2 n+k, n)} \phi(d)\binom{(2 n+k) / d}{n / d}
$$

Where $\phi(d)$ is Euler's totient function and the sum runs over all common divisors d of $2 n+k$ and n.
Proof. Using the aforementioned group action, by Burnside's Lemma we merely need to show that $\sum_{g \in \mathbb{Z}_{2 n+k}}\left|A^{g}\right|=\sum_{d \mid(2 n+k, n)} \phi(d)\binom{(2 n+k) / d}{n / d}$. So take $g \in \mathbb{Z}_{2 n+k}$, and assume that g has order d in $\mathbb{Z}_{2 n+k}$ Notice that Lagrange's Theorem guarantees $d \mid(2 n+k)$, although it may or may not be true that $d \mid n$.

The elements of A^{g} are those matchings that can be radially divided into d identical sub-matchings. Each of these sub-arrangements features $(2 n+k) / d$ endpoints on the outer boundary of the annulus, k / d of which are the outer endpoints of cross-cuts and n / d of which are left-endpoints of exterior half-circles. Now if $d \nmid n$, the left-endpoints cannot be sub-divided in this way and we may conclude that $\left|A^{g}\right|=0$. However, $d \mid n$ and $d \mid(2 n+k, n)$ together guarantee that $k \mid n$, making $\left|A^{g}\right| \neq 0$ a possibility. If $d \mid n$, notice that every possible sub-arrangement may be uniquely identified by specifying which of the $(2 n+k) / d$ endpoints correspond to left (clockwise) endpoints of exterior half-circles. This bijection, which closely resembles the upcoming construction in the proof of Theorem 3.3, involves recursively connecting each specified endpoint to the nearest available non-specified endpoint on its right and then associating the k unused endpoints with cross-cuts. See Figure 5 for an example. It follows that $\left|A^{g}\right|=\binom{(2 n+k) / d}{n / d}$ whenever $|g|=d$ and $d \mid n$.

If $q \mid N$, basic number theory ensures that there are precisely $\phi(q)$ elements $i \in \mathbb{Z}_{N}$ with greatest common divisor $(i, N)=N / q$. As the order of any element in \mathbb{Z}_{N} is $N /(i, N)$, there exist precisely $\phi(q)$ elements $i \in \mathbb{Z}_{N}$ with order $|i|=q$. Letting $N=2 n+k$, this ensures that there are precisely $\phi(d)$ elements $g \in \mathbb{Z}_{2 n+k}$ such that $\left|A^{g}\right|=\binom{(2 n+k) / d}{n / d}$, thus deriving the summation of the theorem.

Figure 5: For every choice of n left-endpoints (white circles) there is a unique annular sub-matching with n half-circles and k cross-cuts. Here the relevant piece of the outer boundary is drawn as the real line.

Table 1 of Appendix A exhibits values of $\left|A n n_{k}(2 n+k, k)\right|$ for $0 \leq n, k \leq 10$, all calculated in Maple via the equation of Theorem [3.1. An examination of that table places $\left|A n n_{k}(2 n+k, k)\right|$ into direct correspondence with the $T(n+k, n)$ entry of OEIS sequence A241926 [1]. Using Proposition 2.1 when necessary to ensure that $2 n+k>n,\left|A n n_{k}(2 n+k, k)\right|$ may also be identified with the "circular binomial coefficient" $T(2 n+k, n)$ of OEIS sequence A047996 [1]. Both of those OEIS sequence reveal a bijection between the $A n n_{k}(2 n+k, k)$ and binary combinatorial necklaces, and in fact a summation equivalent to the one of Theorem 3.1 has already been shown to equal the number of binary combinatorial necklaces of certain types [2]. Yet before investigating how these results relate to annular non-crossing matchings, we observe that the formula of Theorem 3.1 may be significantly simplified when k is prime:

Corollary 3.2. Let p be a prime integer and let n be any non-negative integer. Then:

$$
\left|A n n_{p}(2 n+p, p)\right|=\frac{1}{2 n+p}\binom{2 n+p}{n}+\frac{p-1}{p} C_{n / p}
$$

Where $C_{n / p}$ is the Catalan number, and is taken to be zero when n / p is not an integer.
Proof. It is a straightforward exercise to calculate that the greatest common divisor of $2 n+p$ and n is $(2 n+p, n)=1$ when $(p, n)=1$, as well as that $(2 n+p, n)=p$ when $(p, n)=p$. Theorem 3.1 then gives:

- $\left|A n n_{p}(2 n+p, n)\right|=\frac{1}{2 n+p}\binom{2 n+p}{n} \quad$ when $p \nmid n$
- $\left|A n n_{p}(2 n+p, n)\right|=\frac{1}{2 n+p}\binom{2 n+p}{n}+\frac{1}{2 n+p}(p-1)\binom{(2 n+p) / p}{n / p} \quad$ when $p \mid n$

A simplification of the final term in the second case then yields the desired formula.

Notice that the more straightforward formula for $\left|A n n_{k}(2 n+k, n)\right|$ in Corollary 3.2 simplifies to the sequences A007595 [1] when $p=2$ and A003441 [1] when $p=3$.

Driven by sequences A241926 and A047996, we now work to develop an explicit bijection between the $\left|A n n_{k}(2 n+k, k)\right|$ and binary combinatorial necklaces, providing a new combinatorial identity that supplements the one in [2]. A k-are combinatorial necklace is a circular arrangement of "beads" of up to k distinguishable varieties (typically referred to as "colors"), such that rotations of the beads around the circle are considered equivalent. Necklaces that are related only via (orientation-reversing) reflection are not considered equivalent. The number of distinct k-ary combinatorial necklace with precisely n total beads is denoted $N_{k}(n)$. Combinatorial necklaces are well-studied in the literature, and different classes of combinatorial necklaces are the focus of many integer sequences [1].

In this paper we deal only with binary (2-ary) combinatorial necklaces, whose colors we refer to as "black" and "white". Our results require increased specificity in that we need to designate the number of beads of each color, so we denote the number of distinct binary necklaces with precisely n_{1} black beads and precisely n_{2} white beads by $N_{2}\left(n_{1}, n_{2}\right)$. Pause to note that some places in the literature refer to such combinatorial necklaces as "binary necklaces of weight n_{1} ".

Theorem 3.3. Let n and k be non-negative integers. Then $\left|A n n_{k}(2 n+k, k)\right|=N_{2}(n+k, n)$.
Proof. Denote the set of all combinatorial necklaces with n_{1} black beads and n_{2} white beads by S. We define functions $\phi_{1}: A n n_{k}(2 n+k, k) \rightarrow S$ and $\phi_{2}: S \rightarrow A n n_{k}(2 n+k, k)$ that are both injective. For ϕ_{1} we follow the procedure exemplified below, placing white beads at the left-endpoints of exterior half-circles and black beads at right-endpoints of exterior half-circles as well as at the exterior endpoints of cross-cuts:

For ϕ_{2} we begin at any point along the combinatorial necklace and proceed counter-clockwise. Every time we encounter a white bead, we add a half-circle connecting that bead to the first black bead (in the counter-clockwise direction) that is not already the right-endpoint of a half-circle. Repeat this procedure, traversing the necklace multiple times if necessary, until every white bead is the left-endpoint of a halfcircle. Then add the inner boundary of the annulus and, for every black bead that is not already the right-endpoint of a half-circle, add a cross-cut whose exterior endpoint is that black bead.

Both ϕ_{1} and ϕ_{2} are clearly well-defined and injective, as the excess of $(n+k)-n=k$ black beads are in bijection with the k necessary cross-cuts and the rotational notion of equivalence is identical for combinatorial necklaces and annular non-crossing matchings. The result then follows.

3.2 Enumeration of $A n n_{k}(2 n+k, 2 m+k)$, General Case

We are finally ready for the enumeration of general $A n n_{k}(2 n+k, 2 m+k)$ that do not correspond to the special $m=0$ case of Subsection [3.1. There are actually two sub-cases here depending upon whether or not k is nonzero:

Theorem 3.4. Let n, m, and k be non-negative integers with $m>0$. Then:

$$
\begin{aligned}
& \text { 1. }\left|A n n_{k}(2 n+k, 2 m+k)\right|=\left|A n n_{0}(2 n, 0)\right| \cdot\left|A n n_{0}(2 m, 0)\right| \quad \text { if } k=0 \text {, and } \\
& \text { 2. }\left|A n n_{k}(2 n+k, 2 m+k)\right|=\frac{k}{(2 n+k)(2 m+k)} \sum_{d \mid(2 n+k, n, m)} \phi(d)\binom{(2 n+k) / d}{n / d}\binom{(2 m+k) / d}{m / d} \quad \text { if } k>0
\end{aligned}
$$

Where $\phi(d)$ is Euler's totient function and summations run over all common divisors of the given integers.
Proof. Case \#1 follows directly from Proposition [2.4. For Case \#2 we look to apply Burnside's Lemma by defining an action of $\mathbb{Z}_{(2 n+k)(2 m+k)}$ on a set A of relevant matchings.

So fix $n, m \geq 0, k>0$, and consider annular non-crossing matchings with precisely n exterior halfcircles, m interior half-circles, and k cross-cuts. To form our set A, we require that the $2 n+k$ exterior endpoints are located at $\frac{2 \pi}{2 n+k}$ radian intervals about the exterior boundary, and that the $2 m+k$ interior endpoints are located at $\frac{2 \pi}{2 m+k}$ radian intervals about the interior boundary. Unlike in the proof of Theorem [3.1, we do not require that the k cross-cuts appear as straight lines that meet the boundaries at right angles, as that condition could require the re-spacing of endpoints on one of the boundary components. Here we consider cross-cuts up to isotopy that fix their endpoints. Absolutely no rotational isotopy of endpoints or rotation of either boundary component is allowed. Notice that A is composed of exactly $k\binom{2 n+k}{n}\binom{2 m+k}{m}$ matchings. Here the binomial coefficients are derived from specifying which of the endpoints on the inner and outer boundary component correspond to the left-endpoints of half-circles (as in the proofs of Theorems 3.1 and 3.3), while the additional k term results from the ambiguity in matching up the remaining k endpoints on each side to form k cross-cuts. Notice that specifying both endpoints of a single cross-cuts determines how all remaining cross-cuts are matched amongst the remaining $(k-1)$ endpoints on each side.

We then define a left action of $\mathbb{Z}_{(2 n+k)(2 m+k)}$ on A where $g \cdot a$ is a counter-clockwise rotation of the entire matching by $\frac{2 \pi g}{(2 n+k)(2 m+k)}$ radians. If $|g|=d$, the elements of A^{g} are matchings that may be radially divided in d identical sub-matchings along both the inner and outer boundaries, with analogous identifications of cross-cuts in each sub-matching. Observe that we do not require that both endpoints of each cross-cut lie in the same sub-matching, merely that each sub-matching exhibits an identical pattern with regards to any cross-cuts involved. For $\left|A^{g}\right| \neq 0$ it is immediate that we must have both $d \mid(2 n+k)$ and $d \mid(2 m+k)$. To ensure that left-endpoints of half-circles are mapped to left-endpoints and that cross-cuts are mapped to cross-cuts, it is also required that $d|n, d| m$, and $d \mid k$. It can easily be shown that $d \mid(2 n+k, n, m)$ is necessary and sufficient to satisfy all of these conditions ${ }^{1}$ Thus $\left|A^{g}\right| \neq 0$ if and only if $d \mid(2 n+k, n, m)$.

So take $g \in \mathbb{Z}_{(2 n+k)(2 m+k)}$ with $|g|=d$ such that $d \mid(2 n+k, n, m)$. Via similar reasoning as in Theorem 3.1, there are $\binom{2 n+k}{n}$ choices for the outer boundary of each sub-matching and $\binom{2 m+k}{m}$ independent choices for the inner boundary of each sub-matching. After the endpoints belonging to cross-cuts have been identified, there are also k independent choices for how the cross-cuts match up across the annulus. These k choices correspond to similarly-symmetrical matchings whose blocks are identical apart from the fact that their cross-cuts uniformly "twist around" the annulus by different amounts. We may conclude that $\left|A^{g}\right|=k\binom{(2 n+k) / d}{n / d}\binom{(2 m+k) / d}{m / d}$ if $d \mid(2 n+k, n, m)$.

Similarly to our argument from the proof of Theorem 3.1, if $q \mid(2 n+k)(2 m+k)$ one may show that there are precisely $\phi(q)$ elements $i \in \mathbb{Z}_{(2 n+k)(2 m+k)}$ with order $|i|=q$. It follows that there are precisely

[^0] an application of Burnside's Lemma.

Theorems 3.1 and 3.4 combine to provide a closed formula for every $\left|A n n_{k}(2 n+k, 2 m+k)\right|$ in which n, m, k are not all zero. As we clearly have $\left|A n n_{0}(0,0)\right|=1$, this accounts for all possibilities and allows us to directly enumerate $\operatorname{Ann}(n, m)=\bigcup_{k} A n n_{k}(n, m)$ for all $n, m \geq 0$.

Table 2 of Appendix A presents values of $|\operatorname{Ann}(n, m)|$ for all $0 \leq n, m \leq 12$, calculated in Maple using the equations of Theorems 3.1 and 3.4. In Proposition 2.2. we have already established that the $n=0$ row (or $m=0$ column) of Table 2 corresponds to A003239 [1]. Also noted in Section 2 what the fact that the $n=1$ row (or $m=1$ column) of Table 2 corresponds to the Catalan numbers. However, no other rows, diagonals, or triangles of numbers from Table 2 appear to correspond to any known sequences on OEIS. This yields an entire family of new integer sequences with an explicit geometric interpretation. Of particular interest are the rows for $n>2$, representing new generalizations of the Catalan numbers that appear as later terms in a sequence of sequences beginning with A003239 and the Catalan numbers.

Table 3 of Appendix A shows values of $\operatorname{Ann}(2 n)$ for small values of n. These values are most easily derived by summing anti-diagonals from Table 2. The sequence of Table 3 also fails to appear as a known integer sequence on OEIS.

4 Acknowledgements

Both authors would like to thank the Department of Mathematics \& Statistics at Valparaiso University, whose MATH 492 Research in Mathematics course provided the framework under which this research took place. The first author would also like to thank Dr. Lara Pudwell, who offered helpful advice in the latter stages of the project.

References

[1] The On-Line Encyclopedia of Integer Sequences.
[2] A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173-188.
[3] R.W. Goldbach and R. Tijdeman, Pairings of $2 n$ points on a circle, Utilitas Mathematics 38 (1990), 277-284.
[4] Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
[5] Richard P. Stanley, Enumerative Combinatorics vol. 2, Cambridge University Press, 1999.
[6] _ Catalan Numbers, 1st edition, Cambridge University Press, 2015.

A Tables of Values

All tables in this appendix were generated in Maple 18 using the equations of Theorems 3.1 and 3.4 . Coding is available upon request from Paul Drube (paul.drube@valpo.edu)

Table 1: Enumeration of Maximal Cross-Cut Annular Matchings $\left|A n n_{k}(2 n+k, k)\right|$.

	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	$\mathrm{k}=4$	$\mathrm{k}=5$	$\mathrm{k}=6$	$\mathrm{k}=7$	$\mathrm{k}=8$	$\mathrm{k}=9$	$\mathrm{k}=10$
$\mathrm{n}=0$	1	1	1	1	1	1	1	1	1	1	1
$\mathrm{n}=1$	1	1	1	1	1	1	1	1	1	1	1
$\mathrm{n}=2$	2	2	3	3	4	4	5	5	6	6	7
$\mathrm{n}=3$	4	5	7	10	12	15	19	22	26	31	35
$\mathrm{n}=4$	10	14	22	30	43	55	73	91	116	140	172
$\mathrm{n}=5$	26	42	66	99	143	201	273	364	476	612	776
$\mathrm{n}=6$	80	132	217	335	504	728	1038	1428	1944	2586	3399
$\mathrm{n}=7$	246	429	715	1144	1768	2652	3876	5538	7752	10659	14421
$\mathrm{n}=8$	810	1430	2438	3978	6310	9690	14550	21318	30667	43263	60115
$\mathrm{n}=9$	2704	4862	8398	14000	22610	35530	54484	81719	120175	173593	246675
$\mathrm{n}=10$	9252	16796	29414	49742	81752	130752	204347	312455	468754	690690	1001603

Table 2: Enumeration of Annular Non-Crossing Matchings $|A n n(n, m)|$. Entries where $|A n n(n, m)|=0$ have been left blank, and the main diagonal $|\operatorname{Ann}(n, n)|$ has been bolded to emphasize $n \leftrightarrow m$ symmetry.

	$\mathrm{m}=0$	$\mathrm{~m}=1$	$\mathrm{~m}=2$	$\mathrm{~m}=3$	$\mathrm{~m}=4$	$\mathrm{~m}=5$	$\mathrm{~m}=6$	$\mathrm{~m}=7$	$\mathrm{~m}=8$	$\mathrm{~m}=9$	$\mathrm{~m}=10$	$\mathrm{~m}=11$	$\mathrm{~m}=12$
$\mathrm{n}=0$	$\mathbf{1}$		1		2		4		10		26		80
$\mathrm{n}=1$		$\mathbf{1}$		1		2		5		14		42	
$\mathrm{n}=2$	1		$\mathbf{2}$		3		7		17		48		146
$\mathrm{n}=3$		1		$\mathbf{2}$		3		8		24		72	
$\mathrm{n}=4$	2		3		$\mathbf{7}$		14		38		106		335
$\mathrm{n}=5$		2		3		$\mathbf{8}$		20		60		189	
$\mathrm{n}=6$	4		7		14		$\mathbf{3 4}$		90		263		834
$\mathrm{n}=7$		5		8		20		$\mathbf{5 8}$		175		560	
$\mathrm{n}=8$	10		17		38		90		$\mathbf{2 5 5}$		750		2420
$\mathrm{n}=9$	14		24		60		175		$\mathbf{5 4 6}$		1764		
$\mathrm{n}=10$	26		48		106		263		750		$\mathbf{2 2 6 8}$		7372
$\mathrm{n}=11$		42		72		189		560		1764		$\mathbf{5 7 7 4}$	
$\mathrm{n}=12$	80		146		335		834		2420		7372		$\mathbf{2 4 1 9 8}$

Table 3: Enumeration of Annular Non-Crossing Matchings $|\operatorname{Ann}(2 n)|$.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$\operatorname{Ann}(2 \mathrm{n})$	1	3	8	20	57	166	538	1762	6045	21040	74628	267598	970134	3544416

[^0]: ${ }^{1}$ Other equivalent conditions on d include $d \mid(2 m+k, n, m)$ and $d \mid(k, n, m)$.

