Asymptotics of the Euler transform of Fibonacci numbers

Václav Kotěšovec
e-mail: kotesovec2@gmail.com

August 7, 2015

Abstract: The generating function for the sequence A166861 in the OEIS ("Euler transform of Fibonacci numbers") is

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{F_{k}}}
$$

where $F(k)$ are the Fibonacci numbers (A000045). This paper analyzes the more general generating function

$$
U(x)=\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{F_{k+z}}}
$$

where z is a nonnegative integer, which provides asymptotics for the sequences A166861 ($\mathrm{z}=0$), A200544 ($\mathrm{z}=1$) and A260787 ($\mathrm{z}=2$) in the OEIS.

Main result:

$$
a_{n} \sim \frac{\varphi^{n+\frac{z}{4}} e^{\left(\frac{\varphi}{10}-\frac{1}{2}\right) F_{z}-\frac{1}{10} F_{z+1}+\frac{2 \varphi^{z / 2}}{5^{1 / 4}} \sqrt{n}+S}}{2 \sqrt{\pi} 5^{1 / 8} n^{3 / 4}}
$$

where

$$
S=\sum_{k=2}^{\infty} \frac{F_{z}+F_{z+1} \varphi^{k}}{\left(\varphi^{2 k}-\varphi^{k}-1\right) k}
$$

and

$$
\varphi=\frac{1+\sqrt{5}}{2}
$$

is the golden ratio (A001622).

Proof:

We have the Maclaurin series

$$
\log (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k}
$$

and so

$$
\log (U(x))=\log \left(\prod_{j=1}^{\infty} \frac{1}{\left(1-x^{j}\right)^{F_{j+z}}}\right)=-\sum_{j=1}^{\infty} F_{j+z} \log \left(1-x^{j}\right)=\sum_{j=1}^{\infty} F_{j+z} \sum_{k=1}^{\infty} \frac{x^{j k}}{k}=\sum_{k=1}^{\infty} \frac{x^{k}\left(F_{z} x^{k}+F_{z+1}\right)}{k\left(1-x^{k}-x^{2 k}\right)}
$$

Using the saddle-point method, see [2], equation (12.9), we have

$$
a_{n} \sim \frac{U\left(r_{n}\right)}{\sqrt{2 \pi * b\left(r_{n}\right)} * r_{n}^{n}}
$$

The saddle-point equation is

$$
\begin{gathered}
r_{n} * \frac{U^{\prime}\left(r_{n}\right)}{U\left(r_{n}\right)}=n \\
x * \frac{U^{\prime}(x)}{U(x)}=x * \frac{d}{d x} \log (U(x))=x * \frac{d}{d x} \sum_{k=1}^{\infty} \frac{x^{k}\left(F_{z} x^{k}+F_{z+1}\right)}{k\left(1-x^{k}-x^{2 k}\right)}=\sum_{k=1}^{\infty} \frac{x^{k}\left(F_{z+1}\left(x^{2 k}+1\right)-F_{z} x^{k}\left(x^{k}-2\right)\right)}{\left(x^{2 k}+x^{k}-1\right)^{2}} \\
\sum_{k=1}^{\infty} \frac{r_{n}^{k}\left(F_{z+1}\left(r_{n}^{2 k}+1\right)-F_{z} r_{n}^{k}\left(r_{n}^{k}-2\right)\right)}{\left(r_{n}^{2 k}+r_{n}^{k}-1\right)^{2}}=n
\end{gathered}
$$

For an asymptotic solution set $k=1$ and the dominant root is then

$$
r_{n}=\varphi-1-\frac{\varphi^{\frac{z}{2}-1}}{5^{1 / 4} \sqrt{n}}+\frac{\varphi^{z-1}}{2 \sqrt{5} n}+0\left(\frac{1}{n^{3 / 2}}\right)
$$

where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden ratio. It is important to note that taking only two terms the asymptotic expansion $(\varphi-1)-\frac{\varphi^{z / 2-1}}{5^{1 / 4} \sqrt{n}}$ is insufficient, three terms are needed. An eventual term $n^{-3 / 2}$ can be ignored.

Now we compute

$$
\frac{1}{r_{n}^{n}} \sim \frac{1}{\left(\varphi-1-\frac{\varphi^{\frac{Z}{2}-1}}{5^{1 / 4} \sqrt{n}}+\frac{\varphi^{z-1}}{2 \sqrt{5} n}\right)^{n}} \sim \varphi^{n} \exp \left(\frac{\varphi^{z / 2} \sqrt{n}}{5^{1 / 4}}\right)
$$

$$
b(x)=\frac{x U^{\prime}(x)}{U(x)}+\frac{x^{2} U^{\prime \prime}(x)}{U(x)}-\frac{x^{2} U^{\prime}(x)^{2}}{U(x)^{2}}=\frac{x U^{\prime}(x)}{U(x)}+x^{2}\left(\frac{d}{d x}\right)^{2} \log (U(x))
$$

We obtain

$$
b(x)=\frac{x U^{\prime}(x)}{U(x)}+x^{2}\left(\frac{d}{d x}\right)^{2} \sum_{k=1}^{\infty} \frac{x^{k}\left(F_{z} x^{k}+F_{z+1}\right)}{k\left(1-x^{k}-x^{2 k}\right)}=\frac{x U^{\prime}(x)}{U(x)}+\sum_{k=1}^{\infty} G(k, x)
$$

where

$$
\begin{gathered}
G(k, x)=\frac{x^{k}\left(F_{x} x^{k}\left(-(5 k+1) x^{2 k}+(k+1) x^{3 k}+3(k-1) x^{k}-4 k+2\right)-F_{x+1}\left(6 k x^{2 k}-(k-1) x^{3 k}+(k+1) x^{4 k}+(k+1) x^{k}+k-1\right)\right)}{\left(x^{2 k}+x^{k}-1\right)^{3}} \\
b\left(r_{n}\right)=n+G\left(1, r_{n}\right)+\sum_{k=2}^{\infty} G\left(k, r_{n}\right)
\end{gathered}
$$

Now for $x=r_{n}$ is (independently on z)

$$
\lim _{k \rightarrow \infty} G\left(k, r_{n}\right)^{1 / k}=\frac{1}{\varphi}<1
$$

and the sum tends to a constant as n tends to infinity.

$$
\sum_{k=2}^{\infty} G\left(k, r_{n}\right)=\mathrm{c}
$$

For example if $z=0$ then $c=19.559996497426931711363129856839875563 \ldots$

If $k=1$ then we obtain

$$
G\left(1, r_{n}\right)=\frac{2 r_{n}^{2}\left(\left(\left(r_{n}-3\right) r_{n}^{2}-1\right) F_{z}-\left(r_{n}^{3}+3 r_{n}+1\right) F_{z+1}\right)}{\left(r_{n}^{2}+r_{n}-1\right)^{3}} \sim 2 \varphi^{-z / 2} 5^{1 / 4} n^{3 / 2}
$$

Together

$$
b\left(r_{n}\right) \sim n+2 \varphi^{-z / 2} 5^{1 / 4} n^{3 / 2}+c \sim 2 \varphi^{-z / 2} 5^{1 / 4} n^{3 / 2}
$$

$$
U\left(r_{n}\right)=e^{\log \left(U\left(r_{n}\right)\right)}=e^{\sum_{k=1}^{\infty} \frac{r_{n}^{k}\left(F_{z} r_{n}^{k}+F_{z+1}\right)}{k\left(1-r_{n}^{k}-r_{n}^{2 k}\right)}}
$$

We have

$$
\sum_{k=1}^{\infty} \frac{r_{n}^{k}\left(F_{z} r_{n}^{k}+F_{z+1}\right)}{k\left(1-r_{n}^{k}-r_{n}^{2 k}\right)}=\frac{r_{n}\left(F_{z} r_{n}+F_{z+1}\right)}{1-r_{n}-r_{n}^{2}}+\sum_{k=2}^{\infty} \frac{r_{n}^{k}\left(F_{z} r_{n}^{k}+F_{z+1}\right)}{k\left(1-r_{n}^{k}-r_{n}^{2 k}\right)}
$$

Contribution of the first term is

$$
\frac{r_{n}\left(F_{z} r_{n}+F_{z+1}\right)}{1-r_{n}-r_{n}^{2}} \sim-\frac{F_{z+1}}{10}+\frac{1}{20}(\sqrt{5}-9) F_{z}+\frac{\varphi^{z / 2}}{5^{1 / 4}} \sqrt{n}=\left(\frac{\phi}{10}-\frac{1}{2}\right) F_{z}-\frac{F_{z+1}}{10}+\frac{\varphi^{z / 2}}{5^{1 / 4}} \sqrt{n}
$$

For $k>1$

$$
\begin{gathered}
\frac{r_{n}^{k}\left(F_{z} r_{n}^{k}+F_{z+1}\right)}{k\left(1-r_{n}^{k}-r_{n}^{2 k}\right)} \sim-\frac{2^{k}\left((\sqrt{5}+1)^{k} F_{z+1}+2^{k} F_{z}\right)}{\left((2(\sqrt{5}+1))^{k}+4^{k}-(\sqrt{5}+1)^{2 k}\right) k}=\frac{F_{z+1} \varphi^{k}+F_{z}}{k\left(\varphi^{2 k}-\varphi^{k}-1\right)} \\
U\left(r_{n}\right)=e^{\sum_{k=1}^{\infty} \frac{r_{n}^{k}\left(F_{Z} r_{n}^{k}+F_{Z+1}\right)}{k\left(1-r_{n}^{k}-r_{n}^{2 k}\right)}} \sim e^{\left(\frac{\phi}{10}-\frac{1}{2}\right) F_{z}-\frac{F_{Z+1}}{10}+\frac{\varphi^{z / 2}}{5^{1 / 4}} \sqrt{n}+\sum_{k=2}^{\infty} \frac{F_{z+1} \varphi^{k}+F_{z}}{k\left(\varphi^{2 k}-\varphi^{k}-1\right)}}
\end{gathered}
$$

Together

$$
a_{n} \sim \frac{U\left(r_{n}\right)}{\sqrt{2 \pi * b\left(r_{n}\right)}} \frac{1}{r_{n}^{n}}=\frac{e^{\left(\frac{\phi}{10}-\frac{1}{2}\right) F_{z}-\frac{F_{z+1}}{10}+\frac{\varphi^{z / 2}}{5^{1 / 4}} \sqrt{n}+\sum_{k=2}^{\infty} \frac{F_{z+1} \varphi^{k}+F_{z}}{k\left(\varphi^{2 k}-\varphi^{k}-1\right)}}}{\sqrt{2 \pi *\left(2 \varphi^{-z / 2} 5^{1 / 4} n^{3 / 2}\right)}} * \varphi^{n} \exp \left(\frac{\varphi^{z / 2} \sqrt{n}}{5^{1 / 4}}\right)
$$

The final asymptotic is

$$
a_{n} \sim \frac{\varphi^{n+\frac{z}{4}} \exp \left(\left(\frac{\varphi}{10}-\frac{1}{2}\right) F_{z}-\frac{1}{10} F_{z+1}+\frac{2 \varphi^{z / 2}}{5^{1 / 4}} \sqrt{n}+\sum_{k=2}^{\infty} \frac{F_{z}+F_{z+1} \varphi^{k}}{\left(\varphi^{2 k}-\varphi^{k}-1\right) k}\right)}{2 \sqrt{\pi} 5^{1 / 8} n^{3 / 4}}
$$

Applications

The sequence A166861 ($z=0$)
Generating function:

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{F_{k}}}
$$

Asymptotics:

$$
a_{n} \sim \frac{\varphi^{n} e^{-\frac{1}{10}+\frac{2}{5^{1 / 4}} \sqrt{n}+S}}{2 \sqrt{\pi} 5^{1 / 8} n^{3 / 4}}
$$

where

$$
\begin{gathered}
S=\sum_{k=2}^{\infty} \frac{\varphi^{k}}{\left(\varphi^{2 k}-\varphi^{k}-1\right) k}=\sum_{k=2}^{\infty} \frac{1}{2 k \sinh (k \operatorname{arccsch}(2))-k} \\
S=0.600476601392575912969719494850393576083765123939643511355547131467 \ldots
\end{gathered}
$$

Numerical verification (20000 terms), the ratio tends to 1:

```
z = 0; s = NSum[(Fibonacci[z] + Fibonacci[z+1] * GoldenRatio^k) / ((GoldenRatio^(2*k) -
GoldenRatio^k - 1)*k), {k, 2, Infinity}, WorkingPrecision -> 100, AccuracyGoal -> 100,
PrecisionGoal -> 100, NSumTerms -> 10000];
Show[Plot[1, {n, 1, 20000}, PlotStyle -> Red],
ListPlot[Table[A166861[[n]]/((GoldenRatio^(n + z/4) / (2 * Sqrt[Pi] * 5^(1/8) *
n^(3/4))) * Exp[(GoldenRatio/10 - 1/2)*Fibonacci[z] - Fibonacci[z + 1]/10 +
(2*GoldenRatio^(z/2) * Sqrt[n])/5^(1/4) + s]), {n, 1, Length[A166861]}]], PlotRange ->
{0.5, 1}, AxesOrigin -> {0, 0.5}]
```


The sequence A200544 ($z=1$)
Generating function:

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{F_{k+1}}}
$$

Asymptotics:

$$
a_{n} \sim \frac{\varphi^{n+\frac{1}{4}} e^{\frac{\varphi}{10}-\frac{3}{5}+\frac{2 \varphi^{1 / 2}}{5^{1 / 4}} \sqrt{n}+S}}{2 \sqrt{\pi} 5^{1 / 8} n^{3 / 4}}
$$

where

$$
S=\sum_{k=2}^{\infty} \frac{1+\varphi^{k}}{\left(\varphi^{2 k}-\varphi^{k}-1\right) k}
$$

$$
S=0.7902214013751085262994702391769374769675268259229550490716908010345 \ldots
$$

The sequence A260787 ($z=2$)
Generating function:

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{F_{k+2}}}
$$

Asymptotics:

$$
a_{n} \sim \frac{\varphi^{n+\frac{1}{2}} e^{\frac{\varphi}{10}-\frac{7}{10}+\frac{2 \varphi}{5^{1 / 4}} \sqrt{n}+S}}{2 \sqrt{\pi} 5^{1 / 8} n^{3 / 4}}
$$

where

$$
S=\sum_{k=2}^{\infty} \frac{1+2 \varphi^{k}}{\left(\varphi^{2 k}-\varphi^{k}-1\right) k}
$$

```
S=1.3906980027676844392691897340273310530512919498625985604272379325 ...
```

If we set $F_{-1}=1$ (according to Mathematica), then my formula is correct also for $z=-1$, the sequence A109509. Generating function:

$$
\prod_{k=1}^{\infty} \frac{1}{\left(1-x^{k}\right)^{F_{k-1}}}
$$

Asymptotics:

$$
a_{n} \sim \frac{\varphi^{n-\frac{1}{4}} e^{\frac{\varphi}{10}-\frac{1}{2}+\frac{2 \varphi^{-1 / 2}}{5^{1 / 4}} \sqrt{n}+S}}{2 \sqrt{\pi} 5^{1 / 8} n^{3 / 4}}
$$

where

$$
\begin{gathered}
S=\sum_{k=2}^{\infty} \frac{1}{\left(\varphi^{2 k}-\varphi^{k}-1\right) k} \\
S=0.189744799982532613329750744326543900883761701983311537716143669 \ldots
\end{gathered}
$$

References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] A. M. Odlyzko, Asymptotic enumeration methods, pp. 1063-1229 of R. L. Graham et al., eds., Handbook of Combinatorics, 1995
[3] V. Kotěšovec, Asymptotics of sequence A034691, Sep 09 2014, mirror
[4] The website http://web.telecom.cz/vaclav.kotesovec/math.htm

2010 Mathematics Subject Classification: 05A16 41A60 11B39 05A15.
Keywords: Asymptotics, Euler transform, Fibonacci numbers, saddle-point method, generating function.

