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Abstract

It is well known that the number of distinct non-crossing matchings of n half-circles in the half-plane
with endpoints on the x-axis equals the nth Catalan number Cn. This paper generalizes that notion of
linear non-crossing matchings, as well as the circular non-crossings matchings of Goldbach and Tijde-
man, to non-crossings matchings of n line segments embedded within an annulus. We prove that the
number of such matchings |Ann(n,m)| with n exterior endpoints and m interior endpoints correspond
to an entirely new, one-parameter generalization of the Catalan numbers with Cn = |Ann(1,m)|. We
also develop bijections between specific classes of annular non-crossing matchings and other combina-
torial objects such as binary combinatorial necklaces and planar graphs. Finally, we use Burnside’s
Lemma to obtain an explicit formula for |Ann(n,m)| for all n,m ≥ 0.

1 Introduction

The Catalan numbers are arguably the most studied sequence of positive integers in mathematics. Among
their seemingly countless combinatorial interpretations is an identification of the nth Catalan number
Cn = 1

n+1

(
2n
n

)
with non-crossing matchings of 2n points along the x-axis via n half-circles in the upper

half-plane. In an effort to avoid confusion, we will sometimes refer to such arrangements as linear non-
crossing matchings of order n. The nth Catalan number is also known to equal the number of ordered
rooted trees with n non-root vertices. One bijection between these two interpretations is shown in Figure
1. That map involves placing a vertex in each region of the complement of a matching, with the “external”
region receiving the root vertex, and then adding an edge if two regions are separated by a half-circle.
For an extended treatment of the many different interpretations of Catalan numbers and the bijections
between them, see [6].

⇔
Figure 1: The bijection between linear non-crossing matchings and ordered rooted trees.

Non-crossing matchings admit many interesting generalizations if one restricts curves to a subset of
R2 that is not the upper half-plane. One such modification is what we refer to as circular non-crossing
matchings. In a circular non-crossing matching of order n, 2n distinct points on the unit circle are
connected by a set of n non-intersecting smooth curves within the unit circle. Circular non-crossing
matchings are considered equivalent if they differ by isotopies within the unit circle (including isotopies
that “slide” endpoints), as long as those isotopies do not involve in curves or endpoints intersecting.
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In particular, circular matchings related by rotation about the center of the unit circle are equivalent.
However, matchings that can only be related via reflections are considered distinct. We henceforth refer
to the number of circular non-crossing matchings of order n, modulo these relations, by C̃n.

One in-depth study of circular non-crossing matchings was undertaken by Goldbach and Tijdeman in
[3]. In that work, an involved application of Burnside’s Lemma showed that:

C̃n =
1

2n



∑

d|n

φ(n/d)

(
2d

d

)
−

1

2
Cn +

1

2
C(n−1)/2 (1)

where φ(k) is Euler’s totient function and Ck is taken to be zero when k is not an integer, so that the
final term only appears when n is odd.

Although not obvious from Equation 1, there is also a bijection between circular non-crossing match-
ings of order n and unrooted planar trees with n+1 nodes (n edges). For an illustration of this bijection,
see Figure 2. Notice that this correspondence identifies C̃n with the (n − 1)st entry of A002995 [1]. See
[4] for further discussion of the graph-theoretic interpretations of C̃n.

⇔

Figure 2: The bijection between circular non-crossing matchings and unrooted planar trees.

In this paper we introduce a new, two-parameter generalization of linear non-crossing matchings in
which our smooth curves are embedded within an annulus. So let n,m be non-negative integers such
that n +m is even. We define an annular non-crossing matching of type (n,m) to be a collection
of n+m

2 non-intersecting smooth curves within the annulus whose endpoints lie at n +m distinct points
along the annulus, with n of those endpoints on the exterior boundary of the annulus and m of those
endpoints on the interior boundary of the annulus. Two annular matchings are considered equivalent if
they differ by isotopies within the annulus (including isotopies that “slide” endpoints), as long as those
isotopies don’t result in curves or endpoints intersecting. Annular matchings that can only be related by
reflections are considered distinct; also disallowed are isotopies where an edge must pass through the hole
in the middle of the annulus. We denote the set of annular non-crossing matchings of type (n,m), modulo
these relations, by Ann(n,m). If we wish to reference the larger collection of all annular non-crossing
matchings with N total endpoints, no matter how those endpoints are partitioned between inner and
outer boundary components, we write Ann(N). Thus Ann(N) = {M ∈ Ann(n,m) | n +m = N} and
Ann(N) 6= 0 if and only if N is even.

In many settings, it will be advantageous to sub-divide annular matchings according to the the number
of curves that do not isotope to half-circles on one boundary component. We define a cross-cut to be
a curve in an annular non-crossing matching with one endpoint on the inside of the annulus and one
endpoint on the outside of the annulus. We denote the set of annular non-crossing matchings of type
(n,m) with precisely k cross-cuts by Annk(n,m), so that Ann(n,m) =

⋃
kAnnk(n,m). See Figure 3 for

several quick examples.
Observe that every annular matching may be isotoped so that all of its cross-cuts appear as straight

chords that meet both boundary circles at a right angle. Also notice that |Annk(n,m)| = 0 unless n− k
and m− k are both even. When working with an element of Annk(n,m), we will sometimes refer to the
(n− k)/2 curves with both endpoints on the outside of the annulus as “external half-circles”, and to the
(m− k)/2 curves with both endpoints on the inside of the annulus as “internal half-circles”.
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Figure 3: An element of Ann2(6, 4), and an element of Ann0(6, 0).

1.1 Outline of Results

The primary goal of this paper is to enumerate |Ann(n,m)| for arbitrary non-negative integers n and
m. This will be accomplished by enumerating |Annk(n,m)| for arbitrary n,m, k and then summing over
k. Section 2 will begin the process with a series of basic results about annular non-crossing matchings,
laying the theoretical framework for our subsequent enumerations. Along the way we will demonstrate a
bijection between elements of Annk(n,m) and sets of planar graphs that possess a single k-cycle and no
cycles of any other size (Proposition 2.2, Theorem 2.5).

Section 3 presents our enumerative results. Subsection 3.1 begins with a consideration of the sets
Annk(2n + k, k), a sub-case that we refer to as “maximal cross-cut annular matchings”. Burnside’s
Lemma will be used to prove the following, which later appears as Theorem 3.1:

Theorem. Let n and k be non-negative integers, not both zero. Then:

|Annk(2n + k, k)| =
1

2n+ k

∑

d|(2n+k,n)

φ(d)

(
(2n + k)/d

n/d

)

Where φ(d) is Euler’s totient function and d runs over all common divisors of 2n+ k and n.

Subsection 3.1 will also exhibit a direct bijection between these maximal cross-cut annular matchings
and binary combinatorial necklaces. If N2(n1, n2) denotes the number of binary combinatorial necklaces
with n1 black beads and n2 white beads, then Theorem 3.3 will prove:

Theorem. Let n and k be non-negative integers. Then |Annk(2n + k, k)| = N2(n+ k, n).

Our results for |Annk(2n+k, k)| are then used in Subsection 3.2 to enumerate |Annk(2n+k, 2m+k)|
for the remaining choices of n, m, and k. In particular, Theorem 3.4 will show that:

Theorem. Let n, m , and k be non-negative integers with m > 0. Then:

1. |Annk(2n + k, 2m + k)| = |Ann0(2n, 0)| · |Ann0(2m, 0)| if k = 0, and

2. |Annk(2n + k, 2m + k)| =
k

(2n + k)(2m+ k)

∑

d|(2n+k,n,m)

φ(d)

(
(2n+ k)/d

n/d

)(
(2m+ k)/d

m/d

)
if k > 0

Where φ(d) is Euler’s totient function and summations run over all common divisors of the given integers.

We close the paper with an appendix of tables giving outputs for various Ann(n,m), Annk(n,m), and
Ann(N), all calculated in Maple using Theorems 3.1 and 3.4.

2 Basic Results About Annular Non-Crossing Matchings

In this section we present a series of foundational results about annular non-crossing matchings, some
of which will be utilized to prove the more general enumerative results of Section 3. We also take the
opportunity to draw bijections between annular matchings and various classes of planar graphs, and relate
the number of “zero cross-cut” matchings in Ann(2n, 0) to Cn and C̃n.
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Proposition 2.1. Let n,m be non-negative integers. Then |Annk(n,m)| = |Annk(m,n)| for all k ≥ 0.
In particular, |Ann(n,m)| = |Ann(m,n)| for all n,m ≥ 0.

Proof. Begin by isotoping elements of Annk(n,m) and Annk(m,n) so that all cross-cuts appear as straight
chords orthogonal to the boundary circles. Reflection across the “core” of the annulus then maps every
cross-cut to itself, and defines a bijection between Annk(n,m) and Annk(m,n) for any k ≥ 0.

The primary use of Proposition 2.1 is that it will allow us to restrict our attention to Ann(n,m) and
Annk(n,m) such that n ≥ m. Yet even within the realm where n ≥ m, there will be specific “easy”
choices for n and m that will prove to have the most useful combinatorial interpretations. The first of
these special cases is Ann(2n, 0) = Ann0(2n, 0), corresponding to the situation where all curves in the
matchings are external half-circles.

Proposition 2.2. Let n be any non-negative integer. Then |Ann(2n, 0)| equals the number of unrooted

planar trees with a distinguished vertex and n additional vertices.

Proof. The required bijection is analogous to the constructions of Figures 1 and 2 for linear and circular
matchings. We add one vertex for each region in the matching and connect two vertices with an edge if
they are separated by a half-circle:

⇔

Here the distinguished vertex is placed in the sole region that borders the interior boundary of the annulus.
In placing the edges for our graph, we disregard whether that edge would have passed through the hole
in the center of the annulus (we treat the hole as part of the internal region). As the half-circles in our
matchings may be cyclically rotated around the center of the annulus in “blocks”, this gives us the desired
notion of equivalence for our planar graphs.

The class of planar graphs from Proposition 2.2 is equivalent to rooted planar graphs with n non-
root vertices, as long as cyclic reordering of subtrees around the root vertex gives equivalent trees. This
interpretation identifies |Ann(2n, 0)| with the nth entry of A003239 [1]. See [4] and [5] for further bijections
involving |Ann(2n, 0)|.

Via the planar graph bijections of Section 1 and Proposition 2.2, it is immediate that C̃n ≤ |Ann(2n, 0)| ≤
Cn for all n ≥ 0. One can easily verify that C̃n = |Ann(2n, 0)| = Cn for both n = 0 and n = 1. For n = 2
we have |Ann(4, 0)| = C2 = 2 yet C̃2 = 1. As shown in the following proposition, n = 2 is the largest
value of n for which any of the three quantities are equal:

Proposition 2.3. For all n ≥ 3 we have C̃n � |Ann(2n, 0)| � Cn.

Proof. We define a map φ from the set of all linear non-crossings of order n to Ann(2n, 0) by identifying
the endpoints of the x-axis and placing the resulting circle as the outer boundary of the annulus. We then
define a map ψ from Ann(2n, 0) to the set of all circular non-crossing matchings of order n by “deleting”
the hole in the middle of the annulus.

φ( A ) =

A

ψ(

A

) =

A

Both φ and ψ are clearly well-defined and surjective for all n ≥ 0. To see that neither map is injective for
n ≥ 3, let A be some non-empty collection of half-circles and notice that:

4



φ(A ) = φ(A ) ψ(

A

) = ψ(

A

)

With the zero cross-cuts case well-understood, we expand our attention to Annk(n,m) with k ≥ 1. In
what follows we re-index variables to consider Annk(2n+k, 2m+k), as this alternative notation explicitly
references the presence of n external half-circles and m internal half-circles. The cases that will prove
most useful are what we refer to as maximal cross-cut annular matchings. In maximal cross-cut
annular matchings, the only endpoints on the interior boundary belong to cross-cuts. In our new notation
this implies that m = 0, so that we are dealing with sets of the form Annk(2n + k, k). Notice that the
previously considered sets Ann(2n, 0) = Ann0(2n+0, 0) qualify as maximal cross-cut annular matchings.

When k = 1, maximal cross-cut annular matchings are in bijection with the Catalan numbers. As
shown in Figure 4, a bijection of such annular matchings with linear non-crossing matchings is realized
by identifying the outer boundary of the annulus with the real line, in such a way that the outer endpoint
of the sole cross-cut corresponds to ±∞.

A

⇔ A

Figure 4: The bijection between Ann1(2n+ 1, 1) and linear non-crossing matchings of order n.

Maximal cross-cut annular matchings will be directly enumerated in Subsection 3.1 for all k ≥ 0,
and those enumerations will be necessary building blocks for the general enumerations of Subsection
3.2. Although the full importance of the maximal cross-cut case will not become obvious until those
subsections, we pause to prove one useful property shared by maximal cross-cut matchings and annular
matchings with zero cross-cuts:

Proposition 2.4. Let n,m, k be non-negative integers. If m = 0 or k = 0 then:

|Annk(2n+ k, 2m+ k)| = |Annk(2n+ k, k)| |Annk(2m+ k, k)|

Proof. We define a map φ : Annk(2n + k, 2m + k) → Annk(2n + k, k) ⊕ Annk(k, 2m + k) that deletes
internal half-circles in the first coordinate and deletes external half-circles in the second coordinate, as in
the example below:

7→ (
,

)
This map φ is clearly a bijection whenever m = 0. To see that φ is a bijection when k = 0, notice that the
lack of cross-cuts in the k = 0 case means that the internal half-circles and external half-circles may be
isotoped independently around their respective boundary components and hence “do not interact”.

It can be shown that the equality of Proposition 2.4 holds precisely when n = 0 or m = 0 or k < 2. If
k ≥ 2, n ≥ 1, and m ≥ 1 all hold, the left side of the expression always proves to be strictly larger than
the right side. However, only the m = 0 and k = 0 cases are needed in Section 3, motivating our omission
of the more general result.
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For our final result of this section, we adapt the planar graph bijection of Proposition 2.2 to the
general case of Annk(2n+ k, 2m+ k). Although the resulting language of Theorem 2.5 is arguably rather
contrived, it combines with Proposition 2.2 to give a succinct geometric characterization of any subset of
annular matchings that is not Ann0(2n, 2m) with n,m > 0.

Theorem 2.5. Let n,m, k be non-negative integers and let k ≥ 1. Then |Annk(2n + k, 2m + k)| equals
the number of connected planar graphs such that:

1. The only cycle in the graph is a single k-cycle.

2. There are n edges within the cycle.

3. There are m edges outside the cycle.

Proof. The methodology required is extremely similar to what has already been presented in Proposition
2.2. Notice that a collection of k cross-cuts produces a single k-cycle, as below:

⇔

Any internal half-circles are then in bijection with edges inside the k-cycle, while external half-circles are
in bijection with edges outside the k-cycle.

3 Enumeration of Annular Matchings

We are now ready for the general enumerative results that form the core of this paper. Subsection 3.1
begins with an enumeration of maximal cross-cut annular matchings, and shows that those matchings
are in bijection with certain types of binary combinatorial necklaces. Subsection 3.2 then collects all of
our results to give an explicit formula for general |Annk(2n + k, 2m + k)|, thus allowing for the direct
calculation of |Ann(a, b)| and |Ann(N)|.

3.1 Enumeration of Annk(2n+ k, k) and Combinatorial Necklaces

Burnside’s Lemma has already been mentioned as the method used in [3] to calculate the number of
circular non-crossing matchings. Given that our annular non-crossing matchings possess a similar notion
of rotational equivalence, it comes as little surprise that the lemma may also be applied to the enumeration
of distinct matchings in the annulus. Recall that Burnside’s Lemma (also known as the Cauchy-Frobenius
Lemma) applies to any situation where a finite group G acts upon a set A. It asserts that the number of
orbits |A/G| with respect to the action equals the average size of the sets Ag = {a ∈ A | ga = a} when
ranging over all g ∈ G: that |A/G| = 1

|G|

∑
g∈G |Ag|.

So fix n, k ≥ 0, and let A equal the set of all non-crossing matchings in the annulus (prior to any
notion of equivalence) with 2n+k endpoints located at 2π

2n+k radian intervals about the exterior boundary
and precisely k straight cross-cuts that meet both boundary components orthogonally. We may define a
(left) action of G = Z2n+k on A whereby g · a is counter-clockwise rotation of a by 2πg

2n+k radians. Then
G/A = Annk(2n + k, k), with distinct orbits in G/A corresponding to matchings that are equivalent via
rotation. This sets up the following application of Burnside’s Lemma:

Theorem 3.1. Let n and k be non-negative integers, not both zero. Then:

|Annk(2n + k, k)| =
1

2n+ k

∑

d|(2n+k,n)

φ(d)

(
(2n + k)/d

n/d

)
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Where φ(d) is Euler’s totient function and the sum runs over all common divisors d of 2n+ k and n.

Proof. Using the aforementioned group action, by Burnside’s Lemma we merely need to show that∑
g∈Z2n+k

|Ag| =
∑

d|(2n+k,n) φ(d)
((2n+k)/d

n/d

)
. So take g ∈ Z2n+k, and assume that g has order d in Z2n+k

Notice that Lagrange’s Theorem guarantees d | (2n + k), although it may or may not be true that d | n.
The elements of Ag are those matchings that can be radially divided into d identical sub-matchings.

Each of these sub-arrangements features (2n+ k)/d endpoints on the outer boundary of the annulus, k/d
of which are the outer endpoints of cross-cuts and n/d of which are left-endpoints of exterior half-circles.
Now if d ∤ n, the left-endpoints cannot be sub-divided in this way and we may conclude that |Ag| = 0.
However, d | n and d | (2n + k, n) together guarantee that k | n, making |Ag| 6= 0 a possibility. If
d | n, notice that every possible sub-arrangement may be uniquely identified by specifying which of the
(2n+k)/d endpoints correspond to left (clockwise) endpoints of exterior half-circles. This bijection, which
closely resembles the upcoming construction in the proof of Theorem 3.3, involves recursively connecting
each specified endpoint to the nearest available non-specified endpoint on its right and then associating
the k unused endpoints with cross-cuts. See Figure 5 for an example. It follows that |Ag| =

((2n+k)/d
n/d

)

whenever |g| = d and d | n.
If q | N , basic number theory ensures that there are precisely φ(q) elements i ∈ ZN with greatest

common divisor (i,N) = N/q. As the order of any element in ZN is N/(i,N), there exist precisely φ(q)
elements i ∈ ZN with order |i| = q. Letting N = 2n+k, this ensures that there are precisely φ(d) elements

g ∈ Z2n+k such that |Ag| =
((2n+k)/d

n/d

)
, thus deriving the summation of the theorem.

⇒ ⇒
Figure 5: For every choice of n left-endpoints (white circles) there is a unique annular sub-matching with
n half-circles and k cross-cuts. Here the relevant piece of the outer boundary is drawn as the real line.

Table 1 of Appendix A exhibits values of |Annk(2n + k, k)| for 0 ≤ n, k ≤ 10, all calculated in Maple
via the equation of Theorem 3.1. An examination of that table places |Annk(2n + k, k)| into direct
correspondence with the T (n + k, n) entry of OEIS sequence A241926 [1]. Using Proposition 2.1 when
necessary to ensure that 2n+ k > n, |Annk(2n+ k, k)| may also be identified with the “circular binomial
coefficient” T (2n + k, n) of OEIS sequence A047996 [1]. Both of those OEIS sequence reveal a bijection
between the Annk(2n+ k, k) and binary combinatorial necklaces, and in fact a summation equivalent to
the one of Theorem 3.1 has already been shown to equal the number of binary combinatorial necklaces
of certain types [2]. Yet before investigating how these results relate to annular non-crossing matchings,
we observe that the formula of Theorem 3.1 may be significantly simplified when k is prime:

Corollary 3.2. Let p be a prime integer and let n be any non-negative integer. Then:

|Annp(2n + p, p)| =
1

2n+ p

(
2n+ p

n

)
+
p− 1

p
Cn/p

Where Cn/p is the Catalan number, and is taken to be zero when n/p is not an integer.

Proof. It is a straightforward exercise to calculate that the greatest common divisor of 2n + p and n is
(2n + p, n) = 1 when (p, n) = 1, as well as that (2n+ p, n) = p when (p, n) = p. Theorem 3.1 then gives:

• |Annp(2n + p, n)| = 1
2n+p

(
2n+p
n

)
when p ∤ n

• |Annp(2n + p, n)| = 1
2n+p

(2n+p
n

)
+ 1

2n+p(p − 1)
((2n+p)/p

n/p

)
when p|n

A simplification of the final term in the second case then yields the desired formula.
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Notice that the more straightforward formula for |Annk(2n + k, n)| in Corollary 3.2 simplifies to the
sequences A007595 [1] when p = 2 and A003441 [1] when p = 3.

Driven by sequences A241926 and A047996, we now work to develop an explicit bijection between
the |Annk(2n + k, k)| and binary combinatorial necklaces, providing a new combinatorial identity that
supplements the one in [2]. A k-ary combinatorial necklace is a circular arrangement of “beads” of up
to k distinguishable varieties (typically referred to as “colors”), such that rotations of the beads around
the circle are considered equivalent. Necklaces that are related only via (orientation-reversing) reflection
are not considered equivalent. The number of distinct k-ary combinatorial necklace with precisely n total
beads is denoted Nk(n). Combinatorial necklaces are well-studied in the literature, and different classes
of combinatorial necklaces are the focus of many integer sequences [1].

In this paper we deal only with binary (2-ary) combinatorial necklaces, whose colors we refer to as
“black” and “white”. Our results require increased specificity in that we need to designate the number of
beads of each color, so we denote the number of distinct binary necklaces with precisely n1 black beads
and precisely n2 white beads by N2(n1, n2). Pause to note that some places in the literature refer to such
combinatorial necklaces as “binary necklaces of weight n1”.

Theorem 3.3. Let n and k be non-negative integers. Then |Annk(2n+ k, k)| = N2(n+ k, n).

Proof. Denote the set of all combinatorial necklaces with n1 black beads and n2 white beads by S. We
define functions φ1 : Annk(2n+k, k) → S and φ2 : S → Annk(2n+k, k) that are both injective. For φ1 we
follow the procedure exemplified below, placing white beads at the left-endpoints of exterior half-circles
and black beads at right-endpoints of exterior half-circles as well as at the exterior endpoints of cross-cuts:

⇒ ⇒

For φ2 we begin at any point along the combinatorial necklace and proceed counter-clockwise. Every
time we encounter a white bead, we add a half-circle connecting that bead to the first black bead (in the
counter-clockwise direction) that is not already the right-endpoint of a half-circle. Repeat this procedure,
traversing the necklace multiple times if necessary, until every white bead is the left-endpoint of a half-
circle. Then add the inner boundary of the annulus and, for every black bead that is not already the
right-endpoint of a half-circle, add a cross-cut whose exterior endpoint is that black bead.

⇒ ⇒

⇒ ⇒

Both φ1 and φ2 are clearly well-defined and injective, as the excess of (n + k) − n = k black beads
are in bijection with the k necessary cross-cuts and the rotational notion of equivalence is identical for
combinatorial necklaces and annular non-crossing matchings. The result then follows.
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3.2 Enumeration of Annk(2n+ k, 2m+ k), General Case

We are finally ready for the enumeration of general Annk(2n+ k, 2m+ k) that do not correspond to the
special m = 0 case of Subsection 3.1. There are actually two sub-cases here depending upon whether or
not k is nonzero:

Theorem 3.4. Let n, m , and k be non-negative integers with m > 0. Then:

1. |Annk(2n + k, 2m + k)| = |Ann0(2n, 0)| · |Ann0(2m, 0)| if k = 0, and

2. |Annk(2n + k, 2m + k)| =
k

(2n + k)(2m+ k)

∑

d|(2n+k,n,m)

φ(d)

(
(2n+ k)/d

n/d

)(
(2m+ k)/d

m/d

)
if k > 0

Where φ(d) is Euler’s totient function and summations run over all common divisors of the given integers.

Proof. Case #1 follows directly from Proposition 2.4. For Case #2 we look to apply Burnside’s Lemma
by defining an action of Z(2n+k)(2m+k) on a set A of relevant matchings.

So fix n,m ≥ 0, k > 0, and consider annular non-crossing matchings with precisely n exterior half-
circles, m interior half-circles, and k cross-cuts. To form our set A, we require that the 2n + k exterior
endpoints are located at 2π

2n+k radian intervals about the exterior boundary, and that the 2m+ k interior

endpoints are located at 2π
2m+k radian intervals about the interior boundary. Unlike in the proof of

Theorem 3.1, we do not require that the k cross-cuts appear as straight lines that meet the boundaries
at right angles, as that condition could require the re-spacing of endpoints on one of the boundary
components. Here we consider cross-cuts up to isotopy that fix their endpoints. Absolutely no rotational
isotopy of endpoints or rotation of either boundary component is allowed. Notice that A is composed of
exactly k

(2n+k
n

)(2m+k
m

)
matchings. Here the binomial coefficients are derived from specifying which of the

endpoints on the inner and outer boundary component correspond to the left-endpoints of half-circles (as
in the proofs of Theorems 3.1 and 3.3), while the additional k term results from the ambiguity in matching
up the remaining k endpoints on each side to form k cross-cuts. Notice that specifying both endpoints of
a single cross-cuts determines how all remaining cross-cuts are matched amongst the remaining (k − 1)
endpoints on each side.

We then define a left action of Z(2n+k)(2m+k) on A where g · a is a counter-clockwise rotation of the

entire matching by 2πg
(2n+k)(2m+k) radians. If |g| = d, the elements of Ag are matchings that may be

radially divided in d identical sub-matchings along both the inner and outer boundaries, with analogous
identifications of cross-cuts in each sub-matching. Observe that we do not require that both endpoints of
each cross-cut lie in the same sub-matching, merely that each sub-matching exhibits an identical pattern
with regards to any cross-cuts involved. For |Ag| 6= 0 it is immediate that we must have both d | (2n+ k)
and d | (2m + k). To ensure that left-endpoints of half-circles are mapped to left-endpoints and that
cross-cuts are mapped to cross-cuts, it is also required that d | n, d | m, and d | k. It can easily be shown
that d | (2n + k, n,m) is necessary and sufficient to satisfy all of these conditions.1 Thus |Ag| 6= 0 if and
only if d | (2n + k, n,m).

So take g ∈ Z(2n+k)(2m+k) with |g| = d such that d | (2n+k, n,m). Via similar reasoning as in Theorem

3.1, there are
(2n+k

n

)
choices for the outer boundary of each sub-matching and

(2m+k
m

)
independent choices

for the inner boundary of each sub-matching. After the endpoints belonging to cross-cuts have been
identified, there are also k independent choices for how the cross-cuts match up across the annulus. These
k choices correspond to similarly-symmetrical matchings whose blocks are identical apart from the fact
that their cross-cuts uniformly “twist around” the annulus by different amounts. We may conclude that
|Ag| = k

((2n+k)/d
n/d

)((2m+k)/d
m/d

)
if d | (2n+ k, n,m).

Similarly to our argument from the proof of Theorem 3.1, if q|(2n + k)(2m + k) one may show that
there are precisely φ(q) elements i ∈ Z(2n+k)(2m+k) with order |i| = q. It follows that there are precisely

1Other equivalent conditions on d include d | (2m+ k, n,m) and d | (k, n,m).
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φ(d) elements g ∈ Z(2m+k)(2n+k) with |Ag| = k
((2n+k)/d

n/d

)((2m+k)/d
m/d

)
, yielding the equation of Case #2 via

an application of Burnside’s Lemma.

Theorems 3.1 and 3.4 combine to provide a closed formula for every |Annk(2n+ k, 2m+ k)| in which
n,m, k are not all zero. As we clearly have |Ann0(0, 0)| = 1, this accounts for all possibilities and allows
us to directly enumerate Ann(n,m) =

⋃
k Annk(n,m) for all n,m ≥ 0.

Table 2 of Appendix A presents values of |Ann(n,m)| for all 0 ≤ n,m ≤ 12, calculated in Maple using
the equations of Theorems 3.1 and 3.4. In Proposition 2.2, we have already established that the n = 0
row (or m = 0 column) of Table 2 corresponds to A003239 [1]. Also noted in Section 2 what the fact that
the n = 1 row (or m = 1 column) of Table 2 corresponds to the Catalan numbers. However, no other
rows, diagonals, or triangles of numbers from Table 2 appear to correspond to any known sequences on
OEIS. This yields an entire family of new integer sequences with an explicit geometric interpretation. Of
particular interest are the rows for n > 2, representing new generalizations of the Catalan numbers that
appear as later terms in a sequence of sequences beginning with A003239 and the Catalan numbers.

Table 3 of Appendix A shows values of Ann(2n) for small values of n. These values are most easily
derived by summing anti-diagonals from Table 2. The sequence of Table 3 also fails to appear as a known
integer sequence on OEIS.
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A Tables of Values

All tables in this appendix were generated in Maple 18 using the equations of Theorems 3.1 and 3.4.
Coding is available upon request from Paul Drube (paul.drube@valpo.edu)

Table 1: Enumeration of Maximal Cross-Cut Annular Matchings |Annk(2n + k, k)|.

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

n=0 1 1 1 1 1 1 1 1 1 1 1

n=1 1 1 1 1 1 1 1 1 1 1 1

n=2 2 2 3 3 4 4 5 5 6 6 7

n=3 4 5 7 10 12 15 19 22 26 31 35

n=4 10 14 22 30 43 55 73 91 116 140 172

n=5 26 42 66 99 143 201 273 364 476 612 776

n=6 80 132 217 335 504 728 1038 1428 1944 2586 3399

n=7 246 429 715 1144 1768 2652 3876 5538 7752 10659 14421

n=8 810 1430 2438 3978 6310 9690 14550 21318 30667 43263 60115

n=9 2704 4862 8398 14000 22610 35530 54484 81719 120175 173593 246675

n=10 9252 16796 29414 49742 81752 130752 204347 312455 468754 690690 1001603

Table 2: Enumeration of Annular Non-Crossing Matchings |Ann(n,m)|. Entries where |Ann(n,m)| = 0
have been left blank, and the main diagonal |Ann(n, n)| has been bolded to emphasize n↔ m symmetry.

m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=11 m=12

n=0 1 1 2 4 10 26 80

n=1 1 1 2 5 14 42

n=2 1 2 3 7 17 48 146

n=3 1 2 3 8 24 72

n=4 2 3 7 14 38 106 335

n=5 2 3 8 20 60 189

n=6 4 7 14 34 90 263 834

n=7 5 8 20 58 175 560

n=8 10 17 38 90 255 750 2420

n=9 14 24 60 175 546 1764

n=10 26 48 106 263 750 2268 7372

n=11 42 72 189 560 1764 5774

n=12 80 146 335 834 2420 7372 24198

Table 3: Enumeration of Annular Non-Crossing Matchings |Ann(2n)|.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ann(2n) 1 3 8 20 57 166 538 1762 6045 21040 74628 267598 970134 3544416
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