ARITHMETIC PROPERTIES OF THE SEQUENCE OF DERANGEMENTS AND ITS GENERALIZATIONS

PIOTR MISKA

Abstract

The sequence of derangements is given by the formula $D_{0}=$ $1, D_{n}=n D_{n-1}+(-1)^{n}, n>0$. It is a classical object appearing in combinatorics and number theory. In this paper we consider two classes of sequences: first class is given by the formulae $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+$ $h_{1}(n) h_{2}(n)^{n}, n>0$, where $f, h_{1}, h_{2} \in \mathbb{Z}[X]$, and the second one is defined by $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}, n \in \mathbb{N}$, where $h \in \mathbb{Z}[X]$. Both classes are a generalization of the sequence of derangements. We study such arithmetic properties of these sequences as: periodicity modulo d, where $d \in \mathbb{N}_{+}, p$-adic valuations, asymptotics, boundedness, periodicity, recurrence relations and prime divisors. Particularly we focus on the properties of the sequence of derangements and use them to establish arithmetic properties of the sequences of even and odd derangements.

Contents

1. Introduction 2
2. Definitions and conventions4
3. Hensel's lemma for p-adic continuous functions approximated by polynomials over \mathbb{Z} $\frac{5}{5}$
3.1. Hensel's lemma for pseudo-polynomial decomposition modulo p
3.2. Connection between pseudo-polynomial decomposition modulo p andp-adic continuous functions approximated by polynomials over\mathbb{Z}
3.3. Hensel's lemma for exponential function
4. Arithmetic properties of sequences $\mathbf{a} \in \mathcal{R}$12
4.1. Periodicity modulo d and p-adic valuations12
4.2. Asymptotics and connection between boundedness and periodicity of a sequence $\mathbf{a} \in \mathcal{R}$ 22
4.3. The polynomials arising in the recurrence relation for a sequence $\mathbf{a} \in \mathcal{R}$ and their real roots 30
4.4. Divisors of a sequence $\mathbf{a} \in \mathcal{R}$ 33
5. Arithmetic properties of the sequences of even and odd derangements 44
6. Some diophantine equations with numbers of derangements 48
6.1. Diophantine equations involving factorials 48
6.2. When a number of derangements is a power of a prime number? 52
7. Arithmetic properties of h-Schenker sums 54
7.1. Divisibility by primes, periodicity modulo p and p-adic valuations of h-Schenker sums 54
7.2. Bounds on h-Schenker sums and infinitude of the set of h-Schenker primes 57
Acknowledgements 61
[^0]
1. Introduction

By the term of derangement we call a permutation in S_{n} without fixed points. We define the n-th number of derangements as the number of all derangements of the set with n elements. We denote this number by D_{n}. The sequence $\left(D_{n}\right)_{n \in \mathbb{N}}$, can be described by the recurrence $D_{0}=1, D_{n}=n D_{n-1}+(-1)^{n}, n>0$. The sequence $\left(D_{n}\right)_{n \in \mathbb{N}}$ is a subject of reaserch of many mathematicians. It is connected to other well known sequences. In particular, the sequence of numbers of derangements (or shortly, the sequence of derangements) appears in a natural way in the paper [22], devoted to the Bell numbers.

In 18] we gave and proved a criterion for behavior of p-adic valuation of the Schenker sum a_{n}, given by the formula $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} n^{j}, n \in \mathbb{N}$. We expected that the method of proving this criterion could be generalized to other class of integer sequences. The trial of generalization of this method is one of the motivations for preparing this paper.

In Section 2 we set conventions and recall facts which are used in further parts of the thesis.

In Section 3 we define pseudo-polynomial decomposition modulo p of a given sequence. If a sequence has this property then we can use the same method of proof as in [18] to obtain the description of p-adic valuation of elements of this sequence. Furthermore, we show that a sequence with pseudo-polynomial decomposition modulo p can be expressed as a product of functions f and g, where $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is a p-adic continuous function which can be approximated by polynomials with integer coefficients and $g: \mathbb{N} \rightarrow \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$. The last part of Section3 is devoted to description of p-adic valuation of the exponential function $\mathbb{Z} \ni n \mapsto a^{n} \in \mathbb{Z}$.

The results from Section 3 are used in Section 4 to study arithmetic properties of a family of sequences $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)=\left(a_{n}\right)_{n \in \mathbb{N}}$ given by the recurrence relation

$$
\begin{equation*}
a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0, \tag{1}
\end{equation*}
$$

where $f, h_{1}, h_{2} \in \mathbb{Z}[X]$. Let us define

$$
\mathcal{R}:=\left\{\mathbf{a}\left(f, h_{1}, h_{2}\right) \in \mathbb{R}^{\mathbb{N}}: f, h_{1}, h_{2} \in \mathbb{Z}[X]\right\} .
$$

If $f=X, h_{1}=1$ and $h_{2}=-1$ then we obtain the sequence of derangements $\left(D_{n}\right)_{n \in \mathbb{N}}$, hence the class of sequences given by the relation (11) can be treated as a generalization of the sequence of derangements.

Section4.1 is concerned with the periodicity of the sequences $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}}$ of remainders modulo d of a given sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, where $d \in \mathbb{N}_{+}$. Moreover we focus on p-adic valuations of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, when $p \mid f(n)$ for some $n \in \mathbb{N}$ and $h_{2}= \pm 1$. Due to the divisibility $n-1 \mid D_{n}$ for all $n \in \mathbb{N}$, we study closer prime divisors and p-adic valuations of the sequence $\left(\frac{D_{n}}{n-1}\right)_{n \in \mathbb{N}_{2}}$. We prove that the set of prime divisors of the numbers $\frac{D_{n}}{n-1}, n \geq 2$, is infinite.

Section 4.2 is devoted to asymptotics of a given sequence $\mathbf{a} \in \mathcal{R}$ and connection between boundedness and periodicity of this sequence. The main result of this section is that each bounded sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant or ultimately periodic with period 2 .

In Section 4.3 we obtain some recurrence relations for a sequence $\mathbf{a}\left(f, h_{1}, h_{2}\right) \in$ \mathcal{R}, when $h_{2}= \pm 1$. Then we study real roots of the polynomials ocurring in these
relations and we conclude that for $d \in \mathbb{N}_{+}$the polynomial

$$
f_{d}=\sum_{j=0}^{d-1}(-1)^{j} \prod_{i=0}^{j-1}(X-i) \in \mathbb{Z}[X]
$$

which arises in the formula

$$
D_{n}=D_{n-d} \prod_{i=0}^{d-1}(n-i)+(-1)^{n} f_{d}(n), \quad n \geq d
$$

has exactly $d-1$ real roots and exactly one rational root 1 .
Section 4.4 deals with divisors of terms of a sequence $\mathbf{a} \in \mathcal{R}$. Section 4.4.1 is a trial of generalization of the result from Section 4.1 that there are infinitely many prime divisors of the numbers $\frac{D_{n}}{n-1}, n \geq 2$. We give some conditions for infinitude of set of prime divisors of a given sequence \mathbf{a}. The last two results in Section4.4.1 show that if a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is given by the formula $a_{0}=c, a_{n}=$ $\left(b_{1} n+b_{0}\right) a_{n-1}+c, n>0$ for some integers b_{0}, b_{1}, c and b_{0}, b_{1} are not simultaneously 0 then there are infinitely many prime divisors of the numbers $a_{n}, n \in \mathbb{N}$. In Section 4.4 .2 we generalize the property $n-1 \mid D_{n}, n \in \mathbb{N}$. Namely, we consider sequences given by the formula $a_{0}=h_{1}(0), a_{n}=(n-b) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$, where $b \in \mathbb{Z}$ is fixed, and study when $n-b-1 \mid a_{n}$.

In Section 5 we use the results on the sequence of derangements to obtain arithmetic properties of the sequences of even and odd derangements. First of all we present recurrence relations for these two sequences. We obtain relations involving numbers of even and odd derandements in order to write them as expressions dependent on numbers of derangements. Next we show their asymptotics and periodicity modulo d, where $d \in \mathbb{N}_{+}$. From the periodicity properties we conclude divisibilities of these numbers and describe their p-adic valuations.

The subject of Section 6 are diophantine equations with numbers of usual, odd and even derangements, respectively. In Section 6.1 we find all the numbers of usual and odd derangements which are factorials. Meanwhile in Section 6.2 we try to establish for which indices n the numbers of usual, odd and even derangements, respectively, are powers of prime numbers.

Section 7 is devoted to the h-Schenker sums, given by the formula

$$
a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}, n \in \mathbb{N},
$$

where h is a given polynomial with integer coefficients. If $h=X$ then we obtain the sequence of Schenker sums, hence the motivation to call the mentioned class of sequences by h-Schenker sums. If $h=-1$ then h-Schenker sums are numbers of derangements, so the sequence of h-Schenker sums can be seen as a generalization of the sequence of derangements. In [1] and [18] there were established some results on p-adic valuations of Schenker sums and infinitude of the set of so-called Schenker primes (such prime numbers p that $p \mid a_{n}$ for some $n \in \mathbb{N}$ not divisible by p). In Section 7 we generalize these results.

In Section 7.1 we prove periodicty modulo d of h-Schenker sums for a given $d \in \mathbb{N}_{+}$and describe their p-adic valuations. During considerations on p-adic valuations we define h-Schenker prime as prime number p such that $p \mid a_{n}$ and $p \nmid h(n)$ for some $n \in \mathbb{N}$.

Section 7.2 starts with giving bounds on absolute values of h-Schenker sums. Next these bounds are used to establish infinitude of the set of h-Schenker primes for $h \neq 0$.

2. Definitions and conventions

We assume that $\mathbb{N}=\{0,1,2,3, \ldots\}$ and $\mathbb{N}_{+}=\{1,2,3, \ldots\}$. For a given positive integer k we denote the set of all integers greater than or equal to k by \mathbb{N}_{k}. We denote the set of all prime numbers by \mathbb{P}.

We set a convention that $0^{0}=1, \sum_{i=j}^{k}=0$ and $\prod_{i=j}^{k}=1$, when $j, k \in \mathbb{Z}$ and $j>k$.

Let $a, b \in \mathbb{Z}$ and $b \neq 0$. Then by $a(\bmod b)$ we denote the remainder from the division of a by b.

By $s_{d}(n)$ we denote the sum of digits of positive integer n in base d, i.e. if $n=\sum_{i=0}^{m} c_{i} d^{i}$ is an expansion of n in base d then $s_{d}(n)=\sum_{i=0}^{m} c_{i}$.

Let A, B be topological spaces. The set of all continuous functions $f: A \rightarrow B$ we denote by $\mathcal{C}(A, B)$. If C is a subset of A then its closure in A we denote by \bar{C}.

Fix a prime number p. Every nonzero rational number x can be written in the form $x=\frac{a}{b} p^{t}$, where $a \in \mathbb{Z}, b \in \mathbb{N}_{+}, \operatorname{gcd}(a, b)=1, p \nmid a b$ and $t \in \mathbb{Z}$. Such a representation of x is unique, thus the number t is well defined. We call t the p-adic valuation of the number x and denote it by $v_{p}(x)$. By convention, $v_{p}(0)=+\infty$. In particular, if $x \in \mathbb{Q} \backslash\{0\}$ then $|x|=\prod_{p \text { prime }} p^{v_{p}(x)}$, where $v_{p}(x) \neq 0$ for finitely many prime numbers p.

For every rational number x we define its p-adic norm $|x|_{p}$ by the formula

$$
|x|_{p}= \begin{cases}p^{-v_{p}(x)}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{cases}
$$

Since for all rational numbers x, y we have $|x+y|_{p} \leq \min \left\{|x|_{p},|y|_{p}\right\}$, hence p-adic norm gives a metric space structure on \mathbb{Q}. Namely, the distance between rational numbers x, y is equal to $d_{p}(x, y)=|x-y|_{p}$.

The field \mathbb{Q} equipped with p-adic metric d_{p} is not a complete metric space. The completion of \mathbb{Q} with respect to this metric has structure of field and this field is called the field of p-adic numbers \mathbb{Q}_{p}. We extend the p-adic valuation and p-adic norm on \mathbb{Q}_{p} in the following way: $v_{p}(x)=\lim _{n \rightarrow+\infty} v_{p}\left(x_{n}\right),|x|_{p}=\lim _{n \rightarrow+\infty}\left|x_{n}\right|_{p}$, where $x \in \mathbb{Q}_{p},\left(x_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{Q}$ and $x=\lim _{n \rightarrow+\infty} x_{n}$. The values $v_{p}(x)$ and $|x|_{p}$ do not depend on the choice of a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, thus they are well defined (see [4]).

We define the ring of integer p-adic numbers \mathbb{Z}_{p} as a set of all p-adic numbers with nonnegative p-adic valuation. Note that \mathbb{Z}_{p} is the completion of \mathbb{Z} as a space with p-adic metric.

We assume that the expression $x \equiv y\left(\bmod p^{k}\right)$ means $v_{p}(x-y) \geq k$ for prime number p, an integer k and p-adic numbers x, y.

By the term p-adic continuous function we mean function $f: S \rightarrow \mathbb{Q}_{p}$ defined on some subset S of \mathbb{Q}_{p}, which is continuous with respect to p-adic metric. By the term p-adic contraction we mean such function $f: S \rightarrow \mathbb{Q}_{p}$ that $|f(x)-f(y)|_{p} \leq$ $|x-y|_{p}$ for arbitrary $x, y \in S$. Assuming that S is an open subset of \mathbb{Q}_{p}, we will say that f is differentiable at a point $x_{0} \in S$, if there exists a $\operatorname{limit} \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$. In this situation this limit we will call the derivative of f at the point x_{0} and denote it by $f^{\prime}\left(x_{0}\right)$.

We use the Landau symbol O in the following sense: if $f, g: \mathbb{N} \rightarrow \mathbb{R}$ are two real-valued functions defined on \mathbb{N} then $f(n)$ is $O(g(n))$, when there exists such a constant $M \geq 0$ and a nonnegative integer n_{0} that $|f(n)| \leq M|g(n)|$ for $n \geq n_{0}$. In general, if there exists an $n_{0} \in \mathbb{N}$ such that some property holds for $n \geq n_{0}$ then for simplicity of notation we will write that this property is satisfied for $n \gg 0$.

3. Hensel's lemma for p-Adic continuous functions approximated by POLYNOMIALS OVER \mathbb{Z}

In 18 there was presented a consideration which allows to describe p-adic valuation of Schenker sums, given by the formula $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} n^{j}$. In this section we will extend this method to more general class of sequences. The results given in the following section will be used in the sequel.

3.1. Hensel's lemma for pseudo-polynomial decomposition modulo p.

Definition 1. Let p be a prime number and $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{Z}_{p}$. By pseudo-polynomial decomposition of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ modulo p on a set $S \subset \mathbb{N}$ we mean a sequence of pairs $\left(f_{p, k}, g_{p, k}\right)_{k \in \mathbb{N}_{2}}$ such that:

- $f_{p, k} \in \mathbb{Z}_{p}[X], g_{p, k}: S \rightarrow \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}, k \geq 2$;
- $a_{n} \equiv f_{p, k}(n) g_{p, k}(n)\left(\bmod p^{k}\right)$ for all $n \in S, k \geq 2$;
- $f_{p, k}^{\prime}(n) \equiv f_{p, 2}^{\prime}(n)(\bmod p)$ for any $k \geq 2$ and $n \in S$,
where f^{\prime} means the derivative of a polynomial f. We say that $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a pseudopolynomial decomposition modulo p if it has a pseudo-polynomial decomposition modulo p on \mathbb{N}.

Remark 1. Let $n_{k} \in \mathbb{N}$ and assume that a set $S \in \mathbb{N}$ is dense in the set
$\left\{n \in \mathbb{N}: n \equiv n_{k}\left(\bmod p^{k}\right)\right\}$ with respect to p-adic metric. Since $\left\{n \in \mathbb{N}: n \equiv n_{l}\right.$ $\left.\left(\bmod p^{l}\right)\right\}=\left\{n \in \mathbb{N}: d_{p}\left(n, n_{l}\right)<p^{1-l}\right\}$ for any integer $l \geq k$ and positive integer $n_{l} \equiv n_{k}\left(\bmod p^{k}\right)$, hence $S \cap\left\{n \in \mathbb{N}: n \equiv n_{l}\left(\bmod p^{l}\right)\right\} \neq \emptyset$.

Theorem 1 (Hensel's lemma for pseudo-polynomial decomposition modulo p). Let p be a prime number, $k \in \mathbb{N}_{+}, n_{k} \in \mathbb{N}$ be such that $p^{k} \mid a_{n_{k}}$ and assume that $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{Z}_{p}$ has a pseudo-polynomial decomposition modulo p on $S \subset \mathbb{N}$, where $n_{k} \in S$. Let us define $q_{p}\left(n_{k}\right)=\frac{1}{p}\left(\frac{a_{n_{k}+p}}{g_{p, 2}\left(n_{k}+p\right)}-\frac{a_{n_{k}}}{g_{p, 2}\left(n_{k}\right)}\right)$.

- If $v_{p}\left(q_{p}\left(n_{k}\right)\right)=0$ and S is dense in the set $\left\{n \in \mathbb{N}: n \equiv n_{k}\left(\bmod p^{k}\right)\right\}$ with respect to p-adic metric then there exists a unique n_{k+1} modulo for which $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$ and $p^{k+1} \mid a_{n}$ for all $n \in S$ congruent to n_{k+1} modulo p^{k+1}. What is more, $n_{k+1} \equiv n_{k}-\frac{a_{n_{k}}}{g_{p, k+1}\left(n_{k}\right) q_{p}\left(n_{k}\right)}\left(\bmod p^{k+1}\right)$.
- If $v_{p}\left(q_{p}\left(n_{k}\right)\right)>0$ and $p^{k+1} \mid a_{n_{k}}$ then $p^{k+1} \mid a_{n}$ for all $n \in S$ satisfying $n \equiv n_{k}\left(\bmod p^{k}\right)$.
- If $v_{p}\left(q_{p}\left(n_{k}\right)\right)>0$ and $p^{k+1} \nmid a_{n_{k}}$ then $p^{k+1} \nmid a_{n}$ for any $n \in S$ satisfying $n \equiv n_{k}\left(\bmod p^{k}\right)$.
In particular, if $k=1, p \mid a_{n_{1}}, v_{p}\left(q_{p}\left(n_{1}\right)\right)=0$ then for any $l \in \mathbb{N}_{+}$there exists a unique n_{l} modulo p^{l} such that $n_{l} \equiv n_{1}(\bmod p)$ and $v_{p}\left(a_{n}\right) \geq l$ for all $n \in S$ congruent to n_{l} modulo p^{l}. Moreover, n_{l} satisfies the congruence $n_{l} \equiv n_{l-1}-$ $\frac{a_{n_{l-1}}}{g_{p, l}\left(n_{l-1}\right) q_{p}\left(n_{1}\right)}\left(\bmod p^{l}\right)$ for $l>1$.

In [18 there was showed that the sequence of Schenker sums $\left(a_{n}\right)_{n \in \mathbb{N}}$ satisfies the congruence $a_{n} \equiv n^{n-p^{k}+2} f_{p, k}(n)\left(\bmod p^{k}\right)$ for each positive integer k, prime number p and positive integer n not divisible by p, where

$$
f_{p, k}=\sum_{j=0}^{d-1} X^{d-j-2} \prod_{i=0}^{j-1}(X-i) .
$$

Moreover, if $k_{1}, k_{2} \geq 2$ then $f_{p, k_{1}}^{\prime}(n) \equiv f_{p, k_{2}}^{\prime}(n)(\bmod p)$. This fact and Hensel's lemma allow to state the criterion for behavior of p-adic valuation of the Schenker sums.

In order to prove Theorem 1 we will use the following version of Hensel's lemma (see [19, p. 44] and [4, p. 49]):

Theorem 2 (Hensel's lemma). Let p be a prime number, k be a positive integer and f be a polynomial with integer p-adic coefficients. Assume that $f\left(n_{0}\right) \equiv 0\left(\bmod p^{k}\right)$ for some integer n_{0}. Then the number of solutions n of the congruence $f(n) \equiv 0$ $\left(\bmod p^{k+1}\right)$, satisfying the condition $n \equiv n_{0}\left(\bmod p^{k}\right)$, is equal to:

- 1, when $f^{\prime}\left(n_{0}\right) \not \equiv 0(\bmod p)$;
- 0 , when $f^{\prime}\left(n_{0}\right) \equiv 0(\bmod p)$ and $f\left(n_{0}\right) \not \equiv 0\left(\bmod p^{k+1}\right)$;
- p, when $f^{\prime}\left(n_{0}\right) \equiv 0(\bmod p)$ and $f\left(n_{0}\right) \equiv 0\left(\bmod p^{k+1}\right)$.

Now we are ready to prove Theorem 1 .
Proof of Theorem 11. Let us note that if $f \in \mathbb{Z}_{p}[X]$ then for any $x_{0} \in \mathbb{Z}_{p}$ there exists an $r \in \mathbb{Z}_{p}[X]$ such that

$$
\begin{equation*}
f(X)=f\left(x_{0}\right)+\left(X-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(X-x_{0}\right)^{2} r(X) \tag{2}
\end{equation*}
$$

Using the equality above for $f=f_{p, 2}, x_{0}=n_{k}$ and $X=n_{k}+p$, we have:

$$
f_{p, 2}\left(n_{k}+p\right) \equiv f_{p, 2}\left(n_{k}\right)+p f_{p, 2}^{\prime}\left(n_{k}\right) \quad\left(\bmod p^{2}\right)
$$

This congruence and Definition 1 imply the following:

$$
\begin{aligned}
& f_{p, k+1}^{\prime}\left(n_{k}\right) \equiv f_{p, 2}^{\prime}\left(n_{k}\right) \equiv \frac{1}{p}\left(f_{p, 2}\left(n_{k}+p\right)-f_{p, 2}\left(n_{k}\right)\right) \equiv \\
& \equiv \frac{1}{p}\left(\frac{a_{n_{k}+p}}{g_{p, 2}\left(n_{k}+p\right)}-\frac{a_{n_{k}}}{g_{p, 2}\left(n_{k}\right)}\right)=q_{p}\left(n_{k}\right) \quad(\bmod p)
\end{aligned}
$$

Thus $q_{p}\left(n_{k}\right) \equiv f_{p, k+1}^{\prime}\left(n_{k}\right)(\bmod p)$. Since $p \nmid g_{p, k+1}(n)$ for each nonnegative $n \equiv n_{k}\left(\bmod p^{k}\right)$, hence $v_{p}\left(a_{n}\right)=v_{p}\left(f_{p, k+1}(n)\right)$ for such n. By Theorem 2 we conclude that:

- if $v_{p}\left(q_{p}\left(n_{k}\right)\right)=0$ then $f^{\prime}\left(n_{0}\right) \not \equiv 0(\bmod p)$ and there exists a unique n_{k+1} modulo p^{k+1} for which $p^{k+1} \mid a_{n_{k+1}}$ and $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$;
- if $v_{p}\left(q_{p}\left(n_{k}\right)\right)>0$ and $p^{k+1} \mid a_{n_{k}}$ then $f^{\prime}\left(n_{0}\right) \equiv 0(\bmod p)$ and $p^{k+1} \mid a_{n_{k+1}}$ for any $n_{k+1} \in S$ satisfying $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$;
- if $v_{p}\left(q_{p}\left(n_{k}\right)\right)>0$ and $p^{k+1} \nmid a_{n_{k}}$ then $f^{\prime}\left(n_{0}\right) \not \equiv 0(\bmod p)$ and $p^{k+1} \nmid a_{n_{k+1}}$ for any $n_{k+1} \in S$ satisfying $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$.
Let us consider the case $v_{p}\left(q_{p}\left(n_{k}\right)\right)=0$ and write $n_{k+1}=n_{k}+p^{k} t_{k+1}$, where $t_{k+1} \in \mathbb{Z}$. Use (2) for $f=f_{p, k+1}, x_{0}=n_{k}$ and $X=n_{k}+p^{k} t_{k+1}$ to obtain the sequence of congruences:

$$
\begin{align*}
& 0 \equiv f_{p, k+1}\left(n_{k}\right)+p^{k} t_{k+1} f_{p, k+1}^{\prime}\left(n_{k}\right) \quad\left(\bmod p^{k+1}\right) \\
& t_{k+1} q_{p}\left(n_{k}\right) \equiv t_{k+1} f_{p, k+1}^{\prime}\left(n_{k}\right) \equiv-\frac{f_{p, k+1}\left(n_{k}\right)}{p^{k}} \quad(\bmod p) \\
& t_{k+1} \equiv-\frac{f_{p, k+1}\left(n_{k}\right)}{p^{k} q_{p}\left(n_{k}\right)} \quad(\bmod p) \tag{3}\\
& n_{k+1}=n_{k}+p^{k} t_{k+1} \equiv n_{k}-\frac{f_{p, k+1}\left(n_{k}\right)}{q_{p}\left(n_{k}\right)} \quad\left(\bmod p^{k+1}\right)
\end{align*}
$$

Since $f_{p, k+1}\left(n_{k}\right) \equiv \frac{a_{n_{k}}}{g_{p, k+1}\left(n_{k}\right)}\left(\bmod p^{k+1}\right)$, we get $n_{k+1} \equiv n_{k}-\frac{a_{n_{k}}}{g_{p, k+1}\left(n_{k}\right) q_{p}\left(n_{k}\right)}$ $\left(\bmod p^{k+1}\right)$.

Assume now that $k=1$ and $v_{p}\left(q_{p}\left(n_{1}\right)\right)=0$. By simple induction on $l \in \mathbb{N}_{+}$ we obtain that the inequality $v_{p}\left(a_{n}\right) \geq l$ has a unique solution n_{l} modulo p^{l} with condition $n_{l} \equiv n_{1}(\bmod p)$ and this solution satisfies the congruence

$$
n_{l} \equiv n_{l-1}-\frac{f_{p, l}\left(n_{l-1}\right)}{q_{p}\left(n_{1}\right)} \quad\left(\bmod p^{l}\right)
$$

for $l>1$.

Certainly the statement is true for $l=1$. Now, assume that there exists a unique n_{l} modulo p^{l} satisfying the conditions in the statement. Note that

$$
q_{p}\left(n_{l}\right) \equiv f_{p, 2}^{\prime}\left(n_{l}\right) \equiv f_{p, 2}^{\prime}\left(n_{1}\right) \equiv q_{p}\left(n_{1}\right) \quad(\bmod p) .
$$

Since $v_{p}\left(q_{p}\left(n_{1}\right)\right)=0$ then there exists a unique n_{l+1} modulo p^{l+1} such that $p^{l+1} \mid$ $a_{n_{l+1}}$ and $n_{l+1} \equiv n_{l}\left(\bmod p^{l}\right)$. Additionaly the congruences (3) showed that $n_{l+1} \equiv$ $n_{l}-\frac{a_{n_{l}}}{g_{p, l+1}\left(n_{l}\right) q_{p}\left(n_{1}\right)}\left(\bmod p^{l+1}\right)$.

3.2. Connection between pseudo-polynomial decomposition modulo p and

 p-adic continuous functions approximated by polynomials over \mathbb{Z}. It is worth to see that if a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a pseudo-polynomial decomposition modulo p then there exist functions $f_{p, \infty} \in \mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ and $g_{p, \infty}: \mathbb{N} \rightarrow \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$ such that $a_{n}=f_{p, \infty}(n) g_{p, \infty}(n)$ for each nonnegative integer n.Let $k \in \mathbb{N}_{+}, p \in \mathbb{P}$ and put:
$\mathcal{P}_{p, k}=\left\{F\right.$ polynomial function on $\left.\mathbb{Z} / p^{k} \mathbb{Z}: \exists_{G: \mathbb{N} \rightarrow \mathbb{Z} \backslash p \mathbb{Z}} \forall_{n \in \mathbb{N}}: a_{n} \equiv F(n) G(n)\left(\bmod p^{k}\right)\right\}$.
For each $k \in \mathbb{N}_{+}$set $\mathcal{P}_{p, k}$ is finite (because there are only finitely many functions on $\mathbb{Z} / p^{k} \mathbb{Z}$) and nonempty (by existence of pseudo-polynomial decomposition). We have the map $\psi_{k+1}: \mathcal{P}_{p, k+1} \ni F \mapsto F\left(\bmod p^{k}\right) \in \mathcal{P}_{p, k}$ of reduction modulo p^{k}.

Theorem 3. Let $\left(S_{k}\right)_{k \in \mathbb{N}_{+}}$be a sequence of finite nonempty sets with mappings $\psi_{k+1}: S_{k+1} \rightarrow S_{k}, k \in \mathbb{N}_{+}$. Then there exists a sequence $\left(s_{k}\right)_{k \in \mathbb{N}_{+}}$such that $s_{k} \in S_{k}$ and $\psi_{k+1}\left(s_{k+1}\right)=s_{k}$ for each $k \in \mathbb{N}_{+}$.

Proof. See [21, p. 13].
By Theorem 3 there exist polynomial functions $F_{p, k}: \mathbb{Z} / p^{k} \mathbb{Z} \rightarrow \mathbb{Z} / p^{k} \mathbb{Z}$ such that $F_{p, k+1} \equiv F_{p, k}\left(\bmod p^{k}\right), k \in \mathbb{N}_{+}$. Furthermore, for each $k \in \mathbb{N}_{+}$there exists $f_{p, k} \in \mathbb{Z}[X]$ such that $f_{p, k} \equiv F_{p, k}\left(\bmod p^{k}\right)$. As a result, if $k_{1} \leq k_{2}$ then $f_{p, k_{2}}(x)-f_{p, k_{1}}(x) \equiv 0\left(\bmod p^{k_{1}}\right), x \in \mathbb{Z}_{p}$, or in other words $\left|f_{p, k_{2}}(x)-f_{p, k_{1}}(x)\right|_{p} \leq$ $p^{-k_{1}}$. Since $\mathbb{Z}[X]$ is a subset of $\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ and $\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with metric $d_{\text {sup }}(f, g)=$ $\sup _{x \in \mathbb{Z}_{p}}|f(x)-g(x)|_{p}$ is a complete metric space, hence the sequence $\left(f_{p, k}\right)_{k \in \mathbb{N}_{+}} \subset$ $\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is uniformly convergent to a continuous function $f_{p, \infty}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$. Each polynomial from $\mathbb{Z}_{p}[X]$ is a p-adic contraction, so $f_{p, \infty}=\lim _{k \rightarrow+\infty} f_{p, k}$ is a p adic contraction, too. From the definition of $\mathcal{P}_{p, k}$ there exists $g_{p, k}: N \rightarrow \mathbb{Z} \backslash p \mathbb{Z}$ such that $a_{n} \equiv f_{p, k}(n) g_{p, k}(n)\left(\bmod p^{k}\right), n \in \mathbb{N}$. As a consequence of our reasoning we have that if $a_{n} \neq 0$ for some $n \in \mathbb{N}$ then $v_{p}\left(a_{n}\right)=v_{p}\left(f_{p, k}(n)\right)$ for sufficiently large k and by continuity of p-adic valuation (with respect to p-adic norm) $v_{p}\left(a_{n}\right)=v_{p}\left(f_{p, \infty}(n)\right)$. If $a_{n}=0$ for some $n \in \mathbb{N}$ then $v_{p}\left(f_{p, k}(n)\right) \geq k$ and going with k to $+\infty$ we obtain $v_{p}\left(f_{p, \infty}\right)=+\infty$, which means that $f_{p, \infty}(n)=0$. Then we define $g_{p, \infty}$ by the formula:

$$
g_{p, \infty}(n)=\left\{\begin{array}{ll}
\frac{a_{n}}{f_{p, \infty}(n)}, & \text { if } a_{n} \neq 0 \\
1, & \text { if } a_{n}=0
\end{array} .\right.
$$

Conversely, assume that $a_{n}=f_{p, \infty}(n) g_{p, \infty}(n)$ for some $f_{p, \infty} \in \overline{\mathbb{Z}_{p}[X]} \subset$ $\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ (with respect to metric $d_{\text {sup }}$) and $g_{p, \infty}: \mathbb{N} \rightarrow \mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$. For $k \geq 2$, let $f_{p, k} \in \mathbb{Z}_{p}[X]$ be such that $d_{\text {sup }}\left(f_{p, k}, f_{p, \infty}\right) \leq p^{-k}$ (replacing coefficients of $f_{p, k}$ by integers congruent to them modulo p^{k} we can assume that $\left.f_{p, k} \in \mathbb{Z}[X]\right)$. Because there are only finitely many polynomial functions on $\mathbb{Z} / p \mathbb{Z}$ then we can choose a sequence of polynomials $\left(f_{p, k}\right)_{k \in \mathbb{N}_{2}} \subset \mathbb{Z}_{p}[X]$ such that $f_{p, k_{1}}^{\prime}(n) \equiv f_{p, k_{2}}^{\prime}(\bmod p)$ for each $n \in \mathbb{Z}$ and $k_{1}, k_{2} \geq 2$. For $k \geq 2$ and $n \in \mathbb{N}$ we put $g_{p, k}(n)$ as an integer congruent to $g_{p, \infty}(n)$ modulo p^{k}. Finally, we obtain pseudo-polynomial decomposition $\left(f_{p, k}, g_{p, k}\right)_{k \in \mathbb{N}_{2}}$ modulo p of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$.

In particular, if $p \mid a_{n_{1}}$ for some $n_{1} \in \mathbb{N}$ and $p \nmid f_{p, 2}^{\prime}\left(n_{1}\right)$ (or equivalently $\left.v_{p}\left(\frac{1}{p}\left(\frac{a_{n_{1}+p}}{g_{p, 2}\left(n_{1}+p\right)}-\frac{a_{n_{1}}}{g_{p, 2}\left(n_{1}\right)}\right)\right)=0\right)$ then there exists a unique $n_{\infty} \in \mathbb{Z}_{p}$ such that $n_{\infty} \equiv n_{1}(\bmod p)$ and $f_{p, \infty}\left(n_{\infty}\right)=0$. Indeed, Theorem 1 gives us existence and uniqueness of n_{k} modulo p^{k} such that $n_{k} \equiv n_{1}(\bmod p)$ and $p^{k} \mid a_{n_{k}}$ for each $k \in \mathbb{N}_{+}$. Hence $p^{k} \mid f_{p, \infty}\left(n_{k}\right)$, which means that $\left|f_{p, \infty}\left(n_{k}\right)\right|_{p} \leq p^{-k}$. If $k_{1} \leq k_{2}$ then by uniqueness of $n_{k_{1}}$ modulo $p^{k_{1}}$ we have $n_{k_{1}} \equiv n_{k_{2}}\left(\bmod p^{k_{1}}\right)$, or in other words $\left|n_{k_{1}}-n_{k_{2}}\right|_{p} \leq p^{-k_{1}}$. We thus conclude that $\left(n_{k}\right)_{k \in \mathbb{N}_{+}}$is a Cauchy sequence and by completeness of \mathbb{Z}_{p} this sequence is convergent to some n_{∞}. By continuity of $f_{p, \infty},\left|f_{p, \infty}\left(n_{\infty}\right)\right|_{p}=\lim _{k \rightarrow+\infty}\left|f_{p, \infty}\left(n_{k}\right)\right|_{p}=0$. For all $k \in \mathbb{N}_{+}, n_{\infty} \equiv n_{k}$ $\left(\bmod p^{k}\right)$ and by uniqueness of n_{k} modulo p^{k}, such n_{∞}, that $n_{\infty} \equiv n_{1}(\bmod p)$ and $f_{p, \infty}\left(n_{\infty}\right)=0$, is unique.

Let us note that if $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is a p-adic contraction then f can be approximated uniformly on \mathbb{Z}_{p} by the sequence of polynomials $\left(f_{p, k}\right)_{k \in \mathbb{N}_{+}} \subset \mathbb{Z}[X]$ such that $f_{p, k}(n)=f(n), n \in\left\{0,1,2, \ldots, p^{k}-1\right\}$ for each $k \in \mathbb{N}_{+}$. Indeed, for each $x \in \mathbb{Z}_{p}$ we have

$$
\begin{aligned}
& \left|f_{p, k}(x)-f(x)\right|_{p}=\left|\left(f_{p, k}(x)-f_{p, k}\left(x \quad\left(\bmod p^{k}\right)\right)\right)-\left(f_{p, k}\left(x \quad\left(\bmod p^{k}\right)\right)-f(x)\right)\right|_{p} \leq \\
& \leq \max \left\{\left|f_{p, k}(x)-f_{p, k}\left(x \quad\left(\bmod p^{k}\right)\right)\right|_{p},\left|f\left(x \quad\left(\bmod p^{k}\right)\right)-f(x)\right|_{p}\right\} \leq p^{-k} .
\end{aligned}
$$

As a result, the closure of the rings $\mathbb{Z}[X]$ and $\mathbb{Z}_{p}[X]$ in the space $\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with metric $d_{\text {sup }}$ is the set of all p-adic contractions $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.

In particular, if a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is such that $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}}$ is periodic of period p^{k} for each $k \in \mathbb{N}_{+}$then $\left(a_{n}\right)_{n \in \mathbb{N}}$ (as a function mapping \mathbb{N} to \mathbb{Z}_{p}) is a p-adic contraction (if $|n-m|_{p}=p^{-k}$ then $p^{k} \mid n-m$ and $p^{k} \mid a_{n}-a_{m}$, which means that $\left.\left|a_{n}-a_{m}\right|_{p} \leq p^{-k}\right)$. Since \mathbb{N} is dense in \mathbb{Z}_{p}, the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ can be extended to a function $f \in \mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Thus there exists a sequence $\left(f_{p, k}\right)_{k \in \mathbb{N}_{+}} \in \mathbb{Z}[X]^{\mathbb{N}_{+}}$converging uniformly to f on \mathbb{Z}_{p}. Because of finiteness of the set of polynomial functions on $\mathbb{Z} / p \mathbb{Z}$ we can choose polynomials $f_{p, k}, k \in \mathbb{N}_{2}$, such that $f_{p, k_{1}}^{\prime}(n) \equiv f_{p, k_{2}}^{\prime}(\bmod p)$ for each $n \in \mathbb{Z}$ and $k_{1}, k_{2} \geq 2$. Finally, the sequence $\left(f_{p, k}, 1\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition modulo p of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ (where 1 means the function mapping each nonnegative integer n to 1).

The following three examples show that there is no connection between approximability of a given function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ by polynomials over \mathbb{Z}_{p} and its differentiability.

Example 1. Let us note that each $x \in \mathbb{Z}_{p}$ can be written uniquely as a series $\sum_{j=0}^{+\infty} a_{j}(x) p^{j}$, where $a_{j}(x) \in\{0,1, \ldots, p-1\}$ for each $j \in \mathbb{N}$ (see [4]). Moreover, if $x \neq 0$ then $v_{p}(x)$ is the least index j such that $a_{j}(x) \neq 0$. Let p be an odd prime number and let us consider a function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ given by the formula

$$
f(x)= \begin{cases}\frac{x}{a_{v_{p}(x)}(x)}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

The function f is a p-adic contraction. First we see that $|f(x)|_{p}=|x|_{p}$ for each $x \in \mathbb{Z}_{p}$. Let $k \in \mathbb{N}$ and $x, y \in \mathbb{Z}_{p}$ be such that $|x-y|_{p}=p^{-k}$. Let us write $x=\sum_{j=0}^{+\infty} a_{j}(x) p^{j}$ and $y=\sum_{j=0}^{+\infty} a_{j}(y) p^{j}$, where $a_{j}(x), a_{j}(y) \in\{0,1, \ldots, p-1\}$ for $j \in \mathbb{N}$. Then k is the least index j such that $a_{j}(x) \neq a_{j}(y)$. Let us consider two cases.
(1) Assume first that $v_{p}(x)=v_{p}(y)<k$. Then $a_{v_{p}(x)}(x)=a_{v_{p}(y)}(y) \neq 0$ and as a result $|f(x)-f(y)|_{p}=\left|\frac{x-y}{a_{v_{p}(x)}(x)}\right|_{p}=|x-y|_{p}=p^{-k}$.
(2) Assume now that one of the numbers x, y has p-adic valuation equal to k. Without loss of generality we set $v_{p}(x)=k$. Then $v_{p}(y) \geq k$ and as a consequence $v_{p}(f(x))=k$ and $v_{p}(f(y)) \geq k$. We thus have $v_{p}(f(x)-$ $f(y)) \leq k$ or in other words $|f(x)-f(y)|_{p} \leq p^{-k}$.
Hence $f \in \overline{\mathbb{Z}[X]}$. On the other hand, the function f is not differentiable at 0 , because $\lim _{n \rightarrow+\infty} \frac{f\left(a p^{n}\right)-f(0)}{a p^{n}}=\lim _{n \rightarrow+\infty} \frac{p^{n}}{a p^{n}}=\frac{1}{a}$ for each $a \in\{1, \ldots, p-1\}$.

Example 2. Let p be an arbitrary prime number and function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be given by the formula

$$
f(x)= \begin{cases}(-1)^{v_{p}(x)} x, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

The function f is a p-adic contraction (in fact, f is an isometry, i.e. $\mid f(x)$ -$\left.f(y)\right|_{p}=|x-y|_{p}$ for any $\left.x, y \in \mathbb{Z}_{p}\right)$. First we see that $|f(x)|_{p}=|x|_{p}$ for each $x \in \mathbb{Z}_{p}$. Let $k \in \mathbb{N}$ and $x, y \in \mathbb{Z}_{p}$ be such that $|x-y|_{p}=p^{-k}$. Let us consider two cases.
(1) Assume first that $v_{p}(x)=v_{p}(y)$. Then $|f(x)-f(y)|_{p}=\left|(-1)^{v_{p}(x)}(x-y)\right|_{p}=$ $|x-y|_{p}=p^{-k}$.
(2) Assume now that $v_{p}(x) \neq v_{p}(y)$. Then one of the numbers x, y has p-adic valuation equal to k and the second one has p-adic valuation greater than k. Without loss of generality we set $v_{p}(x)=k$ and $v_{p}(y)>k$. As a consequence $v_{p}(f(x))=k$ and $v_{p}(f(y))>k$. We thus have $v_{p}(f(x)-f(y))=k$ or in other words $|f(x)-f(y)|_{p}=p^{-k}$.
Hence $f \in \overline{\mathbb{Z}[X]}$. On the other hand, the function f is not differentiable at 0 , because $\lim _{n \rightarrow+\infty} \frac{f\left(p^{2 n+r}\right)-f(0)}{p^{2 n+r}}=\lim _{n \rightarrow+\infty} \frac{(-1)^{r} p^{2 n+r}}{p^{2 n+r}}=(-1)^{r}$ for $r \in\{0,1\}$.

Example 3. Let a function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ be given by the formula

$$
f(x)= \begin{cases}\frac{x}{p}, & \text { if } p \mid x, \\ x, & \text { if } p \nmid x .\end{cases}
$$

Obviously, the function f is differentiable at each point $x \in \mathbb{Z}_{p}$ and its derivative is equal to $\frac{1}{p}$ for $x \in p \mathbb{Z}_{p}$ and 1 otherwise. However, if $x, y \in p \mathbb{Z}_{p}$ then $|f(x)-f(y)|_{p}=$ $\left|\frac{x-y}{p}\right|_{p}=p \cdot|x-y|_{p}$. Hence f is not a p-adic contraction, which means that $f \notin \overline{\mathbb{Z}[X]}$.
3.3. Hensel's lemma for exponential function. Let us fix a prime number p, an integer a and consider now exponential function $f: \mathbb{N} \ni n \mapsto a^{n} \in \mathbb{Z}$. In general it is not a p-adic continuous function, but if $p \nmid a$ and $m \in \mathbb{N}$ is fixed then the function $g: \mathbb{N} \ni n \mapsto a^{n(p-1)+m} \in \mathbb{Z}$ is continuous. Indeed, by Fermat's little theorem $a^{p-1}=1+p b$ for some $b \in \mathbb{Z}$ and

$$
a^{n(p-1)}=\sum_{j=0}^{n}\binom{n}{j}(p b)^{j}=\sum_{j=0}^{n} \frac{p^{j} b^{j}}{j!} \prod_{i=0}^{j-1}(n-i)=\sum_{j=0}^{+\infty} \frac{p^{j} b^{j}}{j!} \prod_{i=0}^{j-1}(n-i) .
$$

Note that $v_{p}\left(\frac{p^{j} b^{j}}{j!}\right) \geq j-v_{p}(j!)=j-\frac{j-s_{p}(j)}{p-1} \geq \frac{p-2}{p-1} j \geq 0$ (we use Legendre's formula $v_{p}(j!)=\frac{j-s_{p}(j)}{p-1}, j \in \mathbb{N}$, see [12]) and $v_{p}\left(\prod_{i=0}^{j-1}(n-i)\right) \geq\left\lfloor\frac{j}{p}\right\rfloor$ (between j consecutive integers there are at least $\left\lfloor\frac{j}{p}\right\rfloor$ integers divisible by p). This suggests to define

$$
f_{p, k}=\sum_{j=0}^{k p-1} \frac{p^{j} b^{j}}{j!} \prod_{i=0}^{j-1}(X-i) \in \mathbb{Z}_{p}[X]
$$

for $k \geq 2$. Then $a^{n(p-1)} \equiv f_{p, k}(n)\left(\bmod p^{k}\right)$ and

$$
f_{p, k}^{\prime}(n)=\sum_{j=0}^{k p-1} \frac{p^{j} b^{j}}{j!} \sum_{s=0}^{j-1} \prod_{i=0, i \neq s}^{j-1}(n-i) \equiv \sum_{j=0}^{2 p-1} \frac{p^{j} b^{j}}{j!} \sum_{s=0}^{j-1} \prod_{i=0, i \neq s}^{j-1}(n-i) \quad(\bmod p)
$$

Hence $\left(f_{p, k}, 1\right)_{k \in \mathbb{N}_{2}}$, where 1 means the function defined on \mathbb{N} constantly equal to 1 , is a pseudo-polynomial decomposition of $\left(a^{n(p-1)}\right)_{n \in \mathbb{N}}$. Additionaly, the formula $a^{x(p-1)}=f_{p, \infty}(x)=\sum_{j=0}^{+\infty} \frac{p^{j} b^{j}}{j!} \prod_{i=0}^{j-1}(x-i)$ extends the function $\mathbb{N} \ni n \mapsto$ $a^{n(p-1)+m} \in \mathbb{Z}$ to a continuous function defined on \mathbb{Z}_{p}. However, this function has one more property. Namely, if $p^{k} \mid x-y$ then $p^{k+1} \mid a^{x(p-1)}-a^{y(p-1)}$, or in other words $\left|a^{x(p-1)}-a^{y(p-1)}\right|_{p} \leq \frac{1}{p}|x-y|_{p}$. Because \mathbb{N} is dense in \mathbb{Z}_{p}, thus it suffices to show this property for $x, y \in \mathbb{N}$, where $x>y$. Let $x=y+p^{k} t$ for some positive integer t not divisible by p. Then $a^{x(p-1)}-a^{y(p-1)}=a^{y(p-1)}\left(a^{t p^{k}(p-1)}-1\right)$ and by Euler's theorem $p^{k+1} \mid\left(a^{t}\right)^{p^{k}(p-1)}-1$.

The mentioned property is a motivation to state an analogue of Hensel's lemma for exponential function.

Theorem 4 (Hensel's lemma for exponential function). Let p be a prime number and k be a positive integer. Let a, c be integers not divisible by p. Let m, n_{k} be nonnegative integers such that $n_{k}<m$ and $s=v_{p}\left(a^{p^{k}(p-1)}-1\right)$ (by Euler's theorem $s \geq k+1$).

- If $p^{s} \mid a^{n_{k}(p-1)+m}-c$ then for each positive integer l there exists a unique n_{k+l} modulo p^{k+l} such that $n_{k+l} \equiv n_{k}\left(\bmod p^{k}\right)$ and $p^{s+l} \mid a^{n_{k+l}(p-1)+m}-c$.
- If $p^{s} \nmid a^{n_{k}(p-1)+m}-c$ then $p^{s} \nmid a^{n(p-1)+m}-c$ for all $n \equiv n_{k}\left(\bmod p^{k}\right)$.

In particular, if $m=0$ and $c=1$ then for each positive integer l there exists a unique n_{k+l} modulo p^{k+l} such that $p^{s+l} \mid a^{n_{k+l}(p-1)}-1$.

Proof. The second case of the statement is very easy. If $n \equiv n_{k}\left(\bmod p^{k}\right)$ then $\left(a^{n(p-1)+m}-c\right)-\left(a^{n_{k}(p-1)+m}-c\right)=a^{n_{k}(p-1)}\left(a^{\left(n-n_{k}\right)(p-1)}-1\right)$. Since $p \nmid a$ and $p^{k} \mid n-n_{k}$, thus $a^{p^{k}(p-1)}-1 \mid a^{\left(n-n_{k}\right)(p-1)}-1$ and as a consequence $p^{s} \mid$ $a^{n_{k}(p-1)}\left(a^{\left(n-n_{k}\right)(p-1)}-1\right)$. Because $p^{s} \nmid a^{n_{k}(p-1)+m}-c$, hence $p^{s} \nmid a^{n(p-1)+m}-c$.

Now we prove the first case of the statement of our theorem.
First, we show by induction on $l \in \mathbb{N}$ that $v_{p}\left(a^{p^{k+l}(p-1)}-1\right)=s+l$. The induction hypothesis is obviously true for $l=0$. Assume that $a^{p^{k+l}(p-1)}=1+p^{s+l} t_{l}$ and $p \nmid t_{l}$. Then

$$
\begin{aligned}
& a^{p^{k+l+1}(p-1)}=\left(a^{p^{k+l}(p-1)}\right)^{p}=\left(1+p^{s+l} t_{l}\right)^{p}=\sum_{j=0}^{p}\binom{p}{j} p^{j(s+l)} t_{l}^{j}= \\
& =1+p^{s+l+1} t_{l}+p^{s+l+2} u_{l}=1+p^{s+l+1}\left(t_{l}+p u_{l}\right),
\end{aligned}
$$

where $u_{l} \in \mathbb{Z}$. Assume now that $l \in \mathbb{N}$ and $p^{s+l} \mid a^{n_{k+l}(p-1)+m}-c$. Write $n_{k+l+1}=$ $n_{k+l}+p^{k+l} w$ and $a^{n_{k+l}(p-1)+m}-c \equiv p^{s+l} z\left(\bmod p^{s+l+1}\right)$. Then we obtain the
sequence of equivalent congruences:

$$
\begin{aligned}
& a^{n_{k+l+1}(p-1)+m}-c \equiv 0 \quad\left(\bmod p^{s+l+1}\right) \\
& \Longleftrightarrow \quad a^{\left(n_{k+l}+p^{k+l} w\right)(p-1)+m} \equiv c \quad\left(\bmod p^{s+l+1}\right) \\
& \Longleftrightarrow \quad a^{w p^{k+l}(p-1)} a^{n_{k+l}(p-1)+m} \equiv c \quad\left(\bmod p^{s+l+1}\right) \\
& \Longleftrightarrow \quad\left(1+p^{s+l} t_{l}\right)^{w}\left(c+p^{s+l} z\right) \equiv c \quad\left(\bmod p^{s+l+1}\right) \\
& \Longleftrightarrow \quad\left(1+w p^{s+l} t_{l}\right)\left(c+p^{s+l} z\right) \equiv c \quad\left(\bmod p^{s+l+1}\right) \\
& \Longleftrightarrow \quad w p^{s+l} t_{l}\left(c+p^{s+l} z\right) \equiv-p^{s+l} z \quad\left(\bmod p^{s+l+1}\right) \\
& \Longleftrightarrow \quad w t_{l} c \equiv-z \quad(\bmod p)
\end{aligned}
$$

Since $p \nmid t_{k+l} c$, thus the last congruence has exactly one solution w modulo p, which means that the first congruence has exactly one solution n_{k+l+1} modulo p^{k+l+1} such that $n_{k+l+1} \equiv n_{k}\left(\bmod p^{k}\right)$.

4. Arithmetic properties of sequences a $\in \mathcal{R}$

The main point of this paper is to investigate arithmetic properties of sequence of derangements and to generalize this properties to some class of sequences. This section is devoted to the family \mathcal{R} of sequences a given by the recurrence $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$, where $f, h_{1}, h_{2} \in \mathbb{Z}[X]$. In order to emphasize the polynomials f, h_{1}, h_{2} appearing in this recurrence, we will denote $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)$. Sequences from the class \mathcal{R} are natural generalization of the sequence of derangements, which is obtained for $f=X, h_{1}=1, h_{2}=-1$. Note that many well-known sequences belong to this class:

- if $f, h_{2}=1, h_{1}=c \in \mathbb{Z}$ then $\left(a_{n}\right)_{n \in \mathbb{N}}=(c n)_{n \in \mathbb{N}}$ is an arithmetic progression;
- if $f=q \in \mathbb{Z}, h_{1}=c \in \mathbb{Z}, h_{2}=0$ then $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(c q^{n}\right)_{n \in \mathbb{N}}$ is a geometric progression;
- if $f=1, h_{1}=c \in \mathbb{Z}, h_{2}=q \in \mathbb{Z}$ then $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\sum_{j=0}^{n} c q^{j}\right)_{n \in \mathbb{N}}$ is a sequence of partial sums of a geometric progression;
- if $f=X, h_{1}=1, h_{2}=0$ then $\left(a_{n}\right)_{n \in \mathbb{N}}=(n!)_{n \in \mathbb{N}}$ is the sequence of factorials;
- if $f=2 X+l, l \in\{0,1\}, h_{1}=1, h_{2}=0$ then $\left(a_{n}\right)_{n \in \mathbb{N}}=((2 n+l)!!)_{n \in \mathbb{N}}$ is the sequence of double factorials.
One can easily obtain the closed formula $a_{n}=\sum_{j=0}^{n} h_{1}(j) h_{2}(j)^{j} \prod_{i=j+1}^{n} f(i)$ for $n \in \mathbb{N}$.

A particular subclasses of \mathcal{R} are class \mathcal{R}^{\prime} of sequences for which $h_{2}=1$ and class $\mathcal{R}^{\prime \prime}$ of sequences for which $h_{2}=-1$. It is worth to note that if $\mathbf{a}=$ $\mathbf{a}\left(f, h_{1},-1\right)=\left(a_{n}\right)_{n \in \mathbb{N}}$ then $a_{n}=(-1)^{n} \widetilde{a}_{n}, n \in \mathbb{N}$, where $\widetilde{\mathbf{a}}=\widetilde{\mathbf{a}}\left(-f, h_{1}, 1\right)=$ $\left(\widetilde{a}_{n}\right)_{n \in \mathbb{N}}$. Certainly the equality is true for $n=0$. Now, assume that $a_{n-1}=$ $(-1)^{n-1} \widetilde{a}_{n-1}$ for $n>0$. Then $a_{n}=f(n) a_{n-1}+(-1)^{n} h_{1}(n)=(-1)^{n}\left(-f(n) \widetilde{a}_{n-1}+\right.$ $\left.h_{1}(n)\right)=(-1)^{n} \widetilde{a}_{n}$. The sequence $\widetilde{\mathbf{a}}$ we will call associated to the sequence \mathbf{a}.

Hence the study of such properties as: periodicity, p-adic valuations, divisors, boundedness for sequences from class $\mathcal{R}^{\prime \prime}$ comes down to study of this properties for sequences from \mathcal{R}^{\prime}.

4.1. Periodicity modulo d and p-adic valuations.

4.1.1. Periodicity modulo d, when $h_{2}=1$ or $h_{2}=-1$ and $d \mid f\left(n_{0}\right)$ for some $n_{0} \in \mathbb{N}$. Assume that $\mathbf{a}=\mathbf{a}\left(f, h_{1}, 1\right)$. Let $d \in \mathbb{N}_{+}$be such that $d \mid f\left(n_{0}\right)$ for some $n_{0} \in \mathbb{N}$. Then for each $n \geq n_{0}$ we have

$$
\begin{align*}
a_{n} & =\sum_{j=0}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i) \equiv \sum_{j=n-d+1}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i) \\
& =\sum_{j=0}^{d-1} h_{1}(n-j) \prod_{i=0}^{j-1} f(n-i) \quad(\bmod d) . \tag{4}
\end{align*}
$$

Making reduction modulo d we can skip the summands from 0th to $(n-d)$ th because if $0 \leq j \leq n-d$ then among (at least d) numbers $j+1, j+2, \ldots, n$ there is such number i_{0} that $d \mid f\left(i_{0}\right)$ and $d \mid \prod_{i=j+1}^{n} f(i)$. If $n_{0} \leq n<d$ then $f\left(n_{0}\right)$ appears in the product $\prod_{i=j+1}^{n} f(i)$ for $n-d+1 \leq j<0$, thus this product has no influence on the value $a_{n}(\bmod d)$.

Let us define $f_{d}=\sum_{j=0}^{d-1} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i) \in \mathbb{Z}[X]$. Then the equation (44) takes the form $a_{n} \equiv f_{d}(n)(\bmod d), n \geq n_{0}$ and because of periodicity modulo d of any polynomial we conclude that the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ is periodic of period d. One can ask the natural question now: Is d the basic period of (a_{n}
$(\bmod d))_{n \in \mathbb{N}_{n_{0}}}$? If $\operatorname{gcd}\left(d, a_{n}\right)=1$ for some $n \in \mathbb{N}, f=b_{1} X+b_{0}$, where $\operatorname{gcd}\left(d, b_{1}\right)=$ 1 and $h_{1}=c \in \mathbb{Z}$ then the answer is positive.
Proposition 1. Let as assume $\mathbf{a}=\mathbf{a}\left(b_{1} X+b_{0}, c, 1\right)$, where $b_{0}, b_{1}, c \in \mathbb{Z}$. Let $d \in \mathbb{N}_{+}$divide $b_{1} n_{0}+b_{0}$ for some $n_{0} \in \mathbb{N}$ and $\operatorname{gcd}\left(d, a_{n_{1}}\right)=1$ for some $n_{1} \geq n_{0}$. Then the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ has the basic period divisible by $\frac{d}{\operatorname{gcd}\left(d, b_{1}\right)}$. In particular, if $\operatorname{gcd}\left(d, b_{1}\right)=1$ then the basic period is equal to d.

Proof. Denote the basic period of $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ by per. We thus obtain the following chain of equivalences:

$$
\begin{array}{ll}
& a_{n_{1}+\text { per }+1} \equiv a_{n_{1}+1} \quad(\bmod d) \\
\Longleftrightarrow & \left(b_{1}\left(n_{1}+\operatorname{per}+1\right)+b_{0}\right) a_{n_{1}+\text { per }}+c \equiv\left(b_{1}\left(n_{1}+1\right)+b_{0}\right) a_{n_{1}}+c \quad(\bmod d) \\
\Longleftrightarrow & \left(b_{1}\left(n_{1}+\operatorname{per}+1\right)+b_{0}\right) a_{n_{1}} \equiv\left(b_{1}\left(n_{1}+1\right)+b_{0}\right) a_{n_{1}} \quad(\bmod d) \\
\Longleftrightarrow & b_{1}\left(n_{1}+\operatorname{per}+1\right)+b_{0} \equiv b_{1}\left(n_{1}+1\right)+b_{0} \quad(\bmod d) \\
\Longleftrightarrow & b_{1}\left(n_{1}+\operatorname{per}+1\right) \equiv b_{1}\left(n_{1}+1\right) \quad(\bmod d) \\
\Longleftrightarrow & n_{1}+\operatorname{per}+1 \equiv n_{1}+1\left(\bmod \frac{d}{\operatorname{gcd}\left(d, b_{1}\right)}\right) \\
\Longleftrightarrow & \text { per } \equiv 0\left(\bmod \frac{d}{\operatorname{gcd}\left(d, b_{1}\right)}\right)
\end{array}
$$

Our proposition is proved.
Example 4. Let c be as in the statement of Proposition 1 and suppose that $|c|>1$. Then by simple induction one can prove that $c \mid a_{n}$ for all $n \in \mathbb{N}$. In other words, the sequence $\left(a_{n}(\bmod c)\right)_{n \in \mathbb{N}}$ is constant and equal to 0 . This means that the assumption $\operatorname{gcd}\left(d, a_{n_{1}}\right)=1$ for some $n_{1} \geq n_{0}$ in Proposition 1 is essential.

Example 5. Let us fix $c, d \in \mathbb{Z}$ such that $d>1$. Consider the sequence given by the formula $a_{0}=c, a_{n}=\left(n^{\varphi(d)+1}-n\right) a_{n-1}+c, n>0$ (by φ we mean Euler's totient function). By Euler's theorem $d \mid n^{\varphi(d)+1}-n$ for all $n \in \mathbb{N}$, hence the sequence (a_{n} $(\bmod c))_{n \in \mathbb{N}}$ is constant and equal to $c(\bmod d)$. Thus the assumption $f=b_{1} X+b_{0}$ in Proposition 1 is essential.

Example 6. Let us consider the sequence $\mathbf{a}=\mathbf{a}(X,-a X+a, 1)$, where $a \in \mathbb{Z}$. It is very easy to prove that $a_{n}=a$ for all $n \in \mathbb{N}$. Hence the assumption $h_{1}=c$ in Proposition 1 is essential.

The last example shows us that Proposition is no longer true if we replace a constant polynomial $h_{1}=c$ with an affine polynomial $h_{1}=c_{1} X+c_{0}$. However, we can modify Proposition 1 and get the following.
Proposition 2. Let $\mathbf{a}=\mathbf{a}\left(b_{1} X+b_{0}, c_{1} X+c_{0}, 1\right)$, where $b_{0}, b_{1}, c_{0}, c_{1} \in \mathbb{Z}$. Let $d \in \mathbb{N}_{+}$be such that $d \mid b_{1} n_{0}+b_{0}$ for some $n_{0} \in \mathbb{N}$. Let us assume that $\operatorname{gcd}\left(d, b_{1} a_{n_{1}}+\right.$ $\left.c_{1}\right)=1$ for some $n_{1} \geq n_{0}$. Then the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ has the basic period equal to d.
Proof. Denote the basic period of $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ by per. We thus obtain the following chain of equivalences:

```
        \(a_{n_{1}+p e r+1} \equiv a_{n_{1}+1} \quad(\bmod d)\)
\(\Longleftrightarrow \quad\left(b_{1}\left(n_{1}+\operatorname{per}+1\right)+b_{0}\right) a_{n_{1}+p e r}+c_{1}\left(n_{1}+\operatorname{per}+1\right)+c_{0}\)
    \(\equiv\left(b_{1}\left(n_{1}+1\right)+b_{0}\right) a_{n_{1}}+c_{1}\left(n_{1}+1\right)+c_{0} \quad(\bmod d)\)
\(\Longleftrightarrow \quad\left(b_{1}\left(n_{1}+\right.\right.\) per +1\(\left.)+b_{0}\right) a_{n_{1}}+c_{1}\) per \(\equiv\left(b_{1}\left(n_{1}+1\right)+b_{0}\right) a_{n_{1}} \quad(\bmod d)\)
\(\Longleftrightarrow \quad b_{1} a_{n_{1}}\) per \(+c_{1}\) per \(\equiv 0 \quad(\bmod d)\)
\(\Longleftrightarrow \quad\left(b_{1} a_{n_{1}}+c_{1}\right)\) per \(\equiv 0 \quad(\bmod d)\).
```

Since $\operatorname{gcd}\left(d, b_{1} a_{n_{1}}+c_{1}\right)=1$, we get $d \mid$ per and we are done.
Let $\mathbf{a}=\mathbf{a}\left(f, h_{1},-1\right)$. Let us assume that $d \in \mathbb{N}_{+}$is such that $d \mid f\left(n_{0}\right)$ for some $n_{0} \in \mathbb{N}$. Then $a_{n}=(-1)^{n} \widetilde{a}_{n}$ for each $n \in \mathbb{N}$. This means that $a_{n} \equiv(-1)^{n} \widetilde{a}_{n}$ $(\bmod d)$ for all $n \in \mathbb{N}$. Since $\widetilde{\mathbf{a}}=\widetilde{\mathbf{a}}\left(-f, h_{1}, 1\right)$ and $d \mid-f\left(n_{0}\right)$ we deduce that the sequence $\left(\widetilde{a}_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ is periodic. If we denote the basic period of $\left(\widetilde{a}_{n}\right.$ $(\bmod d))_{n \in \mathbb{N}_{n_{0}}}$ by per >1 then $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ has the basic period equal to:

- per, when $2 \mid p e r$;
- 2 per, when $2 \nmid$ per.

If the sequence $\left(\widetilde{a}_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ is constant then $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ has the basic period equal to:

- 1 , when $d \mid a_{n}, n \geq n_{0}$ or $d=2$;
- 2, otherwise.

In particular, since the associated sequence $\left(\widetilde{D}_{n}\right)_{n \in \mathbb{N}}$ to the sequence of derangements satisfies the assumptions of the Proposition hence $\left(\widetilde{D}_{n}(\bmod d)\right)_{n \in \mathbb{N}}$ has the basic period d for arbitrary $d \in \mathbb{N}_{+}$and as a result the basic period of (D_{n} $(\bmod d))_{n \in \mathbb{N}}$ is equal to:

- d, when $2 \mid d$;
- $2 d$, when $2 \nmid d$.

Remark 2. It is worth to recall a well known fact that if $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of integers, d_{1}, d_{2} are two coprime positive integers and the sequences $\left(a_{n}\left(\bmod d_{1}\right)\right)_{n \in \mathbb{N}}$, $\left(a_{n}\left(\bmod d_{2}\right)\right)_{n \in \mathbb{N}}$ are periodic with basic periods per ${ }_{1}$, per r_{2} respectively then the sequence $\left(a_{n}\left(\bmod d_{1} d_{2}\right)\right)_{n \in \mathbb{N}}$ is periodic with basic period $\operatorname{lcm}\left(\right.$ per $_{1}$, per $\left._{2}\right)$.
4.1.2. p-adic valuations of numbers $a_{n}, n \in \mathbb{N}$, when $h_{2}=1$ or $h_{2}=-1$ and $p \mid f\left(n_{0}\right)$ for some $n_{0} \in \mathbb{N}$. Let us fix a prime number p and assume that $\mathbf{a}=$ $\mathbf{a}\left(f, h_{1}, 1\right)$. If $p \mid f\left(n_{0}\right)$ for some $n_{0} \in \mathbb{N}$ then for each $k \in \mathbb{N}_{+}$and $n \geq n_{0}+(k-1) p$ we have

$$
\begin{align*}
a_{n} & =\sum_{j=0}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i) \equiv \sum_{j=n-k p+1}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i) \\
& =\sum_{j=0}^{k p-1} h_{1}(n-j) \prod_{i=0}^{j-1} f(n-i) \equiv f_{p, k}(n) \quad\left(\bmod p^{k}\right), \tag{5}
\end{align*}
$$

where $f_{p, k}=\sum_{j=0}^{k p-1} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i) \in \mathbb{Z}[X]$. We can skip the summands from 0 th to $(n-k p)$ th because if $0 \leq j \leq n-d$ then among (at least $k p$) numbers $j+1, j+2, \ldots, n$ there are at least k numbers congruent to n_{0} modulo p, thus p divides at least k factors in product $\prod_{i=j+1}^{n} f(i)$. Additionaly, if $f\left(n_{0}\right)=0$ and $n_{0} \leq n<n_{0}+(k-1) p$ then $\prod_{i=j+1}^{n} f(i)=0$ for $j<n_{0}$. Hence the congruence (5) is satisfied for $n \geq n_{0}$.

What is more,

$$
\begin{aligned}
& f_{p, k}^{\prime}(n)=\sum_{j=0}^{k p-1}\left[h_{1}^{\prime}(n-j) \prod_{i=0}^{j-1} f(n-i)+h_{1}(n-j) \sum_{s=0}^{j-1}\left(f^{\prime}(n-s) \prod_{i=0, i \neq s}^{j-1} f(n-i)\right)\right] \\
\equiv & \sum_{j=0}^{2 p-1}\left[h_{1}^{\prime}(n-j) \prod_{i=0}^{j-1} f(n-i)+h_{1}(n-j) \sum_{s=0}^{j-1}\left(f^{\prime}(n-s) \prod_{i=0, i \neq s}^{j-1} f(n-i)\right)\right] \quad(\bmod p) .
\end{aligned}
$$

Hence $\left(f_{p, k}, 1\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition modulo p of a and thus we can use Theorem 1 to obtain the criterion for behavior of p-adic valuation of the number a_{n}.

Theorem 5. Assume that $\mathbf{a}=\mathbf{a}\left(f, h_{1}, 1\right)$. Let p be a prime number and $k \in \mathbb{N}_{+}$. Let $f\left(n_{0}\right)=0$ (respectively $p \mid f\left(n_{0}\right)$) and $n_{k} \geq n_{0}$ (respectively $n_{k} \geq n_{0}+k p$) be such that $p^{k} \mid a_{n_{k}}$.

- If $v_{p}\left(a_{n_{k}+p}-a_{n_{k}}\right)=1$ then there exists a unique n_{k+1} modulo p^{k+1} such that $n_{k+1} \equiv n_{k}\left(\bmod p^{k}\right)$ and $p^{k+1} \mid a_{n}$ for all $n \geq n_{0}($ respectively $n \geq$ $n_{0}+k p$) congruent to n_{k+1} modulo p^{k+1}. Moreover, $n_{k+1} \equiv n_{k}-\frac{p a_{n_{k}}}{a_{n_{k}+p}-a_{n_{k}}}$ $\left(\bmod p^{k+1}\right)$.
- If $v_{p}\left(a_{n_{k}+p}-a_{n_{k}}\right)>1$ and $p^{k+1} \mid a_{n_{k}}$ then $p^{k+1} \mid a_{n}$ for any n satisfying $n \equiv n_{k}\left(\bmod p^{k}\right)$ and $n \geq n_{0}$ (respectively $\left.n \geq n_{0}+k p\right)$.
- If $v_{p}\left(a_{n_{k}+p}-a_{n_{k}}\right)>1$ and $p^{k+1} \nmid a_{n_{k}}$ then $p^{k+1} \nmid a_{n}$ for any n satisfying $n \equiv n_{k}\left(\bmod p^{k}\right)$ and $n \geq n_{0}\left(\right.$ respectively $\left.n \geq n_{0}+k p\right)$.
In particular, if $k=1, p \mid a_{n_{1}}$ and $v_{p}\left(a_{n_{1}+p}-a_{n_{1}}\right)=1$ then for any $l \in \mathbb{N}_{+}$there exists a unique n_{l} modulo p^{l} such that $n_{l} \equiv n_{1}(\bmod p)$ and $v_{p}\left(a_{n}\right) \geq l$ for all $n \geq n_{0}$ (respectively $n \geq n_{0}+(l-1) p$) congruent to n_{l} modulo p^{l}. Moreover, n_{l} satisfies the congruence $n_{l} \equiv n_{l-1}-\frac{p a_{n_{l-1}}}{a_{n_{1}+p}-a_{n_{1}}}\left(\bmod p^{l}\right)$ for $l>1$.
Proof. Note that $q_{p}\left(n_{k}\right)=\frac{1}{p}\left(a_{n_{k}+p}-a_{n_{k}}\right)\left(q_{p}\left(n_{k}\right)\right.$ is as in the statement of Theorem 11), which implies that $v_{p}\left(a_{n_{k}+p}-a_{n_{k}}\right)=v_{p}\left(q_{p}\left(n_{k}\right)\right)+1$. We use Theorem 1 for the set $S=\left\{n \in \mathbb{N}: n \geq n_{0}\right\}$ (respectively $S=\left\{n \in \mathbb{N}: n \geq n_{0}+k p\right\}$) and get the result.

Let us observe that if $\mathbf{a} \in \mathcal{R}^{\prime \prime}$ then $v_{p}\left(a_{n}\right)=v_{p}\left(\widetilde{a}_{n}\right)$. Hence it suffices to apply Theorem 5 for the sequence $\widetilde{\mathbf{a}}$ in order to obtain the description of p-adic valuation of numbers $a_{n}, n \in \mathbb{N}$.
4.1.3. Prime divisors and p-adic valuations of the sequence of derangements. Theorem 5 can be used to describe p-adic valuations of numbers of derangements, but we will study these numbers more precisely. Namely,

$$
\begin{aligned}
D_{n} & =n D_{n-1}+(-1)^{n}=D_{n-1}+(n-1) D_{n-1}+(-1)^{n} \\
& =(n-1) D_{n-2}+(-1)^{n-1}+(n-1) D_{n-1}+(-1)^{n}=(n-1)\left(D_{n-2}+D_{n-1}\right)
\end{aligned}
$$

for $n>1$. We thus have $n-1 \mid D_{n}$ for $n \in \mathbb{N}$ and as a consequence $v_{p}(n-1) \leq v_{p}\left(D_{n}\right)$ for each prime p. Let us define two sets:

$$
\mathcal{A}=\left\{p \in \mathbb{P}: v_{p}(n-1)=v_{p}\left(D_{n}\right) \text { for all } n \in \mathbb{N}\right\}, \mathcal{B}=\mathbb{P} \backslash \mathcal{A}
$$

Denote $E_{n}=\frac{D_{n}}{n-1}=D_{n-2}+D_{n-1}, n>1$. Hence it suffices to study p-adic valuations of the sequence $\left(E_{n}\right)_{n \in \mathbb{N}_{2}}$ for $p \in \mathcal{B}$. Firstly note that the set \mathcal{B} is infinite.

Proposition 3. The set \mathcal{B} is infinite.
Proof. Assume that $\mathcal{B}=\left\{p_{1}, \ldots, p_{s}\right\}$. Since $\left((-1)^{n} D_{n}(\bmod p)_{i}\right)_{n \in \mathbb{N}}$ has period p_{i} for each $i \in\{1, \ldots, s\}$, thus $\left((-1)^{n} E_{n}(\bmod p)_{i}\right)_{n \in \mathbb{N}_{2}}$ has period p_{i}, too. Because $E_{2}=1$, hence $p_{1} \ldots p_{s} \nmid E_{p_{1} \ldots p_{s} m+2}$ for all $m \in \mathbb{N}$. \mathcal{B} is the set of all prime divisors of numbers $E_{n}, n>1$ and $E_{n}>0$ (because $D_{n}>0$ for $n \neq 1$), so $E_{p_{1} \ldots p_{s} m+2}=1$ for all $m \in \mathbb{N}$. On the other hand, $\frac{E_{n}}{(n-2)!n}=\frac{D_{n}}{n!}=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!} \rightarrow e^{-1}$, when $n \rightarrow+\infty$. This fact implies that $E_{n} \rightarrow+\infty$, when $n \rightarrow+\infty$, and this is a contradiction.

For a given prime number p it is easy to verify if $p \in \mathcal{A}$. Because of periodicity of the sequence $\left((-1)^{n} E_{n}(\bmod p)\right)_{n \in \mathbb{N}_{2}}$ it suffices to check that p divides none of the numbers $E_{n}, n \in\{2, \ldots, p+1\}$. The first numbers in \mathcal{A} are $2,5,7,17,19,23,29$. Numerical computations show that among all prime numbers less than 10^{6} there are 28990 numbers which belong to \mathcal{A}, while 49508 primes belong to \mathcal{B}. This means that primes less than 10^{6} contained in \mathcal{A} are approx. 37% of all primes less than 10^{6}. However, we are not able to prove that the set \mathcal{A} is infinite.

Conjecture 1. The set \mathcal{A} is infinite. Moreover, $\lim _{n \rightarrow+\infty} \frac{\sharp(\mathcal{A} \cap\{1, \ldots, n\})}{\sharp(\mathbb{P} \cap\{1, \ldots, n\})}=\frac{1}{e}$.
The following heuristic reasoning allows us to claim the second statement in the conjecture above. If we fix a prime number p and choose by random a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that the sequence of remainders $\left(a_{n}(\bmod p)\right)_{n \in \mathbb{N}}$ has period p then the probability that p does not divide any term of this sequence is equal to $\left(1-\frac{1}{p}\right)^{p}$. When $p \rightarrow+\infty$ then this probability tends to $\frac{1}{e}$. Note that $p \in \mathcal{A}$ if and only if p does not divide any number $\widetilde{E}_{n}, n \geq 2$ and the sequence $\left(\widetilde{E}_{n}(\bmod p)\right)_{n \in \mathbb{N}_{2}}$ is periodic of period p. Therefore we suppose that the probability that $p \in \mathcal{A}$ tends to $\frac{1}{e}$, when $p \rightarrow+\infty$ and hence the asymptotic density of the set \mathcal{A} in the set \mathbb{P} is equal to $\frac{1}{e}$.

Now we are obtaining a pseudo-polynomial decomposition modulo p of the sequence $\left(E_{n}\right)_{n \in \mathbb{N}_{2}}$. Note, that $(-1)^{n} E_{n}=(-1)^{n} D_{n-2}+(-1)^{n} D_{n-1}=\widetilde{D}_{n-2}-$ $\widetilde{D}_{n-1}, n>1$. Let $f_{p, k}=\sum_{j=0}^{k p-1}(-1)^{j} \prod_{i=0}^{j-1}(X-i), k>1$. Then $\left(f_{p, k}, 1\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition modulo p of $\left(\widetilde{D}_{n}\right)_{n \in \mathbb{N}}$ (recall that $\widetilde{D}_{0}=$ $\left.1, \widetilde{D}_{n}=-n \widetilde{D}_{n-1}+1, n>0\right)$. Hence $\left(f_{p, k}(X-2)-f_{p, k}(X-1), 1\right)_{k \in \mathbb{N}_{2}}$ is a pseudopolynomial decomposition modulo p of $\left((-1)^{n} E_{n}\right)_{n \in \mathbb{N}_{2}}$ and $\left(f_{p, k}(X-2)-f_{p, k}(X-\right.$ 1), $\left.(-1)^{n}\right)_{k \in \mathbb{N}_{2}}$ (where $(-1)^{n}$ means the function which maps a nonnegative integer n to $\left.(-1)^{n}\right)$ is a pseudo-polynomial decomposition modulo p of $\left(E_{n}\right)_{n \in \mathbb{N}_{2}}$.
Remark 3. We can define E_{0}, E_{1} so that $\left(E_{n}\right)_{n \in \mathbb{N}}$ has a pseudo-polynomial decomposition. The sequence of functions $\left(f_{p, k}\right)_{k \in \mathbb{N}_{2}}$ converges uniformly to the function $f_{p, \infty}=\sum_{j=0}^{+\infty}(-1)^{j} \prod_{i=0}^{j-1}(X-i)$ on \mathbb{Z}_{p} and thus (see Section 3.2):

$$
E_{n}=(-1)^{n}\left(f_{p, \infty}(n-2)-f_{p, \infty}(n-1)\right), n \geq 2
$$

so there must be:

$$
\begin{aligned}
& E_{0}=f_{p, \infty}(-2)-f_{p, \infty}(-1)=\sum_{j=0}^{+\infty}(j+1)!-\sum_{j=0}^{+\infty} j!=-1, \\
& E_{1}=f_{p, \infty}(0)-f_{p, \infty}(-1)=1-\sum_{j=0}^{+\infty} j!=-\sum_{j=1}^{+\infty} j!
\end{aligned}
$$

It is worth to remark that $E_{0}=\frac{D_{0}}{-1}$. Thus the definition of E_{0} coincides with the definition $E_{n}=\frac{D_{n}}{n-1}$ for $n \geq 2$.

One can observe that $E_{1} \notin \mathbb{Z}$. Indeed, if $E_{1} \in \mathbb{Z}$ then the sequence of remainders $\left(E_{1}(\bmod n!)\right)_{n \in \mathbb{N}}$ or $\left(-E_{1}(\bmod n!)\right)_{n \in \mathbb{N}}$ is ultimately constant. However, for $n>1$ we have

$$
E_{1} \quad(\bmod n!)=n!-\sum_{j=1}^{n-1} j!>n!-(n-1)(n-1)!=(n-1)!
$$

and

$$
-E_{1} \quad(\bmod n!)=\sum_{j=1}^{n-1} j!,
$$

which leads to a contradiction.
Theorem 6. Let $p \in \mathcal{B}, k \in \mathbb{N}_{+}$and $n_{k} \in \mathbb{N}, n_{k} \geq 2$ be such that $p^{k} \left\lvert\, \frac{D_{n_{k}}}{n_{k}-1}\right.$. Let us define $\widehat{q}_{p}\left(n_{k}\right)=\frac{1}{p}\left(\frac{D_{n_{k}+p}}{n_{k}+p-1}+\frac{D_{n_{k}}}{n_{k}-1}\right)$.

- If $p \nmid \widehat{q}_{p}\left(n_{k}\right)$ then there exists a unique n_{k+1} modulo p^{k+1} such that $n_{k+1} \equiv$ $n_{k}\left(\bmod p^{k}\right)$ and $p^{k+1} \left\lvert\, \frac{D_{n}}{n-1}\right.$ for all $n \geq 2$ congruent to n_{k+1} modulo p^{k+1}. What is more, $n_{k+1} \equiv n_{k}+\frac{D_{n_{k}}}{\left(n_{k}-1\right) \widehat{q}_{p}\left(n_{k}\right)}\left(\bmod p^{k+1}\right)$.
- If $p \mid \widehat{q}_{p}\left(n_{k}\right)$ and $p^{k+1} \left\lvert\, \frac{D_{n_{k}}}{n_{k}-1}\right.$ then $p^{k+1} \left\lvert\, \frac{D_{n}}{n-1}\right.$ for all n satisfying $n \equiv n_{k}$ $\left(\bmod p^{k}\right)$ and $n \geq 2$.
- If $p \mid \widehat{q}_{p}\left(n_{k}\right)$ and $p^{k+1} \nmid \frac{D_{n_{k}}}{n_{k}-1}$ then $p^{k+1} \nmid \frac{D_{n}}{n-1}$ for any n satisfying $n \equiv n_{k}$ $\left(\bmod p^{k}\right)$ and $n \geq 2$.
In particular, if $k=1, p \left\lvert\, \frac{D_{n_{1}}}{n_{1}-1}\right.$ and $p^{2} \nmid\left(\frac{D_{n_{1}+p}}{n_{1}+p-1}+\frac{D_{n_{1}}}{n_{1}-1}\right)$ then for any $l \in \mathbb{N}_{+}$ there exists a unique n_{l} modulo p^{l} such that $n_{l} \equiv n_{1}(\bmod p)$ and $v_{p}\left(\frac{D_{n}}{n-1}\right) \geq l$ for all $n \geq 2$ congruent to n_{l} modulo p^{l}. Moreover, n_{l} satisfies the congruence $n_{l} \equiv n_{l-1}+\frac{D_{n_{l-1}}}{\left(n_{l-1}-1\right) \widetilde{q}_{p}\left(n_{1}\right)}\left(\bmod p^{l}\right)$ for $l>1$.

Proof. Let $q_{p}\left(n_{k}\right)$ be as specified in Theorem Note that

$$
\begin{aligned}
q_{p}\left(n_{k}\right) & =\frac{1}{p}\left(\frac{D_{n_{k}+p}}{(-1)^{n_{k}+p}\left(n_{k}+p-1\right)}-\frac{D_{n_{k}}}{(-1)^{n_{k}}\left(n_{k}-1\right)}\right) \\
& =\frac{(-1)^{n_{k}+p}}{p}\left(\frac{D_{n_{k}+p}}{n_{k}+p-1}+\frac{D_{n_{k}}}{n_{k}-1}\right)=-(-1)^{n_{k}} \widehat{q}_{p}\left(n_{k}\right)
\end{aligned}
$$

where the equalities above hold, because $p \neq 2(2 \in \mathcal{A})$. Thus $v_{p}\left(\widehat{q}_{p}\left(n_{k}\right)\right)=$ $v_{p}\left(q_{p}\left(n_{k}\right)\right)$ and if $v_{p}\left(\widehat{q}_{p}\left(n_{k}\right)\right)=0$ then $n_{k+1} \equiv n_{k}-\frac{\frac{D_{n_{k}}}{n_{k}-1}}{(-1)^{n} q_{p}\left(n_{k}\right)}=n_{k}+\frac{D_{n_{k}}}{\left(n_{k}-1\right) \bar{q}_{p}\left(n_{k}\right)}$ $\left(\bmod p^{k+1}\right)$.

According to numerical computations based on the theorem above, among primes less than 10^{6} there are three primes p with the property that there exists an $n_{1} \geq 2$ such that $p \left\lvert\, \frac{D_{n_{1}}}{n_{1}-1}\right.$ and $p \mid \widehat{q}_{p}\left(n_{1}\right)$. Namely, they are:

- $p=2633$ with $n_{1}=1578$,
- $p=429943$ with $n_{1}=317291$,
- $p=480143$ with $n_{1}=121716$.

In addition, if a tuple $\left(p, n_{1}\right)$ is one of these tree tuples above then $v_{p}\left(\frac{D_{n_{1}}}{n_{1}-1}\right)=$ 1. Therefore, by Theorem 6] $v_{p}\left(\frac{D_{n}}{n-1}\right)=1$ for all integers $n \geq 2$ congruent to n_{1} modulo p. Since $2633 \left\lvert\, \frac{D_{n}}{n-1}\right.$ if and only if $n \equiv 1578(\bmod 2633)$, thus the 2633 -adic valuation of numbers $\frac{D_{n}}{n-1}, n \geq 2$, is bounded by 1 .

For $p=480143$ we have $429943 \left\lvert\, \frac{D_{n}}{n-1}\right.$ if and only if $n \equiv 172017,223393,317291$ $(\bmod 429943)$ and $429943 \nmid \widehat{q}_{429943}(172017), \widehat{q}_{429943}(223393)$, and $480143 \left\lvert\, \frac{D_{n}}{n-1}\right.$ if and only if $n \equiv 121716,265745(\bmod 480143)$ and $480143 \nmid \widehat{q}_{480143}(265745)$, so the 429943 -adic valuation and 480143 -adic valuation of numbers $\frac{D_{n}}{n-1}, n \geq 2$, are unbounded.

Hence it is not true that the p-adic valuation of numbers $\frac{D_{n}}{n-1}, n \geq 2$, is unbounded for all $p \in \mathcal{B}$. In the light of these results it is natural to ask the following questions:

Question 1. Are there infinitely many primes p with the property that there exists $n_{1} \in \mathbb{N}_{2}$ such that $p \left\lvert\, \frac{D_{n_{1}}}{n_{1}-1}\right.$ and $p \mid \widehat{q}_{p}\left(n_{1}\right)$?

Question 2. Are there infinitely many primes $p \in \mathcal{B}$ such that the set

$$
\left\{v_{p}\left(\frac{D_{n}}{n-1}\right): n \in \mathbb{N}_{2}\right\}
$$

is finite?
4.1.4. Periodicity modulo d in case when d divides $f\left(n_{0}\right)$ for some integer n_{0} and h_{2} is arbitrary.

Proposition 4. Let us consider a sequence $\mathbf{a}\left(f, h_{1}, h_{2}\right)$. Let $d \in \mathbb{N}_{+}$and $n_{0} \in \mathbb{N}$ be such that $d \mid f\left(n_{0}\right)$ and $n_{0} \geq(p+1) v_{p}(d)-1$ for all primes p. Then the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ is periodic of period $\operatorname{lcm}\left\{p_{i}^{k_{i}}\left(p_{i}-1\right): i \in\{1,2, \ldots, s\}\right\}$, where $d=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}}$ is the factorization of the number d. In particular, the number $d \prod_{i=0}^{s}\left(p_{i}-1\right)$ is a period of $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$.

Proof. By Remark 2, it suffices to prove this fact for $d=p^{k}$, where p is a prime number and k is a positive integer.

For each $n \geq n_{0}$ we have congruence similar to (4).

$$
\begin{aligned}
a_{n} & =\sum_{j=0}^{n} h_{1}(j) h_{2}(j)^{j} \prod_{i=j+1}^{n} f(i) \equiv \sum_{j=n-k p+1}^{n} h_{1}(j) h_{2}(j)^{j} \prod_{i=j+1}^{n} f(i) \\
& =\sum_{j=0}^{k p-1} h_{1}(n-j) h_{2}(n-j)^{n-j} \prod_{i=0}^{j-1} f(n-i) \quad\left(\bmod p^{k}\right) .
\end{aligned}
$$

Since $n \geq n_{0}, n_{0} \geq k(p+1)-1$ and $j \leq k p-1$, thus $n-j \geq k$ and if $p \mid h_{2}(n-j)$ then $p^{k} \mid h_{2}(n-j)^{n-j}$. Let us define $\mathcal{N}=\left\{n \in \mathbb{N}: p \nmid h_{2}(n)\right\}$. Then the congruence (61) takes the form

$$
a_{n} \equiv \sum_{0 \leq j \leq k p-1, n-j \in \mathcal{N}} h_{1}(n-j) h_{2}(n-j)^{n-j} \prod_{i=0}^{j-1} f(n-i) \quad\left(\bmod p^{k}\right)
$$

If $n_{1} \equiv n_{2}\left(\bmod p^{k}(p-1)\right)$ then $n_{1}-j \in \mathcal{N}$ if and only if $n_{2}-j \in \mathcal{N}$. Since $n_{1} \equiv n_{2}\left(\bmod p^{k}\right)$, thus $h_{1}\left(n_{1}-j\right) \equiv h_{1}\left(n_{2}-j\right)\left(\bmod p^{k}\right), h_{2}\left(n_{1}-j\right) \equiv h_{2}\left(n_{2}-j\right)$ $\left(\bmod p^{k}\right)$ and $f\left(n_{1}-j\right) \equiv f\left(n_{2}-j\right)\left(\bmod p^{k}\right)$ for any $j \in \mathbb{N}$. Since $n_{1} \equiv n_{2}$ $\left(\bmod p^{k-1}(p-1)\right)$, hence by Euler's theorem $h_{2}\left(n_{1}-j\right)^{n_{1}-j} \equiv h_{2}\left(n_{2}-j\right)^{n_{2}-j}$ $\left(\bmod p^{k}\right)$ for j such that $n_{1}-j \in \mathcal{N}$. Finally

$$
\begin{align*}
a_{n_{1}} & \equiv \sum_{0 \leq j \leq k p-1, n_{1}-j \in \mathcal{N}} h_{1}\left(n_{1}-j\right) h_{2}\left(n_{1}-j\right)^{n_{1}-j} \prod_{i=0}^{j-1} f\left(n_{1}-i\right) \equiv \tag{7}\\
& \equiv \sum_{0 \leq j \leq k p-1, n_{2}-j \in \mathcal{N}} h_{1}\left(n_{2}-j\right) h_{2}\left(n_{2}-j\right)^{n_{2}-j} \prod_{i=0}^{j-1} f\left(n_{2}-i\right) \equiv a_{n_{2}} \quad\left(\bmod p^{k}\right),
\end{align*}
$$

which means that $p^{k}(p-1)$ is a period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}}}$.
Example 7. Let $\mathbf{a}=\mathbf{a}\left(b, h_{1}, d\right)$, where $h_{1} \in \mathbb{Z}[X], b, d \in \mathbb{Z}$ and $\operatorname{gcd}(b, d)=1$. Then the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}}=\left(b^{n} a_{0}\right)_{n \in \mathbb{N}}$ has period $\lambda(d)=\operatorname{lcm}\left\{p_{i}^{k_{i}-1}\left(p_{i}-1\right)\right.$: $i \in\{1,2, \ldots, s\}\}$, where $d=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}}$ is the factorization of the number d and λ is Carmichael's function. This means that in general $\operatorname{lcm}\left\{p_{i}^{k_{i}}\left(p_{i}-1\right): i \in\{1,2, \ldots, s\}\right\}$ is not the basic period of $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$.

Example 8. The sequence $\mathbf{a}=\mathbf{a}(X, 1,2)$ is the example that $\operatorname{lcm}\left\{p_{i}^{k_{i}}\left(p_{i}-1\right): i \in\right.$ $\{1,2, \ldots, s\}\}$ may be the basic period of $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$, where $d=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}}$ is the factorization of the number d. Namely, if $d=225=3^{2} \cdot 5^{2}$ then the basic period of $\left(a_{n}(\bmod 225)\right)_{n \in \mathbb{N}}$ is equal to $900=\operatorname{lcm}\left\{3^{2} \cdot 2,5^{2} \cdot 4\right\}$.
4.1.5. Periodicity modulo p^{k} in case when p does not divide $f(n)$ for any integer n. Now we are considering periodicity modulo p^{k} of sequences given by the relation $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$, where $h_{2} \in \mathbb{Z}[X]$ is an arbitrary polynomial and a prime number p does not divide $f(n)$ for any integer n.

Proposition 5. Let p be a prime number, k be a positive integer and a sequence $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)$. Assume that $p \nmid f(n)$ for any integer n. Then the sequence $\left(a_{n}\right.$ $\left.\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ is periodic of period of the form $t p^{k}(p-1)$, where $t \in\left\{1,2,3, \ldots, p^{k}\right\}$. Moreover, if $p \nmid h_{2}(n)$ for any integer n then the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}}$ is periodic of period of the form as above. If $h_{2}=-1$ and $p \neq 2$ then there is a period of the form $2 t p^{k}, t \in\left\{1,2,3, \ldots, p^{k}\right\}$. If $h_{2}=-1$ and $p=2$ or $h_{2}=1$ then there is a period of the form $t p^{k}, t \in\left\{1,2,3, \ldots, p^{k}\right\}$.
Proof. Let us consider the numbers $a_{k-1}, a_{p^{k}(p-1)+k-1}, a_{2 p^{k}(p-1)+k-1}, \ldots, a_{p^{k} p^{k}(p-1)+k-1}$. By pigeon hole principle there are $s_{1}, s_{2} \in\left\{0,1,2,3, \ldots, p^{k}\right\}, s_{1}<s_{2}$ such that $a_{s_{1} p^{k}(p-1)+k-1} \equiv a_{s_{2} p^{k}(p-1)+k-1}\left(\bmod p^{k}\right)$. Let us put $t=s_{2}-s_{1}$. We will show that

$$
\begin{equation*}
a_{n} \equiv a_{t p^{k}(p-1)+n} \quad\left(\bmod p^{k}\right) \text { for } n \geq k-1 \tag{8}
\end{equation*}
$$

The congruence (8) is satisfied for $n=s_{1} p^{k}(p-1)+k-1$. Assume now that $k-1 \leq n<s_{1} p^{k}(p-1)+k-1$ and (8) is satisfied for $n+1$. Then we have

$$
\begin{aligned}
& f(n+1) a_{n}+h_{1}(n+1) h_{2}(n+1)^{n+1} \equiv f\left(t p^{k}(p-1)+n+1\right) a_{t p^{k}(p-1)+n}+ \\
& +h_{1}\left(t p^{k}(p-1)+n+1\right) h_{2}\left(t p^{k}(p-1)+n+1\right)^{t p^{k}(p-1)+n+1} \quad\left(\bmod p^{k}\right)
\end{aligned}
$$

Let us assume that $p \mid h_{2}(n+1)$. Then $p \mid h_{2}\left(t p^{k}(p-1)+n+1\right)$. Since $n+1 \geq k$, we infer that $p^{k}\left|h_{2}(n+1)^{n+1}, p^{k}\right| h_{2}\left(t p^{k}(p-1)+n+1\right)^{t p^{k}(p-1)+n+1}$. Suppose now that $p \nmid h_{2}(n+1)$. Then $p \nmid h_{2}\left(\operatorname{tp}^{k}(p-1)+n+1\right)$ and by Euler's theorem we obtain the following
$h_{2}\left(t p^{k}(p-1)+n+1\right)^{t p^{k}(p-1)+n+1} \equiv h_{2}\left(t p^{k}(p-1)+n+1\right)^{n+1} \equiv h_{2}(n+1)^{n+1} \quad\left(\bmod p^{k}\right)$.
Finally, we get
$h_{1}(n+1) h_{2}(n+1)^{n+1} \equiv h_{1}\left(t p^{k}(p-1)+n+1\right) h_{2}\left(t p^{k}(p-1)+n+1\right)^{t p^{k}(p-1)+n+1} \quad\left(\bmod p^{k}\right)$.
As a consequence we have
$f(n+1) a_{n} \equiv f\left(t p^{k}(p-1)+n+1\right) a_{t p^{k}(p-1)+n} \equiv f(n+1) a_{t p^{k}(p-1)+n} \quad\left(\bmod p^{k}\right)$.
Moreover, the fact that $p \nmid f(n+1)$ implies that $a_{n} \equiv a_{t p^{k}(p-1)+n}\left(\bmod p^{k}\right)$.
Let us note that if $p \nmid h_{2}(n)$ for any integer n then the consideration above allows us to conclude that
$a_{n} \equiv a_{t p^{k}(p-1)+n} \quad\left(\bmod p^{k}\right)$ for any $n \in\left\{0,1, \ldots, s_{1} p^{k}(p-1)+k-1\right\}$.
Similarly we prove (8) for $n>s_{1} p^{k}(p-1)+k-1$.
The proof in the cases $h_{2}=-1, h_{2}=1$ runs in the same way: we consider the numbers $a_{k-1}, a_{2 p^{k}+k-1}, a_{4 p^{k}+k-1}, \ldots, a_{2 p^{k} p^{k}+k-1}$ (respectively $a_{k-1}, a_{p^{k}+k-1}$, $\left.a_{2 p^{k}+k-1}, \ldots, a_{p^{k} p^{k}+k-1}\right)$ and we use the fact that

$$
\begin{aligned}
& (-1)^{n+1} h_{1}(n+1) \equiv(-1)^{2 t p^{k}+n+1} h_{1}\left(2 t p^{k}+n+1\right) \quad\left(\bmod p^{k}\right) \\
& \left(\text { respectively } h_{1}(n+1) \equiv h_{1}\left(t p^{k}+n+1\right) \quad\left(\bmod p^{k}\right)\right)
\end{aligned}
$$

Example 9. Let $f=X^{2}-2, h_{1}=1, h_{2}=2, p=5$ and $k=1$. Then the basic period of the sequence $\left(a_{n}(\bmod 5)\right)_{n \in \mathbb{N}}$ is equal to $100=5^{2} \cdot 4$. Hence it is possible that the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ is exactly $p^{2 k}(p-1)$.

Example 10. Let $f=X^{2}-2, h_{1}=1, h_{2}=3, p=3$ and $k \in \mathbb{N}_{+}$. Then the sequence $\left(a_{n}\left(\bmod 3^{k}\right)\right)_{n \in \mathbb{N}_{k-2}}$ is not periodic while $\left(a_{n}\left(\bmod 3^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ is. Indeed, $2 \cdot 3^{k} t$, where t is some number from the set $\left\{1,2,3, \ldots, 3^{k}\right\}$, is the period of $\left(a_{n}\left(\bmod 3^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$. This fact implies that if the sequence $\left(a_{n}\left(\bmod 3^{k}\right)\right)_{n \in \mathbb{N}_{k-2}}$ is periodic then there exists its period of the form $2 \cdot 3^{k} u$, where $u \in \mathbb{N}_{+}$. Since $a_{k-1+2 \cdot 3^{k} u} \equiv a_{k-1}\left(\bmod 3^{k}\right)$, hence
$\left(\left(k-1+2 \cdot 3^{k} u\right)^{2}-2\right) a_{k-2+2 \cdot 3^{k} u}+3^{k-1+2 \cdot 3^{k} u} \equiv\left((k-1)^{2}-2\right) a_{k-2}+3^{k-1} \quad\left(\bmod 3^{k}\right)$
$\left((k-1)^{2}-2\right) a_{k-2+2 \cdot 3^{k} u} \equiv\left((k-1)^{2}-2\right) a_{k-2}+3^{k-1} \quad\left(\bmod 3^{k}\right)$.
Thus $a_{k-2+2 \cdot 3^{k} u} \not \equiv a_{k-2}\left(\bmod 3^{k}\right)-a$ contradiction.
In addition, the basic period of $\left(a_{n}(\bmod 9)\right)_{n \in \mathbb{N}_{+}}$equals 18. Hence it is possible that the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ is equal to $p^{k}(p-$ 1).

Example 11. Let $f=11 X^{4}+7, h_{1}=1, h_{2}=7, p=5$ and $k=2$. Then the sequence $\left(a_{n}(\bmod 25)\right)_{n \in \mathbb{N}}$ has basic period equal to $500=5^{3} \cdot 4$. This means that the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ can be strictly greater than $p^{k}(p-1)$ and smaller than $p^{2 k}(p-1)$.
Example 12. Let $f=X^{2}+1, h_{1}=1, h_{2}=-1, p=3$ and $k=1$. Then the basic period of the sequence $\left(a_{n}(\bmod 3)\right)_{n \in \mathbb{N}}$ is equal to $18=3^{2} \cdot 2$. Hence it is possible that the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$, where $h_{2}=-1$, is exactly $2 p^{2 k}$.
Example 13. Let $f=X^{2}+1, h_{1}=h_{2}=1, p=3$ and $k=1$. Then the basic period of the sequence $\left(a_{n}(\bmod 3)\right)_{n \in \mathbb{N}}$ is equal to 9 . Hence it is possible that the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$, where $h_{2}=-1$, is exactly $p^{2 k}$.
Example 14. Let $f=h_{1}=1, h_{2}=b$ and $b \neq 1$. Then $a_{n}=\frac{b^{n+1}-1}{b-1}, n \in \mathbb{N}$. Assume that p is such a prime number that $p \nmid b$. We consider two cases.
(1) We assume that $b \not \equiv 1(\bmod p)$. In this case p must be odd (because each integer is divisible by 2 or is congruent to 1 modulo 2). Hence the multiplicative group $\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{*}$ is cyclic of order $p^{k-1}(p-1)$ and all the elements of order being a power of p are exactly these ones which are congruent to 1 modulo p. This means that the basic period of the sequence (a_{n} $\left.\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ can be any positive integer dividing $p^{k}(p-1)$ on condition that it is not equal to some power of p.
(2) We suppose that $b \equiv 1(\bmod p)$ and put $s=v_{p}(b-1)$. If p is odd or $p=2$ and $s>1$ then we prove by induction that p^{k} is the order of b in $\left(\mathbb{Z} / p^{k+s} \mathbb{Z}\right)^{*}$ for each $k \in \mathbb{N}$ (p^{k} is the least positive integer r with property that $p^{k+s} \mid b^{r}-1$ - compare with the proof of Theorem 4). Hence the sequence $\left(b^{n+1}-1\left(\bmod p^{k+s}\right)\right)_{n \in \mathbb{N}}$ has the basic period p^{k} and thus the sequence $\left(\frac{b^{n+1}-1}{b-1}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}}$ has the same basic period. If $p=2$ and $s=1$ then we prove similarly that 2^{k-1} is the order of b in $\left(\mathbb{Z} / 2^{k+1} \mathbb{Z}\right)^{*}$ for each $k \geq 2$ and 2 is the order of b in $(\mathbb{Z} / 4 \mathbb{Z})^{*}$. Hence the sequence $\left(b^{n+1}-1\right.$ $\left.\left(\bmod 2^{k+1}\right)\right)_{n \in \mathbb{N}}$ has the basic period 2^{k-1} for $k \geq 2$ and 2 for $k=1$. Thus the sequence $\left(\frac{b^{n+1}-1}{b-1}\left(\bmod 2^{k}\right)\right)_{n \in \mathbb{N}}$ has the same basic period.

Let us observe that if $d=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}}$ and $n_{0}=\max \left\{k_{i}-1: i \in\{1,2, \ldots, s\}\right\}$ then knowing the basic periods of the sequences $\left(a_{n}\left(\bmod p_{i}^{k_{i}}\right)\right)_{n \in \mathbb{N}_{k_{i}-1}}, i \in\{1,2, \ldots, s\}$, we can use Remark 2 to compute the basic period of the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n}}$. Namely, if per $_{i}$ is the basic period of $\left(a_{n}\left(\bmod p_{i}^{k_{i}}\right)\right)_{n \in \mathbb{N}_{k_{i}-1}}$ then the basic period of $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ equals $\operatorname{lcm}\left\{\right.$ per $\left._{i}: i \in\{1,2, \ldots, s\}\right\}$.

Proposition 5states only existence of some period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ of the form $t p^{k}(p-1)$, where $t \in\left\{1,2, \ldots, p^{k}\right\}$. We would like to obtain an exact formula for some period of this sequence. What is more, the examples above showed that number $t p^{k}(p-1)$, where $t \in\left\{1,2, \ldots, p^{k}\right\}$, can be the basic period of $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ when t is a power of p. Now we will show that $p^{3 k-1}(p-1)$ is a period of $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ and this fact together with Proposition 5 gives the form of basic period of this sequence.

Proposition 6. If p is a prime number which does not divide $f(n)$ for any integer n and k is a positive integer then $p^{3 k-1}(p-1)$ is the period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$. Moreover, if p does not divide $h_{2}(n)$ for any integer n then $p^{3 k-1}(p-1)$ is the period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}}$.

Proof. Let us define $\mathcal{P}_{p}=\left\{n \in \mathbb{N}: p \mid h_{2}(n)\right\}$ and $\mathcal{N}_{p}=\mathbb{N} \backslash \mathcal{P}_{p}$. For $n \geq k-1$, we have:

$$
\begin{align*}
& a_{n}=\sum_{j=0}^{n} h_{1}(n-j) h_{2}(n-j)^{n-j} \prod_{i=0}^{j-1} f(n-i) \\
& =\sum_{t=0}^{p^{2 k-1}(p-1)-1} \sum_{s=0}^{\left.\frac{n-t}{p^{2 k-1(p-1)}}\right\rfloor} h_{1}\left(n-s p^{2 k-1}(p-1)-t\right) \times \\
& \quad \times h_{2}\left(n-s p^{2 k-1}(p-1)-t\right)^{n-s p^{2 k-1}(p-1)-t} \prod_{i=0}^{s p^{2 k-1}(p-1)+t-1} f(n-i) \tag{9}\\
& \equiv \sum_{t \in \mathcal{P}_{p}, 0 \leq t<k} h_{1}(t) h_{2}(t)^{t} \prod_{i=0}^{n-t-1} f(n-i)+ \\
& \quad+\sum_{0 \leq t<p^{2 k-1}(p-1), n-t \in \mathcal{N}_{p}}\left(1+\left\lfloor\frac{n-t}{p^{2 k-1}(p-1)}\right\rfloor\right) \times \\
& \quad \times h_{1}(n-t) h_{2}(n-t)^{n-t} \prod_{i=0}^{t-1} f(n-i) \quad\left(\bmod p^{k}\right) .
\end{align*}
$$

The congruence above is true because for each $j \in \mathbb{N}$ we have

$$
\begin{aligned}
\prod_{i=0}^{j-1} f(n-i) & =\prod_{r=0}^{p^{k}-1} \prod_{s=0}^{\left.\frac{j-1-r}{p^{k}}\right\rfloor} f\left(n-s p^{k}-r\right) \\
& \equiv \prod_{r=0}^{p^{k}-1} f(n-r)^{\left\lfloor\frac{j-1-r}{p^{k}}\right\rfloor}\left(\bmod p^{k}\right)
\end{aligned}
$$

If $j_{1} \equiv j_{2}\left(\bmod p^{2 k-1}(p-1)\right)$ then $p^{k-1}(p-1) \left\lvert\,\left\lfloor\frac{j_{1}-1-r}{p^{k}}\right\rfloor-\left\lfloor\frac{j_{2}-1-r}{p^{k}}\right\rfloor\right.$ and by Euler's theorem we obtain

$$
\prod_{i=0}^{j_{1}-1} f(n-i) \equiv \prod_{i=0}^{j_{2}-1} f(n-i) \quad\left(\bmod p^{k}\right)
$$

Using Euler's theorem once again we conclude that

$$
h_{2}\left(n-j_{1}\right)^{n-j_{1}} \equiv h_{2}\left(n-j_{2}\right)^{n-j_{2}} \quad\left(\bmod p^{k}\right) .
$$

Finally, if $n_{1} \equiv n_{2}\left(\bmod p^{3 k-1}(p-1)\right)$ then

$$
\left\lfloor\frac{n_{1}-t}{p^{2 k-1}(p-1)}\right\rfloor \equiv\left\lfloor\frac{n_{2}-t}{p^{2 k-1}(p-1)}\right\rfloor \quad\left(\bmod p^{k}\right) .
$$

Note that (9) holds for all $n \in \mathbb{N}$, if $\mathcal{P}_{p}=\emptyset$.
Combining Propositions 4, 5, 6 and Remark 2we obtain two corollaries.
Corollary 1. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)$, p be a prime number which does not divide $f(n)$ for any integer n and k be a positive integer. Then the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$ is of the form $p^{l} c$, where $l \leq 2 k$ and $c \mid p-1$. In particular $p^{2 k}(p-1)$ is a period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{k-1}}$. If $h_{2}=-1$ and $p \neq 2$ then the basic period is of the form $2 p^{l}, l \leq 2 k$. If $h_{2}=-1$ and $p=2$ or $h_{2}=1$ then the basic period is of the form $p^{l}, l \leq 2 k$.

If additionally p does not divide $h_{2}(n)$ for any integer n then the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}}$ is periodic with basic period of the form as above.

Corollary 2. Let $d=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}} \cdot q_{1}^{m_{1}} \cdot . . \cdot q_{t}^{m_{t}}$ be the factorization of a given positive integer d. Let $p_{i}, i \in\{1,2, \ldots, s\}$, does not divide $f(n)$ for any integer n and $q_{i}, i \in\{1,2, \ldots, t\}$, divides $f(n)$ for some integer n. Assume that $n_{0} \geq k_{i}-1$, $i \in\{1,2, \ldots, s\}$ and $n_{0} \geq\left(q_{i}+1\right) v_{q_{i}}(d)-1, i \in\{1,2, \ldots, t\}$. Then

$$
\operatorname{lcm}\left\{p_{i}^{2 k_{i}}\left(p_{i}-1\right), q_{j}^{m_{j}}\left(q_{j}-1\right): i \in\{1,2, \ldots, s\}, j \in\{1,2, \ldots, t\}\right\}
$$

is the period of the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$.
4.2. Asymptotics and connection between boundedness and periodicity of a sequence $a \in \mathcal{R}$.
4.2.1. Asymptotics of a sequence $\mathbf{a} \in \mathcal{R}$. Let us notice that if $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)$, c is the leading coefficient of h_{2} and $n_{0} \in \mathbb{N}$ is such that $f(n) \neq 0$ for all integers $n>n_{0}$ then
(10)
$a_{n}= \begin{cases}O\left(n e(|c|+\varepsilon) n h_{1}(n) h_{2}(n)^{n_{0}} \prod_{i=n_{0}+1}^{n} f(i)\right), & \text { if }|f(n)| \geq\left|h_{2}(n)\right| \text { for } n \gg 0, \operatorname{deg} h_{2}>0 \text { and } \varepsilon>0 \\ O\left(n h_{1}(n) h_{2}(n)^{n_{0}} \prod_{i=n_{0}+1}^{n} f(i)\right), & \text { if }|f(n)| \geq\left|h_{2}(n)\right| \text { for } n \gg 0 \text { and } \operatorname{deg} h_{2}=0 \\ O\left(n h_{1}(n) h_{2}(n)^{n}\right), & \text { if }|f(n)| \leq\left|h_{2}(n)\right| \text { for } n \gg 0\end{cases}$
when $n \rightarrow+\infty$. Indeed, when $|f(n)| \geq\left|h_{2}(n)\right|$ for $n \gg 0$, we have

$$
\begin{align*}
& \frac{a_{n}}{\left.n e^{(|c|+\varepsilon) n} h_{1}(n) h_{2}(n)^{n_{0}} \prod_{i=n_{0}+1}^{n} f(i)\right)}=\frac{\sum_{j=0}^{n} h_{1}(j) h_{2}(j)^{j} \prod_{i=j+1}^{n} f(i)}{\left.n e^{(|c|+\varepsilon) n} h_{1}(n) h_{2}(n)^{n_{0}} \prod_{i=n_{0}+1}^{n} f(i)\right)} \tag{11}\\
= & \sum_{j=0}^{n_{0}} \frac{h_{1}(j) h_{2}(j)^{j} \prod_{i=j+1}^{n_{0}} f(i)}{n e^{(|c|+\varepsilon) n} h_{1}(n) h_{2}(n)^{n_{0}}}+\sum_{j=n_{0}+1}^{n} \frac{h_{1}(j) h_{2}(j)^{j}}{n e^{(|c|+\varepsilon) n} h_{1}(n) h_{2}(n)^{n_{0}} \prod_{i=n_{0}+1}^{j} f(i)} \\
= & \sum_{j=0}^{n_{0}} \frac{h_{1}(j) h_{2}(j)^{j} \prod_{i=j+1}^{n_{0}} f(i)}{n e^{||c|+\varepsilon) n} h_{1}(n) h_{2}(n)^{n_{0}}}+\sum_{j=n_{0}+1}^{n} \frac{1}{n e^{(|c|+\varepsilon) n}} \cdot \frac{h_{1}(j)}{h_{1}(n)} \cdot \frac{h_{2}(j)^{n_{0}}}{h_{2}(n)^{n_{0}}} \cdot \frac{h_{2}(j)^{j-n_{0}}}{\prod_{i=n_{0}+1}^{j} f(i)} .
\end{align*}
$$

If $n \gg 0$ then $\left|h_{1}(n)\right| \geq\left|h_{1}(j)\right|$ and $\left|h_{2}(n)\right| \geq\left|h_{2}(j)\right|$ for $0 \leq j \leq n$. Moreover, the following equality holds.

$$
\left|\frac{h_{2}(j+1)^{j+1-n_{0}}}{\prod_{i=n_{0}+1}^{j+1} f(i)}\right| \cdot\left|\frac{\prod_{i=n_{0}+1}^{j} f(i)}{h_{2}(j)^{j-n_{0}}}\right|=\left|\frac{h_{2}(j+1)^{j-n_{0}}}{h_{2}(j)^{j-n_{0}}}\right| \cdot\left|\frac{h_{2}(j+1)}{f(j+1)}\right|
$$

We have $\left|\frac{h_{2}(j+1)}{f(j+1)}\right| \leq 1$ for sufficiently large prositive integer j. Additionally, if $\operatorname{deg} h_{2}>0$ then

$$
\begin{aligned}
& \left(\frac{\left|h_{2}(j+1)\right|}{\left|h_{2}(j)\right|}\right)^{j-n_{0}}=\left(\left(1+\frac{\left|h_{2}(j+1)\right|-\left|h_{2}(j)\right|}{\left|h_{2}(j)\right|}\right)^{\frac{\left|h_{2}(j)\right|}{h_{2}(j+1)| |-\mid h_{2}(j) T}}\right)^{\frac{\left(\left|h_{2}(j+1)\right|-\left|h_{2}(j)\right|\left(j-n_{0}\right)\right.}{\left|h_{2}(j)\right|}} \leq \\
& \leq e^{\frac{\left(\left|h_{2}(j+1)\right|-\left|h_{2}(j)\right| \mid\left(j-n_{0}\right)\right.}{\left|h_{2}(j)\right|}} \leq e^{|c|+\varepsilon},
\end{aligned}
$$

since $\lim _{n \rightarrow+\infty} \frac{\left(\left|h_{2}(j+1)\right|-\left|h_{2}(j)\right|\right)\left(j-n_{0}\right)}{\left|h_{2}(j)\right|} \rightarrow|c|$. Hence each summand in the sum in (11) is $O\left(\frac{1}{n}\right)$, when $n \rightarrow+\infty$. Finally,

$$
\frac{a_{n}}{\left.n e^{(|c|+\varepsilon) n} h_{1}(n) h_{2}(n)^{n_{0}} \prod_{i=n_{0}+1}^{n} f(i)\right)}=\sum_{j=0}^{n} O\left(\frac{1}{n}\right)=O(1), n \rightarrow+\infty
$$

The second and third equality from (10) can be proved in the same way.
Consider now a sequence $\mathbf{a}\left(f, h_{1}, 1\right)$. We assume that $f \neq b$, where $b \in$ $\{-1,0,1\}$, and $n_{0} \in \mathbb{N}$ is such that $f(n) \neq 0$ for all integers $n>n_{0}$. We know that $a_{n}=O\left(n h_{1}(n) \prod_{i=n_{0}+1}^{n} f(i)\right)$, when $n \rightarrow+\infty$. However, we can show something stronger. Namely, there is such a real number ξ that $a_{n} \sim \xi \prod_{i=n_{0}+1}^{n} f(i)$, when $n \rightarrow+\infty$. Indeed,

$$
\begin{aligned}
\frac{a_{n}}{\prod_{i=n_{0}+1}^{n} f(i)} & =\frac{\sum_{j=0}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i)}{\prod_{i=n_{0}+1}^{n} f(i)} \\
& =\sum_{j=0}^{n_{0}} h_{1}(j) \prod_{i=j+1}^{n_{0}} f(i)+\sum_{j=n_{0}+1}^{n} \frac{h_{1}(j)}{\prod_{i=n_{0}+1}^{j} f(i)} \\
& =a_{n_{0}}+\sum_{j=n_{0}+1}^{n} \frac{h_{1}(j)}{\prod_{i=n_{0}+1}^{j} f(i)}
\end{aligned}
$$

for $n>n_{0}$ and by ratio test the expression $a_{n_{0}}+\sum_{j=n_{0}+1}^{n} \frac{h_{1}(j)}{\prod_{i=n_{0}+1}^{j} f(i)}$ converges to the real number $\xi=a_{n_{0}}+\sum_{j=n_{0}+1}^{+\infty} \frac{h_{1}(j)}{\prod_{i=n_{0}+1}^{j} f(i)}$.

Using similar reasoning we show the asymptotic equality for a sequence $\mathbf{a}\left(f, h_{1},-1\right)$.

In particular, for the sequence of derangements $\left(D_{n}\right)_{n \in \mathbb{N}}$ the following equality holds:

$$
\lim _{n \rightarrow+\infty} \frac{D_{n}}{\frac{n!}{e}}=1
$$

In order to establish the equality above, it suffices to compute the limit of $\frac{D_{n}}{n!}$, when $n \rightarrow+\infty$. We have

$$
\lim _{n \rightarrow+\infty} \frac{D_{n}}{n!}=\lim _{n \rightarrow+\infty} \frac{\sum_{j=0}^{n}(-1)^{j} \prod_{i=j+1}^{n} i}{n!}=\lim _{n \rightarrow+\infty} \sum_{j=0}^{n} \frac{(-1)^{j}}{j!}=e^{-1}
$$

In fact, we know that for $n \in \mathbb{N}_{+}, D_{n}$ is the best integer approximation of $\frac{n!}{e}$ because the difference between these two numbers is less than $\frac{1}{n}$:

$$
\left|\frac{n!}{e}-D_{n}\right|=\left|\sum_{j=n+1}^{+\infty} \frac{n!}{j!}(-1)^{j}\right|<\sum_{j=n+1}^{+\infty} \frac{n!}{j!}<\sum_{j=n+1}^{+\infty} \frac{1}{(n+1)^{j-n}}=\frac{\frac{1}{n+1}}{1-\frac{1}{n+1}}=\frac{1}{n} .
$$

4.2.2. Boundedness and periodicity of a sequence $\mathbf{a} \in \mathcal{R}$. It is obvious that any periodic sequence of integers is bounded. On the other hand, in general, boundedness of a sequence does not imply its periodicity. In this section we will show that if a sequence $\mathbf{a} \in \mathcal{R}$ is bounded then $h_{1}=0$ or $h_{2}=b$, where $b \in\{-1,0,1\}$, and we will give the form of this sequence. In particular, such a sequence is ultimately constant or ultimately periodic with period 2 .

First, we prove that if there is a constant subsequence of the form $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ for some $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$ then $h_{1}=0$ or $h_{2}=b$, where $b \in\{-1,0,1\}$, or f, h_{1}, h_{2} are constant and $h_{2}=-f$. Then, assuming that $h_{1}=0$ or $h_{2}=b$, where $b \in\{-1,0,1\}$, we will show that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant or ultimately periodic with period 2 . Next, assuming boundedness of $\left(a_{n}\right)_{n \in \mathbb{N}}$, we will use periodicity of $\left(a_{n}(\bmod p)\right)_{n \in \mathbb{N}}$ for sufficiently large prime number p to obtain the statement on ultimate periodicity of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$.

Theorem 7. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right), k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant then one of the following conditions is true:

- $h_{1}=0$ (and then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is constant and equal to 0),
- $h_{2}=b$, where $b \in\{-1,0,1\}$,
- $h_{1}=c \in \mathbb{Z}$ and $h_{2}=-f=b \in \mathbb{Z}$ (then $a_{2 n}=b^{2 n} c$ and $a_{2 n+1}=0$ for all $n \in \mathbb{N})$.

Proof. Let us assume that $h_{1} \neq 0$. If $f=0$ then $a_{n}=h_{1}(n) h_{2}(n)^{n}$ for all $n \in \mathbb{N}$ and thus the assumption of our theorem can be satisfied only if $h_{2}=b$, where $b \in\{-1,0,1\}$. Hence we can assume that $f \neq 0$.

Let us denote $a=a_{k n+l}, n \in \mathbb{N}$. Then

$$
\begin{aligned}
a= & a_{k(n+1)+l} \\
= & a_{k n+l} \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} h_{1}(k n+l+j) h_{2}(k n+l+j)^{k n+l+j} \prod_{i=j+1}^{k} f(k n+l+i) \\
= & a \prod_{i=1}^{k} f(k n+l+i)+h_{2}(k n+l)^{k n+l} \sum_{j=1}^{k} h_{1}(k n+l+j) \times \\
& \times h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i) .
\end{aligned}
$$

Let us put $d=\operatorname{deg} h_{2}>0$ and write $h_{2}=\sum_{i=0}^{d} w_{i} X^{i}$. Then for each $j \in \mathbb{N}$ we have

$$
\begin{aligned}
& h_{2}(k n+l+j)-h_{2}(k n+l)=\sum_{i=0}^{d} w_{i}(k n+l+j)^{i}-\sum_{i=0}^{d} w_{i}(k n+l)^{i} \\
& =w_{d}(k n+l)^{d}+d w_{d} j(k n+l)^{d-1}+w_{d-1}(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right)-w_{d}(k n+l)^{d}- \\
& -w_{d-1}(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right)=d w_{d} j(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right)
\end{aligned}
$$

with $n \rightarrow+\infty$. Since

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l+j)-h_{2}(k n+l)}{h_{2}(k n+l)}=0 \\
& \lim _{n \rightarrow+\infty} \frac{(k n+l)^{d}}{h_{2}(k n+l)}=\frac{1}{w_{d}} \\
& \lim _{n \rightarrow+\infty} \frac{O\left((k n+l)^{d-1}\right)}{h_{2}(k n+l)}=0
\end{aligned}
$$

thus
(13)

$$
\lim _{n \rightarrow+\infty}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow+\infty}\left(1+\frac{h_{2}(k n+l+j)-h_{2}(k n+l)}{h_{2}(k n+l)}\right)^{\frac{h_{2}(k n+l)}{h_{2}(k n+l+j)-h_{2}(k n+l)} \cdot \frac{(k n+l)\left(d w_{d} j(k n+l)^{d-1}+O\left((k n+l)^{d-2}\right)\right)}{h_{2}(k n+l)}} \\
& =\lim _{n \rightarrow+\infty}\left(\left(1+\frac{h_{2}(k n+l+j)-h_{2}(k n+l)}{h_{2}(k n+l)}\right)^{\left.\frac{h_{2}(k n+l)}{h_{2}(k n+l+j)-h_{2}(k n+l)}\right)^{\frac{d w_{d} j(k n+l)^{d}+O\left((k n+l)^{d-1}\right)}{h_{2}(k n+l)}}}=e^{d j}\right.
\end{aligned}
$$

If $\operatorname{deg} f>\operatorname{deg} h_{2}$ then we compute the following limits.

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=0, \\
& \lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1)\left(\frac{h_{2}(k n+l+1)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=2}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=1, \\
& \lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+j) h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=0, \text { as } j>1 .
\end{aligned}
$$

After adding these limits we obtain the following one.

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)} \\
& =\lim _{n \rightarrow+\infty}\left(\frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}+\right. \\
& \left.+\frac{\sum_{j=1}^{k} h_{1}(k n+l+j) h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i)}{h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}\right)=1
\end{aligned}
$$

which leads to a contradiction with the fact that

$$
\lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+1) h_{2}(k n+l+1) e^{d} \prod_{i=2}^{k} f(k n+l+i)}=0
$$

Similarly, if $\operatorname{deg} f<\operatorname{deg} h_{2}$ then we compute the following limits.

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=0 \\
& \lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}\left(\frac{h_{2}(k n+l+k)}{h_{2}(k n+l)}\right)^{k n+l}}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=1, \\
& \lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+j) h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=0, \text { as } j<k .
\end{aligned}
$$

We add these limits to obtain the following.

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}} \\
& =\lim _{n \rightarrow+\infty}\left(\frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}+\right. \\
& \left.+\frac{\sum_{j=1}^{k} h_{1}(k n+l+j) h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i)}{h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}\right)=1,
\end{aligned}
$$

which leads to a contradiction with the fact that

$$
\lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=0
$$

Consider the case when $\operatorname{deg} f=\operatorname{deg} h_{2}$. Let us denote $f=\sum_{i=0}^{d} u_{i} X^{i}$. Then we compute the following limits
$\lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}=0$,
$\lim _{n \rightarrow+\infty} \frac{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+j) h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}=\left(\frac{u_{d}}{w_{d}}\right)^{k-j} e^{d j}$,
as $1 \leq j \leq k$. We add them and obtain the following limit.

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}} \\
& =\lim _{n \rightarrow+\infty}\left(\frac{a \prod_{i=1}^{k} f(k n+l+i)}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}+\right. \\
& \left.+\frac{\sum_{j=1}^{k} h_{1}(k n+l+j) h_{2}(k n+l+j)^{j}\left(\frac{h_{2}(k n+l+j)}{h_{2}(k n+l)}\right)^{k n+l} \prod_{i=j+1}^{k} f(k n+l+i)}{h_{1}(k n+l+k) h_{2}(k n+l+k)^{k}}\right) \\
& =\sum_{j=1}^{k}\left(\frac{u_{d}}{w_{d}}\right)^{k-j} e^{d j} .
\end{aligned}
$$

However

$$
\lim _{n \rightarrow+\infty} \frac{a}{h_{2}(k n+l)^{k n+l} h_{1}(k n+l+k) h_{2}(k n+l+k)^{k} e^{d k}}=0
$$

and $\sum_{j=1}^{k}\left(\frac{u_{d}}{w_{d}}\right)^{k-j} e^{d j} \neq 0$ because e is a transcendental number (see [10]) - a contradiction.

We proved that if the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded and $h_{1} \neq 0$ then $h_{2}=b$, where $b \in \mathbb{Z}$. In the case when $h_{2}=b$ the equality (12) takes the form

$$
\begin{equation*}
a=a \prod_{i=1}^{k} f(k n+l+i)+b^{k n+l} \sum_{j=1}^{k} h_{1}(k n+l+j) b^{j} \prod_{i=j+1}^{k} f(k n+l+i) . \tag{14}
\end{equation*}
$$

Assume that $|b|>1$ and define

$$
G=\sum_{j=1}^{k} h_{1}(k X+l+j) b^{j} \prod_{i=j+1}^{k} f(k X+l+i) \in \mathbb{Z}[X] .
$$

If $G \neq 0$ then by (14) we have

$$
\frac{a}{b^{k n+l} G(n)}=\frac{a \prod_{i=1}^{k} f(k n+l+i)}{b^{k n+l} G(n)}+1
$$

Since $\lim _{n \rightarrow+\infty} \frac{a \prod_{i=1}^{k} f(k n+l+i)}{b^{k n+l}}=0$ we deduce the following

$$
\lim _{n \rightarrow+\infty} \frac{a}{b^{k n+l} G(n)}=1
$$

We get a contradiction because $\lim _{n \rightarrow+\infty} \frac{a}{b^{k n+l} G(n)}=0$.
If $G=0$ then $h_{1}=0$ or $f=c$, where $c \in \mathbb{Z}$. Indeed, if $h_{1} \neq 0$ and $\operatorname{deg} f>0$ then $\operatorname{deg}\left[h_{1}(k X+l+j) b^{j} \prod_{i=j+1}^{k} f(k X+l+i)\right]=(k-j) \operatorname{deg} f+\operatorname{deg} h_{1}$
for $j \in\{1,2, \ldots, k\}$ and as a result we get $\operatorname{deg} G=k \operatorname{deg} f+\operatorname{deg} h_{1}>0$. Assume that $f=c$, where $c \in \mathbb{Z}$. Then

$$
\begin{aligned}
0 & =\lim _{n \rightarrow+\infty} \frac{G(n)}{b h_{1}(k n+l)}=\lim _{n \rightarrow+\infty} \frac{\sum_{j=1}^{k} h_{1}(k n+l+j) b^{j-1} c^{k-j}}{h_{1}(k n+l)} \\
& =\sum_{j=1}^{k} b^{j-1} c^{k-j}= \begin{cases}\frac{b^{k}-c^{k}}{b-c}, & \text { when } b \neq c \\
k b^{k-1}, & \text { when } b=c\end{cases}
\end{aligned}
$$

which means that there must be $b=c=0$ or $c=-b$ with $2 \mid k$. The case $b=c=0$ contradicts with the assumption that $|b|>1$. If $c=-b$ then by induction we obtain the following formula
$a_{l+n}=(-b)^{n} a_{l}+\sum_{j=1}^{n}(-1)^{n-j} b^{n} h_{1}(l+j)=(-b)^{n} a_{l}+(-b)^{n} \sum_{j=1}^{n}(-1)^{j} h_{1}(l+j), n \in \mathbb{N}$.
Let us define
$H(n)=\sum_{j=1}^{2 n}(-1)^{j} h_{1}(l+j)=\sum_{j=1}^{n}\left(h_{1}(2 j)-h_{1}(2 j-1)\right)=h_{1}(0)+\sum_{j=1}^{n} \Delta h_{1}(2 j-1), n \in \mathbb{N}$,
where $\Delta h_{1}=h_{1}(X+1)-h_{1}(X)$ means the discrete derivative of h_{1}. The function H can be seen as a polynomial in n and its degree is equal to

$$
\operatorname{deg} H(X)=1+\operatorname{deg} \Delta h_{1}(2 X-1)=1+\operatorname{deg} \Delta h_{1}(X)=\operatorname{deg} h_{1}(X)
$$

Since

$$
a=a_{l}=a_{l+k n}=(-b)^{k n} a+(-b)^{k n} H\left(\frac{k}{2} n\right)=b^{k n}\left(a+H\left(\frac{k}{2} n\right)\right)
$$

for all $n \in \mathbb{N}$ and $|b|>1$ we deduce that the polynomial H must be constant. This implies that h_{1} is constant.

Summing up, we showed that $h_{2}=b \in\{-1,0,1\}$ or f, h_{1}, h_{2} are constant and $f=-h_{2}$.

Theorem 8. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right), k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant or of the form $(c, 0, c, 0, c, 0, \ldots)$ for some integer c.

Proof. For $k=1$ the statement is obvious. Hence assume without loss of generality that $k \geq 2$. Let us denote $a=a_{k n+l}, n \in \mathbb{N}$. Then

$$
\begin{align*}
a & =a_{k(n+1)+l}=a_{k n+l} \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} h_{1}(k n+l+j) \prod_{i=j+1}^{k} f(k n+l+i) \tag{15}\\
& =a \prod_{i=1}^{k} f(k n+l+i)+\sum_{j=1}^{k} h_{1}(k n+l+j) \prod_{i=j+1}^{k} f(k n+l+i)
\end{align*}
$$

Let us define

$$
G=a \prod_{i=1}^{k} f(k X+l+i)+\sum_{j=1}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) \in \mathbb{Z}[X]
$$

From (15) we know that $G=a$. If $h_{1}=0$ then $a_{n}=0$ for all $n \in \mathbb{N}$, so we can assume that $h_{1} \neq 0$.

If $\operatorname{deg} f>0$ then $\operatorname{deg} \prod_{i=1}^{k} f(k X+l+i)=k \operatorname{deg} f$ and

$$
\operatorname{deg} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i)=(k-j) \operatorname{deg} f+\operatorname{deg} h_{1}
$$

for $j \in\{1,2, \ldots, k\}$. Since $\operatorname{deg} G \leq 0$ we get

$$
\operatorname{deg} \prod_{i=1}^{k} f(k X+l+i)=\operatorname{deg} h_{1}(k X+l+1) \prod_{i=2}^{k} f(k X+l+i)
$$

which implies that $\operatorname{deg} f=\operatorname{deg} h_{1}$. Moreover, we have the following sequence of equivalences.

$$
\begin{aligned}
& \quad \operatorname{deg}\left(a \prod_{i=1}^{k} f(k X+l+i)+h_{1}(k X+l+1) \prod_{i=2}^{k} f(k X+l+i)\right) \\
& =\operatorname{deg} h_{1}(k X+l+2) \prod_{i=3}^{k} f(k X+l+i) \\
& \Longleftrightarrow \operatorname{deg}\left(a f(k X+l+1)+h_{1}(k X+l+1)\right) \prod_{i=2}^{k} f(k X+l+i) \\
& \quad=\operatorname{deg} h_{1}(k X+l+2) \prod_{i=3}^{k} f(k X+l+i) \\
& \Longleftrightarrow \operatorname{deg}\left(a f(k X+l+1)+h_{1}(k X+l+1)\right)+(k-1) \operatorname{deg} f \\
& \quad=\operatorname{deg} h_{1}+(k-2) \operatorname{deg} f \\
& \Longleftrightarrow \operatorname{deg}\left(a f(k X+l+1)+h_{1}(k X+l+1)\right)=0
\end{aligned}
$$

Hence $a f+h_{1}=b$ for some integer b. Therefore we have

$$
\begin{aligned}
G & =\left(a f(k X+l+1)+h_{1}(k X+l+1)\right) \prod_{i=2}^{k} f(k X n+l+i)+\sum_{j=2}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) \\
& =b \prod_{i=2}^{k} f(k X+l+i)+\sum_{j=2}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i) \\
& =\left(b f(k X+l+2)+h_{1}(k X+l+2)\right) \prod_{i=3}^{k} f(k X+l+i)+\sum_{j=3}^{k} h_{1}(k X+l+j) \prod_{i=j+1}^{k} f(k X+l+i)
\end{aligned}
$$

Similarly, from the fact that $\operatorname{deg} G \leq 0$ we get the following chain of equivalences

$$
\begin{aligned}
& \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right) \prod_{i=3}^{k} f(k X+l+i)=\operatorname{deg} h_{1}(k X+l+3) \prod_{i=4}^{k} f(k X+l+i) \\
& \Longleftrightarrow \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right)+(k-3) \operatorname{deg} f=\operatorname{deg} h_{1}+(k-4) \operatorname{deg} f \\
& \Longleftrightarrow \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right)=0
\end{aligned}
$$

provided $n \geq 3$. If $k=2$ then $\operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2) \leq 0\right.$. Since $\operatorname{deg}\left(a f(k X+l+2)+h_{1}(k X+l+2)\right), \operatorname{deg}\left(b f(k X+l+2)+h_{1}(k X+l+2)\right) \leq 0$, hence
$\operatorname{deg}(a-b) f(k X+l+2)=\operatorname{deg}\left[\left(a f(k X+l+2)+h_{1}(k X+l+2)\right)-\left(b f(k X+l+2)+h_{1}(k X+l+2)\right)\right] \leq 0$.
We made an assumption $\operatorname{deg} f>0$. That is why $a=b$. We obtain the equality $a f+h_{1}=a$, which allows us to prove by simple induction that $a_{n}=a$ for each $n \geq l$.

Assume now that $f=b$ for some integer b. Then

$$
\begin{equation*}
G=a=a b^{k}+\sum_{j=1}^{k} b^{k-j} h_{1}(k X+l+j) . \tag{16}
\end{equation*}
$$

If $\operatorname{deg} h_{1}>0$ and $h_{1}=\sum_{i=0}^{d} w_{i} X^{i}$ then the coefficient of G near the d th power of variable X is 0 since $\operatorname{deg} G \leq 0$. On the other hand, this coefficient is equal to

$$
k^{d} w_{d} \sum_{j=1}^{k} b^{k-j}= \begin{cases}k^{d} w_{d} \frac{b^{k}-1}{b-1}, & \text { if } b \neq 1 \\ k^{d+1} w_{d}, & \text { if } b=1\end{cases}
$$

which means that there must be $2 \mid k$ and $b=-1$. Denote $k^{\prime}=\frac{k}{2}$ and take the discrete derivative $\Delta h_{1}=h_{1}(X+1)-h_{1}(X)$ of the polynomial h_{1}. We know that $\operatorname{deg} \Delta h_{1}=\operatorname{deg} h_{1}-1$. The equation (16) takes the form:

$$
0=\sum_{j=1}^{k^{\prime}} h_{1}(k n+l+2 j)-h_{1}(k n+l+2 j-1)=\sum_{j=1}^{k^{\prime}} \Delta h_{1}(k n+l+2 j-1)
$$

Let $H=\sum_{j=1}^{k^{\prime}} \Delta h_{1}(k X+l+2 j-1) \in \mathbb{Z}[X]$. Then $H=0$. However, the coefficient of H near $d-1$ st power of variable X is equal to k^{\prime} times the leading coefficient of Δh_{1} - a contradiction.

We are left with the case $h_{1}=c$ for some $c \in \mathbb{Z} \backslash\{0\}$. By (16) we have

$$
0=a\left(b^{k}-1\right)+c \sum_{j=1}^{k} b^{k-j}
$$

On the other hand,

$$
a\left(b^{k}-1\right)+c \sum_{j=1}^{k} b^{k-j}= \begin{cases}a\left(b^{k}-1\right)+c \frac{b^{k}-1}{b-1}, & \text { if } b \neq 1 \\ k c, & \text { if } b=1\end{cases}
$$

Since $c \neq 0$, thus $b \neq 1$ and $\left(a+\frac{c}{b-1}\right)\left(b^{k}-1\right)=0$. Then $b=-1$ and $\left(a_{n}\right)_{n \in \mathbb{N}}=$ $(c, 0, c, 0, c, 0, \ldots)$ or $c=a(1-b)$, which implies that $b a+c=a$ and $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant.
Example 15. Let us consider the sequence $\mathbf{a}(X-3,28-7 X, 1)$. Then $a_{1}=-35$, $a_{2}=49$ and $a_{n}=7$ for $n \geq 3$. This means that a sequence \mathbf{a} satisfying assumptions of Theorem 8 can be ultimately constant, but not constant.
Corollary 3. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1},-1\right)$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant then there is such an integer c that $a_{n}=(-1)^{n} c$ for almost all $n \in \mathbb{N}$ or $a_{2 n}=c, a_{2 n+1}=$ 0 for all $n \in \mathbb{N}$.
Proof. Consider the associated sequence $\left(\widetilde{a}_{n}\right)_{n \in \mathbb{N}}$. Since $\widetilde{a}_{n}=(-1)^{n} a_{n}$ for $n \in \mathbb{N}$, thus the sequence $\left(\widetilde{a}_{2 k n+l}\right)_{n \in \mathbb{N}}$ is constant and by Theorem 8 there is such an integer c that $\widetilde{a}_{n}=c$ for almost all $n \in \mathbb{N}$ or $\widetilde{a}_{2 n}=c, \widetilde{a}_{2 n+1}=0$ for all $n \in \mathbb{N}$.

Proposition 7. Let us consider a sequence $\mathbf{a}\left(f, h_{1}, 0\right)$. Let $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$. If the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant then $a_{n}=0$ for almost all $n \in \mathbb{N}$, $a_{n}=h_{1}(0)$ for all $n \in \mathbb{N}$ or $a_{n}=(-1)^{n} h_{1}(0)$ for all $n \in \mathbb{N}$.
Proof. If $a_{n_{0}}=0$ for some $n_{0} \in \mathbb{N}$ then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately constant and equal to 0 , so assume that $a_{n} \neq 0$ for any $n \in \mathbb{N}$. Denote $a=a_{k n+l}, n \in \mathbb{N}$. Then

$$
a=a_{k(n+1)+l}=a_{k n+l} \prod_{i=1}^{k} f(k n+l+i)=a \prod_{i=1}^{k} f(k n+l+i)
$$

and since $a \neq 0$ we get $\prod_{i=1}^{k} f(k n+l+i)=1$ for all $n \in \mathbb{N}$. Hence $|f(n)|=1$ for all but finitely many $n \in \mathbb{N}$, which implies that $f=1$ or $f=-1$.
Theorem 9. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence given by the formula $a_{0}=h_{1}(0), a_{n}=$ $f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$. Then one of the following conditions is true:

- $h_{1}=0$ (and then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is constantly equal to 0),
- $h_{2}=b$, where $b \in\{-1,0,1\}$.

Moreover,

- if $h_{2}=1$ then there is such an integer c that $a_{n}=c$ for almost all $n \in \mathbb{N}$ or $a_{2 n}=c, a_{2 n+1}=0$ for all $n \in \mathbb{N}$,
- if $h_{2}=-1$ then there is such an integer c that $a_{n}=(-1)^{n} c$ for almost all $n \in \mathbb{N}$ or $a_{2 n}=c, a_{2 n+1}=0$ for all $n \in \mathbb{N}$,
- if $h_{2}=0$ then $a_{n}=0$ for almost all $n \in \mathbb{N}$, $a_{n}=h_{1}(0)$ for all $n \in \mathbb{N}$ or $a_{n}=(-1)^{n} h_{1}(0)$ for all $n \in \mathbb{N}$.

Proof. By Theorems 7 and 8, Corollary 3 and Proposition 7 it suffices to show that there are such $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$ that the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant.

Let p be a prime number greater than $\max _{n \in \mathbb{N}} a_{n}-\min _{n \in \mathbb{N}} a_{n}$. Then the sequence of remainders $\left(a_{n}(\bmod p)\right)_{n \in \mathbb{N}}$ is periodic (see Section 4.1). Moreover, the values of this sequence and the value $\min _{n \in \mathbb{N}} a_{n}$ uniquely determine the values of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$. Indeed, if $a_{n_{1}} \equiv a_{n_{2}}(\bmod p)$ then $a_{n_{1}}-\min _{n \in \mathbb{N}} a_{n} \equiv$ $a_{n_{2}}-\min _{n \in \mathbb{N}} a_{n}(\bmod p)$ and since $a_{n_{1}}-\min _{n \in \mathbb{N}}, a_{n_{2}}-\min _{n \in \mathbb{N}}<p$, thus $a_{n_{1}}=a_{n_{2}}$. Therefore the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is periodic. This fact implies the existence of such $k \in \mathbb{N}_{+}$and $l \in \mathbb{N}$ that the sequence $\left(a_{k n+l}\right)_{n \in \mathbb{N}}$ is constant.
4.3. The polynomials arising in the recurrence relation for a sequence $\mathbf{a} \in \mathcal{R}$ and their real roots. Let us consider a sequence $\mathbf{a}\left(f, h_{1}, 1\right) \in \mathcal{R}^{\prime}$. In Section 4.1.1 we defined polynomials

$$
f_{d}=\sum_{j=0}^{d-1} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i) \in \mathbb{Z}[X], d \in \mathbb{N}
$$

Using the closed formula for a_{n} we can obtain the recurrence equations, which are generalizations of the recurrence definition of a_{n}.

$$
\begin{align*}
a_{n} & =\sum_{j=0}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i)=a_{n-d} \prod_{i=n-d+1}^{n} f(i)+\sum_{j=n-d+1}^{n} h_{1}(j) \prod_{i=j+1}^{n} f(i) \tag{17}\\
& =a_{n-d} \prod_{i=n-d+1}^{n} f(i)+\sum_{j=0}^{d-1} h_{1}(n-j) \prod_{i=0}^{j-1} f(n-i)=a_{n-d} \prod_{i=n-d+1}^{n} f(i)+f_{d}(n)
\end{align*}
$$

for $n \geq d$. Furthermore, we can obtain the recurrence equations for the polynomials $f_{d}, d \in \mathbb{N}$. For given $d_{1}, d_{2} \in \mathbb{N}$, comparing the formulae for $f_{d_{1}}, f_{d_{2}}$ and $f_{d_{1}+d_{2}}$, we get
(18)

$$
\begin{aligned}
f_{d_{1}+d_{2}} & =\sum_{j=0}^{d_{1}+d_{2}-1} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i)=\sum_{j=0}^{d_{2}-1} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i)+ \\
& +\sum_{j=d_{2}}^{d_{1}+d_{2}-1} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i)=f_{d_{2}}+\prod_{i=0}^{d_{2}-1} f(X-i) \sum_{j=d_{2}}^{d_{1}+d_{2}-1} h_{1}(X-j) \prod_{i=d_{2}}^{j-1} f(X-i) \\
& =f_{d_{2}}+\prod_{i=0}^{d_{2}-1} f(X-i) \sum_{j=0}^{d_{1}-1} h_{1}\left(X-d_{2}-j\right) \prod_{i=0}^{j-1} f\left(X-d_{2}-i\right)=f_{d_{1}}\left(X-d_{2}\right) \prod_{i=0}^{d_{2}-1} f(X-i)+f_{d_{2}}
\end{aligned}
$$

Similarity of (17) and (18) and the fact that $f_{d+1}(d)=a_{d}$ for $d \in \mathbb{N}$ allow us to say, that the polynomials $f_{d}, d \in \mathbb{N}$ are a generalization of the numbers a_{d}, $d \in \mathbb{N}$.

Analogous formulae can be obtained for a sequence $\mathbf{a}\left(f, h_{1},-1\right) \in \mathcal{R}^{\prime \prime}$.

$$
\begin{gathered}
a_{n}=a_{n-d} \prod_{i=n-d+1}^{n} f(i)+(-1)^{n} f_{d}(n), n \geq d \\
f_{d_{1}+d_{2}}=(-1)^{d_{2}} f_{d_{1}}\left(X-d_{2}\right) \prod_{i=0}^{d_{2}-1} f(X-i)+f_{d_{2}}
\end{gathered}
$$

where $f_{d}=\sum_{j=0}^{d-1}(-1)^{j} h_{1}(X-j) \prod_{i=0}^{j-1} f(X-i), d \in \mathbb{N}$. Moreover, $f_{d+1}(d)=$ $(-1)^{d} a_{d}$ for $d \in \mathbb{N}$.

Let us consider the sequence of derangements. Since this sequence is given by the recurrence $D_{0}=1, D_{n}=n D_{n-1}+(-1)^{n}, n>0$, hence

$$
f_{d}=\sum_{j=0}^{d-1}(-1)^{j} \prod_{i=0}^{j-1}(X-i)
$$

for $d \in \mathbb{N}$. Define

$$
\widehat{f}_{d}=\frac{f_{d}}{X-1}=-1+X \sum_{j=2}^{d-1}(-1)^{j} \prod_{i=2}^{j-1}(X-i), d>1
$$

Since $f_{d+1}(d)=(-1)^{d} D_{d}$ for $d \in \mathbb{N}$ we get $\widehat{f}_{d+1}(d)=(-1)^{d} E_{d}=(-1)^{d} \frac{D_{d}}{d-1}, d \geq 2$. It is easy to see from the definition of \widehat{f}_{d} that

$$
\widehat{f}_{d}=-1+X \sum_{j=0}^{d-3}(-1)^{j} \prod_{i=0}^{j-1}(X-2-i)=X f_{d-2}(X-2)-1, d \geq 2
$$

If we substitute n into the place of X and $n+1$ into the place of d in the equation above, we obtain the identity

$$
E_{n}=n D_{n-2}-1, n \geq 2
$$

Let us notice that

$$
\begin{aligned}
& f_{d-1}(X-2)-f_{d}(X-1)=\sum_{j=0}^{d-2}(-1)^{j} \prod_{i=0}^{j-1}(X-2-i)-\sum_{j=0}^{d-1}(-1)^{j} \prod_{i=0}^{j-1}(X-1-i) \\
= & -1+\sum_{j=0}^{d-2}(-1)^{j}\left(\prod_{i=0}^{j-1}(X-2-i)+\prod_{i=0}^{j}(X-1-i)\right)=-1+\sum_{j=0}^{d-2}(-1)^{j} X \prod_{i=0}^{j-1}(X-2-i) \\
= & -1+X \sum_{j=0}^{d-2}(-1)^{j} \prod_{i=0}^{j-1}(X-2-i)=\widehat{f}_{d+1}(X), d \geq 1 .
\end{aligned}
$$

If we substitute $X=n$ and $d=n$ in the formula above and divide by $(-1)^{n}$ then we get a well-known identity

$$
E_{n}=D_{n-2}+D_{n-1}, n \geq 2
$$

Now we will state and prove a theorem concerning real roots of polynomials $f_{d}, d \geq 3$, related to a sequence $\mathbf{a}=\mathbf{a}(f, c, 1)$, where $f \in \mathbb{Z}[X]$ and $c \in \mathbb{Z} \backslash\{0\}$.

Theorem 10. Assume that $\mathbf{a}=\mathbf{a}(f, c, 1)$, where $f \in \mathbb{Z}[X]$ and $c \in \mathbb{Z} \backslash\{0\}$. Let

$$
f_{d}=c \sum_{j=0}^{d-1} \prod_{i=0}^{j-1} f(X-i) \in \mathbb{Z}[X]
$$

for $d \in \mathbb{N}$. Assume that $d \geq 3$, there is an integer n_{0}, which is the greatest real root of f and f as a function is decreasing on the set $\left[n_{0}+1,+\infty\right) \cap \mathbb{Z}$. Then f_{d} has at
least $d-2$ real roots. More precisely, f_{d} has a root in the interval $\left(n_{0}+l, n_{0}+l+1\right)$, where $l \in\{2,3, \ldots, d-2\}$, and

- if $f\left(n_{0}+1\right)<-1$ or $f_{d}^{\prime}\left(n_{0}+1\right) \neq 0$ then f_{d} has 2 real roots in the interval $\left(n_{0}, n_{0}+2\right)$;
- if $f\left(n_{0}+1\right)=-1$ then $f_{d}\left(n_{0}+1\right)=0$.

In particular, if $\operatorname{deg} f=1$ then f_{d} factorizes into linear polynomials with real coefficients.
Proof. We will compute the signs of the values $f_{d}\left(n_{0}\right), f_{d}\left(n_{0}+1\right), \ldots, f_{d}\left(n_{0}+d-1\right)$ and use intermediate value theorem to conclude the existence of real roots of f_{d}. We have the following equalities:

$$
\begin{aligned}
& \operatorname{sgn}\left(f_{d}\left(n_{0}\right)\right)=\operatorname{sgn}(c) \\
& \operatorname{sgn}\left(f_{d}\left(n_{0}+1\right)\right)=\operatorname{sgn}\left(c\left(1+f\left(n_{0}+1\right)\right)\right)= \begin{cases}-\operatorname{sgn}(c), & \text { when } f\left(n_{0}+1\right)<-1 \\
0, & \text { when } f\left(n_{0}+1\right)=-1\end{cases}
\end{aligned}
$$

Let us fix $l \in\{2,3, \ldots, d-1\}$. Then
$\operatorname{sgn}\left(f_{d}\left(n_{0}+l\right)\right)=\operatorname{sgn}\left(c \sum_{j=0}^{l} \prod_{i=0}^{j-1} f\left(n_{0}+l-i\right)\right)=\operatorname{sgn}(c) \operatorname{sgn}\left(\prod_{i=0}^{l-1} f\left(n_{0}+l-i\right)\right)=(-1)^{l} \operatorname{sgn}(c)$
because $\left|\prod_{i=0}^{l-1} f\left(n_{0}+l-i\right)\right| \geq\left|\prod_{i=0}^{l-2} f\left(n_{0}+l-i\right)\right|$ and $\left|\prod_{i=0}^{l-2 s+1} f\left(n_{0}+l-i\right)\right|>$ $\left|\prod_{i=0}^{l-2 s} f\left(n_{0}+l-i\right)\right|$ for $s \in\left\{2,3, \ldots,\left\lfloor\frac{l}{2}\right\rfloor\right\}$ (since f is decreasing on the set $\left[n_{0}+\right.$ $1,+\infty) \cap \mathbb{Z})$ and $\operatorname{sgn}\left(\prod_{i=0}^{l-1} f\left(n_{0}+l-i\right)\right)=\operatorname{sgn}\left(\prod_{i=0}^{l-2 s+1} f\left(n_{0}+l-i\right)\right)$ for $s \in$ $\left.\left\{2,3, \ldots,\left\lfloor\frac{l}{2}\right\rfloor\right\}\right)$.

By intermediate value theorem there is a root of f_{d} in each of the intervals of the form $\left(n_{0}+l, n_{0}+l+1\right)$, where $l \in\{2,3, \ldots, d-2\}$. If $f\left(n_{0}+1\right)<-1$ then $\operatorname{sgn}\left(f_{d}\left(n_{0}+1\right)\right)=-\operatorname{sgn}(c)$. Since $\operatorname{sgn}\left(f_{d}\left(n_{0}\right)\right)=\operatorname{sgn}\left(f_{d}\left(n_{0}+2\right)\right)=\operatorname{sgn}(c)$ by intermediate value theorem there are roots f_{d} in the intervals $\left(n_{0}, n_{0}+1\right)$ and $\left(n_{0}+1, n_{0}+2\right)$. If $f\left(n_{0}+1\right)=-1$ then $f_{d}\left(n_{0}+1\right)=0$. If $f_{d}\left(n_{0}+1\right)=0$ and $f_{d}^{\prime}\left(n_{0}+1\right) \neq 0$ then $\operatorname{sgn}\left(f_{d}\left(x_{0}\right)\right)=-\operatorname{sgn}(c)$ for some $x_{0} \in\left(n_{0}, n_{0}+2\right)$. Hence there is a root of f_{d} in the interval $\left(n_{0}, x_{0}\right)$, if $x_{0}<n_{0}+1$, or there is a root of f_{d} in the interval $\left(x_{0}, n_{0}+2\right)$, if $x_{0}>n_{0}+1$.

If $\operatorname{deg} f=1$ then $\operatorname{deg} f_{d}=d-1$. Hence, if $f\left(n_{0}+1\right)<-1$ or $f_{d}^{\prime}\left(n_{0}+1\right) \neq 0$ then f_{d} has $d-1$ distinct real roots. If $f\left(n_{0}+1\right)=-1$ and $f_{d}^{\prime}\left(n_{0}+1\right)=0$ then f_{d} has $d-2$ distinct real roots, where $n_{0}-1$ is its double root. As a consequence of the reasoning presented above, the polynomial f_{d} factorizes into linear factors over \mathbb{R}.

We can use Theorem 10 to obtain similar result for a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by the formula $a_{0}=c, a_{n}=f(n) a_{n-1}+(-1)^{n} c, n>0$ for some nonzero integer c.
Corollary 4. Assume that $\mathbf{a}=\mathbf{a}(f, c, 1)$, where $f \in \mathbb{Z}[X]$ and $c \in \mathbb{Z} \backslash\{0\}$. Let

$$
f_{d}=c \sum_{j=0}^{d-1}(-1)^{j} \prod_{i=0}^{j-1} f(X-i) \in \mathbb{Z}[X]
$$

for $d \in \mathbb{N}$. Assume that $d \geq 3$, there is an integer n_{0}, which is the greatest real root of f and f as a function is increasing on the set $\left[n_{0}+1,+\infty\right) \cap \mathbb{Z}$. Then f_{d} has at least $d-2$ real roots. More precisely, f_{d} has a root in the interval $\left(n_{0}, n_{0}+2\right)$ and in the interval $\left(n_{0}+l, n_{0}+l+1\right)$, where $l \in\{2,3, \ldots, d-2\}$, and

- if $f\left(n_{0}+1\right)>1$ or $f_{d}^{\prime}\left(n_{0}+1\right) \neq 0$ then f_{d} has 2 real roots in the interval $\left(n_{0}, n_{0}+2\right)$;
- if $f\left(n_{0}+1\right)=1$ then $f_{d}\left(n_{0}+1\right)=0$.

In particular, if $\operatorname{deg} f=1$ then f_{d} factorizes into linear factors with real coefficients.
Proof. Consider the associated sequence $\left(\widetilde{a}_{n}\right)_{n \in \mathbb{N}}$. This sequence is given by the formula $\widetilde{a}_{0}=c, \widetilde{a}_{n}=-f(n) \widetilde{a}_{n-1}+c, n>0$. Then use Theorem 10 substituting the sequence $\left(\widetilde{a}_{n}\right)_{n \in \mathbb{N}}$ in the place of $\left(a_{n}\right)_{n \in \mathbb{N}}$ and substituting $-f$ in the place of f.

Let us consider the sequence of derangements. In the definition of derangements we have polynomial $f=X$. By Corollary 4, if $d \geq 4$ then the polynomial f_{d} (of degree $d-1$) has exactly $d-1$ real roots and exactly one rational root 1 (n_{0} from Corollary 4 is equal to 0 for $f=X$). It suffices to compute $f_{d}^{\prime}(1)$.
$f_{d}^{\prime}(1)=\sum_{j=1}^{d-1}(-1)^{j} \sum_{s=0}^{j-1} \prod_{i=0, i \neq s}^{j-1}(1-i)=-1+\sum_{j=2}^{d-1}(-1)^{j} \cdot(-1)^{j-2}(j-2)!=-1+\sum_{j=0}^{d-3} j!>0$
Corollary 4 shows us that all the roots of f_{d} apart from 1 are noninteger. Since the leading coefficient of f_{d} is ± 1, thus by theorem on rational roots of a polynomial with integer coefficients, all the rational roots of f_{d} must be integer. Hence all the roots of f_{d} apart from 1 are irrational.

From the equation $\widehat{f}_{d}=\frac{f_{d}}{X-1}$ for $d \geq 3$ we see that all the complex roots of \widehat{f}_{d} are real and if $d \geq 4$ then they are irrational. In spite of reduciblity of $\widehat{f_{d}}=\frac{f_{d}}{X-1}$, $d \geq 3$, into linear factors over \mathbb{R}, we do not know how $\widehat{f_{d}}=\frac{f_{d}}{X-1}$ factorizes over \mathbb{Q}. Numerical computations show that for each $d \leq 20$ the polynomial \widehat{f}_{d} is irreducible over \mathbb{Q}. In the light of these results we can formulate the following question:
Question 3. Is the polynomial $\widehat{f}_{d}=-1+X \sum_{j=0}^{d-3}(-1)^{j} \prod_{i=0}^{j-1}(X-2-i)$ irreducible over \mathbb{Q} for each integer $d \geq 3$?

4.4. Divisors of a sequence $a \in \mathcal{R}$.

4.4.1. Prime divisors of a sequence $a \in \mathcal{R}$. In Section 4.1.3 we showed that $n-1 \mid D_{n}$ for each nonnegative integer n. Moreover, we proved that there are infinitely many prime numbers p such that $p \left\lvert\, \frac{D_{n}}{n-1}\right.$ for some integer $n>1$. Now we will give some conditions for infinitude of the set $\mathcal{P}_{\mathbf{a}}=\left\{p \in \mathbb{P}: \exists_{n \in \mathbb{N}} p \mid a_{n}\right\}$, where $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathcal{R}$.

Theorem 11. Let $\mathbf{a}=\mathbf{a}\left(f, h_{1}, h_{2}\right)$ be an unbounded sequence. If f has a nonnegative integer root then the set $\mathcal{P}_{\mathbf{a}}$ is infinite.
Proof. Note that there must be such prime number p that $p \mid a_{n}$ for some $n \in \mathbb{N}$. Otherwise $\left|a_{n}\right|=1$ for all $n \in \mathbb{N}$. Assume that there are only finitely many prime divisors of the numbers $a_{n}, n \in \mathbb{N}$. Let us denote these divisors by $p_{1}, p_{2}, \ldots, p_{s}$.

Let $n_{0} \in \mathbb{N}$ be a root of f. Then by Proposition 4 for each prime number p and positive integer k the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}}}$ is periodic of period $p^{k}(p-1)$. Since there are only finitely prime divisors of numbers $a_{n}, n \in \mathbb{N}$ then $a_{n} \neq 0$ for all $n \in \mathbb{N}$. In particular, $a_{n_{0}} \neq 0$. Then $a_{n_{0}}= \pm p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s} \in \mathbb{N}$. Without loss of generality assume that $a_{n_{0}}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$. Then, by periodicity of the sequence $\left(a_{n}\left(\bmod p_{1}^{\alpha_{1}+2} p_{2}^{\alpha_{2}+2} \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\right)\right)_{n \in \mathbb{N}_{n_{0}}}$ we get that
$a_{n_{0}+j p_{1}^{\alpha_{1}+2}\left(p_{1}-1\right) p_{2}^{\alpha_{2}+2}\left(p_{2}-1\right) \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\left(p_{s}-1\right)} \equiv p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}} \quad\left(\bmod p_{1}^{\alpha_{1}+2} p_{2}^{\alpha_{2}+2} \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\right)$ for each $j \in \mathbb{N}$. Then $\left|a_{n_{0}+j p_{1}^{\alpha_{1}+2}\left(p_{1}-1\right) p_{2}^{\alpha_{2}+2}\left(p_{2}-1\right) \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\left(p_{s}-1\right)}\right|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$. However, if $a_{n_{0}+j p_{1}^{\alpha_{1}+2}\left(p_{1}-1\right) p_{2}^{\alpha_{2}+2}\left(p_{2}-1\right) \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\left(p_{s}-1\right)}=-p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ then there must be

$$
2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}} \equiv 0 \quad\left(\bmod p_{1}^{\alpha_{1}+2} p_{2}^{\alpha_{2}+2} \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\right)
$$

which means that $p_{1}^{2} p_{2}^{2} \cdot \ldots \cdot p_{s}^{2} \mid 2$ - a contradiction. Hence

$$
a_{n_{0}+j p_{1}^{\alpha_{1}+2}\left(p_{1}-1\right) p_{2}^{\alpha_{2}+2}\left(p_{2}-1\right) \cdot \ldots \cdot p_{s}^{\alpha_{s}+2}\left(p_{s}-1\right)}=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}
$$

for all $j \in \mathbb{N}$. Then by Theorem 8 the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded, which is a contradiction with the assumption of unboundedness of $\left(a_{n}\right)_{n \in \mathbb{N}}$.

Theorem 12. Let \mathbf{a} be an unbounded sequence of the form $\mathbf{a}\left(f, h_{1}, 1\right)$ or $\mathbf{a}\left(f, h_{1},-1\right)$. If for each prime number p there are such integers n, m that $p \mid f(n)$ and $p \nmid h_{1}(m)$ then the set $\mathcal{P}_{\mathbf{a}}$ is infinite.

Proof. Note that there must be such prime number p that $p \mid a_{n}$ for some $n \in \mathbb{N}$. Otherwise $\left|a_{n}\right|=1$ for all $n \in \mathbb{N}$. Assume that there are only finitely many prime divisors of the numbers $a_{n}, n \in \mathbb{N}$. Let us denote these divisors by $p_{1}, p_{2}, \ldots, p_{s}$.

Because each sequence defined by the equations $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+$ $(-1)^{n} h_{1}(n), n>0$ has the associated sequence given by the formula $\widetilde{a}_{0}=h_{1}(0), \widetilde{a}_{n}=$ $-f(n) \widetilde{a}_{n-1}+h_{1}(n), n>0$ and $\widetilde{a}_{n}=(-1)^{n} a_{n}, n \in \mathbb{N}$, thus it suffices to prove the statement for a sequence of the form $\mathbf{a}\left(f, h_{1}, 1\right)$.

For each $i \in\{1,2, \ldots, s\}$ there is such $n_{i} \in\left\{0,1,2, \ldots, p_{i}-1\right\}$ that $p_{i} \mid f\left(n_{i}\right)$. Hence the result from Section4.1.1 shows us that the sequence $\left(a_{n}\left(\bmod p_{i}^{2}\right)\right)_{n \geq n_{i}+p_{i}}$ is periodic of period p_{i}^{2}. Let $m_{i}>n_{i}+p_{i}$ be such an integer that $p_{i} \nmid h_{1}\left(m_{i}\right)$. The formula $a_{m_{i}}=f\left(m_{i}\right) a_{m_{i}-1}+h_{1}\left(m_{i}\right)$ implies that $p_{i} \nmid a_{m_{i}-1}$ or $p_{i} \nmid a_{m_{i}}$.

Let $\alpha_{i} \in\left\{m_{i}-1, m_{i}\right\}$ be such that $p_{i} \nmid a_{\alpha_{i}}$. By Chinese remainder theorem there exists such an integer $\alpha_{0} \geq \max \left\{n_{1}+p_{1}, n_{2}+p_{2}, \ldots, n_{s}+p_{s}\right\}$ that $\alpha_{0} \equiv \alpha_{i}$ $\left(\bmod p_{i}^{2}\right)$ for each $i \in\{1,2, \ldots, s\}$. Then for all $j \in \mathbb{N}$ we have

$$
a_{\alpha_{0}+j p_{1}^{2} p_{2}^{2} \cdots \cdots p_{s}^{2}} \equiv a_{\alpha_{0}} \quad\left(\bmod p_{1}^{2} p_{2}^{2} \cdot \ldots \cdot p_{s}^{2}\right)
$$

Moreover, $a_{\alpha_{0}} \equiv a_{\alpha_{i}}\left(\bmod p_{i}^{2}\right)$ for $i \in\{1,2, \ldots, s\}$. Hence $p_{i} \nmid a_{\alpha_{0}}$ for any $i \in$ $\{1,2, \ldots, s\}$ and this means that $a_{\alpha_{0}}= \pm 1$. Without loss of generality assume that $a_{\alpha_{0}}=1$. Then for all $j \in \mathbb{N}$ there must be $a_{\alpha_{0}+j p_{1}^{2} p_{2}^{2} \cdots \cdot p_{s}^{2}}=1$. Indeed, $a_{\alpha_{0}+j p_{1}^{2} p_{2}^{2} \cdots \cdot p_{s}^{2}}$ has no prime divisors, so $a_{\alpha_{0}+j p_{1}^{2} p_{2}^{2} \cdot \cdots \cdot p_{s}^{2}}= \pm 1$. Suppose that $a_{\alpha_{0}+j p_{1}^{2} p_{2}^{2} \cdots \cdot p_{s}^{2}}=-1$ for some $j \in \mathbb{N}$. Then $-1 \equiv 1\left(\bmod p_{1}^{2} p_{2}^{2} \cdot \ldots \cdot p_{s}^{2}\right)$, which means that $p_{1}^{2} p_{2}^{2} \cdot \ldots \cdot p_{s}^{2} \mid 2$ and this is a contradiction. Thus $a_{\alpha_{0}+j p_{1}^{2} p_{2}^{2} \cdots \cdots p_{s}^{2}}=1$ for any $j \in \mathbb{N}$ and by Theorem 8 the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded, which stays in a contradiction with the assumption of unboundedness of $\left(a_{n}\right)_{n \in \mathbb{N}}$. Hence the set $\mathcal{P}_{\mathbf{a}}$ is infinite.
Proposition 8. If $\mathbf{a}=\mathbf{a}\left(f, h_{1}, 0\right)$ then the set $\mathcal{P}_{\mathbf{a}}$ is infinite if and only if $h_{1}(0)=0$ or $\operatorname{deg} f \neq 0$.

Proof. For all $n \in \mathbb{N}$ we have $a_{n}=h_{1}(0) \prod_{i=1}^{n} f(i)$. Thus if $\operatorname{deg} f \neq 0$ then there are infinitely many prime divisors of the numbers $f(n), n \in \mathbb{N}$, and as a consequence, there are infinitely many prime divisors of the numbers $a_{n}, n \in \mathbb{N}$.

If $h_{1}(0) \neq 0$ and $f=b$, where $b \in \mathbb{Z} \backslash\{0\}$ then $a_{n}=h_{1}(0) b^{n}$ for $n \in \mathbb{N}$ and all prime divisors of the numbers $a_{n}, n \in \mathbb{N}$, are divisors of $h_{1}(0)$ and b.

Proposition 9. If $\mathbf{a}=\mathbf{a}(b, c, d)$, where $b, c, d \in \mathbb{Z}$ and $b d \neq 0$ (i.e. $f=b, h_{1}=c$ and $h_{2}=d$) then each prime number p divides a_{n} for some $n \in \mathbb{N}$. Moreover, for any $k \in \mathbb{N}_{+}$there is such $n_{k} \in \mathbb{N}$ that $p^{k} \mid a_{n_{k}}$.
Proof. For all $n \in \mathbb{N}$ we have

$$
a_{n}=c \sum_{j=0}^{n} b^{j} d^{n-j}=\left\{\begin{array}{ll}
c \frac{b^{n+1}-d^{n+1}}{b-d}, & \text { if } b \neq d \\
b^{n} c(n+1), & \text { if } b=d
\end{array} .\right.
$$

If $b=d$ then the statement is certainly true. If $b \neq d$ then by Euler's theorem, for any prime number p and positive integer k we have the divisibility $p^{k} \mid b^{p^{k-1}(p-1)}-d^{p^{k-1}(p-1)}$. Hence for any prime number p and positive integer k there exists such $n_{k} \in \mathbb{N}$ that $p^{k} \mid a_{n_{k}}$.

Theorem 13. If a sequence \mathbf{a} is of the form $\mathbf{a}\left(b_{1} X+b_{0}, c, 1\right)$ or $\mathbf{a}\left(b_{1} X+b_{0}, c,-1\right)$, where $b_{0}, b_{1}, c \in \mathbb{Z}$ and $b_{1} \neq 0$, then the set $\mathcal{P}_{\mathbf{a}}$ is infinite.

Proof. Because each sequence defined by the equations $a_{0}=c, a_{n}=\left(b_{1} n+b_{0}\right) a_{n-1}+$ $(-1)^{n} c, n>0$ has the associated sequence given by the formula $\widetilde{a}_{0}=c, \widetilde{a}_{n}=$ $-\left(b_{1} n+b_{0}\right) \widetilde{a}_{n-1}+c, n>0$ and $\widetilde{a}_{n}=(-1)^{n} a_{n}, n \in \mathbb{N}$, thus it suffices to prove the statement for a sequence defined by the formula $a_{0}=c, a_{n}=\left(b_{1} n+b_{0}\right) a_{n-1}+c$, $n>0$.

Similarly, if $a_{0}=c, a_{n}=\left(b_{1} n+b_{0}\right) a_{n-1}+c, n>0$ then $a_{n}=c \widehat{a}_{n}$ for $n \in \mathbb{N}$, where $\widehat{a}_{0}=1, \widehat{a}_{n}=\left(b_{1} n+b_{0}\right) \widehat{a}_{n-1}+1, n>0$. Hence it suffices to prove the statement for a sequence defined by the formula $a_{0}=1, a_{n}=\left(b_{1} n+b_{0}\right) a_{n-1}+1, n>0$.

Assume that there are only finitely many prime divisors of numbers a_{n}, $n \in \mathbb{N}$. Let $p_{1}<p_{2}<\ldots<p_{s}$ be all prime divisors of numbers $a_{n}, n \in \mathbb{N}$, which do not divide b_{1}. Let $q_{1}<q_{2}<\ldots<q_{t}$ be all prime divisors of numbers $a_{n}, n \in \mathbb{N}$, which divide b_{1} (and so do not divide b_{0}, because otherwise we would have $a_{n} \equiv 1$ $\left(\bmod q_{i}\right)$ for all $\left.n \in \mathbb{N}\right)$ and do not divide $b_{0}-1$. Let $r_{1}<r_{2}<\ldots<r_{u}$ be all prime divisors of numbers $a_{n}, n \in \mathbb{N}$, which divide b_{1} and $b_{0}-1$.

For a given $i \in\{1,2, \ldots, s\}$, since $p_{i} \nmid b_{1}$, thus there exists such $n_{p_{i}} \in \mathbb{N}$ that $p_{i} \mid b_{1} n_{p_{i}}+b_{0}$. Hence the sequence $\left(a_{n}\left(\bmod p_{i}\right)\right)_{n \geq n_{p_{i}}}$ is periodic of period p_{i} (see Section 4.1.1). From the definition of a_{n} we conclude that if $p_{i} \mid a_{n}$ then $p_{i} \nmid a_{n+1}$. Thus the number of solutions modulo p_{i} of the congruence $a_{n} \equiv 0\left(\bmod p_{i}\right)$ (where $n \geq n_{p_{i}}$) is less than or equal to $\left\lfloor\frac{p_{i}}{2}\right\rfloor$. For $p_{i}>2$ we have $1+\left\lfloor\frac{p_{i}}{2}\right\rfloor=\frac{p_{i}+1}{2}<p_{i}$. For $p_{1}=2$, by induction on n we can prove that

- if $b_{1} \equiv 1(\bmod 4)$ then

$$
a_{n} \equiv \begin{cases}1, & \text { for } n \equiv-b_{0}, 2-b_{0} \quad(\bmod 4) \tag{19}\\ 2, & \text { for } n \equiv 1-b_{0} \quad(\bmod 4) \\ 0, & \text { for } n \equiv 3-b_{0} \quad(\bmod 4)\end{cases}
$$

for $n \geq\left(-b_{0}(\bmod 4)\right)$;

- if $b_{1} \equiv-1(\bmod 4)$ then

$$
a_{n} \equiv \begin{cases}1, & \text { for } n \equiv b_{0}, 2+b_{0} \quad(\bmod 4) \tag{20}\\ 0, & \text { for } n \equiv 1+b_{0} \quad(\bmod 4) \\ 2, & \text { for } n \equiv 3+b_{0} \quad(\bmod 4)\end{cases}
$$

for $n \geq\left(b_{0}(\bmod 4)\right)$.
Let us observe that for a given $i \in\{1,2, \ldots, t\}, a_{n} \equiv \sum_{j=0}^{n} b_{0}^{j}=\frac{b_{0}^{n+1}-1}{b_{0}-1}$ $\left(\bmod q_{i}\right)$ (because
$\left.q_{i} \nmid b_{0}-1\right)$. Hence the sequence $\left(a_{n}\left(\bmod q_{i}\right)\right)_{n \in \mathbb{N}}$ has the basic period equal to the order of b_{0} in the multiplicative group $\left(\mathbb{Z} / q_{i} \mathbb{Z}\right)^{*}$ of nonzero remainders from division by q_{i}. Let us denote this order by ord_{i}. Then $q_{i} \mid a_{n}$ if and only if $\operatorname{ord}_{i} \mid n+1$.

For a given $i \in\{1,2, \ldots, u\}$, by induction on n we get $a_{n} \equiv n+1\left(\bmod r_{i}\right)$ for $n \in \mathbb{N}$.

For a given $i \in\{1,2, \ldots, s\}$, if $p_{i}>2$ then we take such $\alpha_{i} \in\left\{0,1, \ldots, p_{i}-2\right\}$ that $p_{i} \nmid a_{j p_{i}+\alpha_{i}}$ for any $j \in \mathbb{N}_{+}$. Since $\alpha_{i} \neq p_{i}-1$, thus for each $k \in\{1,2, \ldots, t\}$, if $p_{i} \mid \operatorname{ord}_{k}$ then $j p_{i}+\alpha_{i} \not \equiv-1\left(\bmod \operatorname{ord}_{k}\right)$ for all $j \in \mathbb{N}_{+}$and as a result, $q_{k} \nmid a_{j p_{i}+\alpha_{i}}$.

For a given $i \in\{1,2, \ldots, u\}$ and for each $k \in\{1,2, \ldots, t\}$, if $r_{i} \mid \operatorname{ord}_{k}$ then $j r_{i} \not \equiv-1\left(\bmod \operatorname{ord}_{k}\right)$ for all $j \in \mathbb{N}_{+}$and as a result, $q_{k} \nmid a_{j r_{i}}$.

Let us consider two cases, if $p_{1}=2$ (it is sure that one of these cases holds):
a) $2 \nmid a_{2 j}$ for any $j \in \mathbb{N}_{+}$; then we take $\alpha_{1}=0$ and for each $k \in\{1,2, \ldots, t\}$, if $2 \mid \operatorname{ord}_{k}$ then $2 j \not \equiv-1\left(\bmod \operatorname{ord}_{k}\right)$ for all $j \in \mathbb{N}_{+}$and as a result, $q_{k} \nmid a_{2 j} ;$
b) $2 \mid a_{2 j}$ for all $j \in \mathbb{N}_{+}$; then we take such $\alpha_{1} \in\{0,2\}$ that $a_{4 j+\alpha_{1}} \equiv 2$ $(\bmod 4)$ for $j \in \mathbb{N}_{+}$, thus for each $k \in\{1,2, \ldots, t\}$, if $2 \mid \operatorname{ord}_{k}$ then $4 j+\alpha_{1} \not \equiv$ $-1\left(\bmod \operatorname{ord}_{k}\right)$ for all $j \in \mathbb{N}_{+}$and as a result, $q_{k} \nmid a_{4 j+\alpha_{1}}$.
By Chinese remainder theorem there exists such α_{0} that $\alpha_{0} \equiv \alpha_{i}\left(\bmod p_{i}\right)$ for all $i \in\{1,2, \ldots, s\}\left(\right.$ respectively $\alpha_{0} \equiv \alpha_{1}(\bmod 4)$ and $\alpha_{0} \equiv \alpha_{i}\left(\bmod p_{i}\right)$ for all $i \in\{2,3, \ldots, s\}$, if b) holds), $\alpha_{0} \equiv 0\left(\bmod \operatorname{ord}_{i}\right)$ for all $i \in\{1,2, \ldots, s\}$ and $\alpha_{0} \equiv 0$ $\left(\bmod r_{i}\right)$ for all $i \in\{1,2, \ldots, u\}$. Then

$$
a_{j p_{1} \cdot \ldots \cdot p_{s} \text { ord }_{1} \cdot \ldots \cdot \text { ord }_{t} r_{1} \cdot \ldots \cdot r_{u}+\alpha_{0}} \equiv a_{\alpha_{0}} \quad\left(\bmod p_{1} \cdot \ldots \cdot p_{s} q_{1} \cdot \ldots \cdot q_{t} r_{1} \cdot \ldots \cdot r_{u}\right)
$$

for all $j \in \mathbb{N}_{+}$and $\left|a_{\alpha_{0}}\right|=1$. Respectively, if b) holds then
for all $j \in \mathbb{N}_{+}$and $\left|a_{\alpha_{0}}\right|=2$.
If 2 is not the only prime divisor of the numbers $a_{n}, n \in \mathbb{N}$, or 2 is not a prime
 all $j \in \mathbb{N}_{+}$. Indeed, if $a_{j p_{1} \ldots . \cdot p_{s} \text { ord }_{1} \ldots \ldots \text { ord }_{t} r_{1} \ldots . \cdot r_{u}+\alpha_{0}}=-a_{\alpha_{0}}$ for some $j \in \mathbb{N}_{+}$then

$$
2 a_{\alpha_{0}} \equiv 0 \quad\left(\bmod p_{1} \cdot \ldots \cdot p_{s} q_{1} \cdot \ldots \cdot q_{t} r_{1} \cdot \ldots \cdot r_{u}\right)
$$

which with the fact $\left|a_{\alpha_{0}}\right|=1$ implies that $p_{1} \cdot \ldots \cdot p_{s} q_{1} \cdot \ldots \cdot q_{t} r_{1} \cdot \ldots \cdot r_{u} \mid 2$ - a contradiction. Similarly, when the case b) takes place, if $a_{j \cdot 4 p_{2} \cdot \ldots \cdot p_{s} o r d_{1} \cdot \ldots \cdot \text { ord }_{t} r_{1} \cdot \ldots \cdot r_{u}+\alpha_{0}=}=$ $-a_{\alpha_{0}}$ for some $j \in \mathbb{N}_{+}$then

$$
2 a_{\alpha_{0}} \equiv 0 \quad\left(\bmod 4 p_{2} \cdot \ldots \cdot p_{s} q_{1} \cdot \ldots \cdot q_{t} r_{1} \cdot \ldots \cdot r_{u}\right)
$$

which with the fact $\left|a_{\alpha_{0}}\right|=2$ implies that $4 p_{2} \cdot \ldots \cdot p_{s} q_{1} \cdot \ldots \cdot q_{t} r_{1} \cdot \ldots \cdot r_{u} \mid 4$ - a contradiction. Finally, we use Theorem 8 to conclude that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded.

Assume now that 2 is the only prime divisor of the numbers $a_{n}, n \in \mathbb{N}$. Then there are two possible situations:

- $2 \nmid b_{1}$; then by the equations (19) and (20) we know that there is such number $n_{2} \in \mathbb{N}$ that $a_{2 j+n_{2}} \equiv 1(\bmod 4)$ for all $j \in \mathbb{N}$ and because 2 is the only prime divisor of the numbers $a_{n}, n \in \mathbb{N}$, hence $a_{2 j+n_{2}}=1$ for all $j \in \mathbb{N}$ and by Theorem 8 the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded;
- $2 \mid b_{1}$ and $2 \nmid b_{0}$; then we can compute that

$$
\begin{aligned}
\left(a_{n}(\bmod 4)\right)_{n \in \mathbb{N}} & =\left\{\begin{array}{lll}
(1,2,3,0,1,2,3,0, \ldots), & \text { if } 4 \mid b_{1} \text { and } b_{0} \equiv 1 & (\bmod 4) \\
(1,0,1,0,1,0,1,0, \ldots), & \text { if } 4 \mid b_{1} \text { and } b_{0} \equiv 3 & (\bmod 4) \\
(1,0,1,0,1,0,1,0, \ldots), & \text { if } 4 \nmid b_{1} \text { and } b_{0} \equiv 1 & (\bmod 4) \\
(1,2,3,0,1,2,3,0, \ldots), & \text { if } 4 \nmid b_{1} \text { and } b_{0} \equiv 3 & (\bmod 4)
\end{array}\right. \\
& = \begin{cases}(1,2,3,0,1,2,3,0, \ldots), & \text { if } 4 \mid b_{1}+b_{0}-1 \\
(1,0,1,0,1,0,1,0, \ldots), & \text { if } 4 \nmid b_{1}+b_{0}-1\end{cases}
\end{aligned}
$$

which with the fact that 2 is the only prime divisor of the numbers a_{n}, $n \in \mathbb{N}$, implies that $a_{4 j}=1$ for all $j \in \mathbb{N}$ and by Theorem 8 the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded.
As a consequence of our reasoning, we obtain in all cases the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded. On the other hand, if $a_{n} \neq 0$ then

$$
\begin{aligned}
& \left|a_{n+1}\right|=\left|\left(b_{1}(n+1)+b_{0}\right) a_{n}+1\right| \geq\left|\left(b_{1}(n+1)+b_{0}\right)\right|-1 \geq\left|b_{1}\right|(n+1)-\left|b_{0}\right|-1 \\
& \quad \text { If } a_{n}=0 \text { then } a_{n+1}=1 \text { and } \\
& \left|a_{n+2}\right|=\left|\left(b_{1}(n+2)+b_{0}\right) a_{n+1}+1\right| \geq\left|\left(b_{1}(n+2)+b_{0}\right)\right|-1 \geq\left|b_{1}\right|(n+2)-\left|b_{0}\right|-1
\end{aligned}
$$

This means that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is unbounded - a contradiction. Hence there must be infinitely many prime divisors of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$.

The results on infinitude of the set of prime divisors of a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by the formula $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0$ suggest us to state the following:
Conjecture 2. If a sequence $\mathbf{a} \in \mathcal{R}$ is unbounded and not of the form $\left(a_{n}\right)_{n \in \mathbb{N}}=$ $\left(c b^{n}\right)_{n \in \mathbb{N}}$ for some $b, c \in \mathbb{Z}$ then the set $\mathcal{P}_{\mathbf{a}}$ is infinite.

Using a result of Luca (see [13]) we can establish the conjecture above for sequences of the form $\mathbf{a}\left(f, h_{1}, c\right)$, where $f, h_{1} \in \mathbb{Z}[X]$ and $c \in \mathbb{Z}$. Namely, Luca showed that if a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of rational numbers satisfy a recurrence of the type

$$
\begin{equation*}
F(n) a_{n+2}+G(n) a_{n+1}+H(n) a_{n}=0 \tag{21}
\end{equation*}
$$

for some $F, G, H \in \mathbb{Z}[X]$ not all zero and do not exist such $u, v, w \in \mathbb{Z}$ not all zero that

$$
u a_{n+2}+v a_{n+1}+w a_{n}=0
$$

for $n \gg 0$ (we call that $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not binary recurrent for sufficiently large n) then there exists a constant $\gamma>0$ depending only on the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that the product of numerators and denominators of all the nonzero numbers a_{n} for $n \leq N$ has at least $\gamma \log N$ prime divisors as $N \gg 0$ (by log we mean the natural logarithm).

Let a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ be given by the formula $a_{0}=h_{1}(0), a_{n}=f(n) a_{n-1}+$ $c^{n} h_{1}(n), n>0$, where $f, h_{1} \in \mathbb{Z}[X]$ and $c \in \mathbb{Z}$. If $h_{1}=0$ then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is constantly equal to 0 , so assume additionaly that $h_{1} \neq 0$. Write the recurrence formula for $n+1$ and $n+2$:

$$
\begin{aligned}
& a_{n+1}=f(n+1) a_{n}+c^{n+1} h_{1}(n+1) \\
& a_{n+2}=f(n+2) a_{n+1}+c^{n+2} h_{1}(n+2)
\end{aligned}
$$

After multiplication the first equality by $c h_{1}(n+2)$ and the second one by $-h_{1}(n+1)$ and adding them, we obtain
$c h_{1}(n+2) a_{n+1}-h_{1}(n+1) a_{n+2}=c h_{1}(n+2) f(n+1) a_{n}-h_{1}(n+1) f(n+2) a_{n+1}$ or equivalently
$h_{1}(n+1) a_{n+2}-\left(c h_{1}(n+2)+f(n+2) h_{1}(n+1)\right) a_{n+1}+c f(n+1) h_{1}(n+2) a_{n}=0$.
Hence the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ satisfy a recurrence of the form (21) and $h_{1}(X+1) \neq 0$. By the result of Luca we know that if $\left(a_{n}\right)_{n \in \mathbb{N}}$ is not binary recurrent for sufficiently large n then there exists a constant $\gamma>0$ such that the product of all the nonzero numbers a_{n} for $n \leq N$ has at least $\gamma \log N$ prime divisors as $N \gg 0$.

Let us establish when the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is binary recurrent for sufficiently large n. Then, for $n \gg 0$ we have two relations:
$h_{1}(n+1) a_{n+2}-\left(c h_{1}(n+2)+f(n+2) h_{1}(n+1)\right) a_{n+1}+c f(n+1) h_{1}(n+2) a_{n}=0$, $u a_{n+2}+v a_{n+1}+w a_{n}=0$.
We multiply the first equation by u and the second one by $-h_{1}(n+1)$ and then we add them to obtain
$\left(\operatorname{cuf}(n+1) h_{1}(n+2)-w h_{1}(n+1)\right) a_{n}=\left(c u h_{1}(n+2)+u f(n+2) h_{1}(n+1)+v h_{1}(n+1)\right) a_{n+1}$.
First, let us consider the case when $\operatorname{cuf}(X+1) h_{1}(X+2)-w h_{1}(X+1)=0$ and $c u h_{1}(n+2)+u f(n+2) h_{1}(n+1)+v h_{1}(n+1)=0$. Then

$$
c u h_{1}(X+2)+u f(X+2) h_{1}(X+1)=-v h_{1}(X+1)
$$

and

$$
c u f(X+1) h_{1}(X+2)=w h_{1}(X+1)
$$

Since $h_{1} \neq 0$, thus

$$
\begin{equation*}
\frac{c u f(X+1) h_{1}(X+2)}{h_{1}(X+1)}=w \tag{23}
\end{equation*}
$$

but then

$$
w=\lim _{n \rightarrow+\infty} \frac{\operatorname{cuf}(n+1) h_{1}(n+2)}{h_{1}(n+1)}=\lim _{n \rightarrow+\infty} c u f(n+1)
$$

This means that $f=b$, where $b \in Z$. The equality (23) takes the form $\frac{b c u h_{1}(X+2)}{h_{1}(X+1)}=$ w and this implies that $h_{1}=d$, where $d \in \mathbb{Z}$. If $b c=0$ then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ becomes a geometric progression and it has only finitely many prime divisors on condition that it has no zero terms. If $b, c \neq 0$ then by Proposition 9 any prime number divides a_{n} for some $n \in \mathbb{N}$.

Next, if exactly one of the polynomials $\operatorname{cuf}(X+1) h_{1}(X+2)-w h_{1}(X+1)$, $c u h_{1}(n+2)+u f(n+2) h_{1}(n+1)+v h_{1}(n+1)$ is zero then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is ultimately equal to zero.

Finally, assume that both the polynomials cuf $(X+1) h_{1}(X+2)-w h_{1}(X+1)$, $c u h_{1}(n+2)+u f(n+2) h_{1}(n+1)+v h_{1}(n+1)$ are nonzero. For simplicity of notation let us write them as $P(X)$ and $Q(X)$, respectively. If $\frac{P(X)}{Q(X)}=\alpha \in \mathbb{Q}$ then $a_{n+1}=\alpha a_{n}$, i. e. $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a geometric progression for $n \gg 0$ and then it can have only finitely many prime divisors. If $\frac{P(X)}{Q(X)}$ is a nonconstant rational function then by the following lemma there are infinitely many prime numbers p such that p divides numerator or denominator of irreducible form of number $\frac{P(n)}{Q(n)}$ for some $n \in \mathbb{N}$. Therefore, since $a_{n+1}=\frac{P(n)}{Q(n)} a_{n}$ for $n \gg 0$, thus the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has infinitely many prime divisors.

Lemma. Let $P, Q \in \mathbb{Z}[X] \backslash\{0\}$. If $\frac{P}{Q}$ is a nonconstant rational function then there are infinitely many prime numbers p such that $v_{p}\left(\frac{P(n)}{Q(n)}\right) \neq 0$ for some $n \in \mathbb{N}$.

Proof. Assume that p_{1}, \ldots, p_{s} are the only prime numbers occuring in irreducible forms of numbers $\frac{P(n)}{Q(n)}, n \in \mathbb{N}$ (if certainly $Q(n) \neq 0$). Let $n_{0} \in \mathbb{N}$ be such that all the integer roots of polynomials P and Q are less than n_{0}. For $i \in\{1, \ldots, s\}$ we define $k_{i}=v_{p_{i}}\left(P\left(n_{0}\right)\right), l_{i}=v_{p_{i}}\left(Q\left(n_{0}\right)\right)$ and $m_{i}=\max \left\{k_{i}, l_{i}\right\}$. Then for each $n \equiv n_{0}$ $\left(\bmod p_{1}^{m_{1}+1} \cdot \ldots \cdot p_{s}^{m_{s}+1}\right)$ we have $P(n)=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}} R(n)$ and $Q(n)=p_{1}^{l_{1}} \cdot \ldots \cdot p_{s}^{l_{s}} R(n)$, where $R(n)$ is coprime to $p_{1} \cdot \ldots \cdot p_{s}$. Therefore $\frac{P(n)}{Q(n)}=p_{1}^{k_{1}-l_{1}} \cdot \ldots \cdot p_{s}^{k_{s}-l_{s}}$ for any $n \equiv n_{0}\left(\bmod p_{1}^{m_{1}+1} \cdot \ldots \cdot p_{s}^{m_{s}+1}\right)$. Since the equation $P(n)=p_{1}^{k_{1}-l_{1}} \cdot \ldots \cdot p_{s}^{k_{s}-l_{s}} Q(n)$ holds for infinitely many $n \in \mathbb{N}$ it holds for all $n \in \mathbb{N}$ and the rational function $\frac{P}{Q}$ is constant. However, this is a contradiction with assumption of Lemma.
4.4.2. Divisors of the form $n-b-1$. Now we will consider sequences of type $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$, i. e. given by the recurrence

$$
\begin{equation*}
a_{0}=h_{1}(0), a_{n}=(n-b) a_{n-1}+h_{1}(n) h_{2}(n)^{n}, n>0 \tag{24}
\end{equation*}
$$

where $b \in \mathbb{Z}$ and $h_{1}, h_{2} \in \mathbb{Z}[X]$. We will try to give some conditions for division a_{n} by $n-b-1$. Notice that for $b=0, h_{1}=1$ and $h_{2}=-1$ we obtain the sequence of derangements and then the divisibility $n-1 \mid D_{n}$ holds for any $n \in \mathbb{N}$. Our goal is to generalize this property for the sequences defined by the relation (24).

If we use (24) twice then we obtain:

$$
\begin{aligned}
& a_{n}=(n-b) a_{n-1}+h_{1}(n) h_{2}(n)^{n}= \\
& =(n-b-1) a_{n-1}+(n-b-1) a_{n-2}+h_{1}(n-1) h_{2}(n-1)^{n-1}+h_{1}(n) h_{2}(n)^{n}, n \geq 2
\end{aligned}
$$

and, what is more, $a_{1}=(1-b) h_{1}(0)+h_{1}(1) h_{2}(1)$.

Since polynomials are periodic modulo $n-b-1$, thus for $n \in \mathbb{N}_{+}$there holds the equivalence

$$
\begin{equation*}
n-b-1\left|a_{n} \Longleftrightarrow n-b-1\right| h_{1}(b) h_{2}(b)^{n-1}+h_{1}(b+1) h_{2}(b+1)^{n} . \tag{25}
\end{equation*}
$$

In particular, we have the following:
Proposition 10. If $h_{1}(b)=h_{1}(b+1) h_{2}(b+1)=0$ then $n-b-1 \mid a_{n}$ for all positive integers n. If $h_{2}(b)=h_{1}(b+1) h_{2}(b+1)=0$ then $n-b-1 \mid a_{n}$ for all integers $n \geq 2$.

Assume that $n \geq 2$ and $|n-b-1|$ is a prime number. Then, by (25), $n-b-1 \mid a_{n}$ if and only if one of the following holds:

- $n-b-1 \mid h_{1}(b) h_{2}(b), h_{1}(b+1) h_{2}(b+1)$;
- $n-b-1 \nmid h_{1}(b) h_{2}(b), h_{1}(b+1) h_{2}(b+1)$ and $v_{|n-b-1|}\left(h_{1}(b) h_{2}(b)^{b+1}+\right.$ $\left.h_{1}(b+1) h_{2}(b+1)^{b+2}\right)>0 \quad$ (by Fermat's little theorem).
The fact presented above implies the following:
Proposition 11. If $h_{1}(b) h_{2}(b)^{b+1}+h_{1}(b+1) h_{2}(b+1)^{b+2} \neq 0$ then there are only finitely many nonnegative integers n such that $|n-b-1|$ is a prime number and $n-b-1 \mid a_{n}$. If $h_{1}(b) h_{2}(b)^{b+1}+h_{1}(b+1) h_{2}(b+1)^{b+2}=0$ then $n-b-1 \mid a_{n}$ for almost all nonnegative integers n such that $|n-b-1|$ is a prime number.
Proof. First, consider the case $h_{1}(b) h_{2}(b)^{b+1}+h_{1}(b+1) h_{2}(b+1)^{b+2} \neq 0$. Since there are only finitely many prime numbers dividing simultaneously $h_{1}(b) h_{2}(b)$ and $h_{1}(b+1) h_{2}(b+1)$ and prime numbers p such that

$$
v_{p}\left(h_{1}(b) h_{2}(b)^{b+1}+h_{1}(b+1) h_{2}(b+1)^{b+2}\right)>0
$$

hence the first part of the statement is true.
Assume now that $h_{1}(b) h_{2}(b)^{b+1}+h_{1}(b+1) h_{2}(b+1)^{b+2}=0$. If $h_{1}(b) h_{2}(b)=$ $h_{1}(b+1) h_{2}(b+1)=0$ then by Proposition 10 we have $n-b-1 \mid a_{n}$ for all integers $n>1$. If $h_{1}(b) h_{2}(b), h_{1}(b+1) h_{2}(b+1) \neq 0$ and $|n-b-1|$ is a prime number not dividing either $h_{1}(b) h_{2}(b)$ or $h_{1}(b+1) h_{2}(b+1)$ then $n-b-1 \mid a_{n}$.

Let us consider the case when $h_{1}(b) h_{2}(b) \neq 0$ and $h_{1}(b+1) h_{2}(b+2)=0$. Try to characterize indices $n \in \mathbb{N}_{+}$such that $n-b-1 \mid a_{n}$. Let

$$
h_{2}(b)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}
$$

where $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}_{+}$, be the factorization of $h_{2}(b)$ and

$$
h_{1}(b)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdot \ldots \cdot p_{s}^{\beta_{s}} q_{1}^{\gamma_{1}} q_{2}^{\gamma_{2}} \cdot \ldots \cdot q_{t}^{\gamma_{t}}
$$

where $\beta_{1}, \ldots, \beta_{s} \in \mathbb{N}$ and $\gamma_{1}, \ldots, \gamma_{s} \in \mathbb{N}_{+}$, be the factorization of $h_{1}(b)$.
Then, by (25), $n-b-1 \mid a_{n}$ if and only if

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$.
If $b \geq 0$ then for $i \in\{1,2, \ldots, s\}$ and $n \geq \max \{2, b\}$ we have

$$
\delta_{i}<p_{i}^{\delta_{i}} \leq|n-b-1| \leq n-1 \leq(n-1) \alpha_{i}+\beta_{i} .
$$

Hence, if $n \geq \max \{2, b\}$ then:

$$
n-b-1\left|a_{n} \Leftrightarrow\right| n-b-1 \mid=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \in \mathbb{N}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$. It remains to check indices $n \in\{1,2,3, \ldots, b\}$ one by one.

If $b<0$ then the situation is slightly more difficult. Fix $i \in\{1,2, \ldots, s\}$. If $p_{i}^{\delta_{i}}-\delta_{i} \geq-b \alpha-\beta$ then
$\delta_{i} \leq p_{i}^{\delta_{i}}+b \alpha_{i}+\beta_{i} \leq n-b-1+b \alpha_{i}+\beta_{i} \leq(n-1) \alpha_{i}+b\left(\alpha_{i}-1\right)+\beta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$.
thus the inequality $\delta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$ holds for $p_{i}^{\delta_{i}}-\delta_{i} \geq-b \alpha_{i}-\beta_{i}$. In particular, if $\delta_{i} \geq-b \alpha_{i}-\beta_{i}$ then

$$
p_{i}^{\delta_{i}}-\delta_{i} \geq p_{i}^{\delta_{i}}-p_{i}^{\delta_{i}-1} \geq p_{i}^{\delta_{i}-1} \geq \delta_{i} \geq-b \alpha_{i}-\beta_{i}
$$

and the inequality $\delta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$ holds.
We can summarize our discussion in the following:
Proposition 12. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{1}(b+$ 1) $h_{2}(b+1)=0$. Let $h_{2}(b)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ and $h_{1}(b)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdot \ldots \cdot p_{s}^{\beta_{s}} q_{1}^{\gamma_{1}} q_{2}^{\gamma_{2}} \cdot \ldots \cdot q_{t}^{\gamma_{t}}$ be the factorizations of numbers $h_{2}(b)$ and $h_{1}(b)$, respectively. Then for $n \in \mathbb{N}_{+}$,

$$
n-b-1\left|a_{n} \Leftrightarrow\right| n-b-1 \mid=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$. In particular,

- if $b \geq 0$ and $n \geq \max \{2, b\}$ then $n-b-1 \mid a_{n}$ if and only if

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \in \mathbb{N}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$;

- if $b<0$ and $n>0$ then $n-b-1 \mid a_{n}$ when

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$ and for each $i \in\{1,2, \ldots, s\}$ at least one of the equalities $p_{i}^{\delta_{i}}-\delta_{i} \geq-b \alpha_{i}-\beta_{i}, \delta_{i} \leq \beta_{i}$ holds.

The same consideration allows us to obtain the characterization of indices n such that $n-b-1 \mid a_{n}$ in case when $h_{1}(b) h_{2}(b)=0$ and $h_{1}(b+1) h_{2}(b+2) \neq 0$ and in case when $h_{2}(b)=h_{2}(b+1)=c$.

Proposition 13. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{1}(b) h_{2}(b)=$ 0 . Let $h_{2}(b+1)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ and $h_{1}(b+1)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdot \ldots \cdot p_{s}^{\beta_{s}} q_{1}^{\gamma_{1}} q_{2}^{\gamma_{2}} \cdot \ldots \cdot q_{t}^{\gamma_{t}}$ be the factorizations of numbers $h_{2}(b+1)$ and $h_{1}(b+1)$, respectively. Then for $n \in \mathbb{N}_{+}$,

$$
n-b-1\left|a_{n} \Leftrightarrow\right| n-b-1 \mid=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$. In particular,

- if $b \geq 0$ and $n \geq \max \{2, b\}$ then $n-b-1 \mid a_{n}$ if and only if

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \in \mathbb{N}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$;

- if $b<0$ and $n>0$ then $n-b-1 \mid a_{n}$ when

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$ and for each $i \in\{1,2, \ldots, s\}$ at least one of the equalities $p_{i}^{\delta_{i}}-\delta_{i} \geq-b \alpha_{i}-\beta_{i}, \delta_{i} \leq \beta_{i}$ holds.

Proposition 14. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{2}(b)=$ $h_{2}(b+1)=c \in \mathbb{Z}$. Let $c=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ and $h_{1}(b)+c h_{1}(b+1)=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdot \ldots \cdot p_{s}^{\beta_{s}} q_{1}^{\gamma_{1}} q_{2}^{\gamma_{2}}$. $\ldots \cdot q_{t}^{\gamma_{t}}$ be the factorizations of numbers c and $h_{1}(b)+c h_{1}(b+1)$, respectively. Then for $n \in \mathbb{N}_{+}$,

$$
n-b-1\left|a_{n} \Leftrightarrow\right| n-b-1 \mid=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \leq(n-1) \alpha_{i}+\beta_{i}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$. In particular,

- if $b \geq 0$ and $n \geq \max \{2, b\}$ then $n-b-1 \mid a_{n}$ if and only if

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\delta_{i} \in \mathbb{N}$ for $i \in\{1,2, \ldots, s\}$ and $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$;

- if $b<0$ and $n>0$ then $n-b-1 \mid a_{n}$ when

$$
|n-b-1|=p_{1}^{\delta_{1}} p_{2}^{\delta_{2}} \cdot \ldots \cdot p_{s}^{\delta_{s}} q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \cdot \ldots \cdot q_{t}^{\varepsilon_{t}}
$$

where $\varepsilon_{i} \leq \gamma_{i}$ for $i \in\{1,2, \ldots, t\}$ and for each $i \in\{1,2, \ldots, s\}$ at least one of the equalities $p_{i}^{\delta_{i}}-\delta_{i} \geq-b \alpha_{i}-\beta_{i}, \delta_{i} \leq \beta_{i}$ holds.
If $c=0$ or $h_{1}(b)+c h_{1}(b+1)=0$ then $n-b-1 \mid a_{n}$ for each $n>0$.
Proof. It suffices to see that if $n>0$ then $n-b-1\left|a_{n} \Leftrightarrow n-b-1\right| c^{n-1} h_{1}(b)+$ $c^{n} h_{1}(b+1)$.

Let us assume now that $h_{1}(b)=h_{1}(b+1)=c \neq 0$ and $h_{2}(b+1)= \pm 1$.
Proposition 15. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{1}(b)=$ $h_{1}(b+1)=c \neq 0$ and $h_{2}(b+1)=1$. If $n_{1}, n_{2}, n_{3} \in \mathbb{N}_{+}$are such that $n_{1}-b-1 \mid a_{n_{1}}$, $n_{2}-b-1\left|a_{n_{2}}, n_{3}-b-1\right| \operatorname{lcm}\left(n_{1}-b-1, n_{2}-b-1\right), v_{2}\left(n_{1}-1\right)=v_{2}\left(n_{2}-1\right)=v_{2}\left(n_{3}-1\right)$ and $\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right) \mid n_{3}-1$ then $n_{3}-b-1 \mid a_{n_{3}}$. In particular, if $b>0, a_{b+1}=0$ and $n_{2} \in \mathbb{N}_{+}$is such that $v_{2}\left(n_{2}-1\right)=v_{2}(b)$ and $n_{2}-b-1 \mid a_{n_{2}}$ then $n_{3}-b-1 \mid a_{n_{3}}$ for any $n_{3} \in \mathbb{N}_{+}$such that $\operatorname{lcm}\left(b, n_{2}-1\right) \mid n_{3}-1$ and $v_{2}\left(n_{3}-1\right)=v_{2}(b)$.

Proof. By (25) we know that $n-b-1 \mid a_{n}$ if and only if $n-b-1 \mid c h_{2}(b)^{n-1}+c$. Since $v_{2}\left(n_{1}-1\right)=v_{2}\left(n_{2}-1\right)=v_{2}\left(n_{3}-1\right)$, thus $\frac{n_{3}-1}{n_{1}-1}$ and $\frac{n_{3}-1}{n_{2}-1}$ are odd numbers. Hence we get

$$
h_{2}(b)^{n_{1}-1}+1, h_{2}(b)^{n_{2}-1}+1 \mid h_{2}(b)^{n_{3}-1}+1 .
$$

As a consequence we get

$$
\begin{aligned}
& n_{3}-b-1\left|\operatorname{lcm}\left(n_{1}-b-1, n_{2}-b-1\right)\right| \operatorname{lcm}\left(c\left(h_{2}(b)^{n_{1}-1}+1\right), c\left(h_{2}(b)^{n_{2}-1}+1\right)\right) \mid \\
& \mid c\left(h_{2}(b)^{n_{3}-1}+1\right)
\end{aligned}
$$

which means that $n_{3}-b-1 \mid a_{n_{3}}$.
Proposition 16. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{1}(b)=$ $h_{1}(b+1)=c \neq 0$ and $h_{2}(b+1)=-1$. If $n_{1}, n_{2}, n_{3} \in \mathbb{N}_{+}$are such that $n_{1}-b-1 \mid a_{n_{1}}$, $n_{2}-b-1\left|a_{n_{2}} n_{3}-b-1\right| \operatorname{lcm}\left(n_{1}-b-1, n_{2}-b-1\right)$ and $\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right) \mid n_{3}-1$ then $n_{3}-b-1 \mid a_{n_{3}}$. In particular, if $b>0, a_{b+1}=0$ and $n_{2} \in \mathbb{N}_{+}$is such that $n_{2}-b-1 \mid a_{n_{2}}$ then $n_{3}-b-1 \mid a_{n_{3}}$ for any $n_{3} \in \mathbb{N}_{+}$such that $\operatorname{lcm}\left(b, n_{2}-1\right) \mid n_{3}-1$.

Proof. By (25) we know that $n-b-1 \mid a_{n}$ if and only if $n-b-1 \mid c h_{2}(b)^{n-1}+(-1)^{n} c$. Since $\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right) \mid n_{3}-1$, thus

$$
\begin{aligned}
& h_{2}(b)^{n_{i}-1}-(-1)^{n_{i}-1}\left|h_{2}(b)^{\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right)}-(-1)^{\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right)}\right| \\
& \mid h_{2}(b)^{n_{3}-1}-(-1)^{n_{3}-1}
\end{aligned}
$$

for $i \in\{1,2\}$. Finally,
$n_{3}-b-1\left|\operatorname{lcm}\left(n_{1}-b-1, n_{2}-b-1\right)\right| \operatorname{lcm}\left(c\left(h_{2}(b)^{n_{1}-1}-(-1)^{n_{1}-1}\right), c\left(h_{2}(b)^{n_{2}-1}-(-1)^{n_{2}-1}\right)\right) \mid$
$\left|c\left(h_{2}(b)^{\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right)}-(-1)^{\operatorname{lcm}\left(n_{1}-1, n_{2}-1\right)}\right)\right| c\left(h_{2}(b)^{n_{3}-1}-(-1)^{n_{3}-1}\right)$,
which means that $n_{3}-b-1 \mid a_{n_{3}}$.
Similarly we can prove analogous propositions for $h_{1}(b)=h_{1}(b+1)=c \neq 0$ and $h_{2}(b)= \pm 1$.

Proposition 17. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{1}(b)=$ $h_{1}(b+1)=c \neq 0$ and $h_{2}(b)=1$. If $n_{1}, n_{2}, n_{3} \in \mathbb{N}_{+}$are such that $n_{1}-b-1 \mid a_{n_{1}}$, $n_{2}-b-1\left|a_{n_{2}}, n_{3}-b-1\right| \operatorname{lcm}\left(n_{1}-b-1, n_{2}-b-1\right), v_{2}\left(n_{1}\right)=v_{2}\left(n_{2}\right)=v_{2}\left(n_{3}\right)$ and $\operatorname{lcm}\left(n_{1}, n_{2}\right) \mid n_{3}$ then $n_{3}-b-1 \mid a_{n_{3}}$. In particular, if $b \geq 0, a_{b+1}=0$ and $n_{2} \in \mathbb{N}_{+}$is such that $v_{2}\left(n_{2}\right)=v_{2}(b+1)$ and $n_{2}-b-1 \mid a_{n_{2}}$ then $n_{3}-b-1 \mid a_{n_{3}}$ for any $n_{3} \in \mathbb{N}_{+}$such that $\operatorname{lcm}\left(b+1, n_{2}\right) \mid n_{3}$ and $v_{2}\left(n_{3}\right)=v_{2}(b+1)$.
Proposition 18. Let us consider a sequence $\mathbf{a}\left(X-b, h_{1}, h_{2}\right)$. Assume that $h_{1}(b)=$ $h_{1}(b+1)=c \neq 0$ and $h_{2}(b)=-1$. If $n_{1}, n_{2}, n_{3} \in \mathbb{N}_{+}$are such that $n_{1}-b-1 \mid a_{n_{1}}$, $n_{2}-b-1\left|a_{n_{2}}, n_{3}-b-1\right| \operatorname{lcm}\left(n_{1}-b-1, n_{2}-b-1\right)$ and $\operatorname{lcm}\left(n_{1}, n_{2}\right) \mid n_{3}$ then $n_{3}-b-1 \mid a_{n_{3}}$. In particular, if $b \geq 0, a_{b+1}=0$ and $n_{2} \in \mathbb{N}_{+}$is such that $n_{2}-b-1 \mid a_{n_{2}}$ then $n_{3}-b-1 \mid a_{n_{3}}$ for any $n_{3} \in \mathbb{N}_{+}$divisible by $\operatorname{lcm}\left(b+1, n_{2}\right)$.
Remark 4. If $b=0$ then due to Proposition 19 below we see that Propositions 17 and 18 are useful only in the case when $a_{1}=0$ beacause there holds:

Proposition 19. If $n_{1}, n_{2}, n_{3} \in \mathbb{N}_{+}$are such that $n_{3}-1 \mid \operatorname{lcm}\left(n_{1}-1, n_{2}-1\right)$ and $\operatorname{lcm}\left(n_{1}, n_{2}\right) \mid n_{3}$ then $n_{1} \mid n_{2}$ or $n_{2} \mid n_{1}$. Additionaly, if $n_{1}, n_{2}>1$ then $n_{3}=\max \left\{n_{1}, n_{2}\right\}$.
Proof. Let us write $d=\operatorname{gcd}\left(n_{1}, n_{2}\right), n_{1}=d n_{1}^{\prime}, n_{2}=d n_{2}^{\prime}$ and $n_{3}=k d n_{1}^{\prime} n_{2}^{\prime}$ for some $n_{1}^{\prime}, n_{2}^{\prime}, k \in \mathbb{N}_{+}$, where $\operatorname{gcd}\left(n_{1}^{\prime}, n_{2}^{\prime}\right)=1$. Since $n_{3}-1 \mid\left(n_{1}-1\right)\left(n_{2}-1\right)$, thus we have

$$
\begin{equation*}
k d n_{1}^{\prime} n_{2}^{\prime}-1 \mid d^{2} n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1 \tag{26}
\end{equation*}
$$

If $d=q k+r$ for some $q \in \mathbb{N}$ and $r \in\{0,1,2, \ldots, k-1\}$ then the divisibility (26) takes the form

$$
\begin{equation*}
k d n_{1}^{\prime} n_{2}^{\prime}-1 \mid q k d n_{1}^{\prime} n_{2}^{\prime}+r d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1 \tag{27}
\end{equation*}
$$

Since $k d n_{1}^{\prime} n_{2}^{\prime}-1 \mid q k d n_{1}^{\prime} n_{2}^{\prime}-q$, hence (27) is equivalent to

$$
\begin{equation*}
k d n_{1}^{\prime} n_{2}^{\prime}-1 \mid q+r d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1 \tag{28}
\end{equation*}
$$

If the number $k d n_{1}^{\prime} n_{2}^{\prime}-1$ is equal to 0 then $d=n_{1}^{\prime}=n_{2}^{\prime}=1$, which means that $n_{1}=n_{2}=1$. Hence, assume that one of the numbers n_{1}, n_{2} is greater than 1 . Then $k d n_{1}^{\prime} n_{2}^{\prime}-1>0$.

Let us consider the case $r=0$. If $q-d n_{1}^{\prime}-d n_{2}^{\prime}+1>0$ then by (28) there must be

$$
\begin{aligned}
& k d n_{1}^{\prime} n_{2}^{\prime}-1 \leq q-d n_{1}^{\prime}-d n_{2}^{\prime}+1 \\
\Longrightarrow & d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime} \leq k d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime} \leq q+2 \leq d+2 \\
\Longrightarrow & d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime}+d \leq 2 d+2 \\
\Longrightarrow & d\left(n_{1}^{\prime}+1\right)\left(n_{2}^{\prime}+1\right)-2 d \leq 2 \\
\Longrightarrow & d\left[\left(n_{1}^{\prime}+1\right)\left(n_{2}^{\prime}+1\right)-2\right] \leq 2,
\end{aligned}
$$

but $d\left[\left(n_{1}^{\prime}+1\right)\left(n_{2}^{\prime}+1\right)-2\right] \geq d(2 \cdot 2-2)=2 d \geq 2$ (because $\min \left\{d, n_{1}^{\prime}, n_{2}^{\prime}\right\} \geq 1$), hence $d=n_{1}^{\prime}=n_{2}^{\prime}=1$. Then $n_{1}=n_{2}=1$, but we assumed that one of the numbers n_{1}, n_{2} is greater than $1-$ a contradiction.

$$
\text { If } \begin{aligned}
& q-d n_{1}^{\prime}-d n_{2}^{\prime}+1<0 \text { then } \\
& k d n_{1}^{\prime} n_{2}^{\prime}-1 \leq\left|q-d n_{1}^{\prime}-d n_{2}^{\prime}+1\right|=-q+d n_{1}^{\prime}+d n_{2}^{\prime}-1 \\
& \quad k d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime} \leq-q \leq 0 \\
& \Longrightarrow(k-1) d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+d \leq d \\
& \Longrightarrow(k-1) d n_{1}^{\prime} n_{2}^{\prime}+d\left(n_{1}^{\prime}-1\right)\left(n_{2}^{\prime}-1\right)-d \leq 0 \\
& \Longrightarrow d\left[(k-1) n_{1}^{\prime} n_{2}^{\prime}+\left(n_{1}^{\prime}-1\right)\left(n_{2}^{\prime}-1\right)-1\right] \leq 0,
\end{aligned}
$$

which is possible only for $\left(k, n_{1}^{\prime}, n_{2}^{\prime}\right) \in\left\{(1,1, x),(1, x, 1),(1,2,2),(2,1,1): x \in \mathbb{N}_{+}\right\}$ (the condition $\left(k, n_{1}^{\prime}, n_{2}^{\prime}\right)=(1,2,2)$ does not hold because $n_{1}^{\prime}, n_{2}^{\prime}$ are coprime).

If $q-d n_{1}^{\prime}-d n_{2}^{\prime}+1=0$ then $d+1 \geq q+1=d\left(n_{1}^{\prime}+n_{2}^{\prime}\right)$, which means that $1 \geq d\left(n_{1}^{\prime}+n_{2}^{\prime}-1\right)$ and this holds only for $d, n_{1}^{\prime}, n_{2}^{\prime}=1$. Then $n_{1}=n_{2}=1-\mathrm{a}$ contradiction with the assumption that one of the numbers n_{1}, n_{2} is greater than 1.

Let us consider the case $r=1$. If $q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1>0$ then by (28) there must be

$$
\begin{aligned}
& k d n_{1}^{\prime} n_{2}^{\prime}-1 \leq q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1 \\
\Longrightarrow \quad & (k-1) d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime} \leq q+2 .
\end{aligned}
$$

Since $d n_{1}^{\prime}+d n_{2}^{\prime} \leq(k-1) d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime}$ and $q+2 \leq d+2$ we obtain the following chain of inequalities.

$$
\begin{aligned}
& d n_{1}^{\prime}+d n_{2}^{\prime} \leq d+2 \\
\Longrightarrow & d n_{1}^{\prime}+d n_{2}^{\prime}-d \leq 2 \\
\Longrightarrow & d\left(n_{1}^{\prime}+n_{2}^{\prime}-1\right) \leq 2
\end{aligned}
$$

The last inequality holds only if $\left(d, n_{1}^{\prime}, n_{2}^{\prime}\right) \in\{(1,1,2),(1,2,1),(2,1,1)\}$ because $\min \left\{d, n_{1}^{\prime}, n_{2}^{\prime}\right\} \geq 1$. However, for $d=2$, since $r=1$ and $k \in \mathbb{N}_{+}$, thus $k=1 \mid d$ and $r=0-$ a contradiction.

If $q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1<0$ then

$$
\begin{aligned}
& k d n_{1}^{\prime} n_{2}^{\prime}-1 \leq\left|q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1\right|=-q-d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime}-1 \\
\Longrightarrow & (k+1) d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime} \leq-q \leq 0, \\
\Longrightarrow & k d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+d-d \leq 0, \\
\Longrightarrow & d\left[k n_{1}^{\prime} n_{2}^{\prime}+\left(n_{1}^{\prime}-1\right)\left(n_{2}^{\prime}-1\right)-1\right] \leq 0,
\end{aligned}
$$

which is possible only for $k=n_{1}^{\prime}=n_{2}^{\prime}=1$.
If $q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1=0$ then

$$
\begin{aligned}
& d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+d-d+1=-q \leq 0 \\
\Longrightarrow \quad & d\left[\left(n_{1}^{\prime}-1\right)\left(n_{2}^{\prime}-1\right)-1\right]+1 \leq 0,
\end{aligned}
$$

which holds only for $n_{1}^{\prime}=1$ or $n_{2}^{\prime}=1$. Without loss of generality assume that $n_{2}^{\prime}=1$. Then $q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1=q+d n_{1}^{\prime}-d n_{1}^{\prime}-d+1=q-d+1=0$. Hence $q+1=d=q k+1$. If $q=0$ then $d=1$ and $n_{2}=1$. If $q>0$ then $k=1$.

Assume now that $r>1$. Then $q+r d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1>0$, so by (28) we have

$$
\begin{aligned}
& k d n_{1}^{\prime} n_{2}^{\prime}-1 \leq q+r d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1 \\
\Longrightarrow & (k-r) d n_{1}^{\prime} n_{2}^{\prime}+d n_{1}^{\prime}+d n_{2}^{\prime} \leq q+2 \leq d+2 \\
\Longrightarrow & d\left[(k-r) n_{1}^{\prime} n_{2}^{\prime}+n_{1}^{\prime}+n_{2}^{\prime}-1\right] \leq 2 .
\end{aligned}
$$

Since all the numbers $k-r, d, n_{1}^{\prime}, n_{2}^{\prime}$ are ≥ 1 and one of the values $d, n_{1}^{\prime}, n_{2}^{\prime}$ is >2 (because one of the values n_{1}, n_{2} is >2), thus $d\left[(k-r) n_{1}^{\prime} n_{2}^{\prime}+n_{1}^{\prime}+n_{2}^{\prime}-1\right]>2$ - a contradiction.

Summing up our discussion, we see that if the assumptions of the proposition are satisfied then $n_{1}^{\prime}=1$ or $n_{2}^{\prime}=1$, which means that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=d$ is equal to n_{1} or n_{2}. Thus $n_{1} \mid n_{2}$ or $n_{2} \mid n_{1}$.

If $n_{1}, n_{2}>1$ then one of the following conditions holds:

- $r=0$ and $q-d n_{1}^{\prime}-d n_{2}^{\prime}+1<0$;
- $r=1$ and $q+d n_{1}^{\prime} n_{2}^{\prime}-d n_{1}^{\prime}-d n_{2}^{\prime}+1=0$.

However, then we have $k=1$, which means that $n_{3}=k d n_{1}^{\prime} n_{2}^{\prime}=\operatorname{lcm}\left(n_{1}, n_{2}\right)=$ $\max \left\{n_{1}, n_{2}\right\}$.

5. Arithmetic properties of the sequences of even and odd DERANGEMENTS

The knowledge of arithmetic properties of the sequence of derangements suggests us to explore the sequences of numbers of even and odd derangements. Let us denote by $D_{n}^{(e)}$ the number of all even derangements of an n-element set, i. e. the number of all even permutations of a set with n elements which have no fixed points. Similarly, let $D_{n}^{(o)}$ denote the number of all odd derangements of a set with n elements. The sequences $\left(D_{n}^{(e)}\right)_{n \in \mathbb{N}}$ and $\left(D_{n}^{(o)}\right)_{n \in \mathbb{N}}$ satisfy the following system of recurrence relations

$$
\begin{gather*}
D_{0}^{(e)}=1, D_{1}^{(e)}=0, D_{0}^{(o)}=0, D_{1}^{(o)}=0 \\
D_{n}^{(e)}=(n-1)\left(D_{n-2}^{(o)}+D_{n-1}^{(o)}\right), D_{n}^{(o)}=(n-1)\left(D_{n-2}^{(e)}+D_{n-1}^{(e)}\right), n \geq 2 \tag{29}
\end{gather*}
$$

The first terms of the sequences $\left(D_{n}^{(e)}\right)_{n \in \mathbb{N}}$ and $\left(D_{n}^{(o)}\right)_{n \in \mathbb{N}}$ are presented in the table below.

n	0	1	2	3	4	5	6	7	8	9	10
$D_{n}^{(e)}$	1	0	0	2	3	24	130	930	7413	66752	667476
$D_{n}^{(o)}$	0	0	1	0	6	20	135	924	7420	66744	667485

The relation $D_{n}^{(e)}=(n-1)\left(D_{n-2}^{(o)}+D_{n-1}^{(o)}\right), n \geq 2$, is provided by the following argument. Each even derangement σ of the set $\{1,2, \ldots, n\}$ can be written in the form $\sigma=\sigma \circ(n, \sigma(n)) \circ(n, \sigma(n))$, where $\sigma \circ(n, \sigma(n))$ is an odd permutation with one or two fixed points. Thus $\sigma \circ(n, \sigma(n))$ can be treated as a derangement of a set with $n-2$ or $n-1$ elements, so it can be chosen in $D_{n-2}^{(o)}+D_{n-1}^{(o)}$ ways. Furthermore, the number $\sigma(n)$ can be chosen in $n-1$ ways. The relation $D_{n}^{(e)}=$ $(n-1)\left(D_{n-2}^{(o)}+D_{n-1}^{(o)}\right), n \geq 2$, can be explained in the same way.

Certainly $D_{n}^{(o)}+D_{n}^{(e)}=D_{n}$ for $n \in \mathbb{N}$. From the relations (29) we can compute $D_{n}^{(o)}-D_{n}^{(e)}$ which will allow us to write $D_{n}^{(o)}$ and $D_{n}^{(e)}$ as expressions dependent only on D_{n}.
Proposition 20. $D_{n}^{(o)}-D_{n}^{(e)}=(-1)^{n}(n-1)$ for $n \in \mathbb{N}$.
Proof. Obviously the equality is true for $n \in\{0,1\}$. Assume now that $n \geq 2$ and the equality holds for $n-2$ and $n-1$. Then

$$
\begin{aligned}
& D_{n}^{(o)}-D_{n}^{(e)}=(n-1)\left[D_{n-2}^{(e)}+D_{n-1}^{(e)}-D_{n-2}^{(o)}-D_{n-1}^{(o)}\right] \\
= & (n-1)\left[D_{n-2}^{(e)}-D_{n-2}^{(o)}+D_{n-1}^{(e)}-D_{n-1}^{(o)}\right] \\
= & (n-1)\left[-(-1)^{n-2}(n-3)-(-1)^{n-1}(n-2)\right] \\
= & (-1)^{n}(n-1)[-(n-3)+(n-2)]=(-1)^{n}(n-1) .
\end{aligned}
$$

Corollary 5. $D_{n}^{(o)}=\frac{D_{n}+(-1)^{n}(n-1)}{2}=\frac{1}{2}\left[\sum_{j=0}^{n-1} \frac{n!}{j!}(-1)^{j}+(-1)^{n} n\right]$, $D_{n}^{(e)}=\frac{D_{n}-(-1)^{n}(n-1)}{2}=\frac{1}{2}\left[\sum_{j=0}^{n-1} \frac{n!}{j!}(-1)^{j}-(-1)^{n}(n-2)\right]$ for $n \in \mathbb{N}$.

The formulae in Corollary 5 combined with properties of the sequence of derangements will give us properties of the sequences of even and odd derangements.

First, we establish the asymptotics of $\left(D_{n}^{(e)}\right)_{n \in \mathbb{N}}$ and $\left(D_{n}^{(o)}\right)_{n \in \mathbb{N}}$. Directly from Corollary 5 and the fact that $\lim _{n \rightarrow+\infty} \frac{D_{n}}{n!}=\frac{1}{e}$ we obtain the following:
Proposition 21. $\lim _{n \rightarrow+\infty} \frac{D_{n}^{(e)}}{n!}=\lim _{n \rightarrow+\infty} \frac{D_{n}^{(o)}}{n!}=\frac{1}{2 e}$

Now we show periodicity of sequences of remainders $\left(D_{n}^{(o)}(\bmod d)\right)_{n \in \mathbb{N}}$ and $\left(D_{n}^{(e)}(\bmod d)\right)_{n \in \mathbb{N}}$ for a given positive integer $d>1$ and compute their basic period.

Proposition 22. Let $d>1$ be a positive integer. Then the sequences $\left(D_{n}^{(o)}\right.$ $(\bmod d))_{n \in \mathbb{N}}$ and $\left(D_{n}^{(e)}(\bmod d)\right)_{n \in \mathbb{N}}$ are periodic with period $2 d$.

Proof. We will present the proof only for the sequence $\left(D_{n}^{(o)}(\bmod d)\right)_{n \in \mathbb{N}}$ because the same argument allows us to claim that $\left(D_{n}^{(e)}(\bmod d)\right)_{n \in \mathbb{N}}$ is periodic of period $2 d$.

Recall from Section 4.1 that the basic period of the sequence of remainders $\left(D_{n}(\bmod d)\right)_{n \in \mathbb{N}}$ is equal to d if $2 \mid d$ and $2 d$ otherwise. The sequence $\left((-1)^{n}\right.$ $(\bmod d))_{n \in \mathbb{N}}$ has period 2 for $d>2$ and is constant for $d=2$. Obviously, the sequence $(n-1(\bmod d))_{n \in \mathbb{N}}$ has period d. Thus, if $2 \nmid d$ then the sequence $\left(2 D_{n}^{(o)}\right.$ $(\bmod d))_{n \in \mathbb{N}_{2}}=\left(D_{n}+(-1)^{n}(n-1)(\bmod d)\right)_{n \in \mathbb{N}}$ is periodic of period $2 d$, so does the sequence $\left(D_{n}^{(o)}(\bmod d)\right)_{n \in \mathbb{N}_{2}}$. If $2 \mid d$ then $2 d$ is a period of the sequence $\left(2 D_{n}^{(o)}(\bmod 2 d)\right)_{n \in \mathbb{N}}=\left(D_{n}+(-1)^{n}(n-1)(\bmod 2 d)\right)_{n \in \mathbb{N}}$, hence the sequence $\left(D_{n}^{(o)}(\bmod d)\right)_{n \in \mathbb{N}_{2}}$ has period $2 d$.

The relations (29) show us that $n-1 \mid D_{n}^{(e)}, D_{n}^{(o)}$ for each $n \in \mathbb{N}$. Let us put $E_{n}^{(e)}=\frac{D_{n}^{(e)}}{n-1}=D_{n-2}^{(o)}+D_{n-1}^{(o)}$ and $E_{n}^{(o)}=\frac{D_{n}^{(o)}}{n-1}=D_{n-2}^{(e)}+D_{n-1}^{(e)}$ for $n \geq 2$. Recall that in Section 4.1.3 we defined $E_{n}=\frac{D_{n}}{n-1}$ for $n \geq 2$. Using Corollary 5 we can write

$$
E_{n}^{(e)}=\frac{E_{n}-(-1)^{n}}{2}, E_{n}^{(o)}=\frac{E_{n}+(-1)^{n}}{2}, n \geq 2
$$

Let $\widetilde{E}_{n}^{(e)}=(-1)^{n} E_{n}^{(e)}$ and $\widetilde{E}_{n}^{(o)}=(-1)^{n} E_{n}^{(o)}$ for $n \geq 2$. Using Corollary 55, for $n \geq 2$ we obtain

$$
\left.\begin{array}{rl}
\widetilde{E}_{n}^{(e)} & =(-1)^{n}\left(D_{n-2}^{(o)}+D_{n-1}^{(o)}\right)
\end{array}\right)=\frac{1}{2}\left(\widetilde{D}_{n-2}+(n-3)-\widetilde{D}_{n-1}-(n-2)\right), ~\left(\widetilde{D}_{n-2}-\widetilde{D}_{n-1}-1\right)=\frac{1}{2}\left(\widetilde{E}_{n}-1\right)
$$

and similarly

$$
\begin{aligned}
& \widetilde{E}_{n}^{(o)}=(-1)^{n}\left(D_{n-2}^{(e)}+D_{n-1}^{(e)}\right) \\
&=\frac{1}{2}\left(\widetilde{D}_{n-2}-(n-3)-\widetilde{D}_{n-1}+(n-2)\right) \\
&=\frac{1}{2}\left(\widetilde{D}_{n-2}-\widetilde{D}_{n-1}+1\right)=\frac{1}{2}\left(\widetilde{E}_{n}+1\right),
\end{aligned}
$$

where $\widetilde{E}_{n}=(-1)^{n} E_{n}=\widetilde{D}_{n-2}-\widetilde{D}_{n-1}$. Since for each positive integer $d>1$ the sequence $\left(\widetilde{D}_{n}(\bmod d)\right)_{n \in \mathbb{N}}$ is periodic of period d, hence the sequences $\left(\widetilde{E}_{n}^{(e)}\right.$ $(\bmod d))_{n \in \mathbb{N}}$ and $\left(\widetilde{E}_{n}^{(o)}(\bmod d)\right)_{n \in \mathbb{N}}$ are periodic of period d, if $2 \nmid d$, and $2 d$ otherwise. Hence, if $2 \nmid d$ and $n_{1} \equiv n_{2}(\bmod d)$, or $2 \mid d$ and $n_{1} \equiv n_{2}(\bmod 2 d)$ then $d\left|E_{n_{1}}^{(e)} \Longleftrightarrow d\right| E_{n_{2}}^{(e)}$ and $d\left|E_{n_{1}}^{(o)} \Longleftrightarrow d\right| E_{n_{2}}^{(o)}$. If we combine this with the fact that $E_{2}^{(e)}=E_{3}^{(o)}=0$ then we obtain the following divisibilities.

Proposition 23. The following divisibilities hold:

- If $2 \nmid d$ then $d \left\lvert\, \frac{D_{m d+2}^{(e)}}{m d+1}\right., \frac{D_{m d+3}^{(o)}}{m d+2}$ for all $m \in \mathbb{N}$. In particular, $d(m d+1) \mid$ $D_{m d+2}^{(e)}$ and $d(m d+2) \mid D_{m d+3}^{(o)}$.
- If $2 \mid d$ then $d \left\lvert\, \frac{D_{2 m d+2}^{(e)}}{2 m d+1}\right., \frac{D_{2 m d+3}^{(o)}}{2 m d+2}$ for all $m \in \mathbb{N}$. In particular, $d(2 m d+1) \mid$ $D_{2 m d+2}^{(e)}$ and $d(2 m d+2) \mid D_{2 m d+3}^{(o)}$.

If we substitute $d=p^{k}$, where p is a prime number and k is a positive integer then we infer that p^{k} divides numbers $E_{n}^{(e)}$ and $E_{m}^{(o)}$ for infinitely many $n, m \in \mathbb{N}$. This means that each prime number p divides numbers $E_{n}^{(e)}$ and $E_{m}^{(o)}$ for some $n, m \in \mathbb{N}$ and p-adic valuation on the sets $\left\{E_{n}^{(e)}\right\}_{n \in \mathbb{N}_{2}}$ and $\left\{E_{n}^{(o)}\right\}_{n \in \mathbb{N}_{2}}$ is unbounded. These facts are in striking opposition to results on prime divisors and p-adic valuations of numbers $E_{n}, n \in \mathbb{N}$. Let us recall that not each prime number p divides E_{n} for some $n \in \mathbb{N}$ and even when p does divide E_{n} for some $n \in \mathbb{N}$ then p-adic valuation can be bounded (this situation happens for $p=2633$).

Despite the fact that p-adic valuation of numbers $E_{n}^{(e)}$ and $E_{n}^{(o)}, n \in \mathbb{N}$, is unbounded, one can check its behavior. This task is simple, since the sequences $\left(2 E_{n}^{(e)}\right)_{n \in \mathbb{N}_{2}}$ and $\left(2 E_{n}^{(o)}\right)_{n \in \mathbb{N}_{2}}$ have pseudo-polynomial decomposition modulo p on the set $\{n \in \mathbb{N}: n \geq 2\}$. For $n \geq 2$ we have

$$
\begin{align*}
& 2 E_{n}^{(e)}=2(-1)^{n} \widetilde{E}_{n}^{(e)}=(-1)^{n}\left(\widetilde{E}_{n}-1\right) \\
& 2 E_{n}^{(o)}=2(-1)^{n} \widetilde{E}_{n}^{(o)}=(-1)^{n}\left(\widetilde{E}_{n}+1\right) \tag{30}
\end{align*}
$$

and $\left(f_{p, k}(X-2)-f_{p, k}(X-1), 1\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition of $\left(\widetilde{E}_{n}\right)_{n \in \mathbb{N}_{2}}$, where $f_{p, k}=\sum_{j=0}^{k p-1}(-1)^{j} \prod_{i=0}^{j-1}(X-i), k>1$ (see Section 4.1.3). Hence $\left(f_{p, k}(X-2)-f_{p, k}(X-1)-1,(-1)^{n}\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition of $\left(2 E_{n}^{(e)}\right)_{n \in \mathbb{N}_{2}}$ and $\left(f_{p, k}(X-2)-f_{p, k}(X-1)+1,(-1)^{n}\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition of $\left(2 E_{n}^{(o)}\right)_{n \in \mathbb{N}_{2}}$.

Theorem 14. Let $p \in \mathbb{P}, k \in \mathbb{N}_{+}$and $n_{k} \geq 2$ be such an integer that $p^{k} \left\lvert\, \frac{D_{n_{k}}^{(e)}}{n_{k}-1}\right.$. Let us define $q_{p}\left(n_{k}\right)=\frac{2}{p}\left(\frac{(-1)^{n_{k}+p} D_{n_{k}+p}^{(e)}}{n_{k}+p-1}-\frac{(-1)^{n_{k}} D_{n_{k}}^{(e)}}{n_{k}-1}\right)=\frac{2}{p}\left(\frac{(-1)^{n_{k}+p} D_{n_{k}+p}^{(o)}}{n_{k}+p-1}-\frac{(-1)^{n_{k}} D_{n_{k}}^{(o)}}{n_{k}-1}\right)$ (where the last equality holds because of equations (30)).

For $p>2$ we have the following implications.

- If $p \nmid q_{p}\left(n_{k}\right)$ then there exists a unique n_{k+1} modulo p^{k+1} such that $n_{k+1} \equiv$ $n_{k}\left(\bmod p^{k}\right)$ and $p^{k+1} \left\lvert\, \frac{D_{n}^{(e)}}{n-1}\right.$ for all $n \geq 2$ congruent to n_{k+1} modulo p^{k+1}. What is more, $n_{k+1} \equiv n_{k}-\frac{D_{n_{k}}^{(e)}}{\left(n_{k}-1\right) q_{p}\left(n_{k}\right)}\left(\bmod p^{k+1}\right)$.
- If $p \mid q_{p}\left(n_{k}\right)$ and $p^{k+1} \left\lvert\, \frac{D_{n_{k}}^{(e)}}{n_{k}-1}\right.$ then $p^{k+1} \left\lvert\, \frac{D_{n}^{(e)}}{n-1}\right.$ for all n satisfying $n \equiv n_{k}$ $\left(\bmod p^{k}\right)$ and $n \geq 2$.
- If $p \mid q_{p}\left(n_{k}\right)$ and $p^{k+1} \nmid \frac{D_{n_{k}}^{(e)}}{n_{k}-1}$ then $p^{k+1} \nmid \frac{D_{n}^{(e)}}{n-1}$ for any n satisfying $n \equiv n_{k}$ $\left(\bmod p^{k}\right)$ and $n \geq 2$.
In particular, if $k=1, p \left\lvert\, \frac{D_{n_{1}}^{(e)}}{n_{1}-1}\right.$ and $p \nmid \frac{2}{p}\left(\frac{D_{n_{1}+p}^{(e)}}{n_{1}+p-1}+\frac{D_{n_{1}}^{(e)}}{n_{1}-1}\right)$ then for any $l \in \mathbb{N}_{+}$ there exists a unique n_{l} modulo p^{l} such that $n_{l} \equiv n_{1}(\bmod p)$ and $v_{p}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l$ for all $n \geq 2$ congruent to n_{l} modulo p^{l}. Moreover, n_{l} satisfies the congruence $n_{l} \equiv n_{l-1}-\frac{D_{n_{l-1}}^{(e)}}{\left(n_{l-1}-1\right) q_{p}\left(n_{1}\right)}\left(\bmod p^{l}\right)$ for $l>1$.

If $p=2$ then for each $n_{1} \geq 2$ and $l \in \mathbb{N}_{+}$there exists a unique n_{l} modulo 2^{l} such that $n_{l} \equiv n_{1}(\bmod 2)$ and $v_{2}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l-1$ for all $n \geq 2$ congruent to n_{l} modulo 2^{l}. Moreover, n_{l} satisfies the congruence $n_{l} \equiv n_{l-1}-\frac{D_{n_{l-1}}^{(e)}}{\left(n_{l-1}-1\right) q_{2}\left(n_{1}\right)}$ $\left(\bmod 2^{l}\right)$ for $l>1$.

The whole statement above remains true, if we change $D_{n}^{(e)}$ by $D_{n}^{(o)}$.

Proof. We apply Theorem [1 to the sequences $\left(\frac{2 D_{n}^{(e)}}{n-1}\right)_{n \in \mathbb{N}_{2}}$ and $\left(\frac{2 D_{n}^{(o)}}{n-1}\right)_{n \in \mathbb{N}_{2}}$ and use the obvious fact that $v_{2}\left(\frac{D_{n}^{(e)}}{n-1}\right)=v_{2}\left(\frac{2 D_{n}^{(e)}}{n-1}\right)-1$ and $v_{p}\left(\frac{D_{n}^{(e)}}{n-1}\right)=v_{p}\left(\frac{2 D_{n}^{(e)}}{n-1}\right)$ for prime number $p>2$.

For $p=2, q_{2}(2)=1$ and $q_{2}(3)=-5$ are odd, so Theorem 1 gives us precise description of 2-adic valuation of numbers $\frac{2 D_{n}^{(e)}}{n-1}$ and $\frac{2 D_{n}^{(o)}}{n-1}, n \in \mathbb{N}_{2}$.
Corollary 6. We have the following formulae for p-adic valuations of numbers $\frac{D_{n}^{(e)}}{n-1}$ and $\frac{D_{n}^{(o)}}{n-1}$:

- $v_{2}\left(\frac{D_{n}^{(e)}}{n-1}\right)=v_{2}(n-2)-1$ for even $n \geq 2$.
- $v_{2}\left(\frac{D_{n}^{(o)}}{n-1}\right)=v_{2}(n-3)-1$ for odd $n \geq 2$.
- If p is an odd prime number and $p \nmid q_{p}(2)$ then $v_{p}\left(\frac{D_{n}^{(e)}}{n-1}\right)=v_{p}(n-2)$ for $n \equiv 2(\bmod p)$.
- If p is an odd prime number and $p \nmid q_{p}(3)$ then $v_{p}\left(\frac{D_{n}^{(o)}}{n-1}\right)=v_{p}(n-3)$ for $n \equiv 3(\bmod p)$.
Proof. By Theorem [14) for $l \in \mathbb{N}_{+}$the only n_{l} modulo p^{l}, such that $n_{l} \equiv 2(\bmod p)$ and $v_{p}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l$ (respectively $v_{2}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l-1$) for any $n \geq 2$ congruent to n_{l} modulo p^{l}, is equal to 2 . Hence, if $n \equiv 2(\bmod p)$ and $n \geq 2$ then $v_{p}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l$ (respectively $\left.v_{2}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l-1\right)$ if and only if $v_{p}(n-2) \geq l$.

In a similar way we can prove the equalities of p-adic valuations of numbers $\frac{D_{n}^{(o)}}{n-1}$.

According to numerical computations, among all odd prime numbers $p<10^{6}$, if $p \left\lvert\, \frac{D_{n_{1}}^{(e)}}{n_{1}-1}\right.$ then $p \nmid q_{p}\left(n_{1}\right)$. Thus, for any $l \in \mathbb{N}_{+}$there exists a unique n_{l} modulo p^{l} such that $n_{l} \equiv n_{1}(\bmod p)$ and $v_{p}\left(\frac{D_{n}^{(e)}}{n-1}\right) \geq l$ for all $n \geq 2$ congruent to n_{l} modulo p^{l}. Summing up, if $p<10^{6}$ then we have the description of p-adic valuation of numbers $\frac{D_{n}^{(e)}}{n-1}, n \geq 2$. It is natural to ask the following question.
Question 4. Is there any prime number p and a positive integer $n_{1} \geq 2$ such that $p \left\lvert\, \frac{D_{n}^{(e)}}{n_{1}-1}\right.$ and $p \mid q_{p}\left(n_{1}\right)$?

In case of the sequence of odd derangements $\left(D_{n}^{(o)}\right)_{n \in \mathbb{N}}$, the trial of description of p-adic valuations of numbers $D_{n}^{(o)}, n \in \mathbb{N}$, comes down to description of p-adic valuations of numbers $D_{n}, n \in \mathbb{N}$. In fact, the number $D_{n}^{(o)}$ of odd derangements of n-element set is equal to the number of all permutations of n-element set with exactly two fixed points, when $n \geq 2$ (see [20]). The number of all permutations of n-element set with exactly two fixed points equals $\frac{n(n-1)}{2} D_{n-2}$ because we choose two fixed points in $\binom{n}{2}$ ways and we treat a permutation as an derangement of a set with $n-2$ elements.
Proposition 24. $D_{n}^{(o)}=\frac{n(n-1)}{2} D_{n-2}$ for $n \geq 2$.
Proof. We know from Section 4.3 that

$$
\begin{equation*}
D_{n}=n(n-1) D_{n-2}+(-1)^{n} f_{2}(n) \tag{31}
\end{equation*}
$$

for each $n \in \mathbb{N}_{2}$. Recalling that $f_{2}=1-X$ the equality (31) takes the form

$$
D_{n}=n(n-1) D_{n-2}-(-1)^{n}(n-1), n \in \mathbb{N}_{2}
$$

Hence

$$
D_{n}^{(o)}=\frac{D_{n}+(-1)^{n}(n-1)}{2}=\frac{n(n-1)}{2} D_{n-2}
$$

for every $n \in \mathbb{N}_{2}$, which completes the proof.
Hence, $v_{p}\left(D_{n}^{(o)}\right)=v_{p}\left(\frac{n(n-1)}{2}\right)+v_{p}\left(D_{n-2}\right)$ for each $n \geq 2$ and $p \in \mathbb{P}$. What is more, since $E_{n}=\frac{D_{n}}{n-1}$ and $E_{n}^{(o)}=\frac{D_{n}^{(o)}}{n-1}$ for $n \geq 2$, thus we have $v_{p}\left(E_{n}^{(o)}\right)=$ $v_{p}\left(\frac{n(n-1)}{2}\right)+v_{p}\left(E_{n-2}\right)$ for each $n \geq 4$ and $p \in \mathbb{P}$.

6. Some diophantine equations with numbers of derangements

6.1. Diophantine equations involving factorials. Diophantine equations involving terms of given sequences are a subject of interest of number theorists. There are many papers concerning problems of the following type: when a term of a given sequence is a factorial or sum, difference or product of factorials (see [2], [5], [6], [7], 8], [14], [15], [16], [17, [23]).

Using information about 2 -adic valuations of numbers of derangements we will prove that $D_{0}=D_{2}=1$ and $D_{3}=2$ are the unique numbers of derangements being factorials.

Proposition 25. All the solutions (n, m) of the diophantine equation $D_{n}=m$!, $n, m \in \mathbb{N}_{+}$, are $(2,1)$ and $(3,2)$.

Proof. If $D_{n}=m!$ then $v_{2}\left(D_{n}\right)=v_{2}(m!)$. We know that $v_{2}\left(D_{n}\right)=v_{2}(n-1)$ for any nonnegative integer n. Therefore $v_{2}(n-1)=v_{2}(m!)$, which means that $n-1 \geq 2^{v_{2}(n-1)}=2^{v_{2}(m!)}$. If $n>1$ then $D_{n} \geq D_{1+2^{v_{2}(m!)}}$. If we denote the number $1+2^{v_{2}(m!)}$ by $M(m)$ and use the formula $D_{M(m)}=\left\lfloor\frac{M(m)!}{e}+\frac{1}{2}\right\rfloor$ then we obtain $m!=D_{n} \geq D_{M(m)} \geq \frac{M(m)!}{e}-\frac{1}{2}$.

However, we will prove by induction on m that $m!<\frac{M(m)!}{e}-\frac{1}{2}$ for $m \geq 4$. Indeed, $4!<\frac{M(4)!}{e}-\frac{1}{2}=\frac{9!}{e}-\frac{1}{2}$ and $5!<\frac{M(5)!}{e}-\frac{1}{2}=\frac{9!}{e}-\frac{1}{2}$. Assume now that $m!<\frac{M(m)!}{e}-\frac{1}{2}$ for some integer $m \geq 4$. Then

$$
\begin{aligned}
(m+2)! & =m!\cdot(m+1)(m+2)<(m+1)(m+2)\left(\frac{M(m)!}{e}-\frac{1}{2}\right)< \\
& <(m+1)(m+2) \frac{M(m)!}{e}-\frac{1}{2}
\end{aligned}
$$

It suffices to show that $M(m)!\cdot(m+1)(m+2) \leq M(m+2)$!. Since $m!<\frac{M(m)!}{e}-\frac{1}{2}$, thus $m<M(m)$. We know that $v_{2}((m+2)!)>v_{2}(m!)$, so $M(m+2)-M(m) \geq 2$. Hence

$$
M(m)!\cdot(m+1)(m+2)<M(m)!\cdot(M(m)+1)(M(m)+2) \leq M(m+2)
$$

and we are done. We proved that $m!<\frac{M(m)!}{e}-\frac{1}{2}$ for $m \geq 4$.
Summing up, if $D_{n}=m$! then $m \leq 3$. Finally, we check one by one for each $m \in\{0,1,2,3\}$ that $D_{0}=D_{2}=1$ and $D_{3}=2$ are the only factorials in the sequence of derangements.

We can generalize the result above as follows.
Proposition 26. For any positive rational number q the diophantine equation $D_{n}=q \cdot m!$ has only finitely many solutions $(n, m) \in \mathbb{N}_{+}^{2}$ and these solutions satisfy the inequality $q \cdot m!>\frac{\left(1+2^{v_{2}(q)+v_{2}(m!)}\right)!}{e}-\frac{1}{2}$.

Proof. If $D_{n}=q \cdot m$! then $v_{2}(n-1)=v_{2}\left(D_{n}\right)=v_{2}(q)+v_{2}(m!)$ and $n-1 \geq$ $2^{v_{2}(n-1)}=2^{v_{2}(q)+v_{2}(m!)}$. The product $q \cdot m!$ is an integer, thus $v_{2}(q)+v_{2}(m!) \geq 0$. If $n>1$ then $D_{n} \geq D_{1+2^{v_{2}(q)+v_{2}(m!)}}$. Let us put $M(m)=1+2^{v_{2}(q)+v_{2}(m!)}$. We use the formula $D_{M(m)}=\left\lfloor\frac{M(m)!}{e}+\frac{1}{2}\right\rfloor$ and get

$$
q \cdot m!=D_{n} \geq D_{M(m)}>\frac{M(m)!}{e}-\frac{1}{2}
$$

However, if we apply Legendre's formula $v_{2}(m!)=m-s_{2}(m)$ (where $s_{2}(m)$ is the sum of binary digits of a number m) then we get the following limit:

$$
\begin{array}{r}
\lim _{m \rightarrow+\infty} \frac{M(m)}{m}=\lim _{m \rightarrow+\infty} \frac{1+2^{v_{2}(q)+v_{2}(m!)}}{m} \geq \lim _{m \rightarrow+\infty} \frac{2^{v_{2}(q)+m-s_{2}(m)}}{m} \geq \\
\geq \lim _{m \rightarrow+\infty} \frac{2^{v_{2}(q)+m-\log _{2} m-1}}{m}=\lim _{m \rightarrow+\infty} \frac{2^{v_{2}(q)+m-1}}{m^{2}}=+\infty
\end{array}
$$

Therefore we conclude that $\lim _{m \rightarrow+\infty} \frac{\frac{M(m)!}{e}-\frac{1}{2}}{q \cdot m!}=+\infty$, which implies that $q \cdot m!<$ $\frac{M(m)!}{e}-\frac{1}{2}$ for $m \gg 0$.

Hence there exists a positive integer m_{0} such that if $D_{n}=q \cdot m!$ then $m<$ m_{0}.

It is worth to notice that the set of positive rational values q such that the equation $D_{n}=q \cdot m$! has a solution $(n, m) \in \mathbb{N}_{+}^{2}$ is a discrete subset of the real halfline $[0,+\infty$) (with respect to Euclidean topology) with exactly one accumulation point 0 . It is obvious that this set is exactly the set $S:=\left\{\frac{D_{n}}{m!}: n \in \mathbb{N}_{2}, m \in \mathbb{N}_{+}\right\}$. Hence it suffices to prove that for each $k \in \mathbb{N}_{+}$the set $S_{k}:=S \cap\left[\frac{1}{k e},+\infty\right)$ is discrete without accumulation points. First of all we show that the set S_{1} is discrete without accumulation points. If $\frac{1}{e} \leq \frac{D_{n}}{m!}$ then using the fact that $D_{n} \in\left(\frac{n!}{e}-\frac{1}{n}, \frac{n!}{e}+\frac{1}{n}\right)$ we conclude the inequality

$$
\frac{1}{e} \leq \frac{n!}{e \cdot m!}+\frac{1}{n \cdot m!}
$$

The above inequality is equivalent to the following one:

$$
m!\leq n!+\frac{e}{n}
$$

which is satisfied, if $m \leq n$. Hence the set S_{1} consists of values which are "close" to
 accumulation points. Now it remains us to prove that for each $k \in \mathbb{N}_{+}$there are only finitely many tuples (n, m) such that $\frac{D_{n}}{m!} \in S_{k}$ and $m>n$. Such tuples satisfy the inequality
which is equivalent to

$$
\frac{1}{k e} \leq \frac{n!}{e \cdot m!}+\frac{1}{n \cdot m!}
$$

$$
m \cdot \ldots \cdot(n+1) \leq k+\frac{k e}{n \cdot n!}
$$

Since $n \geq 2$, we have $k+\frac{k e}{n \cdot n!}<2 k$ and the inequality $m \cdot \ldots \cdot(n+1)<2 k$ has only finitely many solutions $(n, m) \in \mathbb{N}_{2} \times \mathbb{N}_{+}$with $n<m$. Hence for any $k \in \mathbb{N}_{+}$ the set S_{k} is discrete and has no accumulation points. Finally S is discrete. Any positive real number x is not an accumulation point of the set S since $x \in S_{k}$ for some $k \in \mathbb{N}_{+}$and S_{k} has no accumulation points. The number 0 is an accumulation point of S because $\lim _{m \rightarrow+\infty} \frac{D_{n}}{m!}=0$ for arbitrary $n \in \mathbb{N}_{2}$.

On the other hand, there are infinitely many positive rational values q such that the diophantine equation $D_{n}=q \cdot m$! has at least two solutions of the form $\left(n_{0}, m_{0}\right),\left(n_{1}, m_{0}+1\right)$. Namely, we set $q=\frac{D_{n_{0}}}{m_{0}!}$. Then $\frac{D_{n_{1}}}{\left(m_{0}+1\right)!}=\frac{D_{n_{0}}}{m_{0}!}$ if and only if $m_{0}+1=\frac{D_{n_{1}}}{D_{n_{0}}}$. Hence, it suffices to set $n_{0}, n_{1} \in \mathbb{N}_{2}$ such that $D_{n_{0}} \mid D_{n_{1}}$ (this
condition holds for example when $D_{n_{0}} \mid n_{1}-1$, but not only in this case, which shows the example $n_{0}=5$ and $n_{1}=49$, where $D_{5}=44 \mid D_{4} 9$ and $\left.44 \nmid 48\right)$ and $m_{0}=\frac{D_{n_{1}}}{D_{n_{0}}}-1$.

However, we do not know if there exists $q \in \mathbb{Q}, q>0$ such that the equation $D_{n}=q \cdot m!$ has at least three solutions.

Question 5. Is there any $q \in \mathbb{Q}, q>0$ such that the equation $D_{n}=q \cdot m$! has at least three solutions?

In the light of Proposition 24 we are able to establish analogue results on diophantine equations involving numbers of odd derangements and factorials.

Proposition 27. All the solutions (n, m) of the diophantine equation $D_{n}^{(o)}=m$!, $n, m \in \mathbb{N}_{+}$, are $(2,1)$ and $(4,3)$.

Proof. If $n \geq 2$ and $D_{n}^{(o)}=m$! then $v_{2}\left(D_{n}^{(o)}\right)=v_{2}(m!)$. By Proposition 24 $D_{n}^{(o)}=\frac{n(n-1)}{2} D_{n-2}$. Since $v_{2}\left(D_{n-2}\right)=v_{2}(n-3)$ for any integer $n \geq 2$, thus $v_{2}\left(D_{n}^{(o)}\right)=v_{2}(n(n-1)(n-3))$. As a result $v_{2}(n(n-1)(n-3))=v_{2}(m!)$, which means that $n^{3}>n(n-1)(n-3) \geq 2^{v_{2}(n(n-1)(n-3))}=2^{v_{2}(m!)}$. Hence $n>2^{\frac{v_{2}(m!)}{3}} \geq$ $2^{\left\lfloor\frac{v_{2}(m!)}{3}\right\rfloor}$. If $n \geq 4$ then $D_{n}^{(o)} \geq D_{M(m)}^{(o)}$, where $M(m)=2^{\left\lfloor\frac{v_{2}(m!)}{3}\right\rfloor}$. By Corollary[5] for $t \geq 4$ we obtain the inequality

$$
D_{t}^{(o)}=\frac{D_{t}+(-1)^{t}(t-1)}{2}>\frac{t!}{2 e}-\frac{t-1}{2}>\frac{t!}{2 e}-\frac{t!}{4 e}=\frac{t!}{4 e} .
$$

Then we obtain $m!=D_{n}^{(o)} \geq D_{M(m)}^{(o)}>\frac{M(m)!}{4 e}$ provided that $M(m) \geq 4$.
However, we will prove by induction on m that

$$
\begin{equation*}
m!<\frac{M(m)!}{4 e} \tag{32}
\end{equation*}
$$

for $m \geq 16$. Indeed, the inequality (32) holds for $m \in\{16,17,18,19\}$. We will show that if (32) is valid for m then (32) is true for $m+4$. In order to do this we note that
$(m+4)!=m!\cdot(m+1)(m+2)(m+3)(m+4)<(m+1)(m+2)(m+3)(m+4) \frac{M(m)!}{4 e}$
It suffices to show that $M(m)!\cdot(m+1)(m+2) \leq M(m+4)$!. Since $m!<\frac{M(m)!}{4 e}$, thus $m<M(m)$. Because $v_{2}((m+4)!)-v_{2}(m!) \geq 3$, so $\left\lfloor\frac{v_{2}((m+4)!)}{3}\right\rfloor-\left\lfloor\frac{v_{2}((m)!)}{3}\right\rfloor \geq 1$. Since $m \geq 16$, thus $v_{2}(m!) \geq 15$ and $M(m) \geq 32$. Hence $M(m+4)-M(m) \geq 32>4$ and

$$
\begin{aligned}
& M(m)!\cdot(m+1)(m+2)(m+3)(m+4)< \\
& <M(m)!\cdot(M(m)+1)(M(m)+2)(M(m)+3)(M(m)+4) \leq M(m+4)!.
\end{aligned}
$$

We proved that $m!<\frac{M(m)!}{e}$ for $m \geq 16$.
Summing up, if $D_{n}^{(o)}=m$! then $m \leq 15$. Finally, we check one by one for each $m \in\{0,1,2, \ldots, 15\}$ that $D_{2}=1$ and $D_{4}=6$ are the only factorials in the sequence of odd derangements.

Proposition 28. For any positive rational number q the diophantine equation $D_{n}^{(o)}=q \cdot m!$ has only finitely many solutions $(n, m) \in \mathbb{N}_{+}^{2}$ and these solutions satisfy the inequality $q \cdot m!>\frac{\left(2^{\left\lfloor\frac{v_{2}(q)+v_{2}(m!)}{3}\right\rfloor}\right)!}{4 e}$.

Proof. If $D_{n}^{(o)}=q \cdot m!$ and $n \geq 2$ then $v_{2}(n(n-1)(n-3))=v_{2}\left(D_{n}^{(o)}\right)=v_{2}(q)+$ $v_{2}(m!)$ and $n^{3}>n(n-1)(n-3) \geq 2^{v_{2}(n(n-1)(n-3))}=2^{v_{2}(q)+v_{2}(m!)}$. Hence $n>$ $2^{\frac{v_{2}(q)+v_{2}(m!)}{3}} \geq 2^{\left\lfloor\frac{v_{2}(q)+v_{2}(m!)}{3}\right\rfloor}$. The product $q \cdot m!$ is an integer, thus $v_{2}(q)+v_{2}(m!) \geq$ 0 . If $n \geq 4$ then $D_{n}^{(o)} \geq D_{M(m)}^{(o)}$, where $M(m)=2^{\left.\frac{v_{2}(q)+v_{2}(m!)}{3}\right\rfloor}$. We use the inequality $D_{M(m)}>\frac{M(m)!}{4 e}$, valid for $M(m) \geq 4$, to obtain

$$
q \cdot m!=D_{n}^{(o)} \geq D_{M(m)}^{(o)}>\frac{M(m)!}{4 e}
$$

However, if we apply Legendre's formula $v_{2}(m!)=m-s_{2}(m)$ then we get the following limit:

$$
\begin{aligned}
\lim _{m \rightarrow+\infty} \frac{M(m)}{m} & =\lim _{m \rightarrow+\infty} \frac{2^{\left.\frac{v_{2}(q)+m-s_{2}(m)}{3}\right\rfloor}}{m} \geq \lim _{m \rightarrow+\infty} \frac{2^{\frac{v_{2}(q)+m-s_{2}(m)-3}{3}}}{m} \geq \\
& \geq \lim _{m \rightarrow+\infty} \frac{2^{\frac{v_{2}(q)+m-\log _{2} m-4}{3}}}{m}=\lim _{m \rightarrow+\infty} \frac{2^{\frac{v_{2}(q)+m-4}{3}}}{m^{\frac{4}{3}}}=+\infty
\end{aligned}
$$

Therefore we conclude that $\lim _{m \rightarrow+\infty} \frac{M(m)!}{4 e q \cdot m!}=+\infty$, which implies that $q \cdot m!<$ $\frac{M(m)!}{4 e}$ for $m \gg 0$.

Hence there exists a positive integer m_{0} such that if $D_{n}^{(o)}=q \cdot m$! then $m<m_{0}$.

In case of numbers $D_{n}^{(e)}$ we will use knowledge about their 3-adic valuation to establish results on diophantine equations involving these numbers and factorials.
Proposition 29. All the solutions (n, m) of the diophantine equation $D_{n}^{(e)}=m$!, $n, m \in \mathbb{N}$, are $(0,0),(0,1),(3,2)$ and $(5,4)$.
Proof. By Corollary 6 and the fact that $3 \nmid \frac{D_{n}^{(e)}}{n-1}$ we know that $v_{3}\left(\frac{D_{n}^{(e)}}{n-1}\right)=v_{3}(n-2)$ for every $n \in \mathbb{N}_{2}$. Hence $v_{3}\left(D_{n}^{(e)}=v_{3}((n-1)(n-2))=\max \left\{v_{3}(n-1), v_{3}(n-2)\right\}\right.$ for each $n \in \mathbb{N}$. Thus if $D_{n}^{(e)}=m$! then $\max \left\{v_{3}(n-1), v_{3}(n-2)\right\}=v_{3}(m!)$, which means that $n-1 \geq 3^{\max \left\{v_{3}(n-1), v_{3}(n-2)\right\}}=3^{v_{3}(m!)}$. Hence $n \geq 1+3^{v_{3}(m!)}$. If $n \geq 3$ then $D_{n}^{(e)} \geq D_{M(m)}^{(e)}$, where $M(m)=1+3^{v_{3}(m!)}$. By Corollary 5 for $t \geq 4$ we obtain the inequality

$$
D_{t}^{(o)}=\frac{D_{t}-(-1)^{t}(t-1)}{2}>\frac{t!}{2 e}-\frac{t-1}{2}>\frac{t!}{2 e}-\frac{t!}{4 e}=\frac{t!}{4 e} .
$$

Then we obtain $m!=D_{n}^{(e)} \geq D_{M(m)}^{(e)}>\frac{M(m)!}{4 e}$ provided that $M(m) \geq 4$. However, we will prove by induction on m that

$$
\begin{equation*}
m!<\frac{M(m)!}{4 e} \tag{33}
\end{equation*}
$$

for $m \geq 6$. Indeed, the inequality (33) holds for $m \in\{6,7,8\}$. We will show that if (33) is valid for m then (33) is true for $m+3$. In order to do this we note that

$$
(m+3)!=m!\cdot(m+1)(m+2)(m+3)<(m+1)(m+2)(m+3) \frac{M(m)!}{4 e}
$$

It suffices to show that $M(m)!\cdot(m+1)(m+2)(m+3) \leq M(m+3)$!. Since $m!<\frac{M(m)!}{4 e}$, thus $m<M(m)$. We have $v_{3}((m+3)!)-v_{3}(m!) \geq 1$. Since $m \geq 6$, thus $v_{3}(m!) \geq 2$ and $M(m) \geq 10>1$. Hence $M(m+3)-M(m) \geq 3$ and

$$
\begin{aligned}
& M(m)!\cdot(m+1)(m+2)(m+3)< \\
& <M(m)!\cdot(M(m)+1)(M(m)+2)(M(m)+3) \leq M(m+3)!.
\end{aligned}
$$

We proved that $m!<\frac{M(m)!}{e}$ for $m \geq 6$.
Summing up, if $D_{n}^{(e)}=m!$ then $m \leq 5$. Finally, we check one by one for each $m \in\{0,1,2,3,4,5\}$ that $D_{0}=1, D_{3}=2$ and $D_{5}=24$ are the only factorials in the sequence of even derangements.

Proposition 30. For any positive rational number q diophantine equation $D_{n}^{(e)}=$ $q \cdot m$! has only finitely many solutions $(n, m) \in \mathbb{N}^{2}$ and these solutions satisfy the inequality $q \cdot m!>\frac{\left(1+3^{v_{3}(q)+v_{3}(m!)}\right)!}{4 e}$.
Proof. If $D_{n}^{(e)}=q \cdot m!$ then $\max \left\{v_{3}(n-1), v_{3}(n-2)\right\}=v_{3}\left(D_{n}^{(e)}\right)=v_{3}(q)+v_{3}(m!)$ and $n-1 \geq 3^{\max \left\{v_{3}(n-1), v_{3}(n-2)\right\}}=3^{v_{3}(q)+v_{3}(m!)}$. The product $q \cdot m!$ is an integer, thus $v_{3}(q)+v_{3}(m!) \geq 0$. If $n \geq 3$ then $D_{n}^{(e)} \geq D_{M(m)}^{(e)}$, where $M(m)=1+$ $3^{v_{3}(q)+v_{3}(m!)}$. We use the inequality $D_{M(m)}>\frac{M(m)!}{4 e}$, valid for $M(m) \geq 4$, to obtain

$$
q \cdot m!=D_{n}^{(e)} \geq D_{M(m)}^{(e)}>\frac{M(m)!}{4 e}
$$

However, if we apply Legendre's formula $v_{3}(m!)=\frac{m-s_{3}(m)}{2}$ then we get the following limit:

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} \frac{M(m)}{m}=\lim _{m \rightarrow+\infty} \frac{1+3^{v_{3}(q)+v_{3}(m!)}}{m} \geq \lim _{m \rightarrow+\infty} \frac{3^{v_{3}(q)+v_{3}(m!)}}{m} \geq \\
& \geq \lim _{m \rightarrow+\infty} \frac{3^{v_{3}(q)+\frac{m-\log _{3} m-1}{2}}}{m}=\lim _{m \rightarrow+\infty} \frac{3^{\frac{2 v_{3}(q)+m-\log _{3} m-1}{2}}}{m}=\lim _{m \rightarrow+\infty} \frac{3^{\frac{2 v_{3}(q)+m-1}{2}}}{m^{\frac{3}{2}}}=+\infty
\end{aligned}
$$

Therefore we conclude that $\lim _{m \rightarrow+\infty} \frac{M(m)!}{4 e q \cdot m!}=+\infty$, which implies that $q \cdot m!<$ $\frac{M(m)!}{4 e}$ for $m \gg 0$. Hence there exists a positive integer m_{0} such that if $D_{n}^{(e)}=q \cdot m$! then $m<m_{0}$.

Using analogous reasoning as in case of numbers D_{n} one can prove that the set of all positive rational numbers q such that the equation $D_{n}^{(o)}=q \cdot m$! $\left(D_{n}^{(e)}=q \cdot m!\right.$, respectively) has a solution $(n, m) \in \mathbb{N}_{+}^{2}$ is discrete subset of the real half-line $[0,+\infty)$ and it has exactly one accumulation point 0 . However, there are infinitely many values q such that the equation $D_{n}^{(o)}=q \cdot m!\left(D_{n}^{(e)}=q \cdot m!\right.$, respectively) has at least two solutions of the form (n_{0}, m_{0}) and ($n_{1}, m_{0}+1$). Analogously as for numbers D_{n}, it suffices to put $n_{0}, n_{1} \in \mathbb{N}_{2}$ such that $D_{n_{0}}^{(o)} \mid D_{n_{1}}^{(o)}$ and $m_{0}=\frac{D_{n_{1}}^{(o)}}{D_{n_{0}}^{(o)}}-1\left(D_{n_{0}}^{(e)} \mid D_{n_{1}}^{(e)}\right.$ and $m_{0}=\frac{D_{n_{1}}^{(e)}}{D_{n_{0}}^{(e)}}-1$, respectively). As well as in case of classical numbers of derangements we can ask the following question.
Question 6. Is there any $q \in \mathbb{Q}, q>0$ such that the equation $D_{n}^{(o)}=q \cdot m$! $\left(D_{n}^{(e)}=q \cdot m!\right.$, respectively) has at least three solutions?
6.2. When a number of derangements is a power of a prime number? Let us consider diophantine equation $D_{n}=p^{k}$, where p is a given prime number and $n, k \in \mathbb{N}_{+}$are unknowns.

Proposition 31. For any prime number p the diophantine equation $D_{n}=p^{k}$, $n, k \in \mathbb{N}_{+}$, has only finitely many solutions (n, k). More precisely, the number of solutions is at most equal to $v_{p}\left(\sum_{j=1}^{+\infty} j!\right)\left(\sum_{j=1}^{+\infty} j!\in \mathbb{Z}_{p} \backslash\{0\}\right.$, so its p-adic valuation is well defined and finite).
Proof. If $D_{n}=p^{k}, n, k \in \mathbb{N}_{+}$then obviously $n \geq 2$. Since $D_{n}=(n-1) E_{n}$, thus $n-1=p^{l}$ for some $l \in \mathbb{N}$. Let us recall that for each integer $n \geq 2$ there holds the equality $(-1)^{n} E_{n}=f_{p, \infty}(n-2)-f_{p, \infty}(n-1)$, where the function $f_{p, \infty}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ is
given by the formula $f_{p, \infty}(x)=\sum_{j=0}^{+\infty}(-1)^{j} \prod_{i=0}^{j-1}(x-i)$ (see Section 4.1.3 Remark (3). Then
$(-1)^{1+p^{l}} E_{1+p^{l}}=f_{p, \infty}\left(p^{l}-1\right)-f_{p, \infty}\left(p^{l}\right) \equiv f_{p, \infty}(-1)-f_{p, \infty}(0)=\sum_{j=1}^{+\infty} j!\quad\left(\bmod p^{l}\right)$.
By Remark 3 we know that $\sum_{j=1}^{+\infty} j!\in \mathbb{Z}_{p} \backslash \mathbb{Z}$. In particular $\sum_{j=1}^{+\infty} j!\neq 0$ and $k_{0}:=$ $v_{p}\left(\sum_{j=1}^{+\infty} j!\right) \in \mathbb{N}$. Hence, if $l>k_{0}$ then by (34), $v_{p}\left(E_{1+p^{l}}\right)=v_{p}\left(\sum_{j=1}^{+\infty} j!\right)=k_{0}$. However, if $p^{l} \geq 3$ then $E_{1+p^{l}} \geq p^{l}>p^{k_{0}}$, which means that $E_{1+p^{l}}$ is not a power of p. As a result $D_{1+p^{l}}$ is not a power of p for any integer $l>k_{0}$.

Numerical computations show that if p is a prime number less than 10^{6} then $v_{p}\left(\sum_{j=1}^{+\infty} j!\right)>0$ only for $p \in\{3,11\}$. This means that the equation $D_{n}=p^{k}$, $n, k \in \mathbb{N}_{+}$, has no solutions for prime number p less than 10^{6} and not equal to 3 or 11. For $p=3$ we have $v_{3}\left(\sum_{j=1}^{+\infty} j!\right)=v_{3}\left(\sum_{j=1}^{8} j!\right)=2$ and there is one solution $n=1+3^{1}=4, k=2$. If $p=11$ then $v_{11}\left(\sum_{j=1}^{+\infty} j!\right)=v_{11}\left(\sum_{j=1}^{21} j!\right)=1$ and there is no solution $(n, k) \in \mathbb{N}_{+}^{2}$.

It is easy to note that $p \mid \sum_{j=1}^{+\infty} j$! if and only if $p \mid \sum_{j=1}^{p-1} j$!.
Conjecture 3. $p \nmid \sum_{j=1}^{p-1} j$! for any prime number $p>11$.
The conjecture above resembles Kurepa's conjecture that $p \nmid \sum_{j=0}^{p-1} j$! for any prime number p (see [9, Section B44] and [11). If Conjecture 3 is true then by Proposition 31 for any prime number $p>11$ there are no solutions of the equation $D_{n}=p^{k}, n, k \in \mathbb{N}_{+}$. Therefore the diophantine equation $D_{n}=p^{k}$ with variables $p \in \mathbb{P}$ and $n, k \in \mathbb{N}_{+}$has only one solution $(p, n, k)=(3,4,2)$.

Despite the equation $D_{n}=p^{k}$ with variables (p, n, k), problem of solving the equations $D_{n}^{(o)}=p^{k}$ and $D_{n}^{(e)}=p^{k}$ with unknowns $p \in \mathbb{P}$ and $n, k \in \mathbb{N}_{+}$is very easy.
Proposition 32. The diophantine equation $D_{n}^{(o)}=p^{k}$ with unknowns $p \in \mathbb{P}$ and $n, k \in \mathbb{N}_{+}$has no solutions while the equation $D_{n}^{(e)}=p^{k}$ with unknowns $p \in \mathbb{P}$ and $n, k \in \mathbb{N}_{+}$has one solution $(p, n, k)=(2,3,1)$.
Proof. By Proposition 23, if n is even then $n-3 \mid D_{n}^{(o)}$. Moreover $n-1 \mid D_{n}^{(o)}$. Thus $n-3$ and $n-1$ are powers of p. This gives three posibilities:

- $n-1=1$, but then $D_{n}^{(o)}=D_{2}^{(o)}=1$;
- $n-3=1$, but then $D_{n}^{(o)}=D_{4}^{(o)}=6$;
- $n-1 \neq 1, n-3 \neq 1$; in this case $p \mid(n-1)-(n-3)=2$, which means that $p=2$ and there must be $n-3=2$ and $n-1=4$; but then $D_{n}^{(o)}=D_{5}^{(o)}=20$. If n is odd then by Proposition [23, $\left.\frac{n-3}{2} \right\rvert\, D_{n}^{(o)}$. Then $\frac{n-3}{2}$ and $n-1$ are powers of p and we have three possibilities:
- $n-1=1$, but then $D_{n}^{(o)}=D_{2}^{(o)}=1$;
- $\frac{n-3}{2}=1$, but then $D_{n}^{(o)}=D_{5}^{(o)}=20$;
- $n-1 \neq 1, \frac{n-3}{2} \neq 1$; in this case $p \mid(n-1)-(n-3)=2$, which means that $p=2$ and there must be $n-3=2$ and $n-1=4$; but then $D_{n}^{(o)}=D_{5}^{(o)}=20$.
We proved that the equation $D_{n}^{(o)}=p^{k}$ with variables $p \in \mathbb{P}, n, k \in \mathbb{N}_{+}$has no solutions.

Now we consider the equation $D_{n}^{(e)}=p^{k}$. By Proposition 23, if n is odd then $n-2 \mid D_{n}^{(e)}$. Moreover $n-1 \mid D_{n}^{(e)}$. Thus $n-2$ and $n-1$ are powers of p, which means that $p=2$ and $n=3$. Indeed we get the solution $(p, n, k)=(2,3,1)$.

If n is even then by Proposition [23, $\left.\frac{n-2}{2} \right\rvert\, D_{n}^{(e)}$. Then $\frac{n-2}{2}$ and $n-1$ are powers of p and we have two possibilities:

- $n-1=1$, but then $D_{n}^{(e)}=D_{2}^{(e)}=0$;
- $n-1 \neq 1$; then $n-2 \neq 1$ (since n is even) and $p \mid(n-1)-(n-2)=1$, a contradiction.

7. Arithmetic properties of h-Schenker sums

In this section we will generalize results on arithmetic properties of Schenker sums $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} n^{j}, n \in \mathbb{N}$, onto some wider class of sequences. We define these sequences by the closed formula

$$
a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}, n \in \mathbb{N}
$$

where $h \in \mathbb{Z}[X]$ is fixed. A sequence of such form will be called the sequence of h-Schenker sums.

Certainly, if $h=X$ then the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is the sequence of Schenker sums. Hence the sequences defined above can be thought as a generalization of the sequence of Schenker sums. This is a motivation of name of these sequences.

Let us notice that for $h=-1$ the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is the sequence of derangements. Moreover, if $h=b \in \mathbb{Z}$ then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is the generalization of the sequence of derangements in the sense of section 4 , i.e. it is given by the recurrence relation $a_{0}=1, a_{n}=n a_{n-1}+b^{n}, n>0$. In particular, for $h=0$ the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}=(n!)_{n \in \mathbb{N}}$ is the sequence of factorials (recall that we set $0^{0}=1$).

In [1] and [18] we can find various results concerning Schenker sums (p-adic valuations and infinitude of the set of Schenker primes, i.e. prime numbers p with such property that p divides a_{n} for some positive integer n not divisible by p). Now we will study these properties for our more general h-Schenker sums.
7.1. Divisibility by primes, periodicity modulo p and p-adic valuations of h-Schenker sums. In [1], Amdeberhan, Callan and Moll showed that for any prime number p and any positive integer n divisible by p, p-adic valuation of n-th Schenker sum is equal to p-adic valuation of n ! (and by Legendre's formula this value is equal to $\frac{n-s_{p}(n)}{p-1}$, where $s_{p}(n)$ denotes the sum of digits of positive integer n in base p). Now we will prove a generalization of the mentioned result.

Theorem 15. Let $h \in \mathbb{Z}[X]$ and consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of h-Schenker sums. If p is a prime number and n is such a nonnegative integer that $p \mid h(n)$ then $v_{p}\left(a_{n}\right)=v_{p}(n!)=\frac{n-s_{p}(n)}{p-1}$.
Proof. It suffices to verify that for $j \in\{1,2, \ldots, n\}$, the j-th summand in the sum $\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}$ has p-adic valuation strictly greater than the 0 -th summand, equal to $n!$:

$$
\begin{aligned}
v_{p}\left(\frac{n!}{j!} h(n)^{j}\right) & =\frac{n-s_{p}(n)}{p-1}-\frac{j-s_{p}(j)}{p-1}+j v_{p}(h(n))>\frac{n-s_{p}(n)}{p-1}-\frac{j}{p-1}+j \geq \\
& \geq \frac{n-s_{p}(n)}{p-1}=v_{p}(n!)
\end{aligned}
$$

This means that $v_{p}\left(a_{n}\right)=v_{p}(n!)=\frac{n-s_{p}(n)}{p-1}$.
Another result given in [1 states that it suffices to check the divisibility of Schenker sums $a_{n}, n \in \mathbb{N}_{+}$, by a given prime number p only for indices n less than
p because if $n \equiv r(\bmod p)$ then $p\left|a_{n} \Longleftrightarrow p\right| a_{r}$. We will give a generalization of this fact.

Proposition 33. Let $h \in \mathbb{Z}[X]$ and consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of h-Schenker sums. Let p be a prime number and k be a positive integer. Then if $n_{1}, n_{2} \in \mathbb{N}$ are such that $n_{1} \equiv n_{2}\left(\bmod p^{k}\right)$ and $p \nmid h\left(n_{1}\right)$ then $\frac{a_{n_{1}}}{h\left(n_{1}\right)^{n_{1}}} \equiv \frac{a_{n_{2}}}{h\left(n_{2}\right)^{n_{2}}}\left(\bmod p^{k}\right)$. In particular, $p^{k}\left|a_{n_{1}} \Longleftrightarrow p^{k}\right| a_{n_{2}}$.
Proof. It suffices to note that

$$
\begin{aligned}
a_{n} & =\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}=\sum_{j=0}^{n} \frac{n!}{(n-j)!} h(n)^{n-j}=\sum_{j=0}^{n} h(n)^{n-j} \prod_{i=0}^{j-1}(n-i) \equiv \\
& \equiv \sum_{j=0}^{k p-1} h(n)^{n-j} \prod_{i=0}^{j-1}(n-i) \quad\left(\bmod p^{k}\right),
\end{aligned}
$$

since $p^{k} \left\lvert\, \frac{n!}{(n-j)!}\right.$ for $j \geq k p$ and $\prod_{i=0}^{j-1}(n-i)=0$ in case $n<j<k p$. By equivalence (35)

$$
\frac{a_{n_{1}}}{h\left(n_{1}\right)^{n_{1}}} \equiv \sum_{j=0}^{k p-1} h\left(n_{1}\right)^{-j} \prod_{i=0}^{j-1}\left(n_{1}-i\right) \quad\left(\bmod p^{k}\right)
$$

since $p \nmid h\left(n_{1}\right)$. The congruence $n_{1} \equiv n_{2}\left(\bmod p^{k}\right)$ implies that $h\left(n_{1}\right) \equiv h\left(n_{2}\right)$ $\left(\bmod p^{k}\right)$ and as a consequence
$\frac{a_{n_{1}}}{h\left(n_{1}\right)^{n_{1}}} \equiv \sum_{j=0}^{k p-1} h\left(n_{1}\right)^{-j} \prod_{i=0}^{j-1}\left(n_{1}-i\right) \equiv \sum_{j=0}^{k p-1} h\left(n_{2}\right)^{-j} \prod_{i=0}^{j-1}\left(n_{2}-i\right) \equiv \frac{a_{n_{2}}}{h\left(n_{2}\right)^{n_{2}}} \quad\left(\bmod p^{k}\right)$.
Our proposition is proved.
Corollary 7. Let $h \in \mathbb{Z}[X]$ and consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of h-Schenker sums. Let p be a prime number, k be a positive integer and $n_{0} \in \mathbb{N}_{+}$be the smallest positive integer such that $p^{k} \mid n_{0}$!. Then the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n_{\in \mathbb{N}_{n_{0}}}}$ is periodic of period $p^{k}(p-1)$.

Proof. If $n \geq n_{0}$ is such that $p \mid h(n)$ then by Theorem 15, $v_{p}\left(a_{n}\right)=v_{p}(n!) \geq k$. Assume now that $n_{1}, n_{2} \geq n_{0}$ are such that $n_{1} \equiv n_{2}\left(\bmod p^{k}(p-1)\right)$ and $p \nmid h\left(n_{1}\right)$. $h\left(n_{2}\right)$. Since $n_{1} \equiv n_{2}\left(\bmod p^{k}\right)$, thus by Proposition 33 we have $\frac{a_{n_{1}}}{h\left(n_{1}\right)^{n_{1}}} \equiv \frac{a_{n_{2}}}{h\left(n_{2}\right)^{n_{2}}}$ $\left(\bmod p^{k}\right)$ and $h\left(n_{1}\right)^{n_{1}} \equiv h\left(n_{2}\right)^{n_{1}}\left(\bmod p^{k}\right)$. In addition, $n_{1} \equiv n_{2}\left(\bmod p^{k-1}(p-\right.$ 1)), so by Euler's theorem $h\left(n_{2}\right)^{n_{1}} \equiv h\left(n_{2}\right)^{n_{2}}\left(\bmod p^{k}\right)$. Summing up our reasoning we conclude that $a_{n_{1}} \equiv a_{n_{2}}\left(\bmod p^{k}\right)$ and corollary follows.

Remark 5. It is possible that the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}-1}}$ is not periodic, but only on condition that $p \mid h\left(n_{0}-1\right)$ and then $v_{p}\left(a_{n_{0}-1}\right)=v_{p}\left(\left(n_{0}-1\right)\right.$!) $<k$ (let us observe that if $p \nmid h\left(n_{0}-1\right)$ then the consideration from the proof of Corollary 7 allows us to claim that $a_{n_{0}-1} \equiv a_{n}\left(\bmod p^{k}\right)$ for any $\left.n \equiv n_{0}-1\left(\bmod p^{k}(p-1)\right)\right)$.

We claim that if $p \mid h\left(n_{0}-1\right)$ and the basic period of the sequence $\left(a_{n}\right.$ $\left.\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}}}$ is divisible by p then the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}-1}}$ is not periodic. If we assume the contrary then the basic period of $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}-1}}$ must be divisble by p, but $a_{n} \equiv 0 \not \equiv a_{n_{0}-1}\left(\bmod p^{k}\right)$ for any $n>n_{0}-1$ such that $n \equiv n_{0}-1(\bmod p)$. Hence it suffices to give such a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ that the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}}}$ has the basic period divisible by p and $p \mid h\left(n_{0}-1\right)$.

Let us consider $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!}(n+1)^{j}, n \in \mathbb{N}, p=5$ and $k=2$. Then the basic period of the sequence $\left(a_{n}\left(\bmod 5^{2}\right)\right)_{n \in \mathbb{N}_{10}}$ is equal to $100=5^{2} \cdot 4$. Therefore,
the sequence $\left(a_{n}\left(\bmod 5^{2}\right)\right)_{n \in \mathbb{N}_{9}}$ is not periodic. Moreover, this example shows that it is possible that $p^{k}(p-1)$ is the basic period of the sequence $\left(a_{n}\left(\bmod p^{k}\right)\right)_{n \in \mathbb{N}_{n_{0}}}$.

Using Remark 2 we obtain
Corollary 8. Let $h \in \mathbb{Z}[X]$ and consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of h-Schenker sums. Let $d=p_{1}^{k_{1}} \cdot \ldots \cdot p_{s}^{k_{s}}$ be a positive integer and $n_{0} \in \mathbb{N}_{+}$be the smallest positive integer such that $p_{i}^{k_{i}} \mid n_{0}$! for each $i \in\{1,2, \ldots, s\}$. Then the sequence $\left(a_{n}(\bmod d)\right)_{n \in \mathbb{N}_{n_{0}}}$ is periodic of period $\operatorname{lcm}\left\{p_{i}^{k_{i}}\left(p_{i}-1\right): i \in\{1,2, \ldots, s\}\right\}$.

Theorem 15 allows us to describe p-adic valuation of the h-Schenker sum a_{n}, $n \in \mathbb{N}$, when p is such a prime number that $p \mid a_{n}$ only if $p \mid h(n)$. Namely, in this situation we have

$$
v_{p}\left(a_{n}\right)=\left\{\begin{array}{ll}
v_{p}(n!)=\frac{n-s_{p}(n)}{p-1} & \text { if } p \mid h(n) \\
0 & \text { if } p \nmid h(n)
\end{array} .\right.
$$

However, it is possible that $p \mid a_{n}$ and $p \nmid h(n)$ for some $n \in \mathbb{N}$.
Definition 2. Let $h \in \mathbb{Z}[X]$ and a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence of h-Schenker sums. Then a prime number p will be called h-Schenker prime if $p \mid a_{n}$ and $p \nmid h(n)$ for some $n \in \mathbb{N}$.

In order to verify, if a given prime number p is a h-Schenker prime, it suffices to check divisibility of a_{n} by p for $n \in\{0,1, \ldots, p-1\}$ under the condition $p \nmid h(n)$. By Proposition 33, if n is a positive integer such that $p \nmid h(n)$ and r is remainder of n from division by p then $p\left|a_{n} \Longleftrightarrow p\right| a_{r}$.

If $p \mid a_{n_{1}}$ and $p \nmid h\left(n_{1}\right)$ for some $n_{1} \in \mathbb{N}$ then using Theorem 1 we can obtain description of p-adic valuation of the number a_{n}, where $n \equiv n_{1}(\bmod p)$. The congruence $\frac{a_{n_{1}}}{h\left(n_{1}\right)^{n_{1}}} \equiv \frac{a_{n_{2}}}{h\left(n_{2}\right)^{n_{2}}}\left(\bmod p^{k}\right)$ from the statement of Proposition 33 suggests us that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ has pseudo-polynomial decomposition modulo p on the set $\left\{n \in \mathbb{N}: n \equiv n_{1}(\bmod p)\right\}$. Using similar computation as in (35) we obtain

$$
\begin{aligned}
a_{n} & =\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}=\sum_{j=0}^{n} \frac{n!}{(n-j)!} h(n)^{n-j}=\sum_{j=0}^{n} h(n)^{n-j} \prod_{i=0}^{j-1}(n-i) \equiv \\
& \equiv \sum_{j=0}^{p^{k}} h(n)^{n-j} \prod_{i=0}^{j-1}(n-i)=h(n)^{n-p^{k}-1} \sum_{j=0}^{p^{k}} h(n)^{p^{k}+1-j} \prod_{i=0}^{j-1}(n-i) \quad\left(\bmod p^{k}\right) .
\end{aligned}
$$

Let us put $f_{p, k}(X)=\sum_{j=0}^{p^{k}} h(X)^{p^{k}+1-j} \prod_{i=0}^{j-1}(X-i) \in \mathbb{Z}[X]$ and $g_{p, k}(n)=h(n)^{n-p^{k}-1}$ for $k \in \mathbb{N}_{+}$. If $n \equiv n_{1}(\bmod p)$ then $g_{p, k}(n) \in \mathbb{Z} \backslash p \mathbb{Z}$. What is more, for any $k \geq 2$ we have

$$
\begin{aligned}
f_{p, k}^{\prime}(n) & =\left(p^{k}+1\right) h(n)^{p^{k}} h^{\prime}(n)+ \\
& +\sum_{j=1}^{p^{k}}\left[\left(p^{k}+1-j\right) h(n)^{p^{k}-j} h^{\prime}(n) \prod_{i=0}^{j-1}(n-i)+h(n)^{p^{k}+1-j} \sum_{s=0}^{j-1} \prod_{i=0, i \neq s}^{j-1}(n-i)\right] \equiv \\
& \equiv h(n) h^{\prime}(n)+\sum_{j=1}^{2 p-1}\left[(1-j) h(n)^{1-j} h^{\prime}(n) \prod_{i=0}^{j-1}(n-i)+h(n)^{2-j} \sum_{s=0}^{j-1} \prod_{i=0, i \neq s}^{j-1}(n-i)\right] \quad(\bmod p),
\end{aligned}
$$

since $p \nmid h(n)$ for $n \equiv n_{1}(\bmod p)$ and by Fermat's little theorem $h(n)^{p^{k}} \equiv h(n)$ $(\bmod p)$. Finally, $\left(f_{p, k}, g_{p, k}\right)_{k \in \mathbb{N}_{2}}$ is a pseudo-polynomial decomposition modulo p of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ on the set $\left\{n \in \mathbb{N}: n \equiv n_{1}(\bmod p)\right\}$. Hence, we can apply Theorem to describe behavior of p-adic valuation of the h-Schenker sum a_{n}, where $n \equiv n_{1}(\bmod p)$.

Theorem 16. Let $h \in \mathbb{Z}[X]$ and a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence of h-Schenker sums. Let p be a h-Schenker prime, $k \in \mathbb{N}_{+}$and $n_{k} \in \mathbb{N}$ be such that $p^{k} \mid a_{n_{k}}$ and $p \nmid h\left(n_{k}\right)$. Let us define $\widehat{q}_{p}\left(n_{k}\right)=\frac{1}{p}\left(a_{n_{k}+p}-h(n)^{p} a_{n_{k}}\right)$.

- If $v_{p}\left(\widehat{q}_{p}\left(n_{k}\right)\right)=0$ then there exists a unique n_{k+1} modulo for which $n_{k+1} \equiv$ $n_{k}\left(\bmod p^{k}\right)$ and $p^{k+1} \mid a_{n}$ for all n congruent to n_{k+1} modulo p^{k+1}. What is more, $n_{k+1} \equiv n_{k}-\frac{a_{n_{k}} h\left(n_{k}\right)}{\widetilde{q}_{p}\left(n_{k}\right)}\left(\bmod p^{k+1}\right)$.
- If $v_{p}\left(\widehat{q}_{p}\left(n_{k}\right)\right)>0$ and $p^{k+1} \mid a_{n_{k}}$ then $p^{k+1} \mid a_{n}$ for all n satisfying $n \equiv n_{k}$ $\left(\bmod p^{k}\right)$.
- If $v_{p}\left(\widehat{q}_{p}\left(n_{k}\right)\right)>0$ and $p^{k+1} \nmid a_{n_{k}}$ then $p^{k+1} \nmid a_{n}$ for any n satisfying $n \equiv n_{k}$ $\left(\bmod p^{k}\right)$.
In particular, if $k=1, p \mid a_{n_{1}}$ and $v_{p}\left(\widehat{q}_{p}\left(n_{1}\right)\right)=0$ then for any $l \in \mathbb{N}_{+}$there exists a unique n_{l} modulo p^{l} such that $n_{l} \equiv n_{1}(\bmod p)$ and $v_{p}\left(a_{n}\right) \geq l$ for all $n \equiv n_{l}$ $\left(\bmod p^{l}\right)$. Moreover, the number n_{l} satisfies the congruence $n_{l} \equiv n_{l-1}-\frac{a_{n_{l-1}} h\left(n_{l-1}\right)}{\widehat{q}_{p}\left(n_{1}\right)}$ $\left(\bmod p^{l}\right)$ for $l>1$.

Proof. The number $q_{p}\left(n_{k}\right)$ as specified in Theorem 1 takes the form

$$
q_{p}\left(n_{k}\right)=\frac{1}{p}\left(\frac{a_{n_{k}+p}}{h\left(n_{k}+p\right)^{n_{k}+p-p^{k}-1}}-\frac{a_{n_{k}}}{h\left(n_{k}\right)^{n_{k}-p^{k}-1}}\right) .
$$

Hence $q_{p}\left(n_{k}\right) \equiv \frac{1}{p h\left(n_{k}\right)^{n_{k}+p-p^{k}-1}}\left(a_{n_{k}+p}-h\left(n_{k}\right)^{p} a_{n_{k}}\right)=\frac{\widehat{q}_{p}\left(n_{k}\right)}{h\left(n_{k}\right)^{n_{k}+p-p^{k}-1}}(\bmod p)$ and since $p \nmid h\left(n_{k}\right)$ we have $p\left|q_{p}\left(n_{k}\right) \Longleftrightarrow p\right| \widehat{q}_{p}\left(n_{k}\right)$. Moreover $h\left(n_{k}\right)^{n_{k}-p^{k}-1} q_{p}\left(n_{k}\right)=$ $\frac{\widehat{q}_{p}\left(n_{k}\right)}{h\left(n_{k}\right)^{p}} \equiv \frac{\widehat{q}_{p}\left(n_{k}\right)}{h\left(n_{k}\right)}(\bmod p)$, where the last equality holds by Fermat's little theorem. Then we can use Theorem 1 to obtain the statement of our theorem.
7.2. Bounds on h-Schenker sums and infinitude of the set of h-Schenker primes. Firstly, we will prove that for any polynomial h the sequence of absolute values of h-Schenker sums diverges to $+\infty$. More precisely, we have the following:

Theorem 17. Let $h \in \mathbb{Z}[X]$ and consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of h-Schenker sums.
(1) If $h(n)>n$ for $n \gg 0$ then

$$
(n+1)!<h(n)^{n}<a_{n}<(n+1) h(n)^{n}
$$

for $n \gg 0$.
(2) If $h=X-b$ for some $b \in \mathbb{N}$ and $n \geq b+2$ then

$$
n!<(n-b)^{n-b} \prod_{i=0}^{b-1}(n-i)<a_{n}<(n+1)(n-b)^{n-b} \prod_{i=0}^{b-1}(n-i)
$$

(3) If $h=b$ for some $b \in \mathbb{Z}$ then

$$
\lim _{n \rightarrow+\infty} \frac{a_{n}}{n!}=e^{b}
$$

In particular, $a_{n}=O(n!)$, when $n \rightarrow+\infty$.
(4) If $h=-X+b$ for some $b \in \mathbb{N}$ then
$n!<(n-b)^{n-b} \prod_{i=0}^{b-3}(n-i)<\left|a_{n}\right|<(n-1)(n-b)^{n-b+1} \prod_{i=0}^{b-2}(n-i)$
for $n \gg 0$.
(5) If $-h(n)>n$ for $n \gg 0$ then

$$
n!<|h(n)|^{n-1}(|h(n)|-n)<\left|a_{n}\right|<(n+1)|h(n)|^{n}
$$

for $n \gg 0$.

In particular, if the leading coefficient of h is positive or $\operatorname{deg} h>0$ then $\left|a_{n}\right|>n$! for $n \gg 0$.

Proof. (1) If $h(n)>n$ for $n \gg 0$ then the n-th summand in the sum $a_{n}=$ $\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}$ is the biggest one, thus $a_{n}<(n+1) h(n)^{n}$. On the other hand, each summand in the mentioned sum is positive, therefore $a_{n}>h(n)^{n}$. Moreover, $h(n) \geq n+1$ for $n \gg 0$, hence $h(n)^{n}>(n+1) \cdot \ldots \cdot 2=(n+1)$!.
(2) If $h=X-b$ for some $b \in \mathbb{N}$ and $n>b$ then $n-b-1$-st and $n-b$-th summands in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}$ are the biggest ones and equal to $(n-b)^{n-b} \prod_{i=0}^{b-1}(n-i)$. That is why $a_{n} \leq(n+1)(n-b)^{n-b} \prod_{i=0}^{b-1}(n-i)$ and the inequality is strict for $n \geq b+2$. On the other hand, each summand in the mentioned sum is positive, therefore $a_{n}>(n-b)^{n-b} \prod_{i=0}^{b-1}(n-i)>n!$.
(3) If $h=b$ for some $b \in \mathbb{Z}$ then $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} b^{j}=n!\sum_{j=0}^{n} \frac{b^{j}}{j!}$, which means that $\lim _{n \rightarrow+\infty} \frac{a_{n}}{n!}=\lim _{n \rightarrow+\infty} \sum_{j=0}^{n} \frac{b^{j}}{j!}=e^{b}$ and $a_{n}=O(n!)$, when $n \rightarrow$ $+\infty$.
(4) If $h=-X+b$ for some $b \in \mathbb{N}$ then for $1 \leq j \leq\left\lfloor\frac{b}{2}\right\rfloor$ we add up $n-b+2 j$-th, $n-b+2 j-1$-st, $n-b-2 j$-th and $n-b-2 j-1$-st summands together.

$$
\begin{aligned}
(& -n+b)^{n-b+2 j} \prod_{i=0}^{b-2 j-1}(n-i)+(-n+b)^{n-b+2 j-1} \prod_{i=0}^{b-2 j}(n-i)+ \\
& +(-n+b)^{n-b-2 j} \prod_{i=0}^{b+2 j-1}(n-i)+(-n+b)^{n-b-2 j-1} \prod_{i=0}^{b+2 j}(n-i) \\
= & (-1)^{n-b}\left[(n-b)^{n-b+2 j} \prod_{i=0}^{b-2 j-1}(n-i)-(n-b)^{n-b+2 j-1} \prod_{i=0}^{b-2 j}(n-i)+\right. \\
& \left.+(n-b)^{n-b-2 j} \prod_{i=0}^{b+2 j-1}(n-i)-(n-b)^{n-b-2 j-1} \prod_{i=0}^{b+2 j}(n-i)\right] \\
= & (-1)^{n-b}\left[-2 j(n-b)^{n-b+2 j-1} \prod_{i=0}^{b-2 j-1}(n-i)+2 j(n-b)^{n-b-2 j-1} \prod_{i=0}^{b+2 j-1}(n-i)\right] \\
= & (-1)^{n-b} \cdot 2 j(n-b)^{n-b-2 j-1} \prod_{i=0}^{b-2 j-1}(n-i) \times \\
& \times\left[(n-b+2 j) \cdot \ldots \cdot(n-b-2 j+1)-(n-b)^{4 j}\right] \\
= & (-1)^{n-b} \cdot 2 j(n-b)^{n-b-2 j} \prod_{i=0}^{b-2 j-1}(n-i) \times \\
& \times\left[(n-b+2 j) \prod_{i=1}^{2 j-1}\left((n-b)^{2}-i^{2}\right)-(n-b)^{4 j-1}\right] \\
= & (-1)^{n-b} \cdot 2 j(n-b)^{n-b-2 j} \prod_{i=0}^{b-2 j-1}(n-i) \times \\
& \times\left[(n-b)^{4 j-1}+2 j(n-b)^{4 j-2}+p_{j}(n-b)-(n-b)^{4 j-1}\right] \\
= & (-1)^{n-b} \cdot 2 j(n-b)^{n-b-2 j} \prod_{i=0}^{b-2 j-1}(n-i) \cdot\left[2 j(n-b)^{4 j-2}+p_{j}(n-b)\right],
\end{aligned}
$$

where $p_{j} \in \mathbb{Z}[X]$ and $\operatorname{deg} p_{j} \leq 4 j-3$. Hence $2 j(n-b)^{4 j-2}+p_{j}(n-b)>0$ for $n \gg 0$. Since there are only finitely values $2 j(n-b)^{4 j-2}+p_{j}(n-b)>0$, $1 \leq j \leq\left\lfloor\frac{b}{2}\right\rfloor$, thus all these values are positive for $n \gg 0$.

For $\left\lfloor\frac{b}{2}\right\rfloor+1 \leq j \leq\left\lfloor\frac{n-b-1}{2}\right\rfloor$ we add up $n-b-2 j$-th and $n-b-2 j-1$-st summands together.

$$
\begin{aligned}
& (-n+b)^{n-b-2 j} \prod_{i=0}^{b+2 j-1}(n-i)+(-n+b)^{n-b-2 j-1} \prod_{i=0}^{b+2 j}(n-i) \\
& =(-1)^{n-b}\left[(n-b)^{n-b-2 j} \prod_{i=0}^{b+2 j-1}(n-i)-(n-b)^{n-b-2 j-1} \prod_{i=0}^{b+2 j}(n-i)\right] \\
& =(-1)^{n-b} \cdot 2 j(n-b)^{n-b-2 j-1} \prod_{i=0}^{b+2 j-1}(n-i)
\end{aligned}
$$

If $2 \nmid b$ then the sign of the n-th summand in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!}(-n+$ $b)^{j}$ is equal to $(-1)^{n}$, this means it is opposite to $(-1)^{n+b}$. Therefore, if $n \gg 0$ then we obtain (in case, when $2 \mid n-b$, we can omit the 0 -th summand in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!}(-n+b)^{j}$ because its sign is $\left.(-1)^{n-b}=1\right)$:

$$
\begin{aligned}
& \left|a_{n}\right| \geq \sum_{j=1}^{\left\lfloor\frac{b}{2}\right\rfloor} 2 j(n-b)^{n-b-2 j} \prod_{i=0}^{b-2 j-1}(n-i) \cdot\left[2 j(n-b)^{4 j-2}+p_{j}(n-b)\right]+ \\
& \quad+\sum_{j=\left\lfloor\frac{b}{2}\right\rfloor+1}^{\left\lfloor\frac{n-b-1}{2}\right\rfloor} 2 j(n-b)^{n-b+2 j-1} \prod_{i=0}^{b+2 j-1}(n-i)-(n-b)^{n} \geq \\
& \geq 2(n-b)^{n-b-2} \prod_{i=0}^{b-3}(n-i) \cdot\left[2(n-b)^{2}+p_{1}(n-b)\right]-(n-b)^{n} \geq \\
& \geq 2(n-b)^{n-b-2} \prod_{i=0}^{b-3}(n-i) \cdot(n-b)^{2}-(n-b)^{n} \\
& =2(n-b)^{n-b} \prod_{i=0}^{b-3}(n-i)-(n-b)^{n}>(n-b)^{n-b} \prod_{i=0}^{b-3}(n-i) \\
& =(n-b) \cdot(n-b)^{n-b-6} \cdot(n-b)^{5} \prod_{i=0}^{b-3}(n-i) \geq \\
& \geq 3!\cdot 4 \cdot \ldots \cdot(n-b-3)(n-b-2)(n-b-1) \times \\
& \quad \times(n-b)(n-b+1)(n-b+2) \prod_{i=0}^{b-3}(n-i)=n!
\end{aligned}
$$

where the last inequality holds for $n-b \geq 3!=6$. Then $(n-b)^{n-b-6} \geq$ $4 \cdot \ldots \cdot(n-b-3)$ and $(n-b)^{5} \geq(n-b-2)(n-b-1)(n-b)(n-b+1)(n-b+2)$.

If $2 \mid b$ then the n-th summand in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!}(-n+b)^{j}$ is added up together with $n-1$-st, $n-2 b$-th and $n-2 b-1$-st summand and
analogous estimation as above allows us to state that

$$
\begin{aligned}
\left|a_{n}\right| & \geq 2(n-b)^{n-b-2} \prod_{i=0}^{b-3}(n-i) \cdot\left[2(n-b)^{2}+p_{1}(n-b)\right] \geq \\
& \geq 2(n-b)^{n-b} \prod_{i=0}^{b-3}(n-i) \geq 2 \cdot 3 \cdot \ldots \cdot(n-b-3) \cdot(n-b)^{5} \prod_{i=0}^{b-3}(n-i) \geq n!
\end{aligned}
$$

for $n \gg 0$.
To obtain the upper bound on $\left|a_{n}\right|$ it suffices to note that if $n>b$ then $n-b-1$-st and $n-b$-th summand in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!}(-n+b)^{j}$ reduce and the $n-b+1$-st summand has the biggest absolute value among all the remaining summands. Therefore $\left|a_{n}\right| \leq(n-1)(n-b)^{n-b+1} \prod_{i=0}^{b-2}(n-i)$, where the inequality is strict for $n \geq b+2$.
(5) If $-h(n)>n$ for $n \gg 0$ then for any $0 \leq j \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ the sum of $n-2 j$-th and $n-2 j-1$-st summand appearing in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}$ is equal to

$$
\begin{aligned}
& h(n)^{n-2 j} \prod_{i=0}^{2 j-1}(n-i)+h(n)^{n-2 j-1} \prod_{i=0}^{2 j}(n-i) \\
& =(-1)^{n}\left[|h(n)|^{n-2 j} \prod_{i=0}^{2 j-1}(n-i)-|h(n)|^{n-2 j-1} \prod_{i=0}^{2 j}(n-i)\right] \\
& =(-1)^{n}|h(n)|^{n-2 j-1}(|h(n)|-n+2 j) \prod_{i=0}^{2 j-1}(n-i)
\end{aligned}
$$

Hence

$$
\left|a_{n}\right|=\left\{\begin{array}{ll}
1+\sum_{j=0}^{\frac{n-2}{2}}|h(n)|^{n-2 j-1}(|h(n)|-n+2 j) \prod_{i=0}^{2 j-1}(n-i), & \text { if } 2 \mid n \\
\sum_{j=0}^{\frac{n-1}{2}}|h(n)|^{n-2 j-1}(|h(n)|-n+2 j) \prod_{i=0}^{2 j-1}(n-i), & \text { if } 2 \nmid n
\end{array},\right.
$$

which implies that $\left|a_{n}\right|>|h(n)|^{n-1}(|h(n)|-n)$ for $n \gg 0$.
In order to obtain the upper bound on $\left|a_{n}\right|$ it suffices to note that the n-th summand in the sum $a_{n}=\sum_{j=0}^{n} \frac{n!}{j!} h(n)^{j}$ has the biggest absolute value, thus $\left|a_{n}\right|<(n+1)|h(n)|^{n}$ for $n \gg 0$.

Theorem 17 allows us to prove that for any nonzero polynomial $h \in \mathbb{Z}[X]$ there are infinitely many h-Schenker primes (certainly, if $h=0$ then any prime number p is not an h-Schenker prime).

Theorem 18. For any $h \in \mathbb{Z}[X] \backslash\{0\}$ there are infinitely many h-Schenker primes.
Proof. Let us assume that there are only finitely many h-Schenker primes. We consider two cases.
(1) The case of $\operatorname{deg} h>0$. Let $n_{0} \in \mathbb{N}$ be such that $h\left(n_{0}\right) \cdot a_{n_{0}} \neq 0$ (we can find such an n_{0}, since $\left|a_{n}\right|>n$! for $n \gg 0$). Let p_{1}, \ldots, p_{s} be all the h-Schenker primes that do not divide $h\left(n_{0}\right)$. Let $k_{i}=v_{p_{i}}\left(a_{n_{0}}\right)$ for $i \in\{1, \ldots, s\}$. Let us put $t=p_{1}^{k_{1}+1} \cdot \ldots \cdot p_{s}^{k_{s}+1}$. By Proposition 33, $v_{p_{i}}\left(a_{m t+n_{0}}\right)=k_{i}$ for any $m \in \mathbb{N}$ and $i \in\{1, \ldots, s\}$, so by Theorem 15 and Theorem 17 we obtain

$$
\left(m t+n_{0}\right)!<\left|a_{m t+n_{0}}\right|=\prod_{i=1}^{s} p_{i}^{k_{i}} . \prod_{p \text { prime, } p \mid h\left(m t+n_{0}\right)} p^{v_{p}\left(\left(m t+n_{0}\right)!\right)}<\left(m t+n_{0}\right)!
$$

for $m \gg 0-$ a contradiction.
(2) The case $\operatorname{deg} h=0$. Then $h=b$ for some $b \in \mathbb{Z} \backslash\{0\}$. If some prime number p divides a_{n} for some $n \in \mathbb{N}$ and p is not an h-Schenker prime then $p \mid b$. Let p_{1}, \ldots, p_{s} be all the h-Schenker primes that do not divide b and $t=p_{1} \cdot \ldots \cdot p_{s}$. Since $a_{0}=1$, thus p_{1}, \ldots, p_{s} do not divide $a_{m t}$ for any $m \in \mathbb{N}$. Hence $\left|a_{m t}\right|=\prod_{p \text { prime, } p \mid b} p^{v_{p}((m t)!)}$ and

$$
\lim _{m \rightarrow+\infty} \frac{\left|a_{m t}\right|}{(m t)!}=\lim _{m \rightarrow+\infty} \frac{1}{\prod_{p \text { prime, } p \nmid b} p^{v_{p}((m t)!)}}=0
$$

but by Theorem [17, $\lim _{m \rightarrow+\infty} \frac{\left|a_{m t}\right|}{(m t)!}=e^{b} \neq 0$ - once again we obtain a contradiction.

Acknowledgements

I wish to thank my MSc thesis advisor, Maciej Ulas for suggesting the sequence of derangements and trial of generalizing this sequence as a subject of MSc thesis, for scientific care and for help with edition of this paper. I would like also to thank Jakub Byszewski for discussion which was useful in preparing Section 3 and giving the heuristic reasoning to Conjecture 1. I wish to thank Maciej Gawron for help with numerical computations, too.

References

[1] T. Amdeberhan, D. Callan, V. Moll, Valuations and combinatorics of truncated exponential sums, INTEGERS, 13 (2013), electronic paper A21.
[2] B. C. Berndt, W. F. Galway, On the Brocard-Ramanujan Diophantine Equation $n!+1=m^{2}$, Ramanujan J. 4 (2000), 41-42.
[3] M. Bollman, H. S. Hernández, F. Luca, Fibonacci numbers which are sums of three factorials, Publ. Math. Debrecen 77 (2010), 211-224.
[4] J. W. S. Cassels, Local fields, Cambridge University Press, 1-st edition, Cambridge 1986.
[5] A. Dąbrowski, On the Diophantine Equation $x!+A=y^{2}$, Nieuw. Arch. Wisk. 14 (1996), 321-324.
[6] P. Erdôs, R. Oblath, Über diophantische Gleichungen der Form $n!=x^{p} \pm y^{p}$ und $n!\pm m!=x^{p}$, Acta Litt. Sci. Szeged 8 (1937), 241-255.
[7] M. Gawron, A note on the diophantine equation $P(z)=m!+n!$, Colloquium Mathematicum, Vol. 131 (2013) No. 1.
[8] G. Grossman, F. Luca, Sums of factorials in binary recurrence sequences, J. Number Theory 93 (2002), 87-107.
[9] R. Guy, Unsolved Problems in Number Theory (3rd edition), Springer-Verlag, New York, (2004).
[10] Ch. Hermite, Sur la fonction exponentielle, C.R. Acad. Sci. (Paris), 1873, 77.
[11] Đ. Kurepa, On the left factorial function !n, Math. Balk. 1 (1973), 147-153.
[12] A. M. Legendre, Theorie des nombres, Firmin Didot Freres, Paris, 1830.
[13] F. Luca, Prime divisors of binary holonomic sequences, Advances in Applied Mathematics 40 (2008) 168-179.
[14] F. Luca, Products of factorials in binary recurrence sequences, Rocky Mountain J. Math. 29 (1999), 1387-1411.
[15] F. Luca, The Diophantine equation $P(n)=m$! and a result of M. Overholt, Glas. Mat. Ser. III 37 (2002), 269-273.
[16] F. Luca and S. Siksek, Factorials expressible as sums of at most three Fibonacci numbers, Proc. of the Edinburgh Math. Soc. 53 (2010), 679-729.
[17] D. Marques, T. Lengyel, The 2-adic Order of the Tribonacci Numbers and the Equation $T_{n}=m!$, Journal of Integer Sequences, Vol. 17 (2014), Article 14.10.1.
[18] P. Miska, A note on p-adic valuations of Schenker sums, Colloquium Mathematicum, Vol. 140 (2015) No. 1.
[19] W. Narkiewicz, Number theory (in polish), PWN Publisher, 3-rd edition, Warsaw 2003.
[20] The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A145221 and https://oeis.org/A000387.
[21] J.-P. Serre, A Course in Arithmetic, Springer-Verlag, New York 1973.
[22] Z. W. Sun, D. Zagier, On a curious property of Bell numbers, Bull. Aust. Math. Soc. 84 (1) (2011), 153-158.
[23] M. Ulas, Some observations on the Diophantine equation $y^{2}=x!+A$ and related results, Bull. Austral. Math. Soc. 86 (2012), 377-388.
[24] S. Wolfram, The Mathematica Book, Wolfram Media/Cambridge University Press, 3-rd edition, Cambridge 2003.

Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University in Cracow

E-mail address: piotr.miska@uj.edu.pl

[^0]: 2010 Mathematics Subject Classification. 11B50, 11B83.
 Key words and phrases. derangement, Hensel's lemma, p-adic valuation, periodicity, prime number.

