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ARITHMETIC PROPERTIES OF THE SEQUENCE OF

DERANGEMENTS AND ITS GENERALIZATIONS

PIOTR MISKA

Abstract. The sequence of derangements is given by the formula D0 =
1,Dn = nDn−1 + (−1)n, n > 0. It is a classical object appearing in com-
binatorics and number theory. In this paper we consider two classes of se-
quences: first class is given by the formulae a0 = h1(0), an = f(n)an−1 +
h1(n)h2(n)n, n > 0, where f, h1, h2 ∈ Z[X], and the second one is defined by

an =
∑n

j=0
n!
j!
h(n)j , n ∈ N, where h ∈ Z[X]. Both classes are a generaliza-

tion of the sequence of derangements. We study such arithmetic properties
of these sequences as: periodicity modulo d, where d ∈ N+, p-adic valuations,
asymptotics, boundedness, periodicity, recurrence relations and prime divisors.
Particularly we focus on the properties of the sequence of derangements and
use them to establish arithmetic properties of the sequences of even and odd
derangements.
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1. Introduction

By the term of derangement we call a permutation in Sn without fixed points.
We define the n-th number of derangements as the number of all derangements of
the set with n elements. We denote this number by Dn. The sequence (Dn)n∈N, can
be described by the recurrence D0 = 1, Dn = nDn−1+(−1)n, n > 0. The sequence
(Dn)n∈N is a subject of reaserch of many mathematicians. It is connected to other
well known sequences. In particular, the sequence of numbers of derangements (or
shortly, the sequence of derangements) appears in a natural way in the paper [22],
devoted to the Bell numbers.

In [18] we gave and proved a criterion for behavior of p-adic valuation of the
Schenker sum an, given by the formula an =

∑n
j=0

n!
j! n

j , n ∈ N. We expected that

the method of proving this criterion could be generalized to other class of integer
sequences. The trial of generalization of this method is one of the motivations for
preparing this paper.

In Section 2 we set conventions and recall facts which are used in further
parts of the thesis.

In Section 3 we define pseudo-polynomial decomposition modulo p of a given
sequence. If a sequence has this property then we can use the same method of proof
as in [18] to obtain the description of p-adic valuation of elements of this sequence.
Furthermore, we show that a sequence with pseudo-polynomial decomposition mod-
ulo p can be expressed as a product of functions f and g, where f : Zp → Zp is a
p-adic continuous function which can be approximated by polynomials with integer
coefficients and g : N → Zp\pZp. The last part of Section 3 is devoted to description
of p-adic valuation of the exponential function Z ∋ n 7→ an ∈ Z.

The results from Section 3 are used in Section 4 to study arithmetic properties
of a family of sequences a = a(f, h1, h2) = (an)n∈N given by the recurrence relation

(1) a0 = h1(0), an = f(n)an−1 + h1(n)h2(n)
n, n > 0,

where f, h1, h2 ∈ Z[X ]. Let us define

R := {a(f, h1, h2) ∈ RN : f, h1, h2 ∈ Z[X ]}.

If f = X , h1 = 1 and h2 = −1 then we obtain the sequence of derangements
(Dn)n∈N, hence the class of sequences given by the relation (1) can be treated as a
generalization of the sequence of derangements.

Section 4.1 is concerned with the periodicity of the sequences (an (mod d))n∈N

of remainders modulo d of a given sequence (an)n∈N, where d ∈ N+. Moreover we
focus on p-adic valuations of the sequence (an)n∈N, when p | f(n) for some n ∈ N
and h2 = ±1. Due to the divisibility n−1 | Dn for all n ∈ N, we study closer prime
divisors and p-adic valuations of the sequence ( Dn

n−1 )n∈N2 . We prove that the set of

prime divisors of the numbers Dn

n−1 , n ≥ 2, is infinite.
Section 4.2 is devoted to asymptotics of a given sequence a ∈ R and connec-

tion between boundedness and periodicity of this sequence. The main result of this
section is that each bounded sequence (an)n∈N is ultimately constant or ultimately
periodic with period 2.

In Section 4.3 we obtain some recurrence relations for a sequence a(f, h1, h2) ∈
R, when h2 = ±1. Then we study real roots of the polynomials ocurring in these
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relations and we conclude that for d ∈ N+ the polynomial

fd =

d−1∑

j=0

(−1)j
j−1∏

i=0

(X − i) ∈ Z[X ],

which arises in the formula

Dn = Dn−d

d−1∏

i=0

(n− i) + (−1)nfd(n), n ≥ d,

has exactly d− 1 real roots and exactly one rational root 1.
Section 4.4 deals with divisors of terms of a sequence a ∈ R. Section 4.4.1

is a trial of generalization of the result from Section 4.1 that there are infinitely
many prime divisors of the numbers Dn

n−1 , n ≥ 2. We give some conditions for
infinitude of set of prime divisors of a given sequence a. The last two results in
Section 4.4.1 show that if a sequence (an)n∈N is given by the formula a0 = c, an =
(b1n+b0)an−1+c, n > 0 for some integers b0, b1, c and b0, b1 are not simultaneously
0 then there are infinitely many prime divisors of the numbers an, n ∈ N. In Section
4.4.2 we generalize the property n− 1 | Dn, n ∈ N. Namely, we consider sequences
given by the formula a0 = h1(0), an = (n − b)an−1 + h1(n)h2(n)

n, n > 0, where
b ∈ Z is fixed, and study when n− b− 1 | an.

In Section 5 we use the results on the sequence of derangements to obtain
arithmetic properties of the sequences of even and odd derangements. First of all
we present recurrence relations for these two sequences. We obtain relations involv-
ing numbers of even and odd derandements in order to write them as expressions
dependent on numbers of derangements. Next we show their asymptotics and pe-
riodicity modulo d, where d ∈ N+. From the periodicity properties we conclude
divisibilities of these numbers and describe their p-adic valuations.

The subject of Section 6 are diophantine equations with numbers of usual,
odd and even derangements, respectively. In Section 6.1 we find all the numbers of
usual and odd derangements which are factorials. Meanwhile in Section 6.2 we try
to establish for which indices n the numbers of usual, odd and even derangements,
respectively, are powers of prime numbers.

Section 7 is devoted to the h-Schenker sums, given by the formula

an =

n∑

j=0

n!

j!
h(n)j , n ∈ N,

where h is a given polynomial with integer coefficients. If h = X then we obtain
the sequence of Schenker sums, hence the motivation to call the mentioned class
of sequences by h-Schenker sums. If h = −1 then h-Schenker sums are numbers of
derangements, so the sequence of h-Schenker sums can be seen as a generalization
of the sequence of derangements. In [1] and [18] there were established some results
on p-adic valuations of Schenker sums and infinitude of the set of so-called Schenker
primes (such prime numbers p that p | an for some n ∈ N not divisible by p). In
Section 7 we generalize these results.

In Section 7.1 we prove periodicty modulo d of h-Schenker sums for a given
d ∈ N+ and describe their p-adic valuations. During considerations on p-adic
valuations we define h-Schenker prime as prime number p such that p | an and
p ∤ h(n) for some n ∈ N.

Section 7.2 starts with giving bounds on absolute values of h-Schenker sums.
Next these bounds are used to establish infinitude of the set of h-Schenker primes
for h 6= 0.
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2. Definitions and conventions

We assume that N = {0, 1, 2, 3, ...} and N+ = {1, 2, 3, ...}. For a given positive
integer k we denote the set of all integers greater than or equal to k by Nk. We
denote the set of all prime numbers by P.

We set a convention that 00 = 1,
∑k

i=j = 0 and
∏k

i=j = 1, when j, k ∈ Z
and j > k.

Let a, b ∈ Z and b 6= 0. Then by a (mod b) we denote the remainder from
the division of a by b.

By sd(n) we denote the sum of digits of positive integer n in base d, i.e. if
n =

∑m
i=0 cid

i is an expansion of n in base d then sd(n) =
∑m

i=0 ci.
Let A,B be topological spaces. The set of all continuous functions f : A→ B

we denote by C(A,B). If C is a subset of A then its closure in A we denote by C.
Fix a prime number p. Every nonzero rational number x can be written in

the form x = a
b
pt, where a ∈ Z, b ∈ N+, gcd(a, b) = 1, p ∤ ab and t ∈ Z. Such a

representation of x is unique, thus the number t is well defined. We call t the p-adic
valuation of the number x and denote it by vp(x). By convention, vp(0) = +∞. In

particular, if x ∈ Q \ {0} then |x| =
∏

p prime p
vp(x), where vp(x) 6= 0 for finitely

many prime numbers p.
For every rational number x we define its p-adic norm |x|p by the formula

|x|p =

{
p−vp(x), when x 6= 0

0, when x = 0
.

Since for all rational numbers x, y we have |x+ y|p ≤ min{|x|p, |y|p}, hence p-adic
norm gives a metric space structure on Q. Namely, the distance between rational
numbers x, y is equal to dp(x, y) = |x− y|p.

The field Q equipped with p-adic metric dp is not a complete metric space.
The completion of Q with respect to this metric has structure of field and this field
is called the field of p-adic numbers Qp. We extend the p-adic valuation and p-adic
norm on Qp in the following way: vp(x) = limn→+∞ vp(xn), |x|p = limn→+∞ |xn|p,
where x ∈ Qp, (xn)n∈N ⊂ Q and x = limn→+∞ xn. The values vp(x) and |x|p do
not depend on the choice of a sequence (xn)n∈N, thus they are well defined (see [4]).

We define the ring of integer p-adic numbers Zp as a set of all p-adic numbers
with nonnegative p-adic valuation. Note that Zp is the completion of Z as a space
with p-adic metric.

We assume that the expression x ≡ y (mod pk) means vp(x − y) ≥ k for
prime number p, an integer k and p-adic numbers x, y.

By the term p-adic continuous function we mean function f : S → Qp defined
on some subset S of Qp, which is continuous with respect to p-adic metric. By the
term p-adic contraction we mean such function f : S → Qp that |f(x) − f(y)|p ≤
|x−y|p for arbitrary x, y ∈ S. Assuming that S is an open subset of Qp, we will say

that f is differentiable at a point x0 ∈ S, if there exists a limit limx→x0

f(x)−f(x0)
x−x0

.
In this situation this limit we will call the derivative of f at the point x0 and denote
it by f ′(x0).

We use the Landau symbol O in the following sense: if f, g : N → R are two
real-valued functions defined on N then f(n) is O(g(n)), when there exists such a
constant M ≥ 0 and a nonnegative integer n0 that |f(n)| ≤ M |g(n)| for n ≥ n0.
In general, if there exists an n0 ∈ N such that some property holds for n ≥ n0 then
for simplicity of notation we will write that this property is satisfied for n≫ 0.



ARITHMETIC PROPERTIES OF THE SEQUENCE OF DERANGEMENTS 5

3. Hensel’s lemma for p-adic continuous functions approximated by

polynomials over Z

In [18] there was presented a consideration which allows to describe p-adic
valuation of Schenker sums, given by the formula an =

∑n
j=0

n!
j! n

j . In this section

we will extend this method to more general class of sequences. The results given
in the following section will be used in the sequel.

3.1. Hensel’s lemma for pseudo-polynomial decomposition modulo p.

Definition 1. Let p be a prime number and (an)n∈N ⊂ Zp. By pseudo-polynomial
decomposition of the sequence (an)n∈N modulo p on a set S ⊂ N we mean a sequence
of pairs (fp,k, gp,k)k∈N2 such that:

• fp,k ∈ Zp[X ], gp,k : S → Zp\pZp, k ≥ 2;
• an ≡ fp,k(n)gp,k(n) (mod pk) for all n ∈ S, k ≥ 2;
• f ′

p,k(n) ≡ f ′
p,2(n) (mod p) for any k ≥ 2 and n ∈ S,

where f ′ means the derivative of a polynomial f . We say that (an)n∈N has a pseudo-
polynomial decomposition modulo p if it has a pseudo-polynomial decomposition
modulo p on N.

Remark 1. Let nk ∈ N and assume that a set S ∈ N is dense in the set
{n ∈ N : n ≡ nk (mod pk)} with respect to p-adic metric. Since {n ∈ N : n ≡ nl

(mod pl)} = {n ∈ N : dp(n, nl) < p1−l} for any integer l ≥ k and positive integer
nl ≡ nk (mod pk), hence S ∩ {n ∈ N : n ≡ nl (mod pl)} 6= ∅.

Theorem 1 (Hensel’s lemma for pseudo-polynomial decomposition modulo p).
Let p be a prime number, k ∈ N+, nk ∈ N be such that pk | ank

and assume that
(an)n∈N ⊂ Zp has a pseudo-polynomial decomposition modulo p on S ⊂ N, where

nk ∈ S. Let us define qp(nk) =
1
p

(
ank+p

gp,2(nk+p) −
ank

gp,2(nk)

)
.

• If vp(qp(nk)) = 0 and S is dense in the set {n ∈ N : n ≡ nk (mod pk)} with
respect to p-adic metric then there exists a unique nk+1 modulo for which
nk+1 ≡ nk (mod pk) and pk+1 | an for all n ∈ S congruent to nk+1 modulo
pk+1. What is more, nk+1 ≡ nk −

ank

gp,k+1(nk)qp(nk)
(mod pk+1).

• If vp(qp(nk)) > 0 and pk+1 | ank
then pk+1 | an for all n ∈ S satisfying

n ≡ nk (mod pk).
• If vp(qp(nk)) > 0 and pk+1 ∤ ank

then pk+1 ∤ an for any n ∈ S satisfying
n ≡ nk (mod pk).

In particular, if k = 1, p | an1 , vp(qp(n1)) = 0 then for any l ∈ N+ there exists
a unique nl modulo pl such that nl ≡ n1 (mod p) and vp(an) ≥ l for all n ∈ S
congruent to nl modulo pl. Moreover, nl satisfies the congruence nl ≡ nl−1 −

anl−1

gp,l(nl−1)qp(n1)
(mod pl) for l > 1.

In [18] there was showed that the sequence of Schenker sums (an)n∈N satisfies

the congruence an ≡ nn−pk+2fp,k(n) (mod pk) for each positive integer k, prime
number p and positive integer n not divisible by p, where

fp,k =

d−1∑

j=0

Xd−j−2

j−1∏

i=0

(X − i).

Moreover, if k1, k2 ≥ 2 then f ′
p,k1

(n) ≡ f ′
p,k2

(n) (mod p). This fact and
Hensel’s lemma allow to state the criterion for behavior of p-adic valuation of the
Schenker sums.

In order to prove Theorem 1 we will use the following version of Hensel’s
lemma (see [19, p. 44] and [4, p. 49]):



6 PIOTR MISKA

Theorem 2 (Hensel’s lemma). Let p be a prime number, k be a positive integer and
f be a polynomial with integer p-adic coefficients. Assume that f(n0) ≡ 0 (mod pk)
for some integer n0. Then the number of solutions n of the congruence f(n) ≡ 0
(mod pk+1), satisfying the condition n ≡ n0 (mod pk), is equal to:

• 1, when f ′(n0) 6≡ 0 (mod p);
• 0, when f ′(n0) ≡ 0 (mod p) and f(n0) 6≡ 0 (mod pk+1);
• p, when f ′(n0) ≡ 0 (mod p) and f(n0) ≡ 0 (mod pk+1).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let us note that if f ∈ Zp[X ] then for any x0 ∈ Zp there exists
an r ∈ Zp[X ] such that

(2) f(X) = f(x0) + (X − x0)f
′(x0) + (X − x0)

2r(X).

Using the equality above for f = fp,2, x0 = nk and X = nk + p, we have:

fp,2(nk + p) ≡ fp,2(nk) + pf ′
p,2(nk) (mod p2).

This congruence and Definition 1 imply the following:

f ′
p,k+1(nk) ≡ f ′

p,2(nk) ≡
1

p
(fp,2(nk + p)− fp,2(nk)) ≡

≡
1

p

(
ank+p

gp,2(nk + p)
−

ank

gp,2(nk)

)
= qp(nk) (mod p).

Thus qp(nk) ≡ f ′
p,k+1(nk) (mod p). Since p ∤ gp,k+1(n) for each nonnegative

n ≡ nk (mod pk), hence vp(an) = vp(fp,k+1(n)) for such n. By Theorem 2 we
conclude that:

• if vp(qp(nk)) = 0 then f ′(n0) 6≡ 0 (mod p) and there exists a unique nk+1

modulo pk+1 for which pk+1 | ank+1
and nk+1 ≡ nk (mod pk);

• if vp(qp(nk)) > 0 and pk+1 | ank
then f ′(n0) ≡ 0 (mod p) and pk+1 | ank+1

for any nk+1 ∈ S satisfying nk+1 ≡ nk (mod pk);
• if vp(qp(nk)) > 0 and pk+1 ∤ ank

then f ′(n0) 6≡ 0 (mod p) and pk+1 ∤ ank+1

for any nk+1 ∈ S satisfying nk+1 ≡ nk (mod pk).

Let us consider the case vp(qp(nk)) = 0 and write nk+1 = nk+p
ktk+1, where

tk+1 ∈ Z. Use (2) for f = fp,k+1, x0 = nk and X = nk + pktk+1 to obtain the
sequence of congruences:

0 ≡ fp,k+1(nk) + pktk+1f
′
p,k+1(nk) (mod pk+1)

tk+1qp(nk) ≡ tk+1f
′
p,k+1(nk) ≡ −

fp,k+1(nk)

pk
(mod p)

tk+1 ≡ −
fp,k+1(nk)

pkqp(nk)
(mod p)

nk+1 = nk + pktk+1 ≡ nk −
fp,k+1(nk)

qp(nk)
(mod pk+1).

(3)

Since fp,k+1(nk) ≡
ank

gp,k+1(nk)
(mod pk+1), we get nk+1 ≡ nk−

ank

gp,k+1(nk)qp(nk)

(mod pk+1).
Assume now that k = 1 and vp(qp(n1)) = 0. By simple induction on l ∈ N+

we obtain that the inequality vp(an) ≥ l has a unique solution nl modulo pl with
condition nl ≡ n1 (mod p) and this solution satisfies the congruence

nl ≡ nl−1 −
fp,l(nl−1)

qp(n1)
(mod pl)

for l > 1.
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Certainly the statement is true for l = 1. Now, assume that there exists a
unique nl modulo pl satisfying the conditions in the statement. Note that

qp(nl) ≡ f ′
p,2(nl) ≡ f ′

p,2(n1) ≡ qp(n1) (mod p).

Since vp(qp(n1)) = 0 then there exists a unique nl+1 modulo pl+1 such that pl+1 |
anl+1

and nl+1 ≡ nl (mod pl). Additionaly the congruences (3) showed that nl+1 ≡

nl −
anl

gp,l+1(nl)qp(n1)
(mod pl+1). �

3.2. Connection between pseudo-polynomial decomposition modulo p and

p-adic continuous functions approximated by polynomials over Z. It is
worth to see that if a sequence (an)n∈N has a pseudo-polynomial decomposition
modulo p then there exist functions fp,∞ ∈ C(Zp,Zp) and gp,∞ : N → Zp\pZp such
that an = fp,∞(n)gp,∞(n) for each nonnegative integer n.

Let k ∈ N+, p ∈ P and put:

Pp,k = {F polynomial function on Z/pkZ : ∃G:N→Z\pZ∀n∈N : an ≡ F (n)G(n) (mod pk)}.

For each k ∈ N+ set Pp,k is finite (because there are only finitely many functions
on Z/pkZ) and nonempty (by existence of pseudo-polynomial decomposition). We
have the map ψk+1 : Pp,k+1 ∋ F 7→ F (mod pk) ∈ Pp,k of reduction modulo pk.

Theorem 3. Let (Sk)k∈N+ be a sequence of finite nonempty sets with mappings
ψk+1 : Sk+1 → Sk, k ∈ N+. Then there exists a sequence (sk)k∈N+ such that
sk ∈ Sk and ψk+1(sk+1) = sk for each k ∈ N+.

Proof. See [21, p. 13]. �

By Theorem 3 there exist polynomial functions Fp,k : Z/pkZ → Z/pkZ such
that Fp,k+1 ≡ Fp,k (mod pk), k ∈ N+. Furthermore, for each k ∈ N+ there ex-
ists fp,k ∈ Z[X ] such that fp,k ≡ Fp,k (mod pk). As a result, if k1 ≤ k2 then
fp,k2(x)− fp,k1 (x) ≡ 0 (mod pk1), x ∈ Zp, or in other words |fp,k2(x)− fp,k1 (x)|p ≤
p−k1 . Since Z[X ] is a subset of C(Zp,Zp) and C(Zp,Zp) with metric dsup(f, g) =
supx∈Zp

|f(x)− g(x)|p is a complete metric space, hence the sequence (fp,k)k∈N+ ⊂

C(Zp,Zp) is uniformly convergent to a continuous function fp,∞ : Zp → Zp. Each
polynomial from Zp[X ] is a p-adic contraction, so fp,∞ = limk→+∞ fp,k is a p-
adic contraction, too. From the definition of Pp,k there exists gp,k : N → Z\pZ
such that an ≡ fp,k(n)gp,k(n) (mod pk), n ∈ N. As a consequence of our reason-
ing we have that if an 6= 0 for some n ∈ N then vp(an) = vp(fp,k(n)) for suffi-
ciently large k and by continuity of p-adic valuation (with respect to p-adic norm)
vp(an) = vp(fp,∞(n)). If an = 0 for some n ∈ N then vp(fp,k(n)) ≥ k and going
with k to +∞ we obtain vp(fp,∞) = +∞, which means that fp,∞(n) = 0. Then we
define gp,∞ by the formula:

gp,∞(n) =

{
an

fp,∞(n) , if an 6= 0

1, if an = 0
.

Conversely, assume that an = fp,∞(n)gp,∞(n) for some fp,∞ ∈ Zp[X ] ⊂
C(Zp,Zp) (with respect to metric dsup) and gp,∞ : N → Zp\pZp. For k ≥ 2, let
fp,k ∈ Zp[X ] be such that dsup(fp,k, fp,∞) ≤ p−k (replacing coefficients of fp,k by
integers congruent to them modulo pk we can assume that fp,k ∈ Z[X ]). Because
there are only finitely many polynomial functions on Z/pZ then we can choose a
sequence of polynomials (fp,k)k∈N2 ⊂ Zp[X ] such that f ′

p,k1
(n) ≡ f ′

p,k2
(mod p)

for each n ∈ Z and k1, k2 ≥ 2. For k ≥ 2 and n ∈ N we put gp,k(n) as an
integer congruent to gp,∞(n) modulo pk. Finally, we obtain pseudo-polynomial
decomposition (fp,k, gp,k)k∈N2 modulo p of the sequence (an)n∈N.
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In particular, if p | an1 for some n1 ∈ N and p ∤ f ′
p,2(n1) (or equivalently

vp

(
1
p

(
an1+p

gp,2(n1+p) −
an1

gp,2(n1)

))
= 0) then there exists a unique n∞ ∈ Zp such that

n∞ ≡ n1 (mod p) and fp,∞(n∞) = 0. Indeed, Theorem 1 gives us existence and
uniqueness of nk modulo pk such that nk ≡ n1 (mod p) and pk | ank

for each
k ∈ N+. Hence pk | fp,∞(nk), which means that |fp,∞(nk)|p ≤ p−k. If k1 ≤ k2
then by uniqueness of nk1 modulo pk1 we have nk1 ≡ nk2 (mod pk1), or in other
words |nk1 − nk2 |p ≤ p−k1 . We thus conclude that (nk)k∈N+ is a Cauchy sequence
and by completeness of Zp this sequence is convergent to some n∞. By continuity
of fp,∞, |fp,∞(n∞)|p = limk→+∞ |fp,∞(nk)|p = 0. For all k ∈ N+, n∞ ≡ nk

(mod pk) and by uniqueness of nk modulo pk, such n∞, that n∞ ≡ n1 (mod p)
and fp,∞(n∞) = 0, is unique.

Let us note that if f : Zp → Zp is a p-adic contraction then f can be
approximated uniformly on Zp by the sequence of polynomials (fp,k)k∈N+ ⊂ Z[X ]

such that fp,k(n) = f(n), n ∈ {0, 1, 2, ..., pk − 1} for each k ∈ N+. Indeed, for each
x ∈ Zp we have

|fp,k(x) − f(x)|p = |(fp,k(x) − fp,k(x (mod pk)))− (fp,k(x (mod pk))− f(x))|p ≤

≤ max{|fp,k(x) − fp,k(x (mod pk))|p, |f(x (mod pk))− f(x)|p} ≤ p−k.

As a result, the closure of the rings Z[X ] and Zp[X ] in the space C(Zp,Zp) with
metric dsup is the set of all p-adic contractions f : Zp → Zp.

In particular, if a sequence (an)n∈N is such that (an (mod pk))n∈N is peri-
odic of period pk for each k ∈ N+ then (an)n∈N (as a function mapping N to Zp)
is a p-adic contraction (if |n − m|p = p−k then pk | n − m and pk | an − am,
which means that |an − am|p ≤ p−k). Since N is dense in Zp, the sequence
(an)n∈N can be extended to a function f ∈ C(Zp,Zp). Thus there exists a se-
quence (fp,k)k∈N+ ∈ Z[X ]N+ converging uniformly to f on Zp. Because of finiteness
of the set of polynomial functions on Z/pZ we can choose polynomials fp,k, k ∈ N2,
such that f ′

p,k1
(n) ≡ f ′

p,k2
(mod p) for each n ∈ Z and k1, k2 ≥ 2. Finally, the

sequence (fp,k, 1)k∈N2 is a pseudo-polynomial decomposition modulo p of the se-
quence (an)n∈N (where 1 means the function mapping each nonnegative integer n
to 1).

The following three examples show that there is no connection between ap-
proximability of a given function f : Zp → Zp by polynomials over Zp and its
differentiability.

Example 1. Let us note that each x ∈ Zp can be written uniquely as a series∑+∞
j=0 aj(x)p

j, where aj(x) ∈ {0, 1, ..., p− 1} for each j ∈ N (see [4]). Moreover, if

x 6= 0 then vp(x) is the least index j such that aj(x) 6= 0. Let p be an odd prime
number and let us consider a function f : Zp → Zp given by the formula

f(x) =

{
x

avp(x)(x)
, if x 6= 0,

0, if x = 0.

The function f is a p-adic contraction. First we see that |f(x)|p = |x|p for each
x ∈ Zp. Let k ∈ N and x, y ∈ Zp be such that |x − y|p = p−k. Let us write

x =
∑+∞

j=0 aj(x)p
j and y =

∑+∞
j=0 aj(y)p

j, where aj(x), aj(y) ∈ {0, 1, ..., p− 1} for

j ∈ N. Then k is the least index j such that aj(x) 6= aj(y). Let us consider two
cases.

(1) Assume first that vp(x) = vp(y) < k. Then avp(x)(x) = avp(y)(y) 6= 0 and

as a result |f(x)− f(y)|p =
∣∣∣ x−y
avp(x)(x)

∣∣∣
p
= |x− y|p = p−k.
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(2) Assume now that one of the numbers x, y has p-adic valuation equal to
k. Without loss of generality we set vp(x) = k. Then vp(y) ≥ k and as
a consequence vp(f(x)) = k and vp(f(y)) ≥ k. We thus have vp(f(x) −
f(y)) ≤ k or in other words |f(x)− f(y)|p ≤ p−k.

Hence f ∈ Z[X ]. On the other hand, the function f is not differentiable at 0,

because limn→+∞
f(apn)−f(0)

apn = limn→+∞
pn

apn = 1
a

for each a ∈ {1, ..., p− 1}.

Example 2. Let p be an arbitrary prime number and function f : Zp → Zp be
given by the formula

f(x) =

{
(−1)vp(x)x, if x 6= 0,

0, if x = 0.

The function f is a p-adic contraction (in fact, f is an isometry, i.e. |f(x) −
f(y)|p = |x − y|p for any x, y ∈ Zp). First we see that |f(x)|p = |x|p for each
x ∈ Zp. Let k ∈ N and x, y ∈ Zp be such that |x − y|p = p−k. Let us consider two
cases.

(1) Assume first that vp(x) = vp(y). Then |f(x)−f(y)|p =
∣∣(−1)vp(x)(x− y)

∣∣
p
=

|x− y|p = p−k.
(2) Assume now that vp(x) 6= vp(y). Then one of the numbers x, y has p-adic

valuation equal to k and the second one has p-adic valuation greater than k.
Without loss of generality we set vp(x) = k and vp(y) > k. As a consequence
vp(f(x)) = k and vp(f(y)) > k. We thus have vp(f(x) − f(y)) = k or in
other words |f(x)− f(y)|p = p−k.

Hence f ∈ Z[X ]. On the other hand, the function f is not differentiable at 0,

because limn→+∞
f(p2n+r)−f(0)

p2n+r = limn→+∞
(−1)rp2n+r

p2n+r = (−1)r for r ∈ {0, 1}.

Example 3. Let a function f : Zp → Zp be given by the formula

f(x) =

{
x
p
, if p | x,

x, if p ∤ x.

Obviously, the function f is differentiable at each point x ∈ Zp and its derivative is
equal to 1

p
for x ∈ pZp and 1 otherwise. However, if x, y ∈ pZp then |f(x)−f(y)|p =∣∣∣x−y

p

∣∣∣
p
= p·|x−y|p. Hence f is not a p-adic contraction, which means that f 6∈ Z[X ].

3.3. Hensel’s lemma for exponential function. Let us fix a prime number p,
an integer a and consider now exponential function f : N ∋ n 7→ an ∈ Z. In
general it is not a p-adic continuous function, but if p ∤ a and m ∈ N is fixed then
the function g : N ∋ n 7→ an(p−1)+m ∈ Z is continuous. Indeed, by Fermat’s little
theorem ap−1 = 1 + pb for some b ∈ Z and

an(p−1) =

n∑

j=0

(
n

j

)
(pb)j =

n∑

j=0

pjbj

j!

j−1∏

i=0

(n− i) =

+∞∑

j=0

pjbj

j!

j−1∏

i=0

(n− i).

Note that vp(
pjbj

j! ) ≥ j− vp(j!) = j− j−sp(j)
p−1 ≥ p−2

p−1 j ≥ 0 (we use Legendre’s

formula vp(j!) =
j−sp(j)
p−1 , j ∈ N, see [12]) and vp(

∏j−1
i=0 (n − i)) ≥ ⌊ j

p
⌋ (between j

consecutive integers there are at least ⌊ j
p
⌋ integers divisible by p). This suggests to

define

fp,k =

kp−1∑

j=0

pjbj

j!

j−1∏

i=0

(X − i) ∈ Zp[X ]
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for k ≥ 2. Then an(p−1) ≡ fp,k(n) (mod pk) and

f ′
p,k(n) =

kp−1∑

j=0

pjbj

j!

j−1∑

s=0

j−1∏

i=0,i6=s

(n− i) ≡

2p−1∑

j=0

pjbj

j!

j−1∑

s=0

j−1∏

i=0,i6=s

(n− i) (mod p).

Hence (fp,k, 1)k∈N2 , where 1 means the function defined on N constantly

equal to 1, is a pseudo-polynomial decomposition of (an(p−1))n∈N. Additionaly, the

formula ax(p−1) = fp,∞(x) =
∑+∞

j=0
pjbj

j!

∏j−1
i=0 (x− i) extends the function N ∋ n 7→

an(p−1)+m ∈ Z to a continuous function defined on Zp. However, this function has

one more property. Namely, if pk | x − y then pk+1 | ax(p−1) − ay(p−1), or in other
words |ax(p−1) − ay(p−1)|p ≤ 1

p
|x− y|p. Because N is dense in Zp, thus it suffices to

show this property for x, y ∈ N, where x > y. Let x = y + pkt for some positive

integer t not divisible by p. Then ax(p−1) − ay(p−1) = ay(p−1)(atp
k(p−1) − 1) and by

Euler’s theorem pk+1 | (at)p
k(p−1) − 1.

The mentioned property is a motivation to state an analogue of Hensel’s
lemma for exponential function.

Theorem 4 (Hensel’s lemma for exponential function). Let p be a prime number
and k be a positive integer. Let a, c be integers not divisible by p. Let m,nk be

nonnegative integers such that nk < m and s = vp(a
pk(p−1)−1) (by Euler’s theorem

s ≥ k + 1).

• If ps | ank(p−1)+m − c then for each positive integer l there exists a unique
nk+l modulo pk+l such that nk+l ≡ nk (mod pk) and
ps+l | ank+l(p−1)+m − c.

• If ps ∤ ank(p−1)+m − c then ps ∤ an(p−1)+m − c for all n ≡ nk (mod pk).

In particular, if m = 0 and c = 1 then for each positive integer l there exists a
unique nk+l modulo pk+l such that ps+l | ank+l(p−1) − 1.

Proof. The second case of the statement is very easy. If n ≡ nk (mod pk) then
(an(p−1)+m − c) − (ank(p−1)+m − c) = ank(p−1)(a(n−nk)(p−1) − 1). Since p ∤ a

and pk | n − nk, thus ap
k(p−1) − 1 | a(n−nk)(p−1) − 1 and as a consequence ps |

ank(p−1)(a(n−nk)(p−1) − 1). Because ps ∤ ank(p−1)+m − c, hence ps ∤ an(p−1)+m − c.
Now we prove the first case of the statement of our theorem.

First, we show by induction on l ∈ N that vp(a
pk+l(p−1) − 1) = s + l. The

induction hypothesis is obviously true for l = 0. Assume that ap
k+l(p−1) = 1+ps+ltl

and p ∤ tl. Then

ap
k+l+1(p−1) = (ap

k+l(p−1))p = (1 + ps+ltl)
p =

p∑

j=0

(
p

j

)
pj(s+l)tjl =

= 1 + ps+l+1tl + ps+l+2ul = 1 + ps+l+1(tl + pul),

where ul ∈ Z. Assume now that l ∈ N and ps+l | ank+l(p−1)+m − c. Write nk+l+1 =
nk+l + pk+lw and ank+l(p−1)+m − c ≡ ps+lz (mod ps+l+1). Then we obtain the
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sequence of equivalent congruences:

ank+l+1(p−1)+m − c ≡ 0 (mod ps+l+1)

⇐⇒ a(nk+l+pk+lw)(p−1)+m ≡ c (mod ps+l+1)

⇐⇒ awpk+l(p−1)ank+l(p−1)+m ≡ c (mod ps+l+1)

⇐⇒ (1 + ps+ltl)
w(c+ ps+lz) ≡ c (mod ps+l+1)

⇐⇒ (1 + wps+ltl)(c+ ps+lz) ≡ c (mod ps+l+1)

⇐⇒ wps+ltl(c+ ps+lz) ≡ −ps+lz (mod ps+l+1)

⇐⇒ wtlc ≡ −z (mod p)

Since p ∤ tk+lc, thus the last congruence has exactly one solution w modulo
p, which means that the first congruence has exactly one solution nk+l+1 modulo
pk+l+1 such that nk+l+1 ≡ nk (mod pk). �
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4. Arithmetic properties of sequences a ∈ R

The main point of this paper is to investigate arithmetic properties of se-
quence of derangements and to generalize this properties to some class of sequences.
This section is devoted to the family R of sequences a given by the recurrence
a0 = h1(0), an = f(n)an−1 + h1(n)h2(n)

n, n > 0, where f, h1, h2 ∈ Z[X ]. In order
to emphasize the polynomials f, h1, h2 appearing in this recurrence, we will denote
a = a(f, h1, h2). Sequences from the class R are natural generalization of the se-
quence of derangements, which is obtained for f = X,h1 = 1, h2 = −1. Note that
many well-known sequences belong to this class:

• if f, h2 = 1, h1 = c ∈ Z then (an)n∈N = (cn)n∈N is an arithmetic progres-
sion;

• if f = q ∈ Z, h1 = c ∈ Z, h2 = 0 then (an)n∈N = (cqn)n∈N is a geometric
progression;

• if f = 1, h1 = c ∈ Z, h2 = q ∈ Z then (an)n∈N = (
∑n

j=0 cq
j)n∈N is a

sequence of partial sums of a geometric progression;
• if f = X,h1 = 1, h2 = 0 then (an)n∈N = (n!)n∈N is the sequence of factori-

als;
• if f = 2X + l, l ∈ {0, 1}, h1 = 1, h2 = 0 then (an)n∈N = ((2n + l)!!)n∈N is

the sequence of double factorials.

One can easily obtain the closed formula an =
∑n

j=0 h1(j)h2(j)
j
∏n

i=j+1 f(i)
for n ∈ N.

A particular subclasses of R are class R′ of sequences for which h2 = 1
and class R′′ of sequences for which h2 = −1. It is worth to note that if a =
a(f, h1,−1) = (an)n∈N then an = (−1)nãn, n ∈ N, where ã = ã(−f, h1, 1) =
(ãn)n∈N. Certainly the equality is true for n = 0. Now, assume that an−1 =
(−1)n−1ãn−1 for n > 0. Then an = f(n)an−1 +(−1)nh1(n) = (−1)n(−f(n)ãn−1 +
h1(n)) = (−1)nãn. The sequence ã we will call associated to the sequence a.

Hence the study of such properties as: periodicity, p-adic valuations, divisors,
boundedness for sequences from class R′′ comes down to study of this properties
for sequences from R′.

4.1. Periodicity modulo d and p-adic valuations.

4.1.1. Periodicity modulo d, when h2 = 1 or h2 = −1 and d | f(n0) for some

n0 ∈ N. Assume that a = a(f, h1, 1). Let d ∈ N+ be such that d | f(n0) for some
n0 ∈ N. Then for each n ≥ n0 we have

an =

n∑

j=0

h1(j)

n∏

i=j+1

f(i) ≡
n∑

j=n−d+1

h1(j)

n∏

i=j+1

f(i)

=

d−1∑

j=0

h1(n− j)

j−1∏

i=0

f(n− i) (mod d).

(4)

Making reduction modulo d we can skip the summands from 0th to (n−d)th
because if 0 ≤ j ≤ n − d then among (at least d) numbers j + 1, j + 2, ..., n there
is such number i0 that d | f(i0) and d |

∏n
i=j+1 f(i). If n0 ≤ n < d then f(n0)

appears in the product
∏n

i=j+1 f(i) for n− d+1 ≤ j < 0, thus this product has no

influence on the value an (mod d).

Let us define fd =
∑d−1

j=0 h1(X−j)
∏j−1

i=0 f(X−i) ∈ Z[X ]. Then the equation

(4) takes the form an ≡ fd(n) (mod d), n ≥ n0 and because of periodicity modulo
d of any polynomial we conclude that the sequence (an (mod d))n∈Nn0

is periodic

of period d. One can ask the natural question now: Is d the basic period of (an
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(mod d))n∈Nn0
? If gcd(d, an) = 1 for some n ∈ N, f = b1X+ b0, where gcd(d, b1) =

1 and h1 = c ∈ Z then the answer is positive.

Proposition 1. Let as assume a = a(b1X + b0, c, 1), where b0, b1, c ∈ Z. Let
d ∈ N+ divide b1n0 + b0 for some n0 ∈ N and gcd(d, an1) = 1 for some n1 ≥ n0.
Then the sequence (an (mod d))n∈Nn0

has the basic period divisible by d
gcd(d,b1)

. In

particular, if gcd(d, b1) = 1 then the basic period is equal to d.

Proof. Denote the basic period of (an (mod d))n∈Nn0
by per. We thus obtain the

following chain of equivalences:

an1+per+1 ≡ an1+1 (mod d)

⇐⇒ (b1(n1 + per + 1) + b0)an1+per + c ≡ (b1(n1 + 1) + b0)an1 + c (mod d)

⇐⇒ (b1(n1 + per + 1) + b0)an1 ≡ (b1(n1 + 1) + b0)an1 (mod d)

⇐⇒ b1(n1 + per + 1) + b0 ≡ b1(n1 + 1) + b0 (mod d)

⇐⇒ b1(n1 + per + 1) ≡ b1(n1 + 1) (mod d)

⇐⇒ n1 + per + 1 ≡ n1 + 1

(
mod

d

gcd(d, b1)

)

⇐⇒ per ≡ 0

(
mod

d

gcd(d, b1)

)
.

Our proposition is proved. �

Example 4. Let c be as in the statement of Proposition 1 and suppose that |c| > 1.
Then by simple induction one can prove that c | an for all n ∈ N. In other words,
the sequence (an (mod c))n∈N is constant and equal to 0. This means that the
assumption gcd(d, an1) = 1 for some n1 ≥ n0 in Proposition 1 is essential.

Example 5. Let us fix c, d ∈ Z such that d > 1. Consider the sequence given by
the formula a0 = c, an = (nϕ(d)+1−n)an−1+c, n > 0 (by ϕ we mean Euler’s totient
function). By Euler’s theorem d | nϕ(d)+1−n for all n ∈ N, hence the sequence (an
(mod c))n∈N is constant and equal to c (mod d). Thus the assumption f = b1X+b0
in Proposition 1 is essential.

Example 6. Let us consider the sequence a = a(X,−aX + a, 1), where a ∈ Z. It
is very easy to prove that an = a for all n ∈ N. Hence the assumption h1 = c in
Proposition 1 is essential.

The last example shows us that Proposition 1 is no longer true if we replace
a constant polynomial h1 = c with an affine polynomial h1 = c1X + c0. However,
we can modify Proposition 1 and get the following.

Proposition 2. Let a = a(b1X + b0, c1X + c0, 1), where b0, b1, c0, c1 ∈ Z. Let
d ∈ N+ be such that d | b1n0+b0 for some n0 ∈ N. Let us assume that gcd(d, b1an1+
c1) = 1 for some n1 ≥ n0. Then the sequence (an (mod d))n∈Nn0

has the basic
period equal to d.

Proof. Denote the basic period of (an (mod d))n∈Nn0
by per. We thus obtain the

following chain of equivalences:

an1+per+1 ≡ an1+1 (mod d)

⇐⇒ (b1(n1 + per + 1) + b0)an1+per + c1(n1 + per + 1) + c0

≡ (b1(n1 + 1) + b0)an1 + c1(n1 + 1) + c0 (mod d)

⇐⇒ (b1(n1 + per + 1) + b0)an1 + c1per ≡ (b1(n1 + 1) + b0)an1 (mod d)

⇐⇒ b1an1per + c1per ≡ 0 (mod d)

⇐⇒ (b1an1 + c1)per ≡ 0 (mod d).
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Since gcd(d, b1an1 + c1) = 1, we get d | per and we are done. �

Let a = a(f, h1,−1). Let us assume that d ∈ N+ is such that d | f(n0) for
some n0 ∈ N. Then an = (−1)nãn for each n ∈ N. This means that an ≡ (−1)nãn
(mod d) for all n ∈ N. Since ã = ã(−f, h1, 1) and d | −f(n0) we deduce that
the sequence (ãn (mod d))n∈Nn0

is periodic. If we denote the basic period of (ãn
(mod d))n∈Nn0

by per > 1 then (an (mod d))n∈Nn0
has the basic period equal to:

• per, when 2 | per;
• 2per, when 2 ∤ per.

If the sequence (ãn (mod d))n∈Nn0
is constant then (an (mod d))n∈Nn0

has
the basic period equal to:

• 1, when d | an, n ≥ n0 or d = 2;
• 2, otherwise.

In particular, since the associated sequence (D̃n)n∈N to the sequence of de-

rangements satisfies the assumptions of the Proposition 1, hence (D̃n (mod d))n∈N

has the basic period d for arbitrary d ∈ N+ and as a result the basic period of (Dn

(mod d))n∈N is equal to:

• d, when 2 | d;
• 2d, when 2 ∤ d.

Remark 2. It is worth to recall a well known fact that if (an)n∈N is a sequence of in-
tegers, d1, d2 are two coprime positive integers and the sequences (an (mod d1))n∈N,
(an (mod d2))n∈N are periodic with basic periods per1, per2 respectively then the se-
quence (an (mod d1d2))n∈N is periodic with basic period lcm(per1, per2).

4.1.2. p-adic valuations of numbers an, n ∈ N, when h2 = 1 or h2 = −1 and

p | f(n0) for some n0 ∈ N. Let us fix a prime number p and assume that a =
a(f, h1, 1). If p | f(n0) for some n0 ∈ N then for each k ∈ N+ and n ≥ n0+(k− 1)p
we have

an =
n∑

j=0

h1(j)
n∏

i=j+1

f(i) ≡
n∑

j=n−kp+1

h1(j)
n∏

i=j+1

f(i)

=

kp−1∑

j=0

h1(n− j)

j−1∏

i=0

f(n− i) ≡ fp,k(n) (mod pk),

(5)

where fp,k =
∑kp−1

j=0 h1(X − j)
∏j−1

i=0 f(X − i) ∈ Z[X ]. We can skip the summands

from 0th to (n− kp)th because if 0 ≤ j ≤ n− d then among (at least kp) numbers
j + 1, j + 2, ..., n there are at least k numbers congruent to n0 modulo p, thus p
divides at least k factors in product

∏n
i=j+1 f(i). Additionaly, if f(n0) = 0 and

n0 ≤ n < n0 + (k− 1)p then
∏n

i=j+1 f(i) = 0 for j < n0. Hence the congruence (5)
is satisfied for n ≥ n0.

What is more,

f ′
p,k(n) =

kp−1∑

j=0

[h′1(n− j)

j−1∏

i=0

f(n− i) + h1(n− j)

j−1∑

s=0

(f ′(n− s)

j−1∏

i=0,i6=s

f(n− i))]

≡

2p−1∑

j=0

[h′1(n− j)

j−1∏

i=0

f(n− i) + h1(n− j)

j−1∑

s=0

(f ′(n− s)

j−1∏

i=0,i6=s

f(n− i))] (mod p).

Hence (fp,k, 1)k∈N2 is a pseudo-polynomial decomposition modulo p of a and thus
we can use Theorem 1 to obtain the criterion for behavior of p-adic valuation of
the number an.
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Theorem 5. Assume that a = a(f, h1, 1). Let p be a prime number and k ∈ N+.
Let f(n0) = 0 (respectively p | f(n0)) and nk ≥ n0 (respectively nk ≥ n0 + kp) be
such that pk | ank

.

• If vp(ank+p − ank
) = 1 then there exists a unique nk+1 modulo pk+1 such

that nk+1 ≡ nk (mod pk) and pk+1 | an for all n ≥ n0 (respectively n ≥
n0+kp) congruent to nk+1 modulo pk+1. Moreover, nk+1 ≡ nk−

pank

ank+p−ank

(mod pk+1).
• If vp(ank+p − ank

) > 1 and pk+1 | ank
then pk+1 | an for any n satisfying

n ≡ nk (mod pk) and n ≥ n0 (respectively n ≥ n0 + kp).
• If vp(ank+p − ank

) > 1 and pk+1 ∤ ank
then pk+1 ∤ an for any n satisfying

n ≡ nk (mod pk) and n ≥ n0 (respectively n ≥ n0 + kp).

In particular, if k = 1, p | an1 and vp(an1+p − an1) = 1 then for any l ∈ N+ there
exists a unique nl modulo pl such that nl ≡ n1 (mod p) and vp(an) ≥ l for all
n ≥ n0 (respectively n ≥ n0 + (l − 1)p) congruent to nl modulo pl. Moreover, nl

satisfies the congruence nl ≡ nl−1 −
panl−1

an1+p−an1
(mod pl) for l > 1.

Proof. Note that qp(nk) =
1
p
(ank+p−ank

) (qp(nk) is as in the statement of Theorem

1), which implies that vp(ank+p−ank
) = vp(qp(nk))+1. We use Theorem 1 for the

set S = {n ∈ N : n ≥ n0} (respectively S = {n ∈ N : n ≥ n0 + kp}) and get the
result. �

Let us observe that if a ∈ R′′ then vp(an) = vp(ãn). Hence it suffices to
apply Theorem 5 for the sequence ã in order to obtain the description of p-adic
valuation of numbers an, n ∈ N.

4.1.3. Prime divisors and p-adic valuations of the sequence of derange-

ments. Theorem 5 can be used to describe p-adic valuations of numbers of de-
rangements, but we will study these numbers more precisely. Namely,

Dn = nDn−1 + (−1)n = Dn−1 + (n− 1)Dn−1 + (−1)n

= (n− 1)Dn−2 + (−1)n−1 + (n− 1)Dn−1 + (−1)n = (n− 1)(Dn−2 +Dn−1)

for n > 1. We thus have n − 1 | Dn for n ∈ N and as a consequence
vp(n− 1) ≤ vp(Dn) for each prime p. Let us define two sets:

A = {p ∈ P : vp(n− 1) = vp(Dn) for all n ∈ N}, B = P\A.

Denote En = Dn

n−1 = Dn−2 +Dn−1, n > 1. Hence it suffices to study p-adic

valuations of the sequence (En)n∈N2 for p ∈ B. Firstly note that the set B is infinite.

Proposition 3. The set B is infinite.

Proof. Assume that B = {p1, ..., ps}. Since ((−1)nDn (mod p)i)n∈N has period pi
for each i ∈ {1, ..., s}, thus ((−1)nEn (mod p)i)n∈N2 has period pi, too. Because
E2 = 1, hence p1...ps ∤ Ep1...psm+2 for all m ∈ N. B is the set of all prime divisors of
numbers En, n > 1 and En > 0 (because Dn > 0 for n 6= 1), so Ep1...psm+2 = 1 for

all m ∈ N. On the other hand, En

(n−2)!n = Dn

n! =
∑n

j=0
(−1)j

j! → e−1, when n→ +∞.

This fact implies that En → +∞, when n→ +∞, and this is a contradiction. �

For a given prime number p it is easy to verify if p ∈ A. Because of periodicity
of the sequence ((−1)nEn (mod p))n∈N2 it suffices to check that p divides none of
the numbers En, n ∈ {2, ..., p+ 1}. The first numbers in A are 2, 5, 7, 17, 19, 23, 29.
Numerical computations show that among all prime numbers less than 106 there
are 28990 numbers which belong to A, while 49508 primes belong to B. This means
that primes less than 106 contained in A are approx. 37% of all primes less than
106. However, we are not able to prove that the set A is infinite.
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Conjecture 1. The set A is infinite. Moreover, limn→+∞
♯(A∩{1,...,n})
♯(P∩{1,...,n}) = 1

e
.

The following heuristic reasoning allows us to claim the second statement in
the conjecture above. If we fix a prime number p and choose by random a sequence
(an)n∈N such that the sequence of remainders (an (mod p))n∈N has period p then

the probability that p does not divide any term of this sequence is equal to
(
1− 1

p

)p
.

When p → +∞ then this probability tends to 1
e
. Note that p ∈ A if and only if

p does not divide any number Ẽn, n ≥ 2 and the sequence (Ẽn (mod p))n∈N2 is
periodic of period p. Therefore we suppose that the probability that p ∈ A tends
to 1

e
, when p → +∞ and hence the asymptotic density of the set A in the set P is

equal to 1
e
.

Now we are obtaining a pseudo-polynomial decomposition modulo p of the

sequence (En)n∈N2 . Note, that (−1)nEn = (−1)nDn−2 + (−1)nDn−1 = D̃n−2 −

D̃n−1, n > 1. Let fp,k =
∑kp−1

j=0 (−1)j
∏j−1

i=0 (X − i), k > 1. Then (fp,k, 1)k∈N2

is a pseudo-polynomial decomposition modulo p of (D̃n)n∈N (recall that D̃0 =

1, D̃n = −nD̃n−1+1, n > 0). Hence (fp,k(X− 2)− fp,k(X− 1), 1)k∈N2 is a pseudo-
polynomial decomposition modulo p of ((−1)nEn)n∈N2 and (fp,k(X−2)−fp,k(X−
1), (−1)n)k∈N2 (where (−1)n means the function which maps a nonnegative integer
n to (−1)n) is a pseudo-polynomial decomposition modulo p of (En)n∈N2 .

Remark 3. We can define E0, E1 so that (En)n∈N has a pseudo-polynomial decom-
position. The sequence of functions (fp,k)k∈N2 converges uniformly to the function

fp,∞ =
∑+∞

j=0(−1)j
∏j−1

i=0 (X − i) on Zp and thus (see Section 3.2):

En = (−1)n(fp,∞(n− 2)− fp,∞(n− 1)), n ≥ 2,

so there must be:

E0 = fp,∞(−2)− fp,∞(−1) =

+∞∑

j=0

(j + 1)!−
+∞∑

j=0

j! = −1,

E1 = fp,∞(0)− fp,∞(−1) = 1−
+∞∑

j=0

j! = −
+∞∑

j=1

j!.

It is worth to remark that E0 = D0

−1 . Thus the definition of E0 coincides with

the definition En = Dn

n−1 for n ≥ 2.

One can observe that E1 /∈ Z. Indeed, if E1 ∈ Z then the sequence of remain-
ders (E1 (mod n!))n∈N or (−E1 (mod n!))n∈N is ultimately constant. However, for
n > 1 we have

E1 (mod n!) = n!−
n−1∑

j=1

j! > n!− (n− 1)(n− 1)! = (n− 1)!

and

−E1 (mod n!) =

n−1∑

j=1

j!,

which leads to a contradiction.

Theorem 6. Let p ∈ B, k ∈ N+ and nk ∈ N, nk ≥ 2 be such that pk |
Dnk

nk−1 . Let

us define q̂p(nk) =
1
p

(
Dnk+p

nk+p−1 +
Dnk

nk−1

)
.

• If p ∤ q̂p(nk) then there exists a unique nk+1 modulo pk+1 such that nk+1 ≡
nk (mod pk) and pk+1 | Dn

n−1 for all n ≥ 2 congruent to nk+1 modulo pk+1.

What is more, nk+1 ≡ nk +
Dnk

(nk−1)q̂p(nk)
(mod pk+1).
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• If p | q̂p(nk) and pk+1 |
Dnk

nk−1 then pk+1 | Dn

n−1 for all n satisfying n ≡ nk

(mod pk) and n ≥ 2.

• If p | q̂p(nk) and pk+1 ∤
Dnk

nk−1 then pk+1 ∤ Dn

n−1 for any n satisfying n ≡ nk

(mod pk) and n ≥ 2.

In particular, if k = 1, p |
Dn1

n1−1 and p2 ∤
(

Dn1+p

n1+p−1 +
Dn1

n1−1

)
then for any l ∈ N+

there exists a unique nl modulo pl such that nl ≡ n1 (mod p) and vp

(
Dn

n−1

)
≥ l

for all n ≥ 2 congruent to nl modulo pl. Moreover, nl satisfies the congruence

nl ≡ nl−1 +
Dnl−1

(nl−1−1)q̂p(n1)
(mod pl) for l > 1.

Proof. Let qp(nk) be as specified in Theorem 1. Note that

qp(nk) =
1

p

(
Dnk+p

(−1)nk+p(nk + p− 1)
−

Dnk

(−1)nk(nk − 1)

)

=
(−1)nk+p

p

(
Dnk+p

nk + p− 1
+

Dnk

nk − 1

)
= −(−1)nk q̂p(nk),

where the equalities above hold, because p 6= 2 (2 ∈ A). Thus vp(q̂p(nk)) =

vp(qp(nk)) and if vp(q̂p(nk)) = 0 then nk+1 ≡ nk −
Dnk
nk−1

(−1)nkqp(nk)
= nk +

Dnk

(nk−1)q̂p(nk)

(mod pk+1). �

According to numerical computations based on the theorem above, among
primes less than 106 there are three primes p with the property that there exists

an n1 ≥ 2 such that p |
Dn1

n1−1 and p | q̂p(n1). Namely, they are:

• p = 2633 with n1 = 1578,
• p = 429943 with n1 = 317291,
• p = 480143 with n1 = 121716.

In addition, if a tuple (p, n1) is one of these tree tuples above then vp

(
Dn1

n1−1

)
=

1. Therefore, by Theorem 6, vp

(
Dn

n−1

)
= 1 for all integers n ≥ 2 congruent to n1

modulo p. Since 2633 | Dn

n−1 if and only if n ≡ 1578 (mod 2633), thus the 2633-adic

valuation of numbers Dn

n−1 , n ≥ 2, is bounded by 1.

For p = 480143we have 429943 | Dn

n−1 if and only if n ≡ 172017, 223393, 317291

(mod 429943) and 429943 ∤ q̂429943(172017), q̂429943(223393), and 480143 | Dn

n−1 if

and only if n ≡ 121716, 265745 (mod 480143) and 480143 ∤ q̂480143(265745), so
the 429943-adic valuation and 480143-adic valuation of numbers Dn

n−1 , n ≥ 2, are
unbounded.

Hence it is not true that the p-adic valuation of numbers Dn

n−1 , n ≥ 2, is
unbounded for all p ∈ B. In the light of these results it is natural to ask the
following questions:

Question 1. Are there infinitely many primes p with the property that there exists

n1 ∈ N2 such that p |
Dn1

n1−1 and p | q̂p(n1)?

Question 2. Are there infinitely many primes p ∈ B such that the set
{
vp

(
Dn

n− 1

)
: n ∈ N2

}

is finite?
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4.1.4. Periodicity modulo d in case when d divides f(n0) for some integer

n0 and h2 is arbitrary.

Proposition 4. Let us consider a sequence a(f, h1, h2). Let d ∈ N+ and n0 ∈ N be
such that d | f(n0) and n0 ≥ (p+ 1)vp(d) − 1 for all primes p. Then the sequence

(an (mod d))n∈Nn0
is periodic of period lcm{pki

i (pi − 1) : i ∈ {1, 2, ..., s}}, where

d = pk1

1 · ... · pks
s is the factorization of the number d. In particular, the number

d
∏s

i=0(pi − 1) is a period of (an (mod d))n∈Nn0
.

Proof. By Remark 2, it suffices to prove this fact for d = pk, where p is a prime
number and k is a positive integer.

For each n ≥ n0 we have congruence similar to (4).

an =

n∑

j=0

h1(j)h2(j)
j

n∏

i=j+1

f(i) ≡
n∑

j=n−kp+1

h1(j)h2(j)
j

n∏

i=j+1

f(i)

=

kp−1∑

j=0

h1(n− j)h2(n− j)n−j

j−1∏

i=0

f(n− i) (mod pk).

(6)

Since n ≥ n0, n0 ≥ k(p+ 1)− 1 and j ≤ kp− 1, thus n− j ≥ k and if p | h2(n− j)
then pk | h2(n−j)n−j . Let us define N = {n ∈ N : p ∤ h2(n)}. Then the congruence
(6) takes the form

an ≡
∑

0≤j≤kp−1,n−j∈N

h1(n− j)h2(n− j)n−j

j−1∏

i=0

f(n− i) (mod pk).

If n1 ≡ n2 (mod pk(p − 1)) then n1 − j ∈ N if and only if n2 − j ∈ N . Since
n1 ≡ n2 (mod pk), thus h1(n1− j) ≡ h1(n2− j) (mod pk), h2(n1− j) ≡ h2(n2− j)
(mod pk) and f(n1 − j) ≡ f(n2 − j) (mod pk) for any j ∈ N. Since n1 ≡ n2

(mod pk−1(p − 1)), hence by Euler’s theorem h2(n1 − j)n1−j ≡ h2(n2 − j)n2−j

(mod pk) for j such that n1 − j ∈ N . Finally

an1 ≡
∑

0≤j≤kp−1,n1−j∈N

h1(n1 − j)h2(n1 − j)n1−j

j−1∏

i=0

f(n1 − i) ≡

≡
∑

0≤j≤kp−1,n2−j∈N

h1(n2 − j)h2(n2 − j)n2−j

j−1∏

i=0

f(n2 − i) ≡ an2 (mod pk),

(7)

which means that pk(p− 1) is a period of the sequence (an (mod pk))n∈Nn0
. �

Example 7. Let a = a(b, h1, d), where h1 ∈ Z[X ], b, d ∈ Z and gcd(b, d) = 1. Then

the sequence (an (mod d))n∈N = (bna0)n∈N has period λ(d) = lcm{pki−1
i (pi − 1) :

i ∈ {1, 2, ..., s}}, where d = pk1
1 · ... ·pks

s is the factorization of the number d and λ is

Carmichael’s function. This means that in general lcm{pki

i (pi−1) : i ∈ {1, 2, ..., s}}
is not the basic period of (an (mod d))n∈Nn0

.

Example 8. The sequence a = a(X, 1, 2) is the example that lcm{pki

i (pi − 1) : i ∈

{1, 2, ..., s}} may be the basic period of (an (mod d))n∈Nn0
, where d = pk1

1 · ... · pks
s

is the factorization of the number d. Namely, if d = 225 = 32 · 52 then the basic
period of (an (mod 225))n∈N is equal to 900 = lcm{32 · 2, 52 · 4}.
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4.1.5. Periodicity modulo pk in case when p does not divide f(n) for any

integer n. Now we are considering periodicity modulo pk of sequences given by
the relation a0 = h1(0), an = f(n)an−1 + h1(n)h2(n)

n, n > 0, where h2 ∈ Z[X ] is
an arbitrary polynomial and a prime number p does not divide f(n) for any integer
n.

Proposition 5. Let p be a prime number, k be a positive integer and a sequence
a = a(f, h1, h2). Assume that p ∤ f(n) for any integer n. Then the sequence (an
(mod pk))n∈Nk−1

is periodic of period of the form tpk(p−1), where t ∈ {1, 2, 3, ..., pk}.

Moreover, if p ∤ h2(n) for any integer n then the sequence (an (mod pk))n∈N is pe-
riodic of period of the form as above. If h2 = −1 and p 6= 2 then there is a period
of the form 2tpk, t ∈ {1, 2, 3, ..., pk}. If h2 = −1 and p = 2 or h2 = 1 then there is
a period of the form tpk, t ∈ {1, 2, 3, ..., pk}.

Proof. Let us consider the numbers ak−1, apk(p−1)+k−1, a2pk(p−1)+k−1, ..., apkpk(p−1)+k−1.

By pigeon hole principle there are s1, s2 ∈ {0, 1, 2, 3, ..., pk}, s1 < s2 such that
as1pk(p−1)+k−1 ≡ as2pk(p−1)+k−1 (mod pk). Let us put t = s2 − s1. We will show
that

(8) an ≡ atpk(p−1)+n (mod pk) for n ≥ k − 1.

The congruence (8) is satisfied for n = s1p
k(p− 1)+k− 1. Assume now that

k − 1 ≤ n < s1p
k(p− 1) + k − 1 and (8) is satisfied for n+ 1. Then we have

f(n+ 1)an + h1(n+ 1)h2(n+ 1)n+1 ≡ f(tpk(p− 1) + n+ 1)atpk(p−1)+n+

+ h1(tp
k(p− 1) + n+ 1)h2(tp

k(p− 1) + n+ 1)tp
k(p−1)+n+1 (mod pk).

Let us assume that p | h2(n + 1). Then p | h2(tpk(p − 1) + n + 1). Since

n+ 1 ≥ k, we infer that pk | h2(n+ 1)n+1, pk | h2(tpk(p− 1) + n+ 1)tp
k(p−1)+n+1.

Suppose now that p ∤ h2(n + 1). Then p ∤ h2(tp
k(p − 1) + n + 1) and by Euler’s

theorem we obtain the following

h2(tp
k(p−1)+n+1)tp

k(p−1)+n+1 ≡ h2(tp
k(p−1)+n+1)n+1 ≡ h2(n+1)n+1 (mod pk).

Finally, we get

h1(n+1)h2(n+1)n+1 ≡ h1(tp
k(p−1)+n+1)h2(tp

k(p−1)+n+1)tp
k(p−1)+n+1 (mod pk).

As a consequence we have

f(n+ 1)an ≡ f(tpk(p− 1) + n+ 1)atpk(p−1)+n ≡ f(n+ 1)atpk(p−1)+n (mod pk).

Moreover, the fact that p ∤ f(n+ 1) implies that an ≡ atpk(p−1)+n (mod pk).
Let us note that if p ∤ h2(n) for any integer n then the consideration above

allows us to conclude that

an ≡ atpk(p−1)+n (mod pk) for any n ∈ {0, 1, ..., s1p
k(p− 1) + k − 1}.

Similarly we prove (8) for n > s1p
k(p− 1) + k − 1.

The proof in the cases h2 = −1, h2 = 1 runs in the same way: we consider
the numbers ak−1, a2pk+k−1, a4pk+k−1, ..., a2pkpk+k−1 (respectively ak−1, apk+k−1,
a2pk+k−1, ..., apkpk+k−1) and we use the fact that

(−1)n+1h1(n+ 1) ≡ (−1)2tp
k+n+1h1(2tp

k + n+ 1) (mod pk)

(respectively h1(n+ 1) ≡ h1(tp
k + n+ 1) (mod pk)).

�

Example 9. Let f = X2 − 2, h1 = 1, h2 = 2, p = 5 and k = 1. Then the basic
period of the sequence (an (mod 5))n∈N is equal to 100 = 52 ·4. Hence it is possible
that the basic period of the sequence (an (mod pk))n∈Nk−1

is exactly p2k(p− 1).
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Example 10. Let f = X2 − 2, h1 = 1, h2 = 3, p = 3 and k ∈ N+. Then
the sequence (an (mod 3k))n∈Nk−2

is not periodic while (an (mod 3k))n∈Nk−1
is.

Indeed, 2 · 3kt, where t is some number from the set {1, 2, 3, ..., 3k}, is the period of
(an (mod 3k))n∈Nk−1

. This fact implies that if the sequence (an (mod 3k))n∈Nk−2

is periodic then there exists its period of the form 2 · 3ku, where u ∈ N+. Since
ak−1+2·3ku ≡ ak−1 (mod 3k), hence

((k − 1 + 2 · 3ku)2 − 2)ak−2+2·3ku + 3k−1+2·3ku ≡ ((k − 1)2 − 2)ak−2 + 3k−1 (mod 3k)

((k − 1)2 − 2)ak−2+2·3ku ≡ ((k − 1)2 − 2)ak−2 + 3k−1 (mod 3k).

Thus ak−2+2·3ku 6≡ ak−2 (mod 3k) - a contradiction.
In addition, the basic period of (an (mod 9))n∈N+ equals 18. Hence it is

possible that the basic period of the sequence (an (mod pk))n∈Nk−1
is equal to pk(p−

1).

Example 11. Let f = 11X4 + 7, h1 = 1, h2 = 7, p = 5 and k = 2. Then the
sequence (an (mod 25))n∈N has basic period equal to 500 = 53 · 4. This means that
the basic period of the sequence (an (mod pk))n∈Nk−1

can be strictly greater than

pk(p− 1) and smaller than p2k(p− 1).

Example 12. Let f = X2 + 1, h1 = 1, h2 = −1, p = 3 and k = 1. Then the
basic period of the sequence (an (mod 3))n∈N is equal to 18 = 32 · 2. Hence it is
possible that the basic period of the sequence (an (mod pk))n∈Nk−1

, where h2 = −1,

is exactly 2p2k.

Example 13. Let f = X2 + 1, h1 = h2 = 1, p = 3 and k = 1. Then the basic
period of the sequence (an (mod 3))n∈N is equal to 9. Hence it is possible that the
basic period of the sequence (an (mod pk))n∈Nk−1

, where h2 = −1, is exactly p2k.

Example 14. Let f = h1 = 1, h2 = b and b 6= 1. Then an = bn+1−1
b−1 , n ∈ N.

Assume that p is such a prime number that p ∤ b. We consider two cases.

(1) We assume that b 6≡ 1 (mod p). In this case p must be odd (because each
integer is divisible by 2 or is congruent to 1 modulo 2). Hence the mul-
tiplicative group (Z/pkZ)∗ is cyclic of order pk−1(p − 1) and all the ele-
ments of order being a power of p are exactly these ones which are congru-
ent to 1 modulo p. This means that the basic period of the sequence (an
(mod pk))n∈Nk−1

can be any positive integer dividing pk(p−1) on condition
that it is not equal to some power of p.

(2) We suppose that b ≡ 1 (mod p) and put s = vp(b − 1). If p is odd or
p = 2 and s > 1 then we prove by induction that pk is the order of b in
(Z/pk+sZ)∗ for each k ∈ N (pk is the least positive integer r with property
that pk+s | br − 1 - compare with the proof of Theorem 4). Hence the
sequence (bn+1 − 1 (mod pk+s))n∈N has the basic period pk and thus the

sequence ( b
n+1−1
b−1 (mod pk))n∈N has the same basic period. If p = 2 and

s = 1 then we prove similarly that 2k−1 is the order of b in (Z/2k+1Z)∗ for
each k ≥ 2 and 2 is the order of b in (Z/4Z)∗. Hence the sequence (bn+1−1
(mod 2k+1))n∈N has the basic period 2k−1 for k ≥ 2 and 2 for k = 1. Thus

the sequence ( b
n+1−1
b−1 (mod 2k))n∈N has the same basic period.

Let us observe that if d = pk1
1 · ... · pks

s and n0 = max{ki− 1 : i ∈ {1, 2, ..., s}}

then knowing the basic periods of the sequences (an (mod pki

i ))n∈Nki−1
, i ∈ {1, 2, ..., s},

we can use Remark 2 to compute the basic period of the sequence (an (mod d))n∈Nn0
.

Namely, if peri is the basic period of (an (mod pki

i ))n∈Nki−1
then the basic period

of (an (mod d))n∈Nn0
equals lcm{peri : i ∈ {1, 2, ..., s}}.
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Proposition 5 states only existence of some period of the sequence
(an (mod pk))n∈Nk−1

of the form tpk(p− 1), where t ∈ {1, 2, ..., pk}. We would like
to obtain an exact formula for some period of this sequence. What is more, the
examples above showed that number tpk(p− 1), where t ∈ {1, 2, ..., pk}, can be the
basic period of (an (mod pk))n∈Nk−1

when t is a power of p. Now we will show

that p3k−1(p − 1) is a period of (an (mod pk))n∈Nk−1
and this fact together with

Proposition 5 gives the form of basic period of this sequence.

Proposition 6. If p is a prime number which does not divide f(n) for any integer
n and k is a positive integer then p3k−1(p− 1) is the period of the sequence
(an (mod pk))n∈Nk−1

. Moreover, if p does not divide h2(n) for any integer n then

p3k−1(p− 1) is the period of the sequence (an (mod pk))n∈N.

Proof. Let us define Pp = {n ∈ N : p | h2(n)} and Np = N\Pp. For n ≥ k − 1, we
have:

an =
n∑

j=0

h1(n− j)h2(n− j)n−j

j−1∏

i=0

f(n− i)

=

p2k−1(p−1)−1∑

t=0

⌊
n−t

p2k−1(p−1)

⌋

∑

s=0

h1(n− sp2k−1(p− 1)− t)×

× h2(n− sp2k−1(p− 1)− t)n−sp2k−1(p−1)−t

sp2k−1(p−1)+t−1∏

i=0

f(n− i)

≡
∑

t∈Pp,0≤t<k

h1(t)h2(t)
t

n−t−1∏

i=0

f(n− i)+

+
∑

0≤t<p2k−1(p−1),n−t∈Np

(
1 +

⌊
n− t

p2k−1(p− 1)

⌋)
×

× h1(n− t)h2(n− t)n−t

t−1∏

i=0

f(n− i) (mod pk).

(9)

The congruence above is true because for each j ∈ N we have

j−1∏

i=0

f(n− i) =

pk−1∏

r=0

⌊
j−1−r

pk

⌋

∏

s=0

f(n− spk − r)

≡

pk−1∏

r=0

f(n− r)

⌊
j−1−r

pk

⌋

(mod pk).

If j1 ≡ j2 (mod p2k−1(p − 1)) then pk−1(p − 1) |
⌊
j1−1−r

pk

⌋
−
⌊
j2−1−r

pk

⌋
and

by Euler’s theorem we obtain

j1−1∏

i=0

f(n− i) ≡

j2−1∏

i=0

f(n− i) (mod pk).

Using Euler’s theorem once again we conclude that

h2(n− j1)
n−j1 ≡ h2(n− j2)

n−j2 (mod pk).
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Finally, if n1 ≡ n2 (mod p3k−1(p− 1)) then

⌊
n1 − t

p2k−1(p− 1)

⌋
≡

⌊
n2 − t

p2k−1(p− 1)

⌋
(mod pk).

Note that (9) holds for all n ∈ N, if Pp = ∅. �

Combining Propositions 4, 5, 6 and Remark 2 we obtain two corollaries.

Corollary 1. Let a = a(f, h1, h2), p be a prime number which does not divide f(n)
for any integer n and k be a positive integer. Then the basic period of the sequence
(an (mod pk))n∈Nk−1

is of the form plc, where l ≤ 2k and c | p − 1. In particular

p2k(p− 1) is a period of the sequence (an (mod pk))n∈Nk−1
. If h2 = −1 and p 6= 2

then the basic period is of the form 2pl, l ≤ 2k. If h2 = −1 and p = 2 or h2 = 1
then the basic period is of the form pl, l ≤ 2k.

If additionally p does not divide h2(n) for any integer n then the sequence
(an (mod pk))n∈N is periodic with basic period of the form as above.

Corollary 2. Let d = pk1
1 · ... · pks

s · qm1
1 · .. · qmt

t be the factorization of a given
positive integer d. Let pi, i ∈ {1, 2, ..., s}, does not divide f(n) for any integer n
and qi, i ∈ {1, 2, ..., t}, divides f(n) for some integer n. Assume that n0 ≥ ki − 1,
i ∈ {1, 2, ..., s} and n0 ≥ (qi + 1)vqi(d)− 1, i ∈ {1, 2, ..., t}. Then

lcm{p2ki

i (pi − 1), q
mj

j (qj − 1) : i ∈ {1, 2, ..., s}, j ∈ {1, 2, ..., t}}

is the period of the sequence (an (mod d))n∈Nn0
.

4.2. Asymptotics and connection between boundedness and periodicity

of a sequence a ∈ R.

4.2.1. Asymptotics of a sequence a ∈ R. Let us notice that if a = a(f, h1, h2),
c is the leading coefficient of h2 and n0 ∈ N is such that f(n) 6= 0 for all integers
n > n0 then
(10)

an =











O(ne(|c|+ε)nh1(n)h2(n)n0
∏n

i=n0+1 f(i)), if |f(n)| ≥ |h2(n)| for n ≫ 0,deg h2 > 0 and ε > 0

O(nh1(n)h2(n)n0
∏n

i=n0+1 f(i)), if |f(n)| ≥ |h2(n)| for n ≫ 0 and deg h2 = 0

O(nh1(n)h2(n)n), if |f(n)| ≤ |h2(n)| for n ≫ 0

when n→ +∞. Indeed, when |f(n)| ≥ |h2(n)| for n≫ 0, we have

an
ne(|c|+ε)nh1(n)h2(n)n0

∏n
i=n0+1 f(i))

=

∑n
j=0 h1(j)h2(j)

j
∏n

i=j+1 f(i)

ne(|c|+ε)nh1(n)h2(n)n0
∏n

i=n0+1 f(i))

=

n0∑

j=0

h1(j)h2(j)
j
∏n0

i=j+1 f(i)

ne(|c|+ε)nh1(n)h2(n)n0
+

n∑

j=n0+1

h1(j)h2(j)
j

ne(|c|+ε)nh1(n)h2(n)n0
∏j

i=n0+1 f(i)

=

n0∑

j=0

h1(j)h2(j)
j
∏n0

i=j+1 f(i)

ne(|c|+ε)nh1(n)h2(n)n0
+

n∑

j=n0+1

1

ne(|c|+ε)n
·
h1(j)

h1(n)
·
h2(j)

n0

h2(n)n0
·

h2(j)
j−n0

∏j
i=n0+1 f(i)

.

(11)

If n≫ 0 then |h1(n)| ≥ |h1(j)| and |h2(n)| ≥ |h2(j)| for 0 ≤ j ≤ n. Moreover,
the following equality holds.

∣∣∣∣∣
h2(j + 1)j+1−n0

∏j+1
i=n0+1 f(i)

∣∣∣∣∣ ·
∣∣∣∣∣

∏j
i=n0+1 f(i)

h2(j)j−n0

∣∣∣∣∣ =
∣∣∣∣
h2(j + 1)j−n0

h2(j)j−n0

∣∣∣∣ ·
∣∣∣∣
h2(j + 1)

f(j + 1)

∣∣∣∣



ARITHMETIC PROPERTIES OF THE SEQUENCE OF DERANGEMENTS 23

We have
∣∣∣h2(j+1)
f(j+1)

∣∣∣ ≤ 1 for sufficiently large prositive integer j. Additionally, if

deg h2 > 0 then

(
|h2(j + 1)|

|h2(j)|

)j−n0

=




(
1 +

|h2(j + 1)| − |h2(j)|

|h2(j)|

) |h2(j)|
|h2(j+1)|−|h2(j)|





(|h2(j+1)|−|h2(j)|)(j−n0 )
|h2(j)|

≤

≤ e

(|h2(j+1)|−|h2(j)|)(j−n0)
|h2(j)| ≤ e

|c|+ε
,

since limn→+∞
(|h2(j+1)|−|h2(j)|)(j−n0)

|h2(j)|
→ |c|. Hence each summand in the sum in

(11) is O( 1
n
), when n→ +∞. Finally,

an
ne(|c|+ε)nh1(n)h2(n)n0

∏n
i=n0+1 f(i))

=

n∑

j=0

O

(
1

n

)
= O(1), n→ +∞.

The second and third equality from (10) can be proved in the same way.
Consider now a sequence a(f, h1, 1). We assume that f 6= b, where b ∈

{−1, 0, 1}, and n0 ∈ N is such that f(n) 6= 0 for all integers n > n0. We know that
an = O(nh1(n)

∏n
i=n0+1 f(i)), when n → +∞. However, we can show something

stronger. Namely, there is such a real number ξ that an ∼ ξ
∏n

i=n0+1 f(i), when
n→ +∞. Indeed,

an∏n
i=n0+1 f(i)

=

∑n
j=0 h1(j)

∏n
i=j+1 f(i)∏n

i=n0+1 f(i)

=

n0∑

j=0

h1(j)

n0∏

i=j+1

f(i) +

n∑

j=n0+1

h1(j)∏j
i=n0+1 f(i)

= an0 +

n∑

j=n0+1

h1(j)∏j
i=n0+1 f(i)

for n > n0 and by ratio test the expression an0 +
∑n

j=n0+1
h1(j)∏j

i=n0+1 f(i)
converges

to the real number ξ = an0 +
∑+∞

j=n0+1
h1(j)∏j

i=n0+1 f(i)
.

Using similar reasoning we show the asymptotic equality for a sequence
a(f, h1,−1).

In particular, for the sequence of derangements (Dn)n∈N the following equal-
ity holds:

lim
n→+∞

Dn

n!
e

= 1.

In order to establish the equality above, it suffices to compute the limit of Dn

n! , when
n→ +∞. We have

lim
n→+∞

Dn

n!
= lim

n→+∞

∑n
j=0(−1)j

∏n
i=j+1 i

n!
= lim

n→+∞

n∑

j=0

(−1)j

j!
= e−1

In fact, we know that for n ∈ N+, Dn is the best integer approximation of n!
e

because the difference between these two numbers is less than 1
n
:

∣∣∣∣
n!

e
−Dn

∣∣∣∣ =

∣∣∣∣∣∣

+∞∑

j=n+1

n!

j!
(−1)j

∣∣∣∣∣∣
<

+∞∑

j=n+1

n!

j!
<

+∞∑

j=n+1

1

(n+ 1)j−n
=

1
n+1

1− 1
n+1

=
1

n
.
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4.2.2. Boundedness and periodicity of a sequence a ∈ R. It is obvious that
any periodic sequence of integers is bounded. On the other hand, in general, bound-
edness of a sequence does not imply its periodicity. In this section we will show that
if a sequence a ∈ R is bounded then h1 = 0 or h2 = b, where b ∈ {−1, 0, 1}, and
we will give the form of this sequence. In particular, such a sequence is ultimately
constant or ultimately periodic with period 2.

First, we prove that if there is a constant subsequence of the form (akn+l)n∈N

for some k ∈ N+ and l ∈ N then h1 = 0 or h2 = b, where b ∈ {−1, 0, 1}, or
f, h1, h2 are constant and h2 = −f . Then, assuming that h1 = 0 or h2 = b, where
b ∈ {−1, 0, 1}, we will show that the sequence (an)n∈N is ultimately constant or
ultimately periodic with period 2. Next, assuming boundedness of (an)n∈N, we will
use periodicity of (an (mod p))n∈N for sufficiently large prime number p to obtain
the statement on ultimate periodicity of the sequence (an)n∈N.

Theorem 7. Let a = a(f, h1, h2), k ∈ N+ and l ∈ N. If the sequence (akn+l)n∈N

is constant then one of the following conditions is true:

• h1 = 0 (and then the sequence (an)n∈N is constant and equal to 0),
• h2 = b, where b ∈ {−1, 0, 1},
• h1 = c ∈ Z and h2 = −f = b ∈ Z (then a2n = b2nc and a2n+1 = 0 for all
n ∈ N).

Proof. Let us assume that h1 6= 0. If f = 0 then an = h1(n)h2(n)
n for all n ∈ N

and thus the assumption of our theorem can be satisfied only if h2 = b, where
b ∈ {−1, 0, 1}. Hence we can assume that f 6= 0.

Let us denote a = akn+l, n ∈ N. Then

a =ak(n+1)+l

=akn+l

k
∏

i=1

f(kn+ l + i) +
k

∑

j=1

h1(kn+ l+ j)h2(kn+ l+ j)kn+l+j
k
∏

i=j+1

f(kn+ l+ i)

=a

k
∏

i=1

f(kn+ l + i) + h2(kn+ l)kn+l
k

∑

j=1

h1(kn+ l+ j)×

× h2(kn+ l + j)j
(

h2(kn+ l+ j)

h2(kn+ l)

)kn+l k
∏

i=j+1

f(kn+ l+ i).

(12)

Let us put d = deg h2 > 0 and write h2 =
∑d

i=0 wiX
i. Then for each j ∈ N

we have

h2(kn+ l + j)− h2(kn+ l) =

d∑

i=0

wi(kn+ l + j)i −
d∑

i=0

wi(kn+ l)i

= wd(kn+ l)d + dwdj(kn+ l)d−1 + wd−1(kn+ l)d−1 +O((kn+ l)d−2)− wd(kn+ l)d−

− wd−1(kn+ l)d−1 +O((kn+ l)d−2) = dwdj(kn+ l)d−1 +O((kn+ l)d−2)

with n→ +∞. Since

lim
n→+∞

h2(kn+ l+ j)− h2(kn+ l)

h2(kn+ l)
= 0

lim
n→+∞

(kn+ l)d

h2(kn+ l)
=

1

wd

lim
n→+∞

O((kn+ l)d−1)

h2(kn+ l)
= 0,
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thus

lim
n→+∞

(

h2(kn+ l + j)

h2(kn+ l)

)kn+l

= lim
n→+∞

(

1 +
h2(kn+ l+ j)− h2(kn+ l)

h2(kn+ l)

)

h2(kn+l)
h2(kn+l+j)−h2(kn+l)

·
(kn+l)(dwdj(kn+l)d−1+O((kn+l)d−2))

h2(kn+l)

= lim
n→+∞





(

1 +
h2(kn+ l + j)− h2(kn+ l)

h2(kn+ l)

)

h2(kn+l)
h2(kn+l+j)−h2(kn+l)





dwdj(kn+l)d+O((kn+l)d−1)

h2(kn+l)

= edj .

(13)

If deg f > deg h2 then we compute the following limits.

lim
n→+∞

a
∏k

i=1 f(kn+ l+ i)

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l + 1)ed
∏k

i=2 f(kn+ l+ i)
= 0,

lim
n→+∞

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l + 1)
(

h2(kn+l+1)
h2(kn+l)

)kn+l
∏k

i=2 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l + 1)ed
∏k

i=2 f(kn+ l+ i)
= 1,

lim
n→+∞

h2(kn+ l)kn+lh1(kn+ l + j)h2(kn+ l + j)j
(

h2(kn+l+j)
h2(kn+l)

)kn+l
∏k

i=j+1 f(kn+ l+ i)

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l + 1)ed
∏k

i=2 f(kn+ l+ i)
= 0, as j > 1.

After adding these limits we obtain the following one.

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l + 1)ed
∏k

i=2 f(kn+ l + i)

= lim
n→+∞

(
a
∏k

i=1 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l+ 1)ed
∏k

i=2 f(kn+ l + i)
+

+

∑k
j=1 h1(kn+ l + j)h2(kn+ l + j)j

(
h2(kn+l+j)
h2(kn+l)

)kn+l∏k
i=j+1 f(kn+ l + i)

h1(kn+ l + 1)h2(kn+ l + 1)ed
∏k

i=2 f(kn+ l + i)


 = 1,

which leads to a contradiction with the fact that

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + 1)h2(kn+ l+ 1)ed
∏k

i=2 f(kn+ l + i)
= 0.

Similarly, if deg f < deg h2 then we compute the following limits.

lim
n→+∞

a
∏k

i=1 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
= 0,

lim
n→+∞

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k
(

h2(kn+l+k)
h2(kn+l)

)kn+l

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
= 1,

lim
n→+∞

h2(kn+ l)kn+lh1(kn+ l + j)h2(kn+ l + j)j
(

h2(kn+l+j)
h2(kn+l)

)kn+l
∏k

i=j+1 f(kn+ l+ i)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l+ k)kedk
= 0, as j < k.

We add these limits to obtain the following.

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk

= lim
n→+∞

(
a
∏k

i=1 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)kedk
+

+

∑k
j=1 h1(kn+ l + j)h2(kn+ l + j)j

(
h2(kn+l+j)
h2(kn+l)

)kn+l∏k
i=j+1 f(kn+ l + i)

h1(kn+ l + k)h2(kn+ l + k)kedk


 = 1,
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which leads to a contradiction with the fact that

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l+ k)kedk
= 0.

Consider the case when deg f = deg h2. Let us denote f =
∑d

i=0 uiX
i. Then

we compute the following limits

lim
n→+∞

a
∏k

i=1 f(kn + l + i)

h2(kn + l)kn+lh1(kn + l + k)h2(kn + l + k)k
= 0,

lim
n→+∞

h2(kn + l)kn+lh1(kn + l + j)h2(kn + l + j)j
(

h2(kn+l+j)

h2(kn+l)

)kn+l∏
k
i=j+1 f(kn + l + i)

h2(kn + l)kn+lh1(kn + l + k)h2(kn + l + k)k
=

(
ud

wd

)k−j

e
dj
,

as 1 ≤ j ≤ k. We add them and obtain the following limit.

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k

= lim
n→+∞

(
a
∏k

i=1 f(kn+ l + i)

h2(kn+ l)kn+lh1(kn+ l + k)h2(kn+ l + k)k
+

+

∑k
j=1 h1(kn+ l + j)h2(kn+ l + j)j

(
h2(kn+l+j)
h2(kn+l)

)kn+l∏k
i=j+1 f(kn+ l+ i)

h1(kn+ l + k)h2(kn+ l + k)k




=

k∑

j=1

(
ud
wd

)k−j

edj.

However

lim
n→+∞

a

h2(kn+ l)kn+lh1(kn+ l+ k)h2(kn+ l + k)kedk
= 0

and
∑k

j=1

(
ud

wd

)k−j

edj 6= 0 because e is a transcendental number (see [10]) - a

contradiction.
We proved that if the sequence (an)n∈N is bounded and h1 6= 0 then h2 = b,

where b ∈ Z. In the case when h2 = b the equality (12) takes the form

(14) a = a

k∏

i=1

f(kn+ l+ i) + bkn+l

k∑

j=1

h1(kn+ l + j)bj
k∏

i=j+1

f(kn+ l + i).

Assume that |b| > 1 and define

G =
k∑

j=1

h1(kX + l+ j)bj
k∏

i=j+1

f(kX + l + i) ∈ Z[X ].

If G 6= 0 then by (14) we have

a

bkn+lG(n)
=
a
∏k

i=1 f(kn+ l + i)

bkn+lG(n)
+ 1.

Since limn→+∞
a
∏k

i=1 f(kn+l+i)

bkn+l = 0 we deduce the following

lim
n→+∞

a

bkn+lG(n)
= 1.

We get a contradiction because limn→+∞
a

bkn+lG(n)
= 0.

If G = 0 then h1 = 0 or f = c, where c ∈ Z. Indeed, if h1 6= 0 and

deg f > 0 then deg
[
h1(kX + l+ j)bj

∏k
i=j+1 f(kX + l + i)

]
= (k−j) deg f+deg h1
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for j ∈ {1, 2, ..., k} and as a result we get degG = k deg f + deg h1 > 0. Assume
that f = c, where c ∈ Z. Then

0 = lim
n→+∞

G(n)

bh1(kn+ l)
= lim

n→+∞

∑k
j=1 h1(kn+ l + j)bj−1ck−j

h1(kn+ l)

=

k∑

j=1

bj−1ck−j =

{
bk−ck

b−c
, when b 6= c

kbk−1, when b = c
,

which means that there must be b = c = 0 or c = −b with 2 | k. The case b = c = 0
contradicts with the assumption that |b| > 1. If c = −b then by induction we obtain
the following formula

al+n = (−b)nal+
n∑

j=1

(−1)n−jbnh1(l+j) = (−b)nal+(−b)n
n∑

j=1

(−1)jh1(l+j), n ∈ N.

Let us define

H(n) =

2n∑

j=1

(−1)jh1(l+j) =

n∑

j=1

(h1(2j)− h1(2j − 1)) = h1(0)+

n∑

j=1

∆h1(2j−1), n ∈ N,

where ∆h1 = h1(X +1)− h1(X) means the discrete derivative of h1. The function
H can be seen as a polynomial in n and its degree is equal to

degH(X) = 1 + deg∆h1(2X − 1) = 1 + deg∆h1(X) = deg h1(X).

Since

a = al = al+kn = (−b)kna+ (−b)knH

(
k

2
n

)
= bkn

(
a+H

(
k

2
n

))

for all n ∈ N and |b| > 1 we deduce that the polynomial H must be constant. This
implies that h1 is constant.

Summing up, we showed that h2 = b ∈ {−1, 0, 1} or f, h1, h2 are constant
and f = −h2. �

Theorem 8. Let a = a(f, h1, h2), k ∈ N+ and l ∈ N. If the sequence (akn+l)n∈N is
constant then the sequence (an)n∈N is ultimately constant or of the form (c, 0, c, 0, c, 0, ...)
for some integer c.

Proof. For k = 1 the statement is obvious. Hence assume without loss of generality
that k ≥ 2. Let us denote a = akn+l, n ∈ N. Then

a = ak(n+1)+l = akn+l

k∏

i=1

f(kn+ l + i) +

k∑

j=1

h1(kn+ l + j)

k∏

i=j+1

f(kn+ l+ i)

= a

k∏

i=1

f(kn+ l + i) +

k∑

j=1

h1(kn+ l+ j)

k∏

i=j+1

f(kn+ l+ i).

(15)

Let us define

G = a

k∏

i=1

f(kX + l + i) +

k∑

j=1

h1(kX + l + j)

k∏

i=j+1

f(kX + l + i) ∈ Z[X ].

From (15) we know that G = a. If h1 = 0 then an = 0 for all n ∈ N, so we
can assume that h1 6= 0.
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If deg f > 0 then deg
∏k

i=1 f(kX + l + i) = k deg f and

deg h1(kX + l + j)
k∏

i=j+1

f(kX + l + i) = (k − j) deg f + deg h1

for j ∈ {1, 2, ..., k}. Since degG ≤ 0 we get

deg
k∏

i=1

f(kX + l + i) = deg h1(kX + l + 1)
k∏

i=2

f(kX + l + i),

which implies that deg f = deg h1. Moreover, we have the following sequence of
equivalences.

deg(a
k
∏

i=1

f(kX + l + i) + h1(kX + l+ 1)
k
∏

i=2

f(kX + l+ i))

= deg h1(kX + l+ 2)
k
∏

i=3

f(kX + l+ i)

⇐⇒ deg(af(kX + l + 1) + h1(kX + l + 1))
k
∏

i=2

f(kX + l+ i)

= deg h1(kX + l+ 2)
k
∏

i=3

f(kX + l+ i)

⇐⇒ deg(af(kX + l + 1) + h1(kX + l + 1)) + (k − 1) deg f

= deg h1 + (k − 2) deg f

⇐⇒ deg(af(kX + l + 1) + h1(kX + l + 1)) = 0

Hence af + h1 = b for some integer b. Therefore we have

G = (af(kX + l+ 1) + h1(kX + l + 1))
k
∏

i=2

f(kXn+ l+ i) +
k

∑

j=2

h1(kX + l+ j)
k
∏

i=j+1

f(kX + l+ i)

= b

k
∏

i=2

f(kX + l+ i) +
k

∑

j=2

h1(kX + l + j)
k
∏

i=j+1

f(kX + l+ i)

= (bf(kX + l + 2) + h1(kX + l + 2))
k
∏

i=3

f(kX + l+ i) +
k

∑

j=3

h1(kX + l + j)
k
∏

i=j+1

f(kX + l+ i).

Similarly, from the fact that degG ≤ 0 we get the following chain of equivalences

deg(bf(kX + l+ 2) + h1(kX + l + 2))
k
∏

i=3

f(kX + l + i) = deg h1(kX + l + 3)
k
∏

i=4

f(kX + l + i)

⇐⇒ deg(bf(kX + l+ 2) + h1(kX + l + 2)) + (k − 3) deg f = deg h1 + (k − 4) deg f

⇐⇒ deg(bf(kX + l+ 2) + h1(kX + l + 2)) = 0

provided n ≥ 3. If k = 2 then deg(bf(kX + l + 2) + h1(kX + l + 2) ≤ 0. Since
deg(af(kX + l + 2) + h1(kX + l + 2)), deg(bf(kX + l + 2) + h1(kX + l + 2)) ≤ 0,
hence

deg(a−b)f(kX+l+2) = deg[(af(kX+l+2)+h1(kX+l+2))−(bf(kX+l+2)+h1(kX+l+2))] ≤ 0.

We made an assumption deg f > 0. That is why a = b. We obtain the equality
af + h1 = a, which allows us to prove by simple induction that an = a for each
n ≥ l.

Assume now that f = b for some integer b. Then

(16) G = a = abk +
k∑

j=1

bk−jh1(kX + l + j).



ARITHMETIC PROPERTIES OF THE SEQUENCE OF DERANGEMENTS 29

If deg h1 > 0 and h1 =
∑d

i=0 wiX
i then the coefficient of G near the dth

power of variable X is 0 since degG ≤ 0. On the other hand, this coefficient is
equal to

kdwd

k∑

j=1

bk−j =

{
kdwd

bk−1
b−1 , if b 6= 1

kd+1wd, if b = 1
,

which means that there must be 2 | k and b = −1. Denote k′ = k
2 and take the

discrete derivative ∆h1 = h1(X + 1)− h1(X) of the polynomial h1. We know that
deg∆h1 = deg h1 − 1. The equation (16) takes the form:

0 =
k′∑

j=1

h1(kn+ l + 2j)− h1(kn+ l+ 2j − 1) =
k′∑

j=1

∆h1(kn+ l + 2j − 1).

Let H =
∑k′

j=1 ∆h1(kX+ l+2j−1) ∈ Z[X ]. Then H = 0. However, the coefficient

of H near d− 1st power of variable X is equal to k′ times the leading coefficient of
∆h1 - a contradiction.

We are left with the case h1 = c for some c ∈ Z\{0}. By (16) we have

0 = a(bk − 1) + c

k∑

j=1

bk−j .

On the other hand,

a(bk − 1) + c
k∑

j=1

bk−j =

{
a(bk − 1) + c b

k−1
b−1 , if b 6= 1

kc, if b = 1
.

Since c 6= 0, thus b 6= 1 and (a + c
b−1 )(b

k − 1) = 0. Then b = −1 and (an)n∈N =

(c, 0, c, 0, c, 0, ...) or c = a(1 − b), which implies that ba + c = a and (an)n∈N is
ultimately constant. �

Example 15. Let us consider the sequence a(X − 3, 28− 7X, 1). Then a1 = −35,
a2 = 49 and an = 7 for n ≥ 3. This means that a sequence a satisfying assumptions
of Theorem 8 can be ultimately constant, but not constant.

Corollary 3. Let a = a(f, h1,−1). If the sequence (akn+l)n∈N is constant then
there is such an integer c that an = (−1)nc for almost all n ∈ N or a2n = c, a2n+1 =
0 for all n ∈ N.

Proof. Consider the associated sequence (ãn)n∈N. Since ãn = (−1)nan for n ∈ N,
thus the sequence (ã2kn+l)n∈N is constant and by Theorem 8 there is such an integer
c that ãn = c for almost all n ∈ N or ã2n = c, ã2n+1 = 0 for all n ∈ N. �

Proposition 7. Let us consider a sequence a(f, h1, 0). Let k ∈ N+ and l ∈ N. If
the sequence (akn+l)n∈N is constant then an = 0 for almost all n ∈ N, an = h1(0)
for all n ∈ N or an = (−1)nh1(0) for all n ∈ N.

Proof. If an0 = 0 for some n0 ∈ N then the sequence (an)n∈N is ultimately constant
and equal to 0, so assume that an 6= 0 for any n ∈ N. Denote a = akn+l, n ∈ N.
Then

a = ak(n+1)+l = akn+l

k∏

i=1

f(kn+ l + i) = a

k∏

i=1

f(kn+ l+ i)

and since a 6= 0 we get
∏k

i=1 f(kn+ l + i) = 1 for all n ∈ N. Hence |f(n)| = 1 for
all but finitely many n ∈ N, which implies that f = 1 or f = −1. �

Theorem 9. Let (an)n∈N be a bounded sequence given by the formula a0 = h1(0), an =
f(n)an−1 + h1(n)h2(n)

n, n > 0. Then one of the following conditions is true:
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• h1 = 0 (and then the sequence (an)n∈N is constantly equal to 0),
• h2 = b, where b ∈ {−1, 0, 1}.

Moreover,

• if h2 = 1 then there is such an integer c that an = c for almost all n ∈ N
or a2n = c, a2n+1 = 0 for all n ∈ N,

• if h2 = −1 then there is such an integer c that an = (−1)nc for almost all
n ∈ N or a2n = c, a2n+1 = 0 for all n ∈ N,

• if h2 = 0 then an = 0 for almost all n ∈ N, an = h1(0) for all n ∈ N or
an = (−1)nh1(0) for all n ∈ N.

Proof. By Theorems 7 and 8, Corollary 3 and Proposition 7, it suffices to show that
there are such k ∈ N+ and l ∈ N that the sequence (akn+l)n∈N is constant.

Let p be a prime number greater than maxn∈N an − minn∈N an. Then the
sequence of remainders (an (mod p))n∈N is periodic (see Section 4.1). Moreover,
the values of this sequence and the value minn∈N an uniquely determine the values
of the sequence (an)n∈N. Indeed, if an1 ≡ an2 (mod p) then an1 − minn∈N an ≡
an2−minn∈N an (mod p) and since an1−minn∈N, an2−minn∈N < p, thus an1 = an2 .
Therefore the sequence (an)n∈N is periodic. This fact implies the existence of such
k ∈ N+ and l ∈ N that the sequence (akn+l)n∈N is constant. �

4.3. The polynomials arising in the recurrence relation for a sequence

a ∈ R and their real roots. Let us consider a sequence a(f, h1, 1) ∈ R′. In
Section 4.1.1 we defined polynomials

fd =
d−1∑

j=0

h1(X − j)

j−1∏

i=0

f(X − i) ∈ Z[X ], d ∈ N.

Using the closed formula for an we can obtain the recurrence equations, which
are generalizations of the recurrence definition of an.

an =

n∑

j=0

h1(j)

n∏

i=j+1

f(i) = an−d

n∏

i=n−d+1

f(i) +

n∑

j=n−d+1

h1(j)

n∏

i=j+1

f(i)

= an−d

n∏

i=n−d+1

f(i) +

d−1∑

j=0

h1(n− j)

j−1∏

i=0

f(n− i) = an−d

n∏

i=n−d+1

f(i) + fd(n)

(17)

for n ≥ d. Furthermore, we can obtain the recurrence equations for the polynomials
fd, d ∈ N. For given d1, d2 ∈ N, comparing the formulae for fd1 , fd2 and fd1+d2 ,
we get

fd1+d2 =

d1+d2−1
∑

j=0

h1(X − j)

j−1
∏

i=0

f(X − i) =

d2−1
∑

j=0

h1(X − j)

j−1
∏

i=0

f(X − i)+

+

d1+d2−1
∑

j=d2

h1(X − j)

j−1
∏

i=0

f(X − i) = fd2 +

d2−1
∏

i=0

f(X − i)

d1+d2−1
∑

j=d2

h1(X − j)

j−1
∏

i=d2

f(X − i)

= fd2 +

d2−1
∏

i=0

f(X − i)

d1−1
∑

j=0

h1(X − d2 − j)

j−1
∏

i=0

f(X − d2 − i) = fd1(X − d2)

d2−1
∏

i=0

f(X − i) + fd2 .

(18)

Similarity of (17) and (18) and the fact that fd+1(d) = ad for d ∈ N allow
us to say, that the polynomials fd, d ∈ N are a generalization of the numbers ad,
d ∈ N.
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Analogous formulae can be obtained for a sequence a(f, h1,−1) ∈ R′′.

an = an−d

n∏

i=n−d+1

f(i) + (−1)nfd(n), n ≥ d,

fd1+d2 = (−1)d2fd1(X − d2)

d2−1∏

i=0

f(X − i) + fd2 ,

where fd =
∑d−1

j=0 (−1)jh1(X − j)
∏j−1

i=0 f(X − i), d ∈ N. Moreover, fd+1(d) =

(−1)dad for d ∈ N.
Let us consider the sequence of derangements. Since this sequence is given

by the recurrence D0 = 1, Dn = nDn−1 + (−1)n, n > 0, hence

fd =
d−1∑

j=0

(−1)j
j−1∏

i=0

(X − i)

for d ∈ N. Define

f̂d =
fd

X − 1
= −1 +X

d−1∑

j=2

(−1)j
j−1∏

i=2

(X − i), d > 1.

Since fd+1(d) = (−1)dDd for d ∈ N we get f̂d+1(d) = (−1)dEd = (−1)d Dd

d−1 , d ≥ 2.

It is easy to see from the definition of f̂d that

f̂d = −1 +X

d−3∑

j=0

(−1)j
j−1∏

i=0

(X − 2− i) = Xfd−2(X − 2)− 1, d ≥ 2.

If we substitute n into the place of X and n + 1 into the place of d in the
equation above, we obtain the identity

En = nDn−2 − 1, n ≥ 2.

Let us notice that

fd−1(X − 2)− fd(X − 1) =

d−2∑

j=0

(−1)j
j−1∏

i=0

(X − 2− i)−
d−1∑

j=0

(−1)j
j−1∏

i=0

(X − 1− i)

=− 1 +

d−2∑

j=0

(−1)j

(
j−1∏

i=0

(X − 2− i) +

j∏

i=0

(X − 1− i)

)
= −1 +

d−2∑

j=0

(−1)jX

j−1∏

i=0

(X − 2− i)

=− 1 +X
d−2∑

j=0

(−1)j
j−1∏

i=0

(X − 2− i) = f̂d+1(X), d ≥ 1.

If we substitute X = n and d = n in the formula above and divide by (−1)n

then we get a well-known identity

En = Dn−2 +Dn−1, n ≥ 2.

Now we will state and prove a theorem concerning real roots of polynomials
fd, d ≥ 3, related to a sequence a = a(f, c, 1), where f ∈ Z[X ] and c ∈ Z\{0}.

Theorem 10. Assume that a = a(f, c, 1), where f ∈ Z[X ] and c ∈ Z\{0}. Let

fd = c

d−1∑

j=0

j−1∏

i=0

f(X − i) ∈ Z[X ]

for d ∈ N. Assume that d ≥ 3, there is an integer n0, which is the greatest real root
of f and f as a function is decreasing on the set [n0 + 1,+∞)∩Z. Then fd has at
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least d−2 real roots. More precisely, fd has a root in the interval (n0+ l, n0+ l+1),
where l ∈ {2, 3, ..., d− 2}, and

• if f(n0 + 1) < −1 or f ′
d(n0 + 1) 6= 0 then fd has 2 real roots in the interval

(n0, n0 + 2);
• if f(n0 + 1) = −1 then fd(n0 + 1) = 0.

In particular, if deg f = 1 then fd factorizes into linear polynomials with real coef-
ficients.

Proof. We will compute the signs of the values fd(n0), fd(n0 +1), ..., fd(n0 + d− 1)
and use intermediate value theorem to conclude the existence of real roots of fd.
We have the following equalities:

sgn(fd(n0)) = sgn(c),

sgn(fd(n0 + 1)) = sgn(c(1 + f(n0 + 1))) =

{
−sgn(c), when f(n0 + 1) < −1

0, when f(n0 + 1) = −1
.

Let us fix l ∈ {2, 3, ..., d− 1}. Then

sgn(fd(n0+l)) = sgn(c
l∑

j=0

j−1∏

i=0

f(n0+l−i)) = sgn(c)sgn(
l−1∏

i=0

f(n0+l−i)) = (−1)lsgn(c)

because |
∏l−1

i=0 f(n0 + l − i)| ≥ |
∏l−2

i=0 f(n0 + l − i)| and |
∏l−2s+1

i=0 f(n0 + l − i)| >

|
∏l−2s

i=0 f(n0 + l − i)| for s ∈ {2, 3, ..., ⌊ l
2⌋} (since f is decreasing on the set [n0 +

1,+∞) ∩ Z) and sgn(
∏l−1

i=0 f(n0 + l − i)) = sgn(
∏l−2s+1

i=0 f(n0 + l − i)) for s ∈
{2, 3, ..., ⌊ l

2⌋}).
By intermediate value theorem there is a root of fd in each of the intervals

of the form (n0 + l, n0 + l + 1), where l ∈ {2, 3, ..., d − 2}. If f(n0 + 1) < −1
then sgn(fd(n0 + 1)) = −sgn(c). Since sgn(fd(n0)) = sgn(fd(n0 + 2)) = sgn(c)
by intermediate value theorem there are roots fd in the intervals (n0, n0 + 1) and
(n0 + 1, n0 + 2). If f(n0 + 1) = −1 then fd(n0 + 1) = 0. If fd(n0 + 1) = 0 and
f ′
d(n0 +1) 6= 0 then sgn(fd(x0)) = −sgn(c) for some x0 ∈ (n0, n0 +2). Hence there

is a root of fd in the interval (n0, x0), if x0 < n0 + 1, or there is a root of fd in the
interval (x0, n0 + 2), if x0 > n0 + 1.

If deg f = 1 then deg fd = d− 1. Hence, if f(n0 +1) < −1 or f ′
d(n0 + 1) 6= 0

then fd has d− 1 distinct real roots. If f(n0 + 1) = −1 and f ′
d(n0 +1) = 0 then fd

has d− 2 distinct real roots, where n0 − 1 is its double root. As a consequence of
the reasoning presented above, the polynomial fd factorizes into linear factors over
R. �

We can use Theorem 10 to obtain similar result for a sequence (an)n∈N given
by the formula a0 = c, an = f(n)an−1 + (−1)nc, n > 0 for some nonzero integer c.

Corollary 4. Assume that a = a(f, c, 1), where f ∈ Z[X ] and c ∈ Z\{0}. Let

fd = c
d−1∑

j=0

(−1)j
j−1∏

i=0

f(X − i) ∈ Z[X ]

for d ∈ N. Assume that d ≥ 3, there is an integer n0, which is the greatest real root
of f and f as a function is increasing on the set [n0 + 1,+∞)∩Z. Then fd has at
least d− 2 real roots. More precisely, fd has a root in the interval (n0, n0 + 2) and
in the interval (n0 + l, n0 + l + 1), where l ∈ {2, 3, ..., d− 2}, and

• if f(n0 + 1) > 1 or f ′
d(n0 + 1) 6= 0 then fd has 2 real roots in the interval

(n0, n0 + 2);
• if f(n0 + 1) = 1 then fd(n0 + 1) = 0.
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In particular, if deg f = 1 then fd factorizes into linear factors with real coefficients.

Proof. Consider the associated sequence (ãn)n∈N. This sequence is given by the
formula ã0 = c, ãn = −f(n)ãn−1 + c, n > 0. Then use Theorem 10 substituting the
sequence (ãn)n∈N in the place of (an)n∈N and substituting −f in the place of f . �

Let us consider the sequence of derangements. In the definition of derange-
ments we have polynomial f = X . By Corollary 4, if d ≥ 4 then the polynomial fd
(of degree d − 1) has exactly d − 1 real roots and exactly one rational root 1 (n0

from Corollary 4 is equal to 0 for f = X). It suffices to compute f ′
d(1).

f ′
d(1) =

d−1∑

j=1

(−1)j
j−1∑

s=0

j−1∏

i=0,i6=s

(1−i) = −1+
d−1∑

j=2

(−1)j ·(−1)j−2(j−2)! = −1+
d−3∑

j=0

j! > 0

Corollary 4 shows us that all the roots of fd apart from 1 are noninteger.
Since the leading coefficient of fd is ±1, thus by theorem on rational roots of a
polynomial with integer coefficients, all the rational roots of fd must be integer.
Hence all the roots of fd apart from 1 are irrational.

From the equation f̂d = fd
X−1 for d ≥ 3 we see that all the complex roots of

f̂d are real and if d ≥ 4 then they are irrational. In spite of reduciblity of f̂d = fd
X−1 ,

d ≥ 3, into linear factors over R, we do not know how f̂d = fd
X−1 factorizes over Q.

Numerical computations show that for each d ≤ 20 the polynomial f̂d is irreducible
over Q. In the light of these results we can formulate the following question:

Question 3. Is the polynomial f̂d = −1+X
∑d−3

j=0 (−1)j
∏j−1

i=0 (X−2−i) irreducible
over Q for each integer d ≥ 3?

4.4. Divisors of a sequence a ∈ R.

4.4.1. Prime divisors of a sequence a ∈ R. In Section 4.1.3 we showed that
n − 1 | Dn for each nonnegative integer n. Moreover, we proved that there are
infinitely many prime numbers p such that p | Dn

n−1 for some integer n > 1. Now

we will give some conditions for infinitude of the set Pa = {p ∈ P : ∃n∈N p | an},
where a = (an)n∈N ∈ R.

Theorem 11. Let a = a(f, h1, h2) be an unbounded sequence. If f has a nonneg-
ative integer root then the set Pa is infinite.

Proof. Note that there must be such prime number p that p | an for some n ∈ N.
Otherwise |an| = 1 for all n ∈ N. Assume that there are only finitely many prime
divisors of the numbers an, n ∈ N. Let us denote these divisors by p1, p2, ..., ps.

Let n0 ∈ N be a root of f . Then by Proposition 4, for each prime number
p and positive integer k the sequence (an (mod pk))n∈Nn0

is periodic of period

pk(p − 1). Since there are only finitely prime divisors of numbers an, n ∈ N then
an 6= 0 for all n ∈ N. In particular, an0 6= 0. Then an0 = ±pα1

1 pα2
2 · ... · pαs

s for some
α1, α2, ..., αs ∈ N. Without loss of generality assume that an0 = pα1

1 pα2
2 · ... · pαs

s .

Then, by periodicity of the sequence (an (mod pα1+2
1 pα2+2

2 · ... · pαs+2
s ))n∈Nn0

we
get that

a
n0+jp

α1+2
1 (p1−1)p

α2+2
2 (p2−1)·...·pαs+2

s (ps−1)
≡ pα1

1 pα2
2 ·...·pαs

s (mod pα1+2
1 pα2+2

2 ·...·pαs+2
s )

for each j ∈ N. Then |a
n0+jp

α1+2
1 (p1−1)p

α2+2
2 (p2−1)·...·pαs+2

s (ps−1)
| = pα1

1 pα2
2 · ... · pαs

s .

However, if a
n0+jp

α1+2
1 (p1−1)p

α2+2
2 (p2−1)·...·pαs+2

s (ps−1)
= −pα1

1 pα2
2 · ... · pαs

s then there

must be

2pα1
1 pα2

2 · ... · pαs
s ≡ 0 (mod pα1+2

1 pα2+2
2 · ... · pαs+2

s ),
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which means that p21p
2
2 · ... · p

2
s | 2 - a contradiction. Hence

a
n0+jp

α1+2
1 (p1−1)p

α2+2
2 (p2−1)·...·pαs+2

s (ps−1)
= pα1

1 pα2
2 · ... · pαs

s

for all j ∈ N. Then by Theorem 8 the sequence (an)n∈N is bounded, which is a
contradiction with the assumption of unboundedness of (an)n∈N. �

Theorem 12. Let a be an unbounded sequence of the form a(f, h1, 1) or a(f, h1,−1).
If for each prime number p there are such integers n,m that p | f(n) and p ∤ h1(m)
then the set Pa is infinite.

Proof. Note that there must be such prime number p that p | an for some n ∈ N.
Otherwise |an| = 1 for all n ∈ N. Assume that there are only finitely many prime
divisors of the numbers an, n ∈ N. Let us denote these divisors by p1, p2, ..., ps.

Because each sequence defined by the equations a0 = h1(0), an = f(n)an−1+
(−1)nh1(n), n > 0 has the associated sequence given by the formula ã0 = h1(0), ãn =
−f(n)ãn−1 + h1(n), n > 0 and ãn = (−1)nan, n ∈ N, thus it suffices to prove the
statement for a sequence of the form a(f, h1, 1).

For each i ∈ {1, 2, ..., s} there is such ni ∈ {0, 1, 2, ..., pi − 1} that pi | f(ni).
Hence the result from Section 4.1.1 shows us that the sequence (an (mod p2i ))n≥ni+pi

is periodic of period p2i . Let mi > ni + pi be such an integer that pi ∤ h1(mi). The
formula ami

= f(mi)ami−1 + h1(mi) implies that pi ∤ ami−1 or pi ∤ ami
.

Let αi ∈ {mi − 1,mi} be such that pi ∤ aαi
. By Chinese remainder theorem

there exists such an integer α0 ≥ max{n1 + p1, n2 + p2, ..., ns + ps} that α0 ≡ αi

(mod p2i ) for each i ∈ {1, 2, ..., s}. Then for all j ∈ N we have

aα0+jp2
1p

2
2·...·p

2
s
≡ aα0 (mod p21p

2
2 · ... · p

2
s).

Moreover, aα0 ≡ aαi
(mod p2i ) for i ∈ {1, 2, ..., s}. Hence pi ∤ aα0 for any i ∈

{1, 2, ..., s} and this means that aα0 = ±1. Without loss of generality assume that
aα0 = 1. Then for all j ∈ N there must be aα0+jp2

1p
2
2·...·p

2
s
= 1. Indeed, aα0+jp2

1p
2
2·...·p

2
s

has no prime divisors, so aα0+jp2
1p

2
2·...·p

2
s
= ±1. Suppose that aα0+jp2

1p
2
2·...·p

2
s
= −1 for

some j ∈ N. Then −1 ≡ 1 (mod p21p
2
2 · ... ·p

2
s), which means that p21p

2
2 · ... ·p

2
s | 2 and

this is a contradiction. Thus aα0+jp2
1p

2
2·...·p

2
s
= 1 for any j ∈ N and by Theorem 8 the

sequence (an)n∈N is bounded, which stays in a contradiction with the assumption
of unboundedness of (an)n∈N. Hence the set Pa is infinite. �

Proposition 8. If a = a(f, h1, 0) then the set Pa is infinite if and only if h1(0) = 0
or deg f 6= 0.

Proof. For all n ∈ N we have an = h1(0)
∏n

i=1 f(i). Thus if deg f 6= 0 then there are
infinitely many prime divisors of the numbers f(n), n ∈ N, and as a consequence,
there are infinitely many prime divisors of the numbers an, n ∈ N.

If h1(0) 6= 0 and f = b, where b ∈ Z\{0} then an = h1(0)b
n for n ∈ N and

all prime divisors of the numbers an, n ∈ N, are divisors of h1(0) and b. �

Proposition 9. If a = a(b, c, d), where b, c, d ∈ Z and bd 6= 0 (i.e. f = b, h1 = c
and h2 = d) then each prime number p divides an for some n ∈ N. Moreover, for
any k ∈ N+ there is such nk ∈ N that pk | ank

.

Proof. For all n ∈ N we have

an = c

n∑

j=0

bjdn−j =

{
c b

n+1−dn+1

b−d
, if b 6= d

bnc(n+ 1), if b = d
.

If b = d then the statement is certainly true. If b 6= d then by Euler’s
theorem, for any prime number p and positive integer k we have the divisibility

pk | bp
k−1(p−1) − dp

k−1(p−1). Hence for any prime number p and positive integer k
there exists such nk ∈ N that pk | ank

. �
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Theorem 13. If a sequence a is of the form a(b1X+ b0, c, 1) or a(b1X+ b0, c,−1),
where b0, b1, c ∈ Z and b1 6= 0, then the set Pa is infinite.

Proof. Because each sequence defined by the equations a0 = c, an = (b1n+b0)an−1+
(−1)nc, n > 0 has the associated sequence given by the formula ã0 = c, ãn =
−(b1n+ b0)ãn−1 + c, n > 0 and ãn = (−1)nan, n ∈ N, thus it suffices to prove the
statement for a sequence defined by the formula a0 = c, an = (b1n+ b0)an−1 + c,
n > 0.

Similarly, if a0 = c, an = (b1n+ b0)an−1 + c, n > 0 then an = cân for n ∈ N,
where â0 = 1, ân = (b1n+b0)ân−1+1, n > 0. Hence it suffices to prove the statement
for a sequence defined by the formula a0 = 1, an = (b1n+ b0)an−1 + 1, n > 0.

Assume that there are only finitely many prime divisors of numbers an,
n ∈ N. Let p1 < p2 < ... < ps be all prime divisors of numbers an, n ∈ N, which
do not divide b1. Let q1 < q2 < ... < qt be all prime divisors of numbers an, n ∈ N,
which divide b1 (and so do not divide b0, because otherwise we would have an ≡ 1
(mod qi) for all n ∈ N) and do not divide b0−1. Let r1 < r2 < ... < ru be all prime
divisors of numbers an, n ∈ N, which divide b1 and b0 − 1.

For a given i ∈ {1, 2, ..., s}, since pi ∤ b1, thus there exists such npi
∈ N that

pi | b1npi
+ b0. Hence the sequence (an (mod pi))n≥npi

is periodic of period pi (see

Section 4.1.1). From the definition of an we conclude that if pi | an then pi ∤ an+1.
Thus the number of solutions modulo pi of the congruence an ≡ 0 (mod pi) (where

n ≥ npi
) is less than or equal to

⌊
pi

2

⌋
. For pi > 2 we have 1 +

⌊
pi

2

⌋
= pi+1

2 < pi.
For p1 = 2, by induction on n we can prove that

• if b1 ≡ 1 (mod 4) then

(19) an ≡





1, for n ≡ −b0, 2− b0 (mod 4)

2, for n ≡ 1− b0 (mod 4)

0, for n ≡ 3− b0 (mod 4)

for n ≥ (−b0 (mod 4));
• if b1 ≡ −1 (mod 4) then

(20) an ≡





1, for n ≡ b0, 2 + b0 (mod 4)

0, for n ≡ 1 + b0 (mod 4)

2, for n ≡ 3 + b0 (mod 4)

for n ≥ (b0 (mod 4)).

Let us observe that for a given i ∈ {1, 2, ..., t}, an ≡
∑n

j=0 b
j
0 =

bn+1
0 −1

b0−1

(mod qi) (because
qi ∤ b0− 1). Hence the sequence (an (mod qi))n∈N has the basic period equal to the
order of b0 in the multiplicative group (Z/qiZ)

∗ of nonzero remainders from division
by qi. Let us denote this order by ordi. Then qi | an if and only if ordi | n+ 1.

For a given i ∈ {1, 2, ..., u}, by induction on n we get an ≡ n + 1 (mod ri)
for n ∈ N.

For a given i ∈ {1, 2, ..., s}, if pi > 2 then we take such αi ∈ {0, 1, ..., pi − 2}
that pi ∤ ajpi+αi

for any j ∈ N+. Since αi 6= pi − 1, thus for each k ∈ {1, 2, ..., t}, if
pi | ordk then jpi+αi 6≡ −1 (mod ordk) for all j ∈ N+ and as a result, qk ∤ ajpi+αi

.
For a given i ∈ {1, 2, ..., u} and for each k ∈ {1, 2, ..., t}, if ri | ordk then

jri 6≡ −1 (mod ordk) for all j ∈ N+ and as a result, qk ∤ ajri .
Let us consider two cases, if p1 = 2 (it is sure that one of these cases holds):

a) 2 ∤ a2j for any j ∈ N+; then we take α1 = 0 and for each k ∈ {1, 2, ..., t}, if
2 | ordk then 2j 6≡ −1 (mod ordk) for all j ∈ N+ and as a result, qk ∤ a2j ;
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b) 2 | a2j for all j ∈ N+; then we take such α1 ∈ {0, 2} that a4j+α1 ≡ 2
(mod 4) for j ∈ N+, thus for each k ∈ {1, 2, ..., t}, if 2 | ordk then 4j+α1 6≡
−1 (mod ordk) for all j ∈ N+ and as a result, qk ∤ a4j+α1 .

By Chinese remainder theorem there exists such α0 that α0 ≡ αi (mod pi)
for all i ∈ {1, 2, ..., s} (respectively α0 ≡ α1 (mod 4) and α0 ≡ αi (mod pi) for all
i ∈ {2, 3, ..., s}, if b) holds), α0 ≡ 0 (mod ordi) for all i ∈ {1, 2, ..., s} and α0 ≡ 0
(mod ri) for all i ∈ {1, 2, ..., u}. Then

ajp1·...·psord1·...·ordtr1·...·ru+α0 ≡ aα0 (mod p1 · ... · psq1 · ... · qtr1 · ... · ru)

for all j ∈ N+ and |aα0 | = 1. Respectively, if b) holds then

aj·4p2·...·psord1·...·ordtr1·...·ru+α0 ≡ aα0 (mod 4p2 · ... · psq1 · ... · qtr1 · ... · ru).

for all j ∈ N+ and |aα0 | = 2.
If 2 is not the only prime divisor of the numbers an, n ∈ N, or 2 is not a prime

divisor of a number an for any n ∈ N then ajp1·...·psord1·...·ordtr1·...·ru+α0 = aα0 for
all j ∈ N+. Indeed, if ajp1·...·psord1·...·ordtr1·...·ru+α0 = −aα0 for some j ∈ N+ then

2aα0 ≡ 0 (mod p1 · ... · psq1 · ... · qtr1 · ... · ru),

which with the fact |aα0 | = 1 implies that p1 · ... · psq1 · ... · qtr1 · ... · ru | 2 - a contra-
diction. Similarly, when the case b) takes place, if aj·4p2·...·psord1·...·ordtr1·...·ru+α0 =
−aα0 for some j ∈ N+ then

2aα0 ≡ 0 (mod 4p2 · ... · psq1 · ... · qtr1 · ... · ru),

which with the fact |aα0 | = 2 implies that 4p2 · ... · psq1 · ... · qtr1 · ... · ru | 4 - a
contradiction. Finally, we use Theorem 8 to conclude that the sequence (an)n∈N is
bounded.

Assume now that 2 is the only prime divisor of the numbers an, n ∈ N. Then
there are two possible situations:

• 2 ∤ b1; then by the equations (19) and (20) we know that there is such
number n2 ∈ N that a2j+n2 ≡ 1 (mod 4) for all j ∈ N and because 2 is the
only prime divisor of the numbers an, n ∈ N, hence a2j+n2 = 1 for all j ∈ N
and by Theorem 8 the sequence (an)n∈N is bounded;

• 2 | b1 and 2 ∤ b0; then we can compute that

(an (mod 4))n∈N =





(1, 2, 3, 0, 1, 2, 3, 0, ...), if 4 | b1 and b0 ≡ 1 (mod 4)

(1, 0, 1, 0, 1, 0, 1, 0, ...), if 4 | b1 and b0 ≡ 3 (mod 4)

(1, 0, 1, 0, 1, 0, 1, 0, ...), if 4 ∤ b1 and b0 ≡ 1 (mod 4)

(1, 2, 3, 0, 1, 2, 3, 0, ...), if 4 ∤ b1 and b0 ≡ 3 (mod 4)

=

{
(1, 2, 3, 0, 1, 2, 3, 0, ...), if 4 | b1 + b0 − 1

(1, 0, 1, 0, 1, 0, 1, 0, ...), if 4 ∤ b1 + b0 − 1
,

which with the fact that 2 is the only prime divisor of the numbers an,
n ∈ N, implies that a4j = 1 for all j ∈ N and by Theorem 8 the sequence
(an)n∈N is bounded.

As a consequence of our reasoning, we obtain in all cases the sequence (an)n∈N

is bounded. On the other hand, if an 6= 0 then

|an+1| = |(b1(n+ 1) + b0)an + 1| ≥ |(b1(n+ 1) + b0)| − 1 ≥ |b1|(n+ 1)− |b0| − 1.

If an = 0 then an+1 = 1 and

|an+2| = |(b1(n+ 2) + b0)an+1 + 1| ≥ |(b1(n+ 2) + b0)| − 1 ≥ |b1|(n+ 2)− |b0| − 1.

This means that the sequence (an)n∈N is unbounded - a contradiction. Hence
there must be infinitely many prime divisors of the sequence (an)n∈N. �
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The results on infinitude of the set of prime divisors of a sequence (an)n∈N

given by the formula a0 = h1(0), an = f(n)an−1 + h1(n)h2(n)
n, n > 0 suggest us

to state the following:

Conjecture 2. If a sequence a ∈ R is unbounded and not of the form (an)n∈N =
(cbn)n∈N for some b, c ∈ Z then the set Pa is infinite.

Using a result of Luca (see [13]) we can establish the conjecture above for
sequences of the form a(f, h1, c), where f, h1 ∈ Z[X ] and c ∈ Z. Namely, Luca
showed that if a sequence (an)n∈N of rational numbers satisfy a recurrence of the
type

(21) F (n)an+2 +G(n)an+1 +H(n)an = 0

for some F,G,H ∈ Z[X ] not all zero and do not exist such u, v, w ∈ Z not all zero
that

uan+2 + van+1 + wan = 0

for n ≫ 0 (we call that (an)n∈N is not binary recurrent for sufficiently large n)
then there exists a constant γ > 0 depending only on the sequence (an)n∈N such
that the product of numerators and denominators of all the nonzero numbers an for
n ≤ N has at least γ logN prime divisors as N ≫ 0 (by log we mean the natural
logarithm).

Let a sequence (an)n∈N be given by the formula a0 = h1(0), an = f(n)an−1+
cnh1(n), n > 0, where f, h1 ∈ Z[X ] and c ∈ Z. If h1 = 0 then the sequence (an)n∈N

is constantly equal to 0, so assume additionaly that h1 6= 0. Write the recurrence
formula for n+ 1 and n+ 2:

an+1 =f(n+ 1)an + cn+1h1(n+ 1)

an+2 =f(n+ 2)an+1 + cn+2h1(n+ 2)

After multiplication the first equality by ch1(n+2) and the second one by −h1(n+1)
and adding them, we obtain

ch1(n+ 2)an+1 − h1(n+ 1)an+2 = ch1(n+ 2)f(n+ 1)an − h1(n+ 1)f(n+ 2)an+1

or equivalently

h1(n+1)an+2 − (ch1(n+2)+ f(n+2)h1(n+ 1))an+1 + cf(n+1)h1(n+ 2)an = 0.

Hence the sequence (an)n∈N satisfy a recurrence of the form (21) and h1(X+1) 6= 0.
By the result of Luca we know that if (an)n∈N is not binary recurrent for sufficiently
large n then there exists a constant γ > 0 such that the product of all the nonzero
numbers an for n ≤ N has at least γ logN prime divisors as N ≫ 0.

Let us establish when the sequence (an)n∈N is binary recurrent for sufficiently
large n. Then, for n≫ 0 we have two relations:

h1(n+ 1)an+2 − (ch1(n+ 2) + f(n+ 2)h1(n+ 1))an+1 + cf(n+ 1)h1(n+ 2)an = 0,

uan+2 + van+1 + wan = 0.

We multiply the first equation by u and the second one by −h1(n+1) and then we
add them to obtain
(22)
(cuf(n+1)h1(n+2)−wh1(n+1))an = (cuh1(n+2)+uf(n+2)h1(n+1)+vh1(n+1))an+1.

First, let us consider the case when cuf(X + 1)h1(X +2)−wh1(X + 1) = 0
and cuh1(n+ 2) + uf(n+ 2)h1(n+ 1) + vh1(n+ 1) = 0. Then

cuh1(X + 2) + uf(X + 2)h1(X + 1) = −vh1(X + 1)

and

cuf(X + 1)h1(X + 2) = wh1(X + 1).
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Since h1 6= 0, thus

(23)
cuf(X + 1)h1(X + 2)

h1(X + 1)
= w,

but then

w = lim
n→+∞

cuf(n+ 1)h1(n+ 2)

h1(n+ 1)
= lim

n→+∞
cuf(n+ 1).

This means that f = b, where b ∈ Z. The equality (23) takes the form bcuh1(X+2)
h1(X+1) =

w and this implies that h1 = d, where d ∈ Z. If bc = 0 then the sequence (an)n∈N

becomes a geometric progression and it has only finitely many prime divisors on
condition that it has no zero terms. If b, c 6= 0 then by Proposition 9 any prime
number divides an for some n ∈ N.

Next, if exactly one of the polynomials cuf(X + 1)h1(X +2)−wh1(X + 1),
cuh1(n + 2) + uf(n+ 2)h1(n + 1) + vh1(n + 1) is zero then the sequence (an)n∈N

is ultimately equal to zero.
Finally, assume that both the polynomials cuf(X+1)h1(X+2)−wh1(X+1),

cuh1(n + 2) + uf(n + 2)h1(n + 1) + vh1(n + 1) are nonzero. For simplicity of

notation let us write them as P (X) and Q(X), respectively. If P (X)
Q(X) = α ∈ Q then

an+1 = αan, i. e. (an)n∈N is a geometric progression for n ≫ 0 and then it can

have only finitely many prime divisors. If P (X)
Q(X) is a nonconstant rational function

then by the following lemma there are infinitely many prime numbers p such that

p divides numerator or denominator of irreducible form of number P (n)
Q(n) for some

n ∈ N. Therefore, since an+1 = P (n)
Q(n)an for n ≫ 0, thus the sequence (an)n∈N has

infinitely many prime divisors.

Lemma. Let P,Q ∈ Z[X ]\{0}. If P
Q

is a nonconstant rational function then there

are infinitely many prime numbers p such that vp

(
P (n)
Q(n)

)
6= 0 for some n ∈ N.

Proof. Assume that p1, ..., ps are the only prime numbers occuring in irreducible

forms of numbers P (n)
Q(n) , n ∈ N (if certainly Q(n) 6= 0). Let n0 ∈ N be such that

all the integer roots of polynomials P and Q are less than n0. For i ∈ {1, ..., s} we
define ki = vpi

(P (n0)), li = vpi
(Q(n0)) andmi = max{ki, li}. Then for each n ≡ n0

(mod pm1+1
1 ·...·pms+1

s ) we have P (n) = pk1
1 ·...·pks

s R(n) and Q(n) = pl11 ·...·plss R(n),

where R(n) is coprime to p1 · ... · ps. Therefore P (n)
Q(n) = pk1−l1

1 · ... · pks−ls
s for any

n ≡ n0 (mod pm1+1
1 · ... · pms+1

s ). Since the equation P (n) = pk1−l1
1 · ... · pks−ls

s Q(n)
holds for infinitely many n ∈ N it holds for all n ∈ N and the rational function P

Q

is constant. However, this is a contradiction with assumption of Lemma. �

4.4.2. Divisors of the form n − b − 1. Now we will consider sequences of type
a(X − b, h1, h2), i. e. given by the recurrence

(24) a0 = h1(0), an = (n− b)an−1 + h1(n)h2(n)
n, n > 0,

where b ∈ Z and h1, h2 ∈ Z[X ]. We will try to give some conditions for division an
by n− b− 1. Notice that for b = 0, h1 = 1 and h2 = −1 we obtain the sequence of
derangements and then the divisibility n− 1 | Dn holds for any n ∈ N. Our goal is
to generalize this property for the sequences defined by the relation (24).

If we use (24) twice then we obtain:

an = (n− b)an−1 + h1(n)h2(n)
n =

= (n− b− 1)an−1 + (n− b− 1)an−2 + h1(n− 1)h2(n− 1)n−1 + h1(n)h2(n)
n, n ≥ 2.

and, what is more, a1 = (1− b)h1(0) + h1(1)h2(1).
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Since polynomials are periodic modulo n− b−1, thus for n ∈ N+ there holds
the equivalence

(25) n− b− 1 | an ⇐⇒ n− b− 1 | h1(b)h2(b)
n−1 + h1(b+ 1)h2(b+ 1)n.

In particular, we have the following:

Proposition 10. If h1(b) = h1(b + 1)h2(b + 1) = 0 then n − b − 1 | an for all
positive integers n. If h2(b) = h1(b + 1)h2(b + 1) = 0 then n − b − 1 | an for all
integers n ≥ 2.

Assume that n ≥ 2 and |n − b − 1| is a prime number. Then, by (25),
n− b− 1 | an if and only if one of the following holds:

• n− b− 1 | h1(b)h2(b), h1(b+ 1)h2(b + 1);
• n − b − 1 ∤ h1(b)h2(b), h1(b + 1)h2(b + 1) and v|n−b−1|(h1(b)h2(b)

b+1 +

h1(b+ 1)h2(b+ 1)b+2) > 0 (by Fermat’s little theorem).

The fact presented above implies the following:

Proposition 11. If h1(b)h2(b)
b+1 + h1(b+ 1)h2(b+ 1)b+2 6= 0 then there are only

finitely many nonnegative integers n such that |n − b − 1| is a prime number and
n− b− 1 | an. If h1(b)h2(b)

b+1 + h1(b+ 1)h2(b + 1)b+2 = 0 then n− b− 1 | an for
almost all nonnegative integers n such that |n− b− 1| is a prime number.

Proof. First, consider the case h1(b)h2(b)
b+1 + h1(b + 1)h2(b + 1)b+2 6= 0. Since

there are only finitely many prime numbers dividing simultaneously h1(b)h2(b) and
h1(b+ 1)h2(b + 1) and prime numbers p such that

vp(h1(b)h2(b)
b+1 + h1(b+ 1)h2(b+ 1)b+2) > 0,

hence the first part of the statement is true.
Assume now that h1(b)h2(b)

b+1 + h1(b+1)h2(b+1)b+2 = 0. If h1(b)h2(b) =
h1(b+1)h2(b+1) = 0 then by Proposition 10 we have n− b− 1 | an for all integers
n > 1. If h1(b)h2(b), h1(b + 1)h2(b + 1) 6= 0 and |n− b − 1| is a prime number not
dividing either h1(b)h2(b) or h1(b+ 1)h2(b+ 1) then n− b− 1 | an. �

Let us consider the case when h1(b)h2(b) 6= 0 and h1(b + 1)h2(b + 2) = 0.
Try to characterize indices n ∈ N+ such that n− b− 1 | an. Let

h2(b) = pα1
1 pα2

2 · ... · pαs
s ,

where α1, ..., αs ∈ N+, be the factorization of h2(b) and

h1(b) = pβ1

1 p
β2

2 · ... · pβs
s q

γ1

1 q
γ2

2 · ... · qγt

t ,

where β1, ..., βs ∈ N and γ1, ..., γs ∈ N+, be the factorization of h1(b).
Then, by (25), n− b− 1 | an if and only if

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ≤ (n− 1)αi + βi for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t}.
If b ≥ 0 then for i ∈ {1, 2, ..., s} and n ≥ max{2, b} we have

δi < pδii ≤ |n− b− 1| ≤ n− 1 ≤ (n− 1)αi + βi.

Hence, if n ≥ max{2, b} then:

n− b− 1 | an ⇔ |n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ∈ N for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t}. It remains to check
indices n ∈ {1, 2, 3, ..., b} one by one.

If b < 0 then the situation is slightly more difficult. Fix i ∈ {1, 2, ..., s}. If

pδii − δi ≥ −bα− β then

δi ≤ pδii +bαi+βi ≤ n−b−1+bαi+βi ≤ (n−1)αi+b(αi−1)+βi ≤ (n−1)αi+βi.
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thus the inequality δi ≤ (n− 1)αi+βi holds for pδii − δi ≥ −bαi−βi. In particular,
if δi ≥ −bαi − βi then

pδii − δi ≥ pδii − pδi−1
i ≥ pδi−1

i ≥ δi ≥ −bαi − βi

and the inequality δi ≤ (n− 1)αi + βi holds.
We can summarize our discussion in the following:

Proposition 12. Let us consider a sequence a(X − b, h1, h2). Assume that h1(b+

1)h2(b+1) = 0. Let h2(b) = pα1

1 pα2

2 · ... ·pαs
s and h1(b) = pβ1

1 p
β2

2 · ... ·pβs
s q

γ1

1 qγ2

2 · ... ·qγt

t

be the factorizations of numbers h2(b) and h1(b), respectively. Then for n ∈ N+,

n− b− 1 | an ⇔ |n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ≤ (n − 1)αi + βi for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t}. In
particular,

• if b ≥ 0 and n ≥ max{2, b} then n− b− 1 | an if and only if

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ∈ N for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t};
• if b < 0 and n > 0 then n− b− 1 | an when

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where εi ≤ γi for i ∈ {1, 2, ..., t} and for each i ∈ {1, 2, ..., s} at least one of

the equalities pδii − δi ≥ −bαi − βi, δi ≤ βi holds.

The same consideration allows us to obtain the characterization of indices n
such that n− b− 1 | an in case when h1(b)h2(b) = 0 and h1(b+1)h2(b+2) 6= 0 and
in case when h2(b) = h2(b + 1) = c.

Proposition 13. Let us consider a sequence a(X−b, h1, h2). Assume that h1(b)h2(b) =

0. Let h2(b+1) = pα1
1 pα2

2 · ... ·pαs
s and h1(b+1) = pβ1

1 p
β2

2 · ... ·pβs
s q

γ1

1 qγ2

2 · ... ·qγt

t be the
factorizations of numbers h2(b+ 1) and h1(b + 1), respectively. Then for n ∈ N+,

n− b− 1 | an ⇔ |n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ≤ (n − 1)αi + βi for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t}. In
particular,

• if b ≥ 0 and n ≥ max{2, b} then n− b− 1 | an if and only if

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ∈ N for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t};
• if b < 0 and n > 0 then n− b− 1 | an when

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where εi ≤ γi for i ∈ {1, 2, ..., t} and for each i ∈ {1, 2, ..., s} at least one of

the equalities pδii − δi ≥ −bαi − βi, δi ≤ βi holds.

Proposition 14. Let us consider a sequence a(X−b, h1, h2). Assume that h2(b) =

h2(b+1) = c ∈ Z. Let c = pα1
1 pα2

2 ·...·pαs
s and h1(b)+ch1(b+1) = pβ1

1 p
β2

2 ·...·pβs
s qγ1

1 q
γ2

2 ·
... · qγt

t be the factorizations of numbers c and h1(b)+ ch1(b+1), respectively. Then
for n ∈ N+,

n− b− 1 | an ⇔ |n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ≤ (n − 1)αi + βi for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t}. In
particular,
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• if b ≥ 0 and n ≥ max{2, b} then n− b− 1 | an if and only if

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where δi ∈ N for i ∈ {1, 2, ..., s} and εi ≤ γi for i ∈ {1, 2, ..., t};
• if b < 0 and n > 0 then n− b− 1 | an when

|n− b− 1| = pδ11 p
δ2
2 · ... · pδss q

ε1
1 q

ε2
2 · ... · qεtt ,

where εi ≤ γi for i ∈ {1, 2, ..., t} and for each i ∈ {1, 2, ..., s} at least one of

the equalities pδii − δi ≥ −bαi − βi, δi ≤ βi holds.

If c = 0 or h1(b) + ch1(b+ 1) = 0 then n− b− 1 | an for each n > 0.

Proof. It suffices to see that if n > 0 then n− b− 1 | an ⇔ n− b− 1 | cn−1h1(b) +
cnh1(b+ 1). �

Let us assume now that h1(b) = h1(b+ 1) = c 6= 0 and h2(b + 1) = ±1.

Proposition 15. Let us consider a sequence a(X−b, h1, h2). Assume that h1(b) =
h1(b+1) = c 6= 0 and h2(b+1) = 1. If n1, n2, n3 ∈ N+ are such that n1−b−1 | an1 ,
n2−b−1 | an2 , n3−b−1 | lcm(n1−b−1, n2−b−1), v2(n1−1) = v2(n2−1) = v2(n3−1)
and lcm(n1−1, n2−1) | n3−1 then n3−b−1 | an3 . In particular, if b > 0, ab+1 = 0
and n2 ∈ N+ is such that v2(n2−1) = v2(b) and n2−b−1 | an2 then n3−b−1 | an3

for any n3 ∈ N+ such that lcm(b, n2 − 1) | n3 − 1 and v2(n3 − 1) = v2(b).

Proof. By (25) we know that n− b− 1 | an if and only if n− b− 1 | ch2(b)
n−1 + c.

Since v2(n1 − 1) = v2(n2 − 1) = v2(n3 − 1), thus n3−1
n1−1 and n3−1

n2−1 are odd numbers.
Hence we get

h2(b)
n1−1 + 1, h2(b)

n2−1 + 1 | h2(b)
n3−1 + 1.

As a consequence we get

n3 − b− 1 | lcm(n1 − b− 1, n2 − b− 1) | lcm(c(h2(b)
n1−1 + 1), c(h2(b)

n2−1 + 1)) |

| c(h2(b)
n3−1 + 1),

which means that n3 − b− 1 | an3 . �

Proposition 16. Let us consider a sequence a(X−b, h1, h2). Assume that h1(b) =
h1(b+1) = c 6= 0 and h2(b+1) = −1. If n1, n2, n3 ∈ N+ are such that n1−b−1 | an1 ,
n2− b−1 | an2 n3− b−1 | lcm(n1− b−1, n2− b−1) and lcm(n1−1, n2−1) | n3−1
then n3 − b − 1 | an3 . In particular, if b > 0, ab+1 = 0 and n2 ∈ N+ is such that
n2−b−1 | an2 then n3−b−1 | an3 for any n3 ∈ N+ such that lcm(b, n2−1) | n3−1.

Proof. By (25) we know that n−b−1 | an if and only if n−b−1 | ch2(b)
n−1+(−1)nc.

Since lcm(n1 − 1, n2 − 1) | n3 − 1, thus

h2(b)
ni−1 − (−1)ni−1 | h2(b)

lcm(n1−1,n2−1) − (−1)lcm(n1−1,n2−1) |

| h2(b)
n3−1 − (−1)n3−1.

for i ∈ {1, 2}. Finally,

n3 − b− 1 | lcm(n1 − b− 1, n2 − b− 1) | lcm(c(h2(b)
n1−1 − (−1)n1−1), c(h2(b)

n2−1 − (−1)n2−1)) |

| c(h2(b)
lcm(n1−1,n2−1) − (−1)lcm(n1−1,n2−1)) | c(h2(b)

n3−1 − (−1)n3−1),

which means that n3 − b− 1 | an3 . �

Similarly we can prove analogous propositions for h1(b) = h1(b+ 1) = c 6= 0
and h2(b) = ±1.
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Proposition 17. Let us consider a sequence a(X−b, h1, h2). Assume that h1(b) =
h1(b + 1) = c 6= 0 and h2(b) = 1. If n1, n2, n3 ∈ N+ are such that n1 − b − 1 | an1 ,
n2 − b− 1 | an2 , n3 − b− 1 | lcm(n1 − b− 1, n2 − b − 1), v2(n1) = v2(n2) = v2(n3)
and lcm(n1, n2) | n3 then n3 − b − 1 | an3 . In particular, if b ≥ 0, ab+1 = 0 and
n2 ∈ N+ is such that v2(n2) = v2(b + 1) and n2 − b − 1 | an2 then n3 − b − 1 | an3

for any n3 ∈ N+ such that lcm(b + 1, n2) | n3 and v2(n3) = v2(b + 1).

Proposition 18. Let us consider a sequence a(X−b, h1, h2). Assume that h1(b) =
h1(b+1) = c 6= 0 and h2(b) = −1. If n1, n2, n3 ∈ N+ are such that n1 − b− 1 | an1 ,
n2 − b − 1 | an2 , n3 − b − 1 | lcm(n1 − b − 1, n2 − b − 1) and lcm(n1, n2) | n3

then n3 − b − 1 | an3 . In particular, if b ≥ 0, ab+1 = 0 and n2 ∈ N+ is such that
n2 − b − 1 | an2 then n3 − b− 1 | an3 for any n3 ∈ N+ divisible by lcm(b+ 1, n2).

Remark 4. If b = 0 then due to Proposition 19 below we see that Propositions 17
and 18 are useful only in the case when a1 = 0 beacause there holds:

Proposition 19. If n1, n2, n3 ∈ N+ are such that n3 − 1 | lcm(n1 − 1, n2 − 1)
and lcm(n1, n2) | n3 then n1 | n2 or n2 | n1. Additionaly, if n1, n2 > 1 then
n3 = max{n1, n2}.

Proof. Let us write d = gcd(n1, n2), n1 = dn′
1, n2 = dn′

2 and n3 = kdn′
1n

′
2 for some

n′
1, n

′
2, k ∈ N+, where gcd(n′

1, n
′
2) = 1. Since n3 − 1 | (n1− 1)(n2− 1), thus we have

(26) kdn′
1n

′
2 − 1 | d2n′

1n
′
2 − dn′

1 − dn′
2 + 1.

If d = qk + r for some q ∈ N and r ∈ {0, 1, 2, ..., k − 1} then the divisibility (26)
takes the form

(27) kdn′
1n

′
2 − 1 | qkdn′

1n
′
2 + rdn′

1n
′
2 − dn′

1 − dn′
2 + 1.

Since kdn′
1n

′
2 − 1 | qkdn′

1n
′
2 − q, hence (27) is equivalent to

(28) kdn′
1n

′
2 − 1 | q + rdn′

1n
′
2 − dn′

1 − dn′
2 + 1.

If the number kdn′
1n

′
2 − 1 is equal to 0 then d = n′

1 = n′
2 = 1, which means

that n1 = n2 = 1. Hence, assume that one of the numbers n1, n2 is greater than 1.
Then kdn′

1n
′
2 − 1 > 0.

Let us consider the case r = 0. If q − dn′
1 − dn′

2 + 1 > 0 then by (28) there
must be

kdn′
1n

′
2 − 1 ≤ q − dn′

1 − dn′
2 + 1

=⇒ dn′
1n

′
2 + dn′

1 + dn′
2 ≤ kdn′

1n
′
2 + dn′

1 + dn′
2 ≤ q + 2 ≤ d+ 2

=⇒ dn′
1n

′
2 + dn′

1 + dn′
2 + d ≤ 2d+ 2

=⇒ d(n′
1 + 1)(n′

2 + 1)− 2d ≤ 2

=⇒ d[(n′
1 + 1)(n′

2 + 1)− 2] ≤ 2,

but d[(n′
1 + 1)(n′

2 + 1) − 2] ≥ d(2 · 2 − 2) = 2d ≥ 2 (because min{d, n′
1, n

′
2} ≥ 1),

hence d = n′
1 = n′

2 = 1. Then n1 = n2 = 1, but we assumed that one of the
numbers n1, n2 is greater than 1 - a contradiction.

If q − dn′
1 − dn′

2 + 1 < 0 then

kdn′
1n

′
2 − 1 ≤ |q − dn′

1 − dn′
2 + 1| = −q + dn′

1 + dn′
2 − 1

=⇒ kdn′
1n

′
2 − dn′

1 − dn′
2 ≤ −q ≤ 0

=⇒ (k − 1)dn′
1n

′
2 + dn′

1n
′
2 − dn′

1 − dn′
2 + d ≤ d

=⇒ (k − 1)dn′
1n

′
2 + d(n′

1 − 1)(n′
2 − 1)− d ≤ 0

=⇒ d[(k − 1)n′
1n

′
2 + (n′

1 − 1)(n′
2 − 1)− 1] ≤ 0,

which is possible only for (k, n′
1, n

′
2) ∈ {(1, 1, x), (1, x, 1), (1, 2, 2), (2, 1, 1) : x ∈ N+}

(the condition (k, n′
1, n

′
2) = (1, 2, 2) does not hold because n′

1, n
′
2 are coprime).
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If q − dn′
1 − dn′

2 + 1 = 0 then d+ 1 ≥ q + 1 = d(n′
1 + n′

2), which means that
1 ≥ d(n′

1 + n′
2 − 1) and this holds only for d, n′

1, n
′
2 = 1. Then n1 = n2 = 1 - a

contradiction with the assumption that one of the numbers n1, n2 is greater than
1.

Let us consider the case r = 1. If q+dn′
1n

′
2−dn

′
1−dn

′
2+1 > 0 then by (28)

there must be

kdn′
1n

′
2 − 1 ≤ q + dn′

1n
′
2 − dn′

1 − dn′
2 + 1

=⇒ (k − 1)dn′
1n

′
2 + dn′

1 + dn′
2 ≤ q + 2.

Since dn′
1 + dn′

2 ≤ (k − 1)dn′
1n

′
2 + dn′

1 + dn′
2 and q + 2 ≤ d + 2 we obtain the

following chain of inequalities.

dn′
1 + dn′

2 ≤ d+ 2

=⇒ dn′
1 + dn′

2 − d ≤ 2

=⇒ d(n′
1 + n′

2 − 1) ≤ 2

The last inequality holds only if (d, n′
1, n

′
2) ∈ {(1, 1, 2), (1, 2, 1), (2, 1, 1)} because

min{d, n′
1, n

′
2} ≥ 1. However, for d = 2, since r = 1 and k ∈ N+, thus k = 1 | d and

r = 0 - a contradiction.
If q + dn′

1n
′
2 − dn′

1 − dn′
2 + 1 < 0 then

kdn′
1n

′
2 − 1 ≤ |q + dn′

1n
′
2 − dn′

1 − dn′
2 + 1| = −q − dn′

1n
′
2 + dn′

1 + dn′
2 − 1

=⇒ (k + 1)dn′
1n

′
2 − dn′

1 − dn′
2 ≤ −q ≤ 0,

=⇒ kdn′
1n

′
2 + dn′

1n
′
2 − dn′

1 − dn′
2 + d− d ≤ 0,

=⇒ d[kn′
1n

′
2 + (n′

1 − 1)(n′
2 − 1)− 1] ≤ 0,

which is possible only for k = n′
1 = n′

2 = 1.
If q + dn′

1n
′
2 − dn′

1 − dn′
2 + 1 = 0 then

dn′
1n

′
2 − dn′

1 − dn′
2 + d− d+ 1 = −q ≤ 0

=⇒ d[(n′
1 − 1)(n′

2 − 1)− 1] + 1 ≤ 0,

which holds only for n′
1 = 1 or n′

2 = 1. Without loss of generality assume that
n′
2 = 1. Then q + dn′

1n
′
2 − dn′

1 − dn′
2 + 1 = q + dn′

1 − dn′
1 − d+ 1 = q − d+ 1 = 0.

Hence q + 1 = d = qk + 1. If q = 0 then d = 1 and n2 = 1. If q > 0 then k = 1.
Assume now that r > 1. Then q + rdn′

1n
′
2 − dn′

1 − dn′
2 + 1 > 0, so by (28)

we have

kdn′
1n

′
2 − 1 ≤ q + rdn′

1n
′
2 − dn′

1 − dn′
2 + 1

=⇒ (k − r)dn′
1n

′
2 + dn′

1 + dn′
2 ≤ q + 2 ≤ d+ 2

=⇒ d[(k − r)n′
1n

′
2 + n′

1 + n′
2 − 1] ≤ 2.

Since all the numbers k − r, d, n′
1, n

′
2 are ≥ 1 and one of the values d, n′

1, n
′
2 is > 2

(because one of the values n1, n2 is > 2), thus d[(k − r)n′
1n

′
2 + n′

1 + n′
2 − 1] > 2 - a

contradiction.
Summing up our discussion, we see that if the assumptions of the proposition

are satisfied then n′
1 = 1 or n′

2 = 1, which means that gcd(n1, n2) = d is equal to
n1 or n2. Thus n1 | n2 or n2 | n1.

If n1, n2 > 1 then one of the following conditions holds:

• r = 0 and q − dn′
1 − dn′

2 + 1 < 0;
• r = 1 and q + dn′

1n
′
2 − dn′

1 − dn′
2 + 1 = 0.

However, then we have k = 1, which means that n3 = kdn′
1n

′
2 = lcm(n1, n2) =

max{n1, n2}. �
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5. Arithmetic properties of the sequences of even and odd

derangements

The knowledge of arithmetic properties of the sequence of derangements
suggests us to explore the sequences of numbers of even and odd derangements.

Let us denote by D
(e)
n the number of all even derangements of an n-element set,

i. e. the number of all even permutations of a set with n elements which have no

fixed points. Similarly, let D
(o)
n denote the number of all odd derangements of a

set with n elements. The sequences (D
(e)
n )n∈N and (D

(o)
n )n∈N satisfy the following

system of recurrence relations

D
(e)
0 = 1, D

(e)
1 = 0, D

(o)
0 = 0, D

(o)
1 = 0,

D(e)
n = (n− 1)(D

(o)
n−2 +D

(o)
n−1), D

(o)
n = (n− 1)(D

(e)
n−2 +D

(e)
n−1), n ≥ 2.

(29)

The first terms of the sequences (D
(e)
n )n∈N and (D

(o)
n )n∈N are presented in

the table below.

n 0 1 2 3 4 5 6 7 8 9 10

D
(e)
n 1 0 0 2 3 24 130 930 7413 66752 667476

D
(o)
n 0 0 1 0 6 20 135 924 7420 66744 667485

The relationD
(e)
n = (n−1)(D

(o)
n−2+D

(o)
n−1), n ≥ 2, is provided by the following

argument. Each even derangement σ of the set {1, 2, ..., n} can be written in the
form σ = σ ◦ (n, σ(n)) ◦ (n, σ(n)), where σ ◦ (n, σ(n)) is an odd permutation with
one or two fixed points. Thus σ ◦ (n, σ(n)) can be treated as a derangement of

a set with n − 2 or n − 1 elements, so it can be chosen in D
(o)
n−2 + D

(o)
n−1 ways.

Furthermore, the number σ(n) can be chosen in n − 1 ways. The relation D
(e)
n =

(n− 1)(D
(o)
n−2 +D

(o)
n−1), n ≥ 2, can be explained in the same way.

Certainly D
(o)
n + D

(e)
n = Dn for n ∈ N. From the relations (29) we can

compute D
(o)
n − D

(e)
n which will allow us to write D

(o)
n and D

(e)
n as expressions

dependent only on Dn.

Proposition 20. D
(o)
n −D

(e)
n = (−1)n(n− 1) for n ∈ N.

Proof. Obviously the equality is true for n ∈ {0, 1}. Assume now that n ≥ 2 and
the equality holds for n− 2 and n− 1. Then

D(o)
n −D(e)

n = (n− 1)[D
(e)
n−2 +D

(e)
n−1 −D

(o)
n−2 −D

(o)
n−1]

=(n− 1)[D
(e)
n−2 −D

(o)
n−2 +D

(e)
n−1 −D

(o)
n−1]

=(n− 1)[−(−1)n−2(n− 3)− (−1)n−1(n− 2)]

=(−1)n(n− 1)[−(n− 3) + (n− 2)] = (−1)n(n− 1).

�

Corollary 5. D
(o)
n = Dn+(−1)n(n−1)

2 = 1
2

[∑n−1
j=0

n!
j! (−1)j + (−1)nn

]
,

D
(e)
n = Dn−(−1)n(n−1)

2 = 1
2

[∑n−1
j=0

n!
j! (−1)j − (−1)n(n− 2)

]
for n ∈ N.

The formulae in Corollary 5 combined with properties of the sequence of
derangements will give us properties of the sequences of even and odd derangements.

First, we establish the asymptotics of (D
(e)
n )n∈N and (D

(o)
n )n∈N. Directly

from Corollary 5 and the fact that limn→+∞
Dn

n! = 1
e

we obtain the following:

Proposition 21. limn→+∞
D(e)

n

n! = limn→+∞
D(o)

n

n! = 1
2e
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Now we show periodicity of sequences of remainders (D
(o)
n (mod d))n∈N and

(D
(e)
n (mod d))n∈N for a given positive integer d > 1 and compute their basic

period.

Proposition 22. Let d > 1 be a positive integer. Then the sequences (D
(o)
n

(mod d))n∈N and (D
(e)
n (mod d))n∈N are periodic with period 2d.

Proof. We will present the proof only for the sequence (D
(o)
n (mod d))n∈N because

the same argument allows us to claim that (D
(e)
n (mod d))n∈N is periodic of period

2d.
Recall from Section 4.1 that the basic period of the sequence of remainders

(Dn (mod d))n∈N is equal to d if 2 | d and 2d otherwise. The sequence ((−1)n

(mod d))n∈N has period 2 for d > 2 and is constant for d = 2. Obviously, the

sequence (n− 1 (mod d))n∈N has period d. Thus, if 2 ∤ d then the sequence (2D
(o)
n

(mod d))n∈N2 = (Dn + (−1)n(n− 1) (mod d))n∈N is periodic of period 2d, so does

the sequence (D
(o)
n (mod d))n∈N2 . If 2 | d then 2d is a period of the sequence

(2D
(o)
n (mod 2d))n∈N = (Dn + (−1)n(n − 1) (mod 2d))n∈N, hence the sequence

(D
(o)
n (mod d))n∈N2 has period 2d. �

The relations (29) show us that n− 1 | D
(e)
n , D

(o)
n for each n ∈ N. Let us put

E
(e)
n =

D(e)
n

n−1 = D
(o)
n−2 + D

(o)
n−1 and E

(o)
n =

D(o)
n

n−1 = D
(e)
n−2 + D

(e)
n−1 for n ≥ 2. Recall

that in Section 4.1.3 we defined En = Dn

n−1 for n ≥ 2. Using Corollary 5 we can
write

E(e)
n =

En − (−1)n

2
, E(o)

n =
En + (−1)n

2
, n ≥ 2.

Let Ẽ
(e)
n = (−1)nE

(e)
n and Ẽ

(o)
n = (−1)nE

(o)
n for n ≥ 2. Using Corollary 5, for

n ≥ 2 we obtain

Ẽ(e)
n =(−1)n(D

(o)
n−2 +D

(o)
n−1) =

1

2
(D̃n−2 + (n− 3)− D̃n−1 − (n− 2))

=
1

2
(D̃n−2 − D̃n−1 − 1) =

1

2
(Ẽn − 1)

and similarly

Ẽ(o)
n =(−1)n(D

(e)
n−2 +D

(e)
n−1) =

1

2
(D̃n−2 − (n− 3)− D̃n−1 + (n− 2))

=
1

2
(D̃n−2 − D̃n−1 + 1) =

1

2
(Ẽn + 1),

where Ẽn = (−1)nEn = D̃n−2 − D̃n−1. Since for each positive integer d > 1

the sequence (D̃n (mod d))n∈N is periodic of period d, hence the sequences (Ẽ
(e)
n

(mod d))n∈N and (Ẽ
(o)
n (mod d))n∈N are periodic of period d, if 2 ∤ d, and 2d

otherwise. Hence, if 2 ∤ d and n1 ≡ n2 (mod d), or 2 | d and n1 ≡ n2 (mod 2d)

then d | E
(e)
n1 ⇐⇒ d | E

(e)
n2 and d | E

(o)
n1 ⇐⇒ d | E

(o)
n2 . If we combine this with the

fact that E
(e)
2 = E

(o)
3 = 0 then we obtain the following divisibilities.

Proposition 23. The following divisibilities hold:

• If 2 ∤ d then d |
D

(e)
md+2

md+1 ,
D

(o)
md+3

md+2 for all m ∈ N. In particular, d(md + 1) |

D
(e)
md+2 and d(md+ 2) | D

(o)
md+3.

• If 2 | d then d |
D

(e)
2md+2

2md+1 ,
D

(o)
2md+3

2md+2 for all m ∈ N. In particular, d(2md + 1) |

D
(e)
2md+2 and d(2md+ 2) | D

(o)
2md+3.
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If we substitute d = pk, where p is a prime number and k is a positive

integer then we infer that pk divides numbers E
(e)
n and E

(o)
m for infinitely many

n,m ∈ N. This means that each prime number p divides numbers E
(e)
n and E

(o)
m

for some n,m ∈ N and p-adic valuation on the sets {E
(e)
n }n∈N2 and {E

(o)
n }n∈N2 is

unbounded. These facts are in striking opposition to results on prime divisors and
p-adic valuations of numbers En, n ∈ N. Let us recall that not each prime number
p divides En for some n ∈ N and even when p does divide En for some n ∈ N then
p-adic valuation can be bounded (this situation happens for p = 2633).

Despite the fact that p-adic valuation of numbers E
(e)
n and E

(o)
n , n ∈ N, is

unbounded, one can check its behavior. This task is simple, since the sequences

(2E
(e)
n )n∈N2 and (2E

(o)
n )n∈N2 have pseudo-polynomial decomposition modulo p on

the set {n ∈ N : n ≥ 2}. For n ≥ 2 we have

2E(e)
n = 2(−1)nẼ(e)

n = (−1)n(Ẽn − 1)

2E(o)
n = 2(−1)nẼ(o)

n = (−1)n(Ẽn + 1)
(30)

and (fp,k(X − 2) − fp,k(X − 1), 1)k∈N2 is a pseudo-polynomial decomposition of

(Ẽn)n∈N2 , where fp,k =
∑kp−1

j=0 (−1)j
∏j−1

i=0 (X − i), k > 1 (see Section 4.1.3). Hence

(fp,k(X− 2)− fp,k(X− 1)− 1, (−1)n)k∈N2 is a pseudo-polynomial decomposition of

(2E
(e)
n )n∈N2 and (fp,k(X − 2)− fp,k(X − 1)+ 1, (−1)n)k∈N2 is a pseudo-polynomial

decomposition of (2E
(o)
n )n∈N2 .

Theorem 14. Let p ∈ P, k ∈ N+ and nk ≥ 2 be such an integer that pk |
D(e)

nk

nk−1 . Let

us define qp(nk) =
2
p

(
(−1)nk+pD

(e)
nk+p

nk+p−1 −
(−1)nkD(e)

nk

nk−1

)
= 2

p

(
(−1)nk+pD

(o)
nk+p

nk+p−1 −
(−1)nkD(o)

nk

nk−1

)

(where the last equality holds because of equations (30)).
For p > 2 we have the following implications.

• If p ∤ qp(nk) then there exists a unique nk+1 modulo pk+1 such that nk+1 ≡

nk (mod pk) and pk+1 |
D(e)

n

n−1 for all n ≥ 2 congruent to nk+1 modulo pk+1.

What is more, nk+1 ≡ nk −
D(e)

nk

(nk−1)qp(nk)
(mod pk+1).

• If p | qp(nk) and pk+1 |
D(e)

nk

nk−1 then pk+1 | D(e)
n

n−1 for all n satisfying n ≡ nk

(mod pk) and n ≥ 2.

• If p | qp(nk) and pk+1 ∤
D(e)

nk

nk−1 then pk+1 ∤
D(e)

n

n−1 for any n satisfying n ≡ nk

(mod pk) and n ≥ 2.

In particular, if k = 1, p |
D(e)

n1

n1−1 and p ∤ 2
p

(
D

(e)
n1+p

n1+p−1 +
D(e)

n1

n1−1

)
then for any l ∈ N+

there exists a unique nl modulo pl such that nl ≡ n1 (mod p) and vp

(
D(e)

n

n−1

)
≥ l

for all n ≥ 2 congruent to nl modulo pl. Moreover, nl satisfies the congruence

nl ≡ nl−1 −
D(e)

nl−1

(nl−1−1)qp(n1)
(mod pl) for l > 1.

If p = 2 then for each n1 ≥ 2 and l ∈ N+ there exists a unique nl modulo

2l such that nl ≡ n1 (mod 2) and v2

(
D(e)

n

n−1

)
≥ l − 1 for all n ≥ 2 congruent to

nl modulo 2l. Moreover, nl satisfies the congruence nl ≡ nl−1 −
D(e)

nl−1

(nl−1−1)q2(n1)

(mod 2l) for l > 1.

The whole statement above remains true, if we change D
(e)
n by D

(o)
n .
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Proof. We apply Theorem 1 to the sequences
(

2D(e)
n

n−1

)
n∈N2

and
(

2D(o)
n

n−1

)
n∈N2

and

use the obvious fact that v2

(
D(e)

n

n−1

)
= v2

(
2D(e)

n

n−1

)
− 1 and vp

(
D(e)

n

n−1

)
= vp

(
2D(e)

n

n−1

)

for prime number p > 2.
For p = 2, q2(2) = 1 and q2(3) = −5 are odd, so Theorem 1 gives us precise

description of 2-adic valuation of numbers
2D(e)

n

n−1 and
2D(o)

n

n−1 , n ∈ N2. �

Corollary 6. We have the following formulae for p-adic valuations of numbers
D(e)

n

n−1 and
D(o)

n

n−1 :

• v2

(
D(e)

n

n−1

)
= v2(n− 2)− 1 for even n ≥ 2.

• v2

(
D(o)

n

n−1

)
= v2(n− 3)− 1 for odd n ≥ 2.

• If p is an odd prime number and p ∤ qp(2) then vp

(
D(e)

n

n−1

)
= vp(n − 2) for

n ≡ 2 (mod p).

• If p is an odd prime number and p ∤ qp(3) then vp

(
D(o)

n

n−1

)
= vp(n − 3) for

n ≡ 3 (mod p).

Proof. By Theorem 14, for l ∈ N+ the only nl modulo pl, such that nl ≡ 2 (mod p)

and vp

(
D(e)

n

n−1

)
≥ l (respectively v2

(
D(e)

n

n−1

)
≥ l − 1) for any n ≥ 2 congruent to nl

modulo pl, is equal to 2. Hence, if n ≡ 2 (mod p) and n ≥ 2 then vp

(
D(e)

n

n−1

)
≥ l

(respectively v2

(
D(e)

n

n−1

)
≥ l − 1) if and only if vp(n− 2) ≥ l.

In a similar way we can prove the equalities of p-adic valuations of numbers
D(o)

n

n−1 . �

According to numerical computations, among all odd prime numbers p < 106,

if p |
D(e)

n1

n1−1 then p ∤ qp(n1). Thus, for any l ∈ N+ there exists a unique nl modulo pl

such that nl ≡ n1 (mod p) and vp

(
D(e)

n

n−1

)
≥ l for all n ≥ 2 congruent to nl modulo

pl. Summing up, if p < 106 then we have the description of p-adic valuation of

numbers
D(e)

n

n−1 , n ≥ 2. It is natural to ask the following question.

Question 4. Is there any prime number p and a positive integer n1 ≥ 2 such that

p |
D(e)

n1

n1−1 and p | qp(n1)?

In case of the sequence of odd derangements (D
(o)
n )n∈N, the trial of descrip-

tion of p-adic valuations of numbers D
(o)
n , n ∈ N, comes down to description of

p-adic valuations of numbers Dn, n ∈ N. In fact, the number D
(o)
n of odd derange-

ments of n-element set is equal to the number of all permutations of n-element set
with exactly two fixed points, when n ≥ 2 (see [20]). The number of all permuta-

tions of n-element set with exactly two fixed points equals n(n−1)
2 Dn−2 because we

choose two fixed points in
(
n
2

)
ways and we treat a permutation as an derangement

of a set with n− 2 elements.

Proposition 24. D
(o)
n = n(n−1)

2 Dn−2 for n ≥ 2.

Proof. We know from Section 4.3 that

(31) Dn = n(n− 1)Dn−2 + (−1)nf2(n)

for each n ∈ N2. Recalling that f2 = 1−X the equality (31) takes the form

Dn = n(n− 1)Dn−2 − (−1)n(n− 1), n ∈ N2.
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Hence

D(o)
n =

Dn + (−1)n(n− 1)

2
=
n(n− 1)

2
Dn−2

for every n ∈ N2, which completes the proof. �

Hence, vp(D
(o)
n ) = vp

(
n(n−1)

2

)
+ vp(Dn−2) for each n ≥ 2 and p ∈ P. What

is more, since En = Dn

n−1 and E
(o)
n =

D(o)
n

n−1 for n ≥ 2, thus we have vp(E
(o)
n ) =

vp

(
n(n−1)

2

)
+ vp(En−2) for each n ≥ 4 and p ∈ P.

6. Some diophantine equations with numbers of derangements

6.1. Diophantine equations involving factorials. Diophantine equations in-
volving terms of given sequences are a subject of interest of number theorists.
There are many papers concerning problems of the following type: when a term of
a given sequence is a factorial or sum, difference or product of factorials (see [2],
[5], [6], [7], [8], [14], [15], [16], [17], [23]).

Using information about 2-adic valuations of numbers of derangements we
will prove that D0 = D2 = 1 and D3 = 2 are the unique numbers of derangements
being factorials.

Proposition 25. All the solutions (n,m) of the diophantine equation Dn = m!,
n,m ∈ N+, are (2, 1) and (3, 2).

Proof. If Dn = m! then v2(Dn) = v2(m!). We know that v2(Dn) = v2(n − 1)
for any nonnegative integer n. Therefore v2(n − 1) = v2(m!), which means that
n−1 ≥ 2v2(n−1) = 2v2(m!). If n > 1 then Dn ≥ D1+2v2(m!) . If we denote the number

1 + 2v2(m!) by M(m) and use the formula DM(m) =
⌊
M(m)!

e
+ 1

2

⌋
then we obtain

m! = Dn ≥ DM(m) ≥
M(m)!

e
− 1

2 .

However, we will prove by induction on m that m! < M(m)!
e

− 1
2 for m ≥ 4.

Indeed, 4! < M(4)!
e

− 1
2 = 9!

e
− 1

2 and 5! < M(5)!
e

− 1
2 = 9!

e
− 1

2 . Assume now that

m! < M(m)!
e

− 1
2 for some integer m ≥ 4. Then

(m+ 2)! = m! · (m+ 1)(m+ 2) < (m+ 1)(m+ 2)

(
M(m)!

e
−

1

2

)
<

< (m+ 1)(m+ 2)
M(m)!

e
−

1

2
.

It suffices to show that M(m)! ·(m+1)(m+2) ≤M(m+2)!. Since m! < M(m)!
e

− 1
2 ,

thus m < M(m). We know that v2((m+ 2)!) > v2(m!), so M(m+ 2)−M(m) ≥ 2.
Hence

M(m)! · (m+ 1)(m+ 2) < M(m)! · (M(m) + 1)(M(m) + 2) ≤M(m+ 2)

and we are done. We proved that m! < M(m)!
e

− 1
2 for m ≥ 4.

Summing up, if Dn = m! then m ≤ 3. Finally, we check one by one for
each m ∈ {0, 1, 2, 3} that D0 = D2 = 1 and D3 = 2 are the only factorials in the
sequence of derangements. �

We can generalize the result above as follows.

Proposition 26. For any positive rational number q the diophantine equation
Dn = q · m! has only finitely many solutions (n,m) ∈ N2

+ and these solutions

satisfy the inequality q ·m! > (1+2v2(q)+v2(m!))!
e

− 1
2 .
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Proof. If Dn = q · m! then v2(n − 1) = v2(Dn) = v2(q) + v2(m!) and n − 1 ≥
2v2(n−1) = 2v2(q)+v2(m!). The product q ·m! is an integer, thus v2(q) + v2(m!) ≥ 0.
If n > 1 then Dn ≥ D1+2v2(q)+v2(m!) . Let us put M(m) = 1 + 2v2(q)+v2(m!). We use

the formula DM(m) =
⌊
M(m)!

e
+ 1

2

⌋
and get

q ·m! = Dn ≥ DM(m) >
M(m)!

e
−

1

2
.

However, if we apply Legendre’s formula v2(m!) = m− s2(m) (where s2(m) is the
sum of binary digits of a number m) then we get the following limit:

lim
m→+∞

M(m)

m
= lim

m→+∞

1 + 2v2(q)+v2(m!)

m
≥ lim

m→+∞

2v2(q)+m−s2(m)

m
≥

≥ lim
m→+∞

2v2(q)+m−log2 m−1

m
= lim

m→+∞

2v2(q)+m−1

m2
= +∞

Therefore we conclude that limm→+∞

M(m)!
e

− 1
2

q·m! = +∞, which implies that q ·m! <
M(m)!

e
− 1

2 for m≫ 0.
Hence there exists a positive integer m0 such that if Dn = q ·m! then m <

m0. �

It is worth to notice that the set of positive rational values q such that the
equation Dn = q · m! has a solution (n,m) ∈ N2

+ is a discrete subset of the real
halfline [0,+∞) (with respect to Euclidean topology) with exactly one accumulation
point 0. It is obvious that this set is exactly the set S := {Dn

m! : n ∈ N2,m ∈ N+}.

Hence it suffices to prove that for each k ∈ N+ the set Sk := S∩
[

1
ke
,+∞

)
is discrete

without accumulation points. First of all we show that the set S1 is discrete without
accumulation points. If 1

e
≤ Dn

m! then using the fact that Dn ∈
(
n!
e
− 1

n
, n!

e
+ 1

n

)
we

conclude the inequality
1

e
≤

n!

e ·m!
+

1

n ·m!
.

The above inequality is equivalent to the following one:

m! ≤ n! +
e

n
,

which is satisfied, if m ≤ n. Hence the set S1 consists of values which are ”close” to
the multiplicities of 1

e
(
∣∣Dn

m! −
n!

e·m!

∣∣ < 1
n·m! ) and as a result S1 is discrete without

accumulation points. Now it remains us to prove that for each k ∈ N+ there are
only finitely many tuples (n,m) such that Dn

m! ∈ Sk and m > n. Such tuples satisfy
the inequality

1

ke
≤

n!

e ·m!
+

1

n ·m!
,

which is equivalent to

m · ... · (n+ 1) ≤ k +
ke

n · n!
.

Since n ≥ 2, we have k + ke
n·n! < 2k and the inequality m · ... · (n + 1) < 2k has

only finitely many solutions (n,m) ∈ N2 × N+ with n < m. Hence for any k ∈ N+

the set Sk is discrete and has no accumulation points. Finally S is discrete. Any
positive real number x is not an accumulation point of the set S since x ∈ Sk for
some k ∈ N+ and Sk has no accumulation points. The number 0 is an accumulation
point of S because limm→+∞

Dn

m! = 0 for arbitrary n ∈ N2.
On the other hand, there are infinitely many positive rational values q such

that the diophantine equation Dn = q · m! has at least two solutions of the form

(n0,m0), (n1,m0 + 1). Namely, we set q =
Dn0

m0!
. Then

Dn1

(m0+1)! =
Dn0

m0!
if and only

if m0 + 1 =
Dn1

Dn0
. Hence, it suffices to set n0, n1 ∈ N2 such that Dn0 | Dn1 (this
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condition holds for example when Dn0 | n1 − 1, but not only in this case, which
shows the example n0 = 5 and n1 = 49, where D5 = 44 | D49 and 44 ∤ 48) and

m0 =
Dn1

Dn0
− 1.

However, we do not know if there exists q ∈ Q, q > 0 such that the equation
Dn = q ·m! has at least three solutions.

Question 5. Is there any q ∈ Q, q > 0 such that the equation Dn = q ·m! has at
least three solutions?

In the light of Proposition 24 we are able to establish analogue results on
diophantine equations involving numbers of odd derangements and factorials.

Proposition 27. All the solutions (n,m) of the diophantine equation D
(o)
n = m!,

n,m ∈ N+, are (2, 1) and (4, 3).

Proof. If n ≥ 2 and D
(o)
n = m! then v2

(
D

(o)
n

)
= v2(m!). By Proposition 24

D
(o)
n = n(n−1)

2 Dn−2. Since v2(Dn−2) = v2(n − 3) for any integer n ≥ 2, thus

v2

(
D

(o)
n

)
= v2(n(n − 1)(n− 3)). As a result v2(n(n− 1)(n− 3)) = v2(m!), which

means that n3 > n(n− 1)(n− 3) ≥ 2v2(n(n−1)(n−3)) = 2v2(m!). Hence n > 2
v2(m!)

3 ≥

2

⌊
v2(m!)

3

⌋

. If n ≥ 4 then D
(o)
n ≥ D

(o)
M(m), where M(m) = 2

⌊
v2(m!)

3

⌋

. By Corollary 5,

for t ≥ 4 we obtain the inequality

D
(o)
t =

Dt + (−1)t(t− 1)

2
>

t!

2e
−
t− 1

2
>

t!

2e
−
t!

4e
=

t!

4e
.

Then we obtain m! = D
(o)
n ≥ D

(o)
M(m) >

M(m)!
4e provided that M(m) ≥ 4.

However, we will prove by induction on m that

(32) m! <
M(m)!

4e

for m ≥ 16. Indeed, the inequality (32) holds for m ∈ {16, 17, 18, 19}. We will show
that if (32) is valid for m then (32) is true for m + 4. In order to do this we note
that

(m+4)! = m! ·(m+1)(m+2)(m+3)(m+4) < (m+1)(m+2)(m+3)(m+4)
M(m)!

4e

It suffices to show that M(m)!·(m+1)(m+2) ≤M(m+4)!. Since m! < M(m)!
4e , thus

m < M(m). Because v2((m + 4)!) − v2(m!) ≥ 3, so
⌊
v2((m+4)!)

3

⌋
−
⌊
v2((m)!)

3

⌋
≥ 1.

Sincem ≥ 16, thus v2(m!) ≥ 15 andM(m) ≥ 32. HenceM(m+4)−M(m) ≥ 32 > 4
and

M(m)! · (m+ 1)(m+ 2)(m+ 3)(m+ 4) <

< M(m)! · (M(m) + 1)(M(m) + 2)(M(m) + 3)(M(m) + 4) ≤M(m+ 4)!.

We proved that m! < M(m)!
e

for m ≥ 16.

Summing up, if D
(o)
n = m! then m ≤ 15. Finally, we check one by one for

each m ∈ {0, 1, 2, ..., 15} that D2 = 1 and D4 = 6 are the only factorials in the
sequence of odd derangements. �

Proposition 28. For any positive rational number q the diophantine equation

D
(o)
n = q · m! has only finitely many solutions (n,m) ∈ N2

+ and these solutions

satisfy the inequality q ·m! >

(

2

⌊
v2(q)+v2(m!)

3

⌋)

!

4e .
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Proof. If D
(o)
n = q ·m! and n ≥ 2 then v2(n(n− 1)(n− 3)) = v2

(
D

(o)
n

)
= v2(q) +

v2(m!) and n3 > n(n − 1)(n − 3) ≥ 2v2(n(n−1)(n−3)) = 2v2(q)+v2(m!). Hence n >

2
v2(q)+v2(m!)

3 ≥ 2

⌊
v2(q)+v2(m!)

3

⌋

. The product q ·m! is an integer, thus v2(q)+v2(m!) ≥

0. If n ≥ 4 then D
(o)
n ≥ D

(o)
M(m), where M(m) = 2

⌊
v2(q)+v2(m!)

3

⌋

. We use the

inequality DM(m) >
M(m)!

4e , valid for M(m) ≥ 4, to obtain

q ·m! = D(o)
n ≥ D

(o)
M(m) >

M(m)!

4e
.

However, if we apply Legendre’s formula v2(m!) = m − s2(m) then we get the
following limit:

lim
m→+∞

M(m)

m
= lim

m→+∞

2

⌊
v2(q)+m−s2(m)

3

⌋

m
≥ lim

m→+∞

2
v2(q)+m−s2(m)−3

3

m
≥

≥ lim
m→+∞

2
v2(q)+m−log2 m−4

3

m
= lim

m→+∞

2
v2(q)+m−4

3

m
4
3

= +∞

Therefore we conclude that limm→+∞
M(m)!
4eq·m! = +∞, which implies that q · m! <

M(m)!
4e for m≫ 0.

Hence there exists a positive integer m0 such that if D
(o)
n = q · m! then

m < m0. �

In case of numbers D
(e)
n we will use knowledge about their 3-adic valuation to

establish results on diophantine equations involving these numbers and factorials.

Proposition 29. All the solutions (n,m) of the diophantine equation D
(e)
n = m!,

n,m ∈ N, are (0, 0), (0, 1), (3, 2) and (5, 4).

Proof. By Corollary 6 and the fact that 3 ∤
D(e)

n

n−1 we know that v3

(
D(e)

n

n−1

)
= v3(n−2)

for every n ∈ N2. Hence v3(D
(e)
n = v3((n− 1)(n− 2)) = max{v3(n− 1), v3(n− 2)}

for each n ∈ N. Thus if D
(e)
n = m! then max{v3(n− 1), v3(n− 2)} = v3(m!), which

means that n− 1 ≥ 3max{v3(n−1),v3(n−2)} = 3v3(m!). Hence n ≥ 1+3v3(m!). If n ≥ 3

then D
(e)
n ≥ D

(e)
M(m), where M(m) = 1 + 3v3(m!). By Corollary 5, for t ≥ 4 we

obtain the inequality

D
(o)
t =

Dt − (−1)t(t− 1)

2
>

t!

2e
−
t− 1

2
>

t!

2e
−
t!

4e
=

t!

4e
.

Then we obtain m! = D
(e)
n ≥ D

(e)
M(m) >

M(m)!
4e provided that M(m) ≥ 4. However,

we will prove by induction on m that

(33) m! <
M(m)!

4e

for m ≥ 6. Indeed, the inequality (33) holds for m ∈ {6, 7, 8}. We will show that if
(33) is valid for m then (33) is true for m+ 3. In order to do this we note that

(m+ 3)! = m! · (m+ 1)(m+ 2)(m+ 3) < (m+ 1)(m+ 2)(m+ 3)
M(m)!

4e

It suffices to show that M(m)! · (m + 1)(m + 2)(m + 3) ≤ M(m + 3)!. Since

m! < M(m)!
4e , thus m < M(m). We have v3((m + 3)!) − v3(m!) ≥ 1. Since m ≥ 6,

thus v3(m!) ≥ 2 and M(m) ≥ 10 > 1. Hence M(m+ 3)−M(m) ≥ 3 and

M(m)! · (m+ 1)(m+ 2)(m+ 3) <

< M(m)! · (M(m) + 1)(M(m) + 2)(M(m) + 3) ≤M(m+ 3)!.
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We proved that m! < M(m)!
e

for m ≥ 6.

Summing up, if D
(e)
n = m! then m ≤ 5. Finally, we check one by one for

each m ∈ {0, 1, 2, 3, 4, 5} that D0 = 1, D3 = 2 and D5 = 24 are the only factorials
in the sequence of even derangements. �

Proposition 30. For any positive rational number q diophantine equation D
(e)
n =

q ·m! has only finitely many solutions (n,m) ∈ N2 and these solutions satisfy the

inequality q ·m! >
(1+3v3(q)+v3(m!))!

4e .

Proof. If D
(e)
n = q ·m! then max{v3(n−1), v3(n−2)} = v3

(
D

(e)
n

)
= v3(q)+v3(m!)

and n− 1 ≥ 3max{v3(n−1),v3(n−2)} = 3v3(q)+v3(m!). The product q ·m! is an integer,

thus v3(q) + v3(m!) ≥ 0. If n ≥ 3 then D
(e)
n ≥ D

(e)
M(m), where M(m) = 1 +

3v3(q)+v3(m!). We use the inequality DM(m) >
M(m)!

4e , valid for M(m) ≥ 4, to
obtain

q ·m! = D(e)
n ≥ D

(e)
M(m) >

M(m)!

4e
.

However, if we apply Legendre’s formula v3(m!) = m−s3(m)
2 then we get the follow-

ing limit:

lim
m→+∞

M(m)

m
= lim

m→+∞

1 + 3v3(q)+v3(m!)

m
≥ lim

m→+∞

3v3(q)+v3(m!)

m
≥

≥ lim
m→+∞

3v3(q)+
m−log3 m−1

2

m
= lim

m→+∞

3
2v3(q)+m−log3 m−1

2

m
= lim

m→+∞

3
2v3(q)+m−1

2

m
3
2

= +∞

Therefore we conclude that limm→+∞
M(m)!
4eq·m! = +∞, which implies that q · m! <

M(m)!
4e for m≫ 0. Hence there exists a positive integer m0 such that if D

(e)
n = q ·m!

then m < m0. �

Using analogous reasoning as in case of numbers Dn one can prove that

the set of all positive rational numbers q such that the equation D
(o)
n = q · m!

(D
(e)
n = q ·m!, respectively) has a solution (n,m) ∈ N2

+ is discrete subset of the real
half-line [0,+∞) and it has exactly one accumulation point 0. However, there are

infinitely many values q such that the equation D
(o)
n = q · m! (D

(e)
n = q · m!,

respectively) has at least two solutions of the form (n0,m0) and (n1,m0 + 1).

Analogously as for numbers Dn, it suffices to put n0, n1 ∈ N2 such that D
(o)
n0 | D

(o)
n1

and m0 =
D(o)

n1

D
(o)
n0

− 1 (D
(e)
n0 | D

(e)
n1 and m0 =

D(e)
n1

D
(e)
n0

− 1, respectively). As well as in case

of classical numbers of derangements we can ask the following question.

Question 6. Is there any q ∈ Q, q > 0 such that the equation D
(o)
n = q · m!

(D
(e)
n = q ·m!, respectively) has at least three solutions?

6.2. When a number of derangements is a power of a prime number? Let
us consider diophantine equation Dn = pk, where p is a given prime number and
n, k ∈ N+ are unknowns.

Proposition 31. For any prime number p the diophantine equation Dn = pk,
n, k ∈ N+, has only finitely many solutions (n, k). More precisely, the number of

solutions is at most equal to vp(
∑+∞

j=1 j!) (
∑+∞

j=1 j! ∈ Zp\{0}, so its p-adic valuation

is well defined and finite).

Proof. If Dn = pk, n, k ∈ N+ then obviously n ≥ 2. Since Dn = (n − 1)En, thus
n− 1 = pl for some l ∈ N. Let us recall that for each integer n ≥ 2 there holds the
equality (−1)nEn = fp,∞(n−2)−fp,∞(n−1), where the function fp,∞ : Zp → Zp is
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given by the formula fp,∞(x) =
∑+∞

j=0(−1)j
∏j−1

i=0 (x− i) (see Section 4.1.3, Remark

3). Then
(34)

(−1)1+pl

E1+pl = fp,∞(pl− 1)− fp,∞(pl) ≡ fp,∞(−1)− fp,∞(0) =

+∞∑

j=1

j! (mod pl).

By Remark 3 we know that
∑+∞

j=1 j! ∈ Zp\Z. In particular
∑+∞

j=1 j! 6= 0 and k0 :=

vp(
∑+∞

j=1 j!) ∈ N. Hence, if l > k0 then by (34), vp(E1+pl) = vp(
∑+∞

j=1 j!) = k0.

However, if pl ≥ 3 then E1+pl ≥ pl > pk0 , which means that E1+pl is not a power
of p. As a result D1+pl is not a power of p for any integer l > k0. �

Numerical computations show that if p is a prime number less than 106 then
vp(
∑+∞

j=1 j!) > 0 only for p ∈ {3, 11}. This means that the equation Dn = pk,

n, k ∈ N+, has no solutions for prime number p less than 106 and not equal to 3

or 11. For p = 3 we have v3(
∑+∞

j=1 j!) = v3(
∑8

j=1 j!) = 2 and there is one solution

n = 1 + 31 = 4, k = 2. If p = 11 then v11(
∑+∞

j=1 j!) = v11(
∑21

j=1 j!) = 1 and there

is no solution (n, k) ∈ N2
+.

It is easy to note that p|
∑+∞

j=1 j! if and only if p|
∑p−1

j=1 j!.

Conjecture 3. p ∤
∑p−1

j=1 j! for any prime number p > 11.

The conjecture above resembles Kurepa’s conjecture that p ∤
∑p−1

j=0 j! for any

prime number p (see [9, Section B44] and [11]). If Conjecture 3 is true then by
Proposition 31 for any prime number p > 11 there are no solutions of the equation
Dn = pk, n, k ∈ N+. Therefore the diophantine equation Dn = pk with variables
p ∈ P and n, k ∈ N+ has only one solution (p, n, k) = (3, 4, 2).

Despite the equation Dn = pk with variables (p, n, k), problem of solving the

equations D
(o)
n = pk and D

(e)
n = pk with unknowns p ∈ P and n, k ∈ N+ is very

easy.

Proposition 32. The diophantine equation D
(o)
n = pk with unknowns p ∈ P and

n, k ∈ N+ has no solutions while the equation D
(e)
n = pk with unknowns p ∈ P and

n, k ∈ N+ has one solution (p, n, k) = (2, 3, 1).

Proof. By Proposition 23, if n is even then n − 3 | D
(o)
n . Moreover n − 1 | D

(o)
n .

Thus n− 3 and n− 1 are powers of p. This gives three posibilities:

• n− 1 = 1, but then D
(o)
n = D

(o)
2 = 1;

• n− 3 = 1, but then D
(o)
n = D

(o)
4 = 6;

• n− 1 6= 1, n− 3 6= 1; in this case p | (n− 1)− (n− 3) = 2, which means that

p = 2 and there must be n−3 = 2 and n−1 = 4; but then D
(o)
n = D

(o)
5 = 20.

If n is odd then by Proposition 23, n−3
2 | D

(o)
n . Then n−3

2 and n− 1 are powers of
p and we have three possibilities:

• n− 1 = 1, but then D
(o)
n = D

(o)
2 = 1;

• n−3
2 = 1, but then D

(o)
n = D

(o)
5 = 20;

• n− 1 6= 1, n−3
2 6= 1; in this case p | (n− 1)− (n− 3) = 2, which means that

p = 2 and there must be n−3 = 2 and n−1 = 4; but then D
(o)
n = D

(o)
5 = 20.

We proved that the equation D
(o)
n = pk with variables p ∈ P, n, k ∈ N+ has no

solutions.
Now we consider the equation D

(e)
n = pk. By Proposition 23, if n is odd then

n− 2 | D
(e)
n . Moreover n− 1 | D

(e)
n . Thus n − 2 and n− 1 are powers of p, which

means that p = 2 and n = 3. Indeed we get the solution (p, n, k) = (2, 3, 1).
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If n is even then by Proposition 23, n−2
2 | D

(e)
n . Then n−2

2 and n − 1 are
powers of p and we have two possibilities:

• n− 1 = 1, but then D
(e)
n = D

(e)
2 = 0;

• n− 1 6= 1; then n− 2 6= 1 (since n is even) and p | (n− 1)− (n− 2) = 1, a
contradiction.

�

7. Arithmetic properties of h-Schenker sums

In this section we will generalize results on arithmetic properties of Schenker
sums an =

∑n
j=0

n!
j! n

j, n ∈ N, onto some wider class of sequences. We define these

sequences by the closed formula

an =
n∑

j=0

n!

j!
h(n)j , n ∈ N,

where h ∈ Z[X ] is fixed. A sequence of such form will be called the sequence of
h-Schenker sums.

Certainly, if h = X then the sequence (an)n∈N is the sequence of Schenker
sums. Hence the sequences defined above can be thought as a generalization of the
sequence of Schenker sums. This is a motivation of name of these sequences.

Let us notice that for h = −1 the sequence (an)n∈N is the sequence of de-
rangements. Moreover, if h = b ∈ Z then (an)n∈N is the generalization of the
sequence of derangements in the sense of section 4, i.e. it is given by the recurrence
relation a0 = 1, an = nan−1 + bn, n > 0. In particular, for h = 0 the sequence
(an)n∈N = (n!)n∈N is the sequence of factorials (recall that we set 00 = 1).

In [1] and [18] we can find various results concerning Schenker sums (p-adic
valuations and infinitude of the set of Schenker primes, i.e. prime numbers p with
such property that p divides an for some positive integer n not divisible by p). Now
we will study these properties for our more general h-Schenker sums.

7.1. Divisibility by primes, periodicity modulo p and p-adic valuations

of h-Schenker sums. In [1], Amdeberhan, Callan and Moll showed that for any
prime number p and any positive integer n divisible by p, p-adic valuation of n-th
Schenker sum is equal to p-adic valuation of n! (and by Legendre’s formula this

value is equal to
n−sp(n)

p−1 , where sp(n) denotes the sum of digits of positive integer

n in base p). Now we will prove a generalization of the mentioned result.

Theorem 15. Let h ∈ Z[X ] and consider the sequence (an)n∈N of h-Schenker
sums. If p is a prime number and n is such a nonnegative integer that p | h(n) then

vp(an) = vp(n!) =
n−sp(n)

p−1 .

Proof. It suffices to verify that for j ∈ {1, 2, ..., n}, the j-th summand in the sum∑n
j=0

n!
j! h(n)

j has p-adic valuation strictly greater than the 0-th summand, equal

to n!:

vp

(
n!

j!
h(n)j

)
=
n− sp(n)

p− 1
−
j − sp(j)

p− 1
+ jvp(h(n)) >

n− sp(n)

p− 1
−

j

p− 1
+ j ≥

≥
n− sp(n)

p− 1
= vp(n!)

This means that vp(an) = vp(n!) =
n−sp(n)

p−1 . �

Another result given in [1] states that it suffices to check the divisibility of
Schenker sums an, n ∈ N+, by a given prime number p only for indices n less than



ARITHMETIC PROPERTIES OF THE SEQUENCE OF DERANGEMENTS 55

p because if n ≡ r (mod p) then p | an ⇐⇒ p | ar. We will give a generalization
of this fact.

Proposition 33. Let h ∈ Z[X ] and consider the sequence (an)n∈N of h-Schenker
sums. Let p be a prime number and k be a positive integer. Then if n1, n2 ∈ N are
such that n1 ≡ n2 (mod pk) and p ∤ h(n1) then

an1

h(n1)n1
≡

an2

h(n2)n2
(mod pk). In

particular, pk | an1 ⇐⇒ pk | an2 .

Proof. It suffices to note that

an =

n∑

j=0

n!

j!
h(n)j =

n∑

j=0

n!

(n− j)!
h(n)n−j =

n∑

j=0

h(n)n−j

j−1∏

i=0

(n− i) ≡

≡

kp−1∑

j=0

h(n)n−j

j−1∏

i=0

(n− i) (mod pk),

(35)

since pk | n!
(n−j)! for j ≥ kp and

∏j−1
i=0 (n− i) = 0 in case n < j < kp. By equivalence

(35)

an1

h(n1)n1
≡

kp−1∑

j=0

h(n1)
−j

j−1∏

i=0

(n1 − i) (mod pk),

since p ∤ h(n1). The congruence n1 ≡ n2 (mod pk) implies that h(n1) ≡ h(n2)
(mod pk) and as a consequence

an1

h(n1)n1
≡

kp−1∑

j=0

h(n1)
−j

j−1∏

i=0

(n1−i) ≡

kp−1∑

j=0

h(n2)
−j

j−1∏

i=0

(n2−i) ≡
an2

h(n2)n2
(mod pk).

Our proposition is proved. �

Corollary 7. Let h ∈ Z[X ] and consider the sequence (an)n∈N of h-Schenker sums.
Let p be a prime number, k be a positive integer and n0 ∈ N+ be the smallest positive
integer such that pk | n0!. Then the sequence (an (mod pk))n∈Nn0

is periodic of

period pk(p− 1).

Proof. If n ≥ n0 is such that p | h(n) then by Theorem 15, vp(an) = vp(n!) ≥ k.
Assume now that n1, n2 ≥ n0 are such that n1 ≡ n2 (mod pk(p−1)) and p ∤ h(n1) ·
h(n2). Since n1 ≡ n2 (mod pk), thus by Proposition 33 we have

an1

h(n1)n1
≡

an2

h(n2)n2

(mod pk) and h(n1)
n1 ≡ h(n2)

n1 (mod pk). In addition, n1 ≡ n2 (mod pk−1(p −
1)), so by Euler’s theorem h(n2)

n1 ≡ h(n2)
n2 (mod pk). Summing up our reasoning

we conclude that an1 ≡ an2 (mod pk) and corollary follows. �

Remark 5. It is possible that the sequence (an (mod pk))n∈Nn0−1 is not periodic,

but only on condition that p | h(n0 − 1) and then vp(an0−1) = vp((n0 − 1)!) < k (let
us observe that if p ∤ h(n0 − 1) then the consideration from the proof of Corollary 7
allows us to claim that an0−1 ≡ an (mod pk) for any n ≡ n0 − 1 (mod pk(p− 1))).

We claim that if p | h(n0 − 1) and the basic period of the sequence (an
(mod pk))n∈Nn0

is divisible by p then the sequence (an (mod pk))n∈Nn0−1 is not

periodic. If we assume the contrary then the basic period of (an (mod pk))n∈Nn0−1

must be divisble by p, but an ≡ 0 6≡ an0−1 (mod pk) for any n > n0 − 1 such that
n ≡ n0 − 1 (mod p). Hence it suffices to give such a sequence (an)n∈N that the
sequence (an (mod pk))n∈Nn0

has the basic period divisible by p and p | h(n0 − 1).

Let us consider an =
∑n

j=0
n!
j! (n + 1)j , n ∈ N, p = 5 and k = 2. Then the

basic period of the sequence (an (mod 52))n∈N10 is equal to 100 = 52 · 4. Therefore,
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the sequence (an (mod 52))n∈N9 is not periodic. Moreover, this example shows that
it is possible that pk(p− 1) is the basic period of the sequence (an (mod pk))n∈Nn0

.

Using Remark 2 we obtain

Corollary 8. Let h ∈ Z[X ] and consider the sequence (an)n∈N of h-Schenker sums.

Let d = pk1
1 · ... ·pks

s be a positive integer and n0 ∈ N+ be the smallest positive integer

such that pki

i | n0! for each i ∈ {1, 2, ..., s}. Then the sequence (an (mod d))n∈Nn0

is periodic of period lcm{pki

i (pi − 1) : i ∈ {1, 2, ..., s}}.

Theorem 15 allows us to describe p-adic valuation of the h-Schenker sum an,
n ∈ N, when p is such a prime number that p | an only if p | h(n). Namely, in this
situation we have

vp(an) =

{
vp(n!) =

n−sp(n)
p−1 if p | h(n)

0 if p ∤ h(n)
.

However, it is possible that p | an and p ∤ h(n) for some n ∈ N.

Definition 2. Let h ∈ Z[X ] and a sequence (an)n∈N be the sequence of h-Schenker
sums. Then a prime number p will be called h-Schenker prime if p | an and p ∤ h(n)
for some n ∈ N.

In order to verify, if a given prime number p is a h-Schenker prime, it suffices
to check divisibility of an by p for n ∈ {0, 1, ..., p− 1} under the condition p ∤ h(n).
By Proposition 33, if n is a positive integer such that p ∤ h(n) and r is remainder
of n from division by p then p | an ⇐⇒ p | ar.

If p | an1 and p ∤ h(n1) for some n1 ∈ N then using Theorem 1 we can
obtain description of p-adic valuation of the number an, where n ≡ n1 (mod p).
The congruence

an1

h(n1)n1
≡

an2

h(n2)n2
(mod pk) from the statement of Proposition

33 suggests us that the sequence (an)n∈N has pseudo-polynomial decomposition
modulo p on the set {n ∈ N : n ≡ n1 (mod p)}. Using similar computation as in
(35) we obtain

an =
n∑

j=0

n!

j!
h(n)j =

n∑

j=0

n!

(n− j)!
h(n)n−j =

n∑

j=0

h(n)n−j

j−1∏

i=0

(n− i) ≡

≡

pk∑

j=0

h(n)n−j

j−1∏

i=0

(n− i) = h(n)n−pk−1

pk∑

j=0

h(n)p
k+1−j

j−1∏

i=0

(n− i) (mod pk).

Let us put fp,k(X) =
∑pk

j=0 h(X)p
k+1−j

∏j−1
i=0 (X−i) ∈ Z[X ] and gp,k(n) = h(n)n−pk−1

for k ∈ N+. If n ≡ n1 (mod p) then gp,k(n) ∈ Z\pZ. What is more, for any k ≥ 2
we have

f ′
p,k(n) = (pk + 1)h(n)p

k

h′(n)+

+

pk
∑

j=1

[(pk + 1− j)h(n)p
k−jh′(n)

j−1
∏

i=0

(n− i) + h(n)p
k+1−j

j−1
∑

s=0

j−1
∏

i=0,i6=s

(n− i)] ≡

≡ h(n)h′(n) +

2p−1
∑

j=1

[(1− j)h(n)1−jh′(n)

j−1
∏

i=0

(n− i) + h(n)2−j

j−1
∑

s=0

j−1
∏

i=0,i6=s

(n− i)] (mod p),

since p ∤ h(n) for n ≡ n1 (mod p) and by Fermat’s little theorem h(n)p
k

≡ h(n)
(mod p). Finally, (fp,k, gp,k)k∈N2 is a pseudo-polynomial decomposition modulo p
of the sequence (an)n∈N on the set {n ∈ N : n ≡ n1 (mod p)}. Hence, we can
apply Theorem 1 to describe behavior of p-adic valuation of the h-Schenker sum
an, where n ≡ n1 (mod p).
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Theorem 16. Let h ∈ Z[X ] and a sequence (an)n∈N be the sequence of h-Schenker
sums. Let p be a h-Schenker prime, k ∈ N+ and nk ∈ N be such that pk | ank

and
p ∤ h(nk). Let us define q̂p(nk) =

1
p
(ank+p − h(n)pank

).

• If vp(q̂p(nk)) = 0 then there exists a unique nk+1 modulo for which nk+1 ≡
nk (mod pk) and pk+1 | an for all n congruent to nk+1 modulo pk+1. What

is more, nk+1 ≡ nk −
ankh(nk)

q̂p(nk)
(mod pk+1).

• If vp(q̂p(nk)) > 0 and pk+1 | ank
then pk+1 | an for all n satisfying n ≡ nk

(mod pk).
• If vp(q̂p(nk)) > 0 and pk+1 ∤ ank

then pk+1 ∤ an for any n satisfying n ≡ nk

(mod pk).

In particular, if k = 1, p | an1 and vp(q̂p(n1)) = 0 then for any l ∈ N+ there exists
a unique nl modulo pl such that nl ≡ n1 (mod p) and vp(an) ≥ l for all n ≡ nl

(mod pl). Moreover, the number nl satisfies the congruence nl ≡ nl−1−
anl−1

h(nl−1)

q̂p(n1)

(mod pl) for l > 1.

Proof. The number qp(nk) as specified in Theorem 1 takes the form

qp(nk) =
1

p

(
ank+p

h(nk + p)nk+p−pk−1
−

ank

h(nk)nk−pk−1

)
.

Hence qp(nk) ≡
1

ph(nk)
nk+p−pk−1

(ank+p−h(nk)
pank

) =
q̂p(nk)

h(nk)
nk+p−pk−1

(mod p) and

since p ∤ h(nk)we have p | qp(nk) ⇐⇒ p | q̂p(nk). Moreover h(nk)
nk−pk−1qp(nk) =

q̂p(nk)
h(nk)p

≡ q̂p(nk)
h(nk)

(mod p), where the last equality holds by Fermat’s little theorem.

Then we can use Theorem 1 to obtain the statement of our theorem. �

7.2. Bounds on h-Schenker sums and infinitude of the set of h-Schenker

primes. Firstly, we will prove that for any polynomial h the sequence of absolute
values of h-Schenker sums diverges to +∞. More precisely, we have the following:

Theorem 17. Let h ∈ Z[X ] and consider the sequence (an)n∈N of h-Schenker
sums.

(1) If h(n) > n for n≫ 0 then

(n+ 1)! < h(n)n < an < (n+ 1)h(n)n

for n≫ 0.
(2) If h = X − b for some b ∈ N and n ≥ b+ 2 then

n! < (n− b)n−b

b−1∏

i=0

(n− i) < an < (n+ 1)(n− b)n−b

b−1∏

i=0

(n− i).

(3) If h = b for some b ∈ Z then

lim
n→+∞

an
n!

= eb.

In particular, an = O(n!), when n→ +∞.
(4) If h = −X + b for some b ∈ N then

n! < (n− b)n−b

b−3∏

i=0

(n− i) < |an| < (n− 1)(n− b)n−b+1
b−2∏

i=0

(n− i)

for n≫ 0.
(5) If −h(n) > n for n≫ 0 then

n! < |h(n)|n−1(|h(n)| − n) < |an| < (n+ 1)|h(n)|n

for n≫ 0.
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In particular, if the leading coefficient of h is positive or deg h > 0 then |an| > n!
for n≫ 0.

Proof. (1) If h(n) > n for n ≫ 0 then the n-th summand in the sum an =∑n
j=0

n!
j! h(n)

j is the biggest one, thus an < (n+1)h(n)n. On the other hand,

each summand in the mentioned sum is positive, therefore an > h(n)n.
Moreover, h(n) ≥ n+ 1 for n≫ 0, hence h(n)n > (n+ 1) · ... · 2 = (n+ 1)!.

(2) If h = X − b for some b ∈ N and n > b then n − b − 1-st and n − b-th
summands in the sum an =

∑n
j=0

n!
j! h(n)

j are the biggest ones and equal

to (n− b)n−b
∏b−1

i=0 (n− i). That is why an ≤ (n+1)(n− b)n−b
∏b−1

i=0 (n− i)
and the inequality is strict for n ≥ b+2. On the other hand, each summand

in the mentioned sum is positive, therefore an > (n−b)n−b
∏b−1

i=0 (n−i) > n!.

(3) If h = b for some b ∈ Z then an =
∑n

j=0
n!
j! b

j = n!
∑n

j=0
bj

j! , which means

that limn→+∞
an

n! = limn→+∞
∑n

j=0
bj

j! = eb and an = O(n!), when n →
+∞.

(4) If h = −X+ b for some b ∈ N then for 1 ≤ j ≤
⌊
b
2

⌋
we add up n− b+2j-th,

n− b+ 2j − 1-st, n− b− 2j-th and n− b− 2j − 1-st summands together.

(−n+ b)n−b+2j

b−2j−1∏

i=0

(n− i) + (−n+ b)n−b+2j−1

b−2j∏

i=0

(n− i)+

+ (−n+ b)n−b−2j

b+2j−1∏

i=0

(n− i) + (−n+ b)n−b−2j−1

b+2j∏

i=0

(n− i)

= (−1)n−b

[
(n− b)n−b+2j

b−2j−1∏

i=0

(n− i)− (n− b)n−b+2j−1

b−2j∏

i=0

(n− i)+

+(n− b)n−b−2j

b+2j−1∏

i=0

(n− i)− (n− b)n−b−2j−1

b+2j∏

i=0

(n− i)

]

= (−1)n−b

[
−2j(n− b)n−b+2j−1

b−2j−1∏

i=0

(n− i) + 2j(n− b)n−b−2j−1

b+2j−1∏

i=0

(n− i)

]

= (−1)n−b · 2j(n− b)n−b−2j−1

b−2j−1∏

i=0

(n− i)×

×
[
(n− b+ 2j) · ... · (n− b− 2j + 1)− (n− b)4j

]

= (−1)n−b · 2j(n− b)n−b−2j

b−2j−1∏

i=0

(n− i)×

×

[
(n− b+ 2j)

2j−1∏

i=1

((n− b)2 − i2)− (n− b)4j−1

]

= (−1)n−b · 2j(n− b)n−b−2j

b−2j−1∏

i=0

(n− i)×

×
[
(n− b)4j−1 + 2j(n− b)4j−2 + pj(n− b)− (n− b)4j−1

]

= (−1)n−b · 2j(n− b)n−b−2j

b−2j−1∏

i=0

(n− i) · [2j(n− b)4j−2 + pj(n− b)],
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where pj ∈ Z[X ] and deg pj ≤ 4j − 3. Hence 2j(n− b)4j−2 + pj(n− b) > 0
for n≫ 0. Since there are only finitely values 2j(n− b)4j−2+pj(n− b) > 0,

1 ≤ j ≤
⌊
b
2

⌋
, thus all these values are positive for n≫ 0.

For
⌊
b
2

⌋
+1 ≤ j ≤

⌊
n−b−1

2

⌋
we add up n− b− 2j-th and n− b− 2j− 1-st

summands together.

(−n+ b)n−b−2j

b+2j−1∏

i=0

(n− i) + (−n+ b)n−b−2j−1

b+2j∏

i=0

(n− i)

= (−1)n−b[(n− b)n−b−2j

b+2j−1∏

i=0

(n− i)− (n− b)n−b−2j−1

b+2j∏

i=0

(n− i)]

= (−1)n−b · 2j(n− b)n−b−2j−1

b+2j−1∏

i=0

(n− i)

If 2 ∤ b then the sign of the n-th summand in the sum an =
∑n

j=0
n!
j! (−n+

b)j is equal to (−1)n, this means it is opposite to (−1)n+b. Therefore, if
n≫ 0 then we obtain (in case, when 2 | n−b, we can omit the 0-th summand
in the sum an =

∑n
j=0

n!
j! (−n+ b)j because its sign is (−1)n−b = 1):

|an| ≥

⌊ b
2 ⌋∑

j=1

2j(n− b)n−b−2j

b−2j−1∏

i=0

(n− i) · [2j(n− b)4j−2 + pj(n− b)]+

+

⌊n−b−1
2 ⌋∑

j=⌊ b
2 ⌋+1

2j(n− b)n−b+2j−1

b+2j−1∏

i=0

(n− i)− (n− b)n ≥

≥ 2(n− b)n−b−2
b−3∏

i=0

(n− i) · [2(n− b)2 + p1(n− b)]− (n− b)n ≥

≥ 2(n− b)n−b−2
b−3∏

i=0

(n− i) · (n− b)2 − (n− b)n

= 2(n− b)n−b

b−3∏

i=0

(n− i)− (n− b)n > (n− b)n−b

b−3∏

i=0

(n− i)

= (n− b) · (n− b)n−b−6 · (n− b)5
b−3∏

i=0

(n− i) ≥

≥ 3! · 4 · ... · (n− b− 3)(n− b− 2)(n− b− 1)×

× (n− b)(n− b+ 1)(n− b+ 2)

b−3∏

i=0

(n− i) = n!,

where the last inequality holds for n − b ≥ 3! = 6. Then (n − b)n−b−6 ≥
4·...·(n−b−3) and (n−b)5 ≥ (n−b−2)(n−b−1)(n−b)(n−b+1)(n−b+2).

If 2 | b then the n-th summand in the sum an =
∑n

j=0
n!
j! (−n + b)j is

added up together with n− 1-st, n− 2b-th and n− 2b− 1-st summand and
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analogous estimation as above allows us to state that

|an| ≥ 2(n− b)n−b−2
b−3∏

i=0

(n− i) · [2(n− b)2 + p1(n− b)] ≥

≥ 2(n− b)n−b

b−3∏

i=0

(n− i) ≥ 2 · 3 · ... · (n− b − 3) · (n− b)5
b−3∏

i=0

(n− i) ≥ n!

for n≫ 0.
To obtain the upper bound on |an| it suffices to note that if n > b then

n−b−1-st and n−b-th summand in the sum an =
∑n

j=0
n!
j! (−n+b)

j reduce

and the n− b+1-st summand has the biggest absolute value among all the

remaining summands. Therefore |an| ≤ (n − 1)(n − b)n−b+1
∏b−2

i=0 (n − i),
where the inequality is strict for n ≥ b+ 2.

(5) If −h(n) > n for n ≫ 0 then for any 0 ≤ j ≤
⌊
n−1
2

⌋
the sum of n − 2j-th

and n − 2j − 1-st summand appearing in the sum an =
∑n

j=0
n!
j! h(n)

j is

equal to

h(n)n−2j

2j−1∏

i=0

(n− i) + h(n)n−2j−1

2j∏

i=0

(n− i)

= (−1)n[|h(n)|n−2j

2j−1∏

i=0

(n− i)− |h(n)|n−2j−1

2j∏

i=0

(n− i)]

= (−1)n|h(n)|n−2j−1(|h(n)| − n+ 2j)

2j−1∏

i=0

(n− i)

Hence

|an| =

{
1 +

∑n−2
2

j=0 |h(n)|n−2j−1(|h(n)| − n+ 2j)
∏2j−1

i=0 (n− i), if 2 | n
∑n−1

2
j=0 |h(n)|n−2j−1(|h(n)| − n+ 2j)

∏2j−1
i=0 (n− i), if 2 ∤ n

,

which implies that |an| > |h(n)|n−1(|h(n)| − n) for n≫ 0.
In order to obtain the upper bound on |an| it suffices to note that the

n-th summand in the sum an =
∑n

j=0
n!
j! h(n)

j has the biggest absolute

value, thus |an| < (n+ 1)|h(n)|n for n≫ 0.
�

Theorem 17 allows us to prove that for any nonzero polynomial h ∈ Z[X ]
there are infinitely many h-Schenker primes (certainly, if h = 0 then any prime
number p is not an h-Schenker prime).

Theorem 18. For any h ∈ Z[X ]\{0} there are infinitely many h-Schenker primes.

Proof. Let us assume that there are only finitely many h-Schenker primes. We
consider two cases.

(1) The case of deg h > 0. Let n0 ∈ N be such that h(n0) ·an0 6= 0 (we can find
such an n0, since |an| > n! for n ≫ 0). Let p1, ..., ps be all the h-Schenker
primes that do not divide h(n0). Let ki = vpi

(an0) for i ∈ {1, ..., s}. Let

us put t = pk1+1
1 · ... · pks+1

s . By Proposition 33, vpi
(amt+n0) = ki for any

m ∈ N and i ∈ {1, ..., s}, so by Theorem 15 and Theorem 17 we obtain

(mt+ n0)! < |amt+n0 | =
s∏

i=1

pki

i ·
∏

p prime, p|h(mt+n0)

pvp((mt+n0)!) < (mt+ n0)!

for m≫ 0 - a contradiction.
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(2) The case deg h = 0. Then h = b for some b ∈ Z\{0}. If some prime
number p divides an for some n ∈ N and p is not an h-Schenker prime then
p | b. Let p1, ..., ps be all the h-Schenker primes that do not divide b and
t = p1 · ... ·ps. Since a0 = 1, thus p1, ..., ps do not divide amt for any m ∈ N.
Hence |amt| =

∏
p prime, p|b p

vp((mt)!) and

lim
m→+∞

|amt|

(mt)!
= lim

m→+∞

1∏
p prime, p∤b p

vp((mt)!)
= 0,

but by Theorem 17, limm→+∞
|amt|
(mt)! = eb 6= 0 - once again we obtain a

contradiction.

�
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