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Abstract

Recently Albert and Bousquet-Mélou [2] obtained the solution to the long-standing
problem of the number of permutations sortable by two stacks in parallel (tsip). Their
solution was expressed in terms of functional equations. We show that the equally long-
standing problem of the number of permutations sortable by a double-ended queue
(deque) can be simply related to the solution of the same functional equations. Subject
to plausible, but unproved, conditions, the radius of convergence of both generating
functions is the same. Numerical work confirms this conjecture to 10 significant digits.
Further numerical work suggests that the coefficients of the deque generating function
behave as κd · µn · n−3/2, where µ = 8.281402207 . . . , while the coefficients of the
corresponding tsip generating function behave as κp · µn · nγ with γ ≈ −2.473. The
constants κd and κp are also estimated.

Inter alia, we study the asymptotics of quarter-plane loops, starting and ending at
the origin, with weight a given to north-west and east-south turns. The critical point
varies continuously with a, while the corresponding exponent variation is found to be
continuous and monotonic for a > −1/2, but discontinuous at a = −1/2.

1 Introduction

The problem of pattern-avoiding permutations appears to have been first considered by
MacMahon [8]. However Knuth [7] was the first to consider a number of classic data struc-
tures from the point of view of the permutations they could produce from the identity
permutation (or, equinumerously, which permutations could produce the identity permu-
tation). For the data structures considered - stacks and input-restricted deques - Knuth
showed that of the n! possible input permutations of length n only Cn ∼ const · 4n · n−3/2

and Sn ∼ const ·(3+2
√

2)n ·(n)−3/2 could be sorted by stacks and input-restricted deques,
respectively. This is a consequence of the fact that only 231-avoiding permutations are
stack-sortable, as we discuss below.

1email: andrewelveyprice@gmail.com
2email: guttmann@unimelb.edu.au
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Shortly thereafter, a number of authors, notably Evan and Itai [5], Pratt [9] and
Tarjan [10] considered more general data structures. Foremost among these were two
stacks in parallel, two stacks in series and deques. A deque, illustrated in Fig 2, is a double-
ended queue, with insertions and deletions allowed at either end. Until recently [2], none
of these had been solved. As remarked above, simple stacks can sort any permutation that
does not contain three successive (but not necessarily consecutive) elements in the order
231. We write this as the class Av(231), that is, the class of 231-avoiding permutations.
For example 1573642 can’t be sorted by a stack as the elements 562 (among other sub-
sequences) are in the forbidden relative order. Input-restricted deques are describable by
the class Av(4231, 3241), whereas Pratt [9] showed that deques (without input or output
restrictions) cannot be described similarly, as an infinite number of patterns would be
needed in such a description.

To establish a notation, let pn denote the number of permutations of length n that can
be produced by two parallel stacks, let dn be the corresponding quantity for deques, and
let sn be the corresponding quantity for two stacks in series. We name the corresponding
generating functions

P (t) =
∑

pnt
n, D(t) =

∑
dnt

n, and S(t) =
∑

snt
n.

In 2010, Albert, Atkinson and Linton [1] studied these problems with a view to estab-
lishing upper- and lower-bounds to the relevant growth constants. For deques they found
7.890 < µd < 8.352 and for tsips they found 7.535 < µs < 8.3461, and commented that
the actual growth constants may be equal, and may possibly be equal to exactly 8. As
we show, the two growth constants do indeed appear to be equal, but to a slightly higher
value, 8.28140...

In 2015 Albert and Bousquet-Mélou [2] found two coupled functional equations that
give the generating function P (t). Unfortunately their representation does not allow for
a single equation for the generating function, nor does it allow the asymptotics of pn to
be obtained. However it does offer, in principle, a polynomial-time algorithm to obtain
the coefficients pn. Other unanswered questions include the nature of the solution. Is it
D-finite, or differentially algebraic? The answer to these questions is not known.

In their solution, Albert and Bousquet-Mélou first encoded the operations involved in
sorting a permutation as words over the alphabet I1, I2, O1, O2, representing the input
to, or output from, stack number 1 or stack number 2 respectively. Any sorting of a
permutation can be effected by an operation sequence comprising a word in this alphabet,
subject to certain constraints. They then pointed out that such words could be considered
from two other points of view. The first is a mapping to quarter-plane random walks
that return to the origin. More precisely, these are random walks in N×N that start and
end at the origin. Making the identification I1 ≡ N, I2 ≡ E, O1 ≡ S, O2 ≡ W, where
N, E, S, W, denote steps to the north, east, south and west respectively. Then operation
sequences on words map to loops that return to the origin. The number of such loops of
length 2n is given by CnCn+1, where Cn = 1

n+1

(
2n
n

)
is the nth Catalan number. However

this is not a bijection as a given permutation may correspond to more than one loop.
An alternative representation was given in terms of two-coloured arches, in which the

operation sequences were encoded as arches drawn between numbered points on a line,
with arches above the line being of a different colour than those below the line. For further
details of these connections the reader is referred to [2].
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In this work our principal result is that the generating function for deques can be
simply related to the generating function for two stacks in parallel. We therefore provide
a comparable solution to the deque problem to that given in [2] for the problem of two
stacks in parallel in Theorem 3.9, which states that the deque and tsip generating functions
D and P, defined above, satisfy the following two (equivalent) equations:

P (t) =
(D(t)− 1) · (D(t)− t− 1)

2t · (D(t)− 1− t ·D(t))
(1)

and

2D(t) = 2 + t+ 2tP (t)− 2t2P (t)− t
√

1− 4P (t) + 4P (t)2 − 8tP (t)2 + 4t2P 2(t)− 4tP (t).
(2)

Subject to the veracity of conjectures 10, 11 and 12 in [2], we prove that the radii of
convergence of the two generating functions P (t) and D(t) are the same. Further, with one
extra assumption, in Theorem 4.6 we prove that D(t) = D(tc) + kD

√
t− tc + o(

√
t− tc)

for some constant kD ∈ R.
For both these problems we also give a detailed (numerical) study of the asymptotics,

based on a 500 term expansion of the generating functions. In this way we estimate the
radius of convergence to 10 significant digits for both problems, and find agreement at
that level of precision, thus strengthening our confidence in the aforementioned conjecture
that the critical points are identical. We also find the leading and next-to-leading critical
exponents, which, perhaps surprisingly, are different for the two problems. For two stacks
in parallel we find

P (t) = P (tc)− tcP ′(tc)(1− t/tc) + P1(tc)(1− t/tc)γ1 + P2(tc)(1− t/tc)γ2 + o((1− t/tc)γ2)

where P1(tc), P2(tc) etc. are constants that occur as the lowest order terms in the ex-
pansion of implicitly defined functions P1(t), P2(t) etc. around t = tc. We estimate
tc ≈ 0.1207524976, γ1 ≈ 1.473, and γ2 ≈ 1.946. Furthermore

P (tc) =
1

2(1−
√
tc)2

.

For deques we find

D(t) = D(tc) +D1(tc)(1− t/tc)1/2 +D2(tc)(1− t/tc)γ3 + o(1− t/tc)γ3 ,

where D1(tc), D2(tc) etc. are constants that occur as the lowest order terms in the ex-
pansion of implicitly defined functions D1(t), D2(t) etc. around t = tc.. We estimate
tc ≈ 0.1207524977, and γ3 ≈ 0.973. Furthermore

D(tc) =
1 + t

3/2
c

1− tc
,

and

D1(tc) = −23/4 · t3/2c

√
P (tc)3/2 +

√
P (tc) · tc(1−

√
tc) · P ′(tc). (3)

We have been unable to obtain a solution to the more difficult problem of the number
of permutations of length n sortable by two stacks in series, as shown in Fig. 1, but have
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Figure 1: Allowed input and output sequences for two stacks in series.

obtained the most extensive enumerations to date of the coefficients sn of the generating
function S(t), having obtained these exactly for n < 20 and approximately for longer
permutations. An analysis of the asymptotics based on these enumerations is given in [4].

The associated problem of weighted quarter-plane loops also displays some unusual
and hence interesting features for a simple lattice model. Recall that the loops can take
steps in the ±x and ±y directions, and start and end at the origin (0, 0), and that all
vertices must have non-negative co-ordinates. There is, in addition, a weight, or fugacity
a associated with NW and ES corners, so the generating function can be written

Q(u, a) =
∑

qn,mu
n · am

where qn,m is the number of such loops of n steps with m weighted corners. We are
interested in the asymptotic behaviour of the coefficients, which is expected to be

[un]Q(u, a) ∼ const · qc(a)−n · ng(a).

As shown by Albert and Bousquet-Mélou [2], not only does the critical point qc(a) vary
with a, which is to be expected, but so does the critical exponent g(a), which is unexpected.
In particular, this does not happen for similarly weighted loops in the half-plane or full-
plane. Based on our numerical studies, we conjectured the variation of qc(a) with a,
providing numerical confirmation for the conjectured dependence in [2]. We also studied
the critical exponents, and conjectured these for various values of a, but were not able
to guess the a dependence. In private correspondence, Kilian Raschel has given us his
conjectured value for the exponents which is

g(a) =
π

arccos
(

a−1
a+1+

√
2+a

) , for a ≥ 0.

This agrees with our numerical results, not only for a ≥ 0, but more broadly for a > −1/2.
However for a = −1/2, we find the exponent takes the value 3/4, rather than 1 as given
by the above formula. Thus we have the additional interesting feature of a discontinuous
critical exponent arising in this simple lattice walk model.

In the next section we establish our notation, define certain operations and prove a
number of lemmas and propositions necessary for the proof of the main theorem. In the
following section we derive the generating functions for various quantities, such as bi-
coloured Dyck paths, weighted loops as defined above, and for a special class of sequences,
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defined below. Putting these definitions together leads us to a functional equation con-
necting D(t) and P (t), from which we obtain our principal result Theorem 3.9. In section
4 we analyse this functional equation, and, subject to a conjecture in [2], prove Theorem
4.6, mentioned above. In section 5 we first discuss the asymptotics of weighted quarter-
plane loops, then that of deques and two stacks in parallel. It is only through a remarkable
cancellation that these two generating functions have different critical exponents. For de-
ques we conjecture a square-root singularity, while for tsips the exponent arising in the
generating function is approximately 1.473, which does not suggest any obvious rational
number with low denominator. In a wild speculation we give a possible exact value for
this exponent. The final section gives our conclusions.

2 Notation and canonical operation sequences

Consider the operations I1, I2, O1, O2, where I1 and I2 represent input to the top and
bottom of the deque, respectively, and O1 and O2 represent output from the top and
bottom of the deque, respectively, as shown in Fig 2. We will call a permutation deque-
achievable if it can be produced by a deque, and we will call it tsip-achievable if it can
be produced by two stacks in parallel. Each achievable permutation can be encoded as a
word over the alphabet {I1, I2, O1, O2}, such that the total number of Is is the same as
the total number of O’s, and any prefix contains at least as many I’s as Os. We call such
a word an operation sequence. For example, the permutation 4123 is achievable as it is
produced by the operation sequence I1I1I1I2O2O2O2O2 (see Fig 3). This permutation is
not, however, tsip-achievable.

Figure 2: The input and output operations I1, I2, O1 and O2 on a deque.

We call an operation sequence w a tsip word if it has the additional properties that
for j = 1, 2 the total number of Ij ’s is equal to the total number of Oj ’s, and each prefix
contains at least as many Ij ’s as Oj ’s. In this case, the operation sequence w corresponds
to a tsip-achievable permutation. Note that if a permutation is tsip-achievable, then it is
also deque-achievable, but the converse does not hold.

Definition 2.1. We call an operation sequence w canonical if it has the following three
properties:
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Figure 3: The sorting procedure I1I1I1I2O2O2O2O2 produces the permutation 4123. This
is the shortest permutation which cannot be produced by two stacks in series.

• (outputs eagerly) w contains no consecutive terms I1O2 or I2O1.

• (standard) Any tsip sub-word of w begins with I1.

• (top happy) Whenever one of the letters I2 or O2 appears in w, the number of
preceding Is in w must be at least two greater than the number of preceding Os.
In other words, these two letters only appear when there are at least two numbers
already in the deque.

Note that this definition also defines what is meant by the terms outputs eagerly,
standard and top happy.

In Proposition 2.5 we will prove that every deque achievable permutation π is produced
by a unique canonical operation sequence. This is analogous to the result in [2], which
in our language states that every tsip achievable permutation π is produced by a unique
standard tsip-word which outputs eagerly.

Lemma 2.2. Any achievable permutation π can be produced by a canonical operation
sequence.

Proof. Assign the ordering O1 < O2 < I1 < I2 to the letters. Since π is achievable, it is
produced by some operation sequence. Let w be the operation sequence which produces
π and which is lexicographically minimal. Then we just need to show that w is canonical.

If w contains either I1O2 or I2O1 as a sub-word, then we can switch these letters to
produce w′ < w, where w′ also produces π. But this contradicts the minimality of w, so
w does not contain either I1O2 or I2O1. Hence w outputs eagerly.
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Suppose that w contains a tsip sub-word v which begins with I2. Then we can form
v′ by changing each subscript in v to the other subscript. Note that v′ begins with I1,
so v′ < v. Moreover, v and v′ have the same effect on the state of the machine as each
other. Hence, if w = avb, then the word w′ = av′b produces the same permutation π. But
w′ < w, which contradicts the minimality of w. So w does not contain a tsip sub-word
beginning with I2. Hence, w is standard.

Now suppose that w can be split up as w = uv, where the number of Is in u is at most
one more than the number of Os, and where v begins with either I2 or O2. Then we can
form v′ by changing each subscript in v to the other subscript. Note that v′ begins with
I1 if v begins with I2, and v′ begins with O1 if v begins with O2, so in either case v′ < v.
After u is applied to the machine, the deque contains at most one element, so v′ and v
have the same effect on the machine, with v′ essentially doing everything on the opposite
end of the deque to v. Hence uv′ produces π. Moreover, uv′ < uv = w, contradicting
the minimality of w. Therefore, w cannot be split as uv in this way, so whenever one of
the letters I2 or O2 appears in w, the number of preceding Is in w must be at least two
greater than the number of preceding Os. Hence, w is top happy.

Therefore, w is standard, top happy and outputs eagerly. Hence w is canonical.

As in [2], we will consider the type of an operation sequence w:

Definition 2.3. The type of an operation sequence w is the word over the alphabet {I,O}
obtained by deleting all of the subscripts of w.

Lemma 2.4. If two operation sequences u and v produce the same permutation π and
both output eagerly, then u and v have the same type. Moreover, the ith operation of u
moves the same item as the ith operation of v.

Proof. Let u = u1u2 . . . u2n and let v = v1v2 . . . v2n. We will prove the lemma by induction.
Assume that for some k, the words u1 . . . uk and v1 . . . vk have the same type. We will
prove that the letters uk+1 and vk+1 also have the same type, and move the same item
as each other. After the kth operation, both u and v have the same number of input
steps and the same number of output steps as each other, so, since they produce the same
sub-permutation π, the items currently in the deque according to u must be the same as
the items currently in the deque according to v, though the order may be different. Since
u and v output eagerly, they will both output at this point if and only if the next item to
be output is currently in the deque. Since this is the same for both u and v, the letter uk+1

and vk+1 have the same type. Moreover, if they are both output steps, then the element
for each will be the next element to be output, whereas if they are both input steps, the
item moved will be the next element in the input. In both cases the item moved is the
same for both u and v. This completes the induction, so u and v have the same type.

Proposition 2.5. Every deque-achievable permutation π is produced by a unique canonical
operation sequence.

Proof. We have already shown that every deque-achievable permutation is produced by
some canonical operation sequence, so it remains to show that this operation sequence is
unique. Let u and v be two canonical operation sequences that produce the permutation
π, with u ≤ v. Then we just need to show that u = v.
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Suppose for the sake of contradiction that u < v. Let u = u1 . . . u2n and let v =
v1 . . . v2n, and let k be minimal such that uk 6= vk, so uk < vk. Note then that before the
kth move, the position of the deque, input and output is the same according to either u
or v. By Lemma 2.4, u and v have the same type, so the letters uk and vk have the same
type. Therefore, uk, vk are either O1, O2, respectively, or I1, I2, respectively. Since vk is
O2 or I2, and v is top happy, there must be at least two items in the deque before this
move. Now, by Lemma 2.4, the element moved by uk and vk must be the same, but uk and
vk act at opposite ends of the deque, so they must both be input operations. Therefore,
uk = I1 and vk = I2. We will now obtain a contradiction by showing that the operation
sequence v is not standard.

Define the sequences k0, k1, . . . , km and l0, l1, . . . , lm of indices in {k, . . . , 2n} as follows:

• k0 = k

• For each i, the operations vki and vli move the same item, with vki an input and vli
an output move. In particular, this determines l0.

• For i ≥ 0, the values ki+1 and li+1 are chosen inductively so that ki < ki+1 < li <
li+1. Moreover, they are chosen to maximise li+1. If no such ki+1 and li+1 exist,
then we set m = i and terminate. Note that the process must terminate at some
point since l1, l2, . . . is a sequence of integers which is increasing and bounded above.

For 0 ≤ i ≤ m, let ti ∈ {1, 2} be the value such that vki = Iti
Let D be the set of items which are in the deque just before operation k. Let vj be the

first operation which outputs an item in D, and let this item be d. Then d must be at one
of the ends of the deque just before operation k. We will prove the following statements
for 0 ≤ i ≤ m in a single induction:

• k ≤ ki < j.

• uki = I3−ti . That is, uki and vki put the element they move at opposite ends of the
deque.

• li < j.

• vli = Oti . So vki and vli act on the same side of the deque.

• vli = Oti .

• uli = O3−ti . So uki and uli act on the same side of the deque.

• uli = O3−ti .

For the base case, by the definition of k and j, we have k0 = k < j and uk0 = uk =
I1 = I3−t0 .

Now for the inductive step. We will assume that k ≤ ki < j and uki = I3−ti and
show that li < j, vli = Oti , uli = O3−ti , k ≤ ki+1 < j and uki+1

= I3−ti+1 . Let ai be
the item moved by operations uki , vki , uli and vli . Since uki = I3−ti and vki = Iti , we
have {uki , vki} = {I1, I2}. Therefore, one of vki and uki places ai on the end of the deque
which d has to be removed from. So ai must be removed before move j, hence li < j.
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Since there is an item d on the deque throughout the whole time that ai is on the deque,
the input and output operations which move ai must act on the same side of the deque.
Hence, vli = Oti and uli = O3−ti . Now to finish the induction, we just need to show that
k ≤ ki+1 < j and uki+1

= I3−ti+1 , in the case where i < m. First, k ≤ ki < ki+1 < li < j.
Also, by construction, the output move vli = Oti for ai occurs between the input

and output moves for ai+1, so we must have vki+1
= I3−ti , so ti+1 = 3 − ti. Similarly,

uki+1
= Iti = I3−ti+1 . This completes the induction.

We will now show that w = vkvk+1 . . . vlm is a tsip word. Since lm < j, nothing is
output from the deque from D. Now, suppose some item is input but not output by w.
Let the input and output moves of that item be va and vb, so k < a < lm < b and let
i be maximal such that ki < a. If i = m then km < a < lm < b, which means that we
shouldn’t have terminated at m. If i < m then ki < a < ki+1 < li < li+1 < b, which
contradicts the maximality of li+1. Hence every item which is input by w is also output by
w. Therefore, vk . . . vlm is a tsip sub-word of v which begins with I2, so v is not standard.
This contradicts the statement that v is canonical, so we must have u = v. Therefore, any
two canonical operation sequences which produce the same permutation are equal.

3 Enumeration

In the previous section we showed that every deque-achievable permutation is produced by
a unique canonical operation sequence, hence the number of deque achievable permutations
of length n is equal to the number of canonical operation sequences of length 2n. Recall
that this sequence is given by the generating function D(t).

Before we proceed any further, we will define the generating functions Q and P in the
same way as in [2]. Let Q(a, u) be the generating function for quarter plane loops, counted
by half-length, conjugate to the variable u and number of NW or ES corners, conjugate
to a. Let P (t) be the length generating function for permutations which can be produced
by two stacks in parallel. We note that this is the same as the generating function for
standard tsip words which output eagerly, counted by half-length. Now using corollary 9
from [2], we have the following relation between these generating functions:

Q

(
1

P
− 1,

tP 2

(1− 2P )2

)
= 2P − 1. (4)

Now we will define some new generating functions to characterise the length generat-
ing function D(t) of deque-achievable permutations. We will call a non-empty operation
sequence unbreakable if it contains no tsip-sub-words, apart from possibly itself, and the
deque is never empty during the associated procedure. Let M(a, u, x) be the generating
function for top happy, unbreakable operation sequences, counted by half-length, conju-
gate to u, number of appearances of a sub-word I1O2 or I2O1, conjugate to a, and number
of times when there is only one element in the deque, conjugate to x.

We define a bi-coloured Dyck path to be a Dyck path where each step is coloured red or
blue. A multicoloured peak is an up-step followed by a down-step of the opposite colour.
Let T (a, u, x) be the generating function for bi-coloured Dyck paths, where every step
from height 0 or 1 is red, counted by half-length, conjugate to u, number of multicoloured
peaks, conjugate to a, and number of vertices of the path at height 1, conjugate to x.
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We define a new generating function Q1(a, u, x) for quarter plane loops where every
step from the origin is a north step, counted by half-length, conjugate to u, number of
NW or ES corners, conjugate to a, and number of steps to the origin, conjugate to x. This
is related to Q by Q(a, u) = Q1(a, u, 2). We can also think of Q and Q1 as generating
functions for tsip words, by replacing each N , E, S, W step in the quarter plane loop with
I1, I2, O1, O2, respectively. Then Q(a, u) is the generating function for tsip operation
sequences, counted by half-length, conjugate to u and number of appearances of a sub-
word I1O2 or I2O1, conjugate to a. The generating function Q1(a, u, x) is similar, except
that it only counts those tsip words where every letter which appears after an equal
number of Is and Os is an I1. The other difference is that Q1 also counts these words by
the number of times there are an equal, non-zero number of Is and Os, conjugate to x.

Lemma 3.1. The generating function for bi-coloured Dyck paths T (a, u, x) is given by the
equation

T (a, u, x) =
4 + 2xu− 2xau− x+ x

√
1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2

4− 2xu− 2xau− x+ x
√

1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2
. (5)

Proof. Let T1(a, u, y) be the generating function for bi-coloured Dyck paths, where each
step from height 0 is red, counted by half-length, conjugate to u, multicoloured peaks,
conjugate to a, and number of vertices of the path at height 0, including the end points,
conjugate to y. Let T2(a, u) be the generating function for bi-coloured Dyck paths, counted
by half-length, conjugate to u, and multicoloured peaks, conjugate to a. Note that each
multicoloured Dyck path ω satisfies exactly one of the following:

• ω is empty,

• ω is made up of a peak followed by a (possibly empty) multicoloured Dyck path,

• ω is made up of an up-step, followed by a non-empty multicoloured Dyck path,
followed by a down-step, followed by a (possibly empty) multicoloured Dyck path.

The contribution to T2 from the first case is simply 1.
In the second case, the 4 possible peaks are counted by u(2a+ 2), so the total contri-

bution to T2 from this case is u(2a+ 2)T2.
In the third case, the contribution is simply 4u(T2 − 1)T2. The multiplier 4 arises

because there are four possibilities for the colours of the up step and down step. T2 − 1
counts the first (non-empty) path and T2 counts the second path. The term u is in the
expression because the half length of ω is one more than the sum of the half lengths of
the shorter paths. Hence we get the equation

T2(a, u) = 4u(T2 − 1)T2 + u(2a+ 2)T2 + 1.

Solving the quadratic gives

T2(a, u) =
1 + 2u− 2au±

√
1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2

8u
.

Note that since T2(a, 0) = 1, we must use the negative square root, so

T2(a, u) =
1 + 2u− 2au−

√
1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2

8u
.
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We now calculate T1(a, u, y) in a similar way. Each multicoloured Dyck path ω, where
each step from height 0 is red, satisfies exactly one of the following:

• ω is empty,

• ω is made up of a peak followed by a (possibly empty) multicoloured Dyck path,

• ω is made up of a red up-step, followed by a non-empty multicoloured Dyck path,
followed by a down-step, followed by another (possibly empty) multicoloured Dyck
path where each step from height 0 is red.

The contribution to T1 from the first case is simply y.
In the second case, the two possible peaks are counted by uay+uy, so the contribution

to T1 from this case is (uay + uy)T1.
In the third case, the half length of ω is one more than the sum of the half lengths of the

shorter paths, the number of vertices at height 0 is one more than the number of vertices
at height 0 in the second path. Hence the contribution from this case is 2uy(T2 − 1)T1.
Hence, we get the equation

T1(a, u, y) = 2uy(T2 − 1)T1 + (uay + uy)T1 + y.

Solving this using the formula for T2 gives

T1(a, u, y) =
4y

4 + 2yu− 2yau− y + y
√

1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2

Finally, we can calculate T (a, u, x) in a similar way. Each multicoloured Dyck path ω,
where each step from height 0 or 1 is red, satisfies exactly one of the following:

• ω is empty

• ω is made up of a red up-step, followed by a (possibly empty) multicoloured Dyck
path, where each step from height 0 is red, followed by a red down-step, followed by
another (possibly empty) multicoloured Dyck path where each step from height 0 or
1 is red.

The contribution to T from the first case is simply 1. In the second case, the half length
of ω is one more than the sum of the half lengths of the shorter paths, and the number
of multicoloured peaks in ω is equal to the sum of the numbers of multicoloured peaks in
the two shorter paths. The number of vertices at height 1 in the long path is equal to the
number of vertices at height 0 in the first short path, plus the number of vertices at height
1 in the second short path. Hence,

T (a, u, x) = uT1(a, u, x) · T (a, u, x) + 1

Solving this using the formula for T1 gives

T (a, u, x) =
4 + 2xu− 2xau− x+ x

√
1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2

4− 2xu− 2xau− x+ x
√

1− 12u+ 4u2 − 4au+ 4a2u2 − 8au2

as required.
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Lemma 3.2. The generating function Q1(a, u, x) is given by the equation

Q1(a, u, x) =
2Q

2Q− xQ+ x
(6)

Proof. Let U(a, u) be the generating function for non-empty quarter plane loops, which
only touch the origin at the start and end, counted by half-length, conjugate to u and
number of NW or ES corners, conjugate to a. Then each loop counted by Q can be
written uniquely as a sequence of loops counted in U , so we get the equation

Q(a, u) =
1

1− U(a, u)
.

Or, equivalently,

U(a, u) = 1− 1

Q(a, u)
.

Now, by reflecting a loop about the line x = y, we see that amongst the loops counted
by U with a given half-length and number of NW or ES corners, exactly half begin with
a north step. Hence, each loop counted by Q1 can be written uniquely as a sequence of
loops counted in 1

2U . Moreover, the power of x in the corresponding monomial in Q1 is
equal to the number of terms in the sequence of loops from 1

2U . Therefore, we have the
equation

Q1(a, u, x) =
1

1− 1
2U(a, u)x

Hence, we can write Q1 in terms of Q as desired

Q1(a, u, x) =
1

1− 1
2(1− 1

Q)x

=
2Q

2Q−Qx+ x
.

Before we can relate these generating functions to M and D, we will need to consider
a decomposition of operation sequences, as described in the lemma below. In lemma 3.5
we will show that this decomposition is unique.

Lemma 3.3. Given a non-empty operation sequence w it is possible to decompose w as

w = x1w1x2w2 . . . x2m−1w2m−1x2mv,

where m ∈ Z>0, each xi ∈ {I1, O1, I2, O2}, such that x1x2 . . . x2m is an unbreakable opera-
tion sequence, each wi is a (possibly empty) tsip sub-word, and v is an operation sequence.

Proof. We construct the decomposition as follows: First we decompose w as w = uv, so
that the first point at which the deque is empty is immediately after u is applied, in other
words, u is the minimal, non-empty prefix of w which is also an operation sequence. Note
that we may have u = w. Since the deque is empty before and after v is applied, v is an
operation sequence.
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Now, x1 must be the first letter of u. Then, for each i, we let wi be the longest tsip-
sub-word of u which starts immediately after xi. Note that this necessarily exists, since
wi can always be the empty word. Then xi+1 is the letter after wi. We continue this
until we have decomposed all of u as u = x1w1 . . . wj−1xjwj . Note that u = x1w1 . . . wj
and wj both contain an equal number of Is and Os, so x1w1 . . . xj also contains an equal
number of Is and Os. But since u is minimal, wj must be empty. Note that by definition,
each wi is a tsip-sub-word. So we just need to prove that x1x2 . . . xj is an unbreakable
operation sequence. Since x1w1 . . . wj−1xj is an operation sequence, and each wi is an
operation sequence, it follows that x1x2 . . . xj is an operation sequence. Also, if x1x2 . . . xi
is an operation sequence for any i < j, then x1w1 . . . xi is also an operation sequence,
which contradicts the minimality of u. Now we just need to show that x1 . . . xj contains
no tsip sub-words, other than itself and the empty word. Suppose that it does contain
some tsip sub-word xa . . . xi, with i ≥ a. If a > 1 then wa−1xawaxa+1 . . . xi is also a tsip
sub-word, which contradicts the maximality of the length of wa−1. If a = 1 and i < j,
then xaxa+1 . . . xi is not an operation sequence, so it is certainly not a tsip sub-word.
Hence a = 1 and i = j, so x1x2 . . . xj contains no tsip sub-words other than possibly itself.
Therefore x1x2 . . . xj is unbreakable.

Lemma 3.4. Let w be a non-empty operation sequence with the decomposition

w = x1w1x2w2 . . . x2m−1w2m−1x2mv,

where m ∈ Z>0, each xi ∈ {I1, O1, I2, O2}, such that x1x2 . . . x2m is an unbreakable opera-
tion sequence, each wi is a (possibly empty) tsip sub-word, and v is an operation sequence.
Then any tsip sub-word of w, which is not a prefix, is contained in one of the words wi or
v.

Proof. Let u = x1w1x2w2 . . . x2m−1w2m−1x2m. Suppose for the sake of contradiction that
some tsip sub-word w′ of w is not contained in any wi or v, and w′ is not a prefix of w.

First we consider the case where w′ does not intersect with v. Then let w′ = sxiwixi+1wi+1 . . . xjt
be a longer tsip sub-word of u, where t is a prefix of wj and s is a suffix of wi−1. Since
t is a suffix of an operation sequence w′ and a prefix of another operation sequence, it
must be an operation sequence. Moreover, since t is a prefix of a tsip word, t is also a
tsip word. Similarly, s is a tsip word. Hence, s, wi, wi+1, . . . , wj−1, t are all tsip words,
as is w′ = swixi+1wi+1 . . . wj−1xjt, so xi+1xi+2 . . . xj is also a tsip word. But this is a
contradiction, since x1x2 . . . x2m is unbreakable.

Now we consider the case where w′ intersects with v. Then we can write w′ = u′v′,
where u′ is a suffix of u and v′ is a prefix of v. Since w′ is not a prefix of w, the word u′

is also not a prefix. Since w′ is not contained in v, the word u′ is non-empty. Since u′ is a
prefix of an operation sequence and a suffix of an operation sequence, it is also an operation
sequence. But then u′ satisfies the properties of w′ in the first case, a contradiction.

Lemma 3.5. Given a non-empty operation sequence w there is a unique way to decompose
w as

w = x1w1x2w2 . . . x2m−1w2m−1x2mv,

where m ∈ Z>0, each xi ∈ {I1, O1, I2, O2}, such that x1x2 . . . x2m is an unbreakable opera-
tion sequence, each wi is a (possibly empty) tsip sub-word, and v is an operation sequence.
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Proof. Let w = x1w1x2w2 . . . x2m−1w2m−1x2mv be one such decomposition of w. We just
need to show that this is the same as the decomposition constructed in lemma 3.3.

First we will show that u = x1w1x2w2 . . . x2m−1w2m−1x2m is the shortest operation
sub-sequence starting from the start of w. Since each wi is an operation sequence,
and x1 . . . x2m is an operation sequence, x1w1x2w2 . . . x2m−1w2m−1x2m is an operation se-
quence. Let u′ be a non-empty prefix of u such that u′ 6= u. Then u′ = x1w1 . . . xi−1wi−1xit
for some i < 2m, where t is a prefix of wi. Then, since x1 . . . x2m is unbreakable, there are
strictly more Is than Os in x1 . . . xi. Also, each wk contains an equal number of Is and
Os and t contains at least as many Is as Os. Hence u′ contains more Is than Os, so it is
not an operation sequence. Therefore, u is the shortest non-empty prefix of w, which is
also an operation sequence.

Finally, by the previous lemma, every tsip sub-word of w is either a prefix of w or
is contained in one of the words wi or v. Hence, each wi is the tsip sub-word of max-
imal length with that starting point. Therefore, this decomposition is the same as the
decomposition constructed in lemma 3.3

Lemma 3.6. Let w be a non-empty operation sequence, with decomposition w = x1w1 . . . w2m−1x2mv.
Then w is canonical if and only if the following conditions hold:

• The (unbreakable) operation sequence s = x1x2 . . . x2m is top happy,

• Each tsip word wi is standard and outputs eagerly,

• v is canonical,

• If some xixi+1 is either I1O2 or I2O1, then wi is non-empty.

Proof. If w is canonical, then w is top happy, so s is top happy and v is top happy. Since
w is standard and outputs eagerly, any sub operation sequence of w is also standard and
outputs eagerly; in particular this includes each wi, as well as v. Hence v is canonical.
Finally the fourth condition follows immediately from the fact that w outputs eagerly.

Now we will assume the four conditions and prove that w is canonical. A sub-word of
the form IO can only appear in w inside one of the sub-words wi or v or as xixi+1, where
wi is empty. The conditions clearly make it impossible for such a sub-word to be either
I1O2 or I2O1, so w outputs eagerly. Now we consider w to be a bi-coloured Dyck path.
Since s and v are top happy, every step from height 0 or 1 in w which comes from s or v
is red. Any step from height 0 or 1 which comes from some wi, must be at height 1 in w
and height 0 in wi. Then this step must be red since wi is standard. Finally, by Lemma
3.4, any tsip sub-word of w is either a prefix of w, contained in v or contained in one of
the words wi. Hence, since each wi and v are standard, and w begins with I1, the word w
is also standard. Therefore, w is canonical.

Now recall that the generating function M(a, u, x) is the generating function for top
happy, unbreakable operation sequences, counted by half-length, conjugate to u, number
of appearances of a sub-word I1O2 or I2O1, conjugate to a, and number of times when
there is only one element in the deque, conjugate to x.
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Lemma 3.7. The generating function M satisfies the equation

T (a, u, x) = M

(
1 +

a− 1

Q
, uQ2,

Q1

Q
x

)
T

Q
+ 1 (7)

Proof. We first note that given an operation sequence w, there is a corresponding bi-
coloured Dyck path, formed by replacing each I1 with a red up-step, each I2 with a blue
up-step, each O1 with a red down-step, and each O2 with a blue down-step. Then the
condition that the steps from height 0 or 1 in the Dyck paths counted by T are all red
is equivalent to the condition that the corresponding operation sequence is top happy.
Hence, we can consider T (a, u, x) to be the generating function for top happy operation
sequences, counted by half-length, conjugate to u, number of consecutive steps I1O2 or
I2O1, conjugate to a, and number of times in the procedure that the deque contains exactly
one element, conjugate to x.

For each non-empty operation sequence w counted by T (a, u, x) we consider the de-
composition w = x1w1x2w2 . . . x2m−1w2m−1x2mv described in lemma 3.5. In particular,
we consider the contribution to T from all words w with a given unbreakable operation
sequence s = x1x2 . . . x2m. Since w is top happy, s is also top happy, so we will only con-
sider the top happy, unbreakable operation sequences s, which are exactly the operation
sequences counted by M . Let q, r be the number of consecutive I1O2 or I2O1 steps and
number of times in the procedure given by s that the deque contains exactly one element
respectively. So the contribution of s to M(a, u, x) is aqumxr.

Now we calculate the contribution to T from all the words of the form w, with s =
x1x2 . . . x2m fixed. Call this the contribution of s to T . Each wi which begins (and ends)
at height 1 in the bi-coloured Dyck path corresponding to w can be any tsip-word, whose
steps from height 0 in its bi-coloured Dyck path are all red. Hence the possible words wi
are exactly those counted by Q1. Each wi which begins and ends with the deque containing
more than one element can be any tsip-word, and these are enumerated by Q. Also, the
possible words v are exactly those counted by T . Since the half-length of w is m plus the
sum of the half-lengths of these sub-words, the contribution of s to T (1, u, 1) is

umQ1(1, u, 1)rQ(1, u)2m−r−1T (1, u, 1).

Now, each vertex at height 1 in the bi-coloured Dyck path corresponding to w occurs in
one of the words wi counted by Q1, or in v. The number of these vertices in any word
wi counted by Q1, is equal to the number of vertices in the bi-coloured Dyck path of wi
at height 0, which is 1 more than the power of x in the contribution of wi to Q1(a, u, x).
Since all other vertices at height 1 appear in v, the contribution of s to T (1, u, x) is equal
to

um(xQ1(1, u, x))rQ(1, u)2m−r−1T (1, u, x).

Now we just need to consider the number of sub-words I1O2 and I2O1 in w. If we only
consider the sub-sequences which occur in one of the words wi or v, we would get the
contribution

um(xQ1(a, u, x))rQ(a, u)2m−r−1T (a, u, x).

The only other situation where one of the these sub-sequences occurs is when one of the
words wi is empty, and the surrounding letters xixi+1 form one of these sub-words. Note
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that this cannot happen at height 1, since w is top happy, so it only occurs in the case
where wi is counted by Q. This case is counted as 1 in Q(a, u) in the equation above,
but it should be counted as a. Moreover, this is relevant to exactly q of the words wi,
exactly those where xixi+1 is either the word I1O2 or I2O1. Hence, the contribution of s
to T (a, u, x) is

um(xQ1(a, u, x))rQ(a, u)2m−r−q−1(Q(a, u) + a− 1)qT (a, u, x).

Therefore, any top happy, unbreakable operation sequence s which contributes aqumxr to
M(a, u, x), contributes (

1 +
a− 1

Q

)q (
uQ2

)m(Q1

Q
x

)r T
Q

to T (a, u, x), and this accounts for all of T (a, u, x) except for the 1 coming from the empty
word. Hence,

T (a, u, x) = M

(
1 +

a− 1

Q
, uQ2,

Q1

Q
x

)
T

Q
+ 1.

Lemma 3.8. The generating function D satisfies the equation

D(t) = M

(
1− 1

P
, tP 2, 1

)
D

P
+ 1. (8)

Proof. Using Proposition 2.5, we know that D(t) is the generating function for canonical
operation sequences, counted by half-length. Using Lemma 3.6, we see that D(t) is the
generating function for words w which decompose as w = x1w1 . . . w2m−1x2mv, where

• The (unbreakable) operation sequence s = x1x2 . . . x2m is top happy,

• Each tsip word wi is standard and outputs eagerly,

• v is canonical,

• If some xixi+1 is either I1O2 or I2O1, then wi is non-empty.

As in the proof of the previous lemma, we will consider the contribution of any given
top happy, unbreakable operation sequence s = x1x2 . . . x2m to D, assuming that s is
counted by the monomial aqumxr in M(a, u, x). For each i, the word wi can be any
standard tsip word which outputs eagerly, except that it can’t be empty if xixi+1 is I1O2

or I2O1 and there are q such values of i. Also, v can be any canonical operation sequence.
Recall that standard tsip words which output eagerly are counted by P . Therefore, the
contribution of s to D(t) is

tmP 2m−q−1(P − 1)qD =

(
1− 1

P

)q
(tP 2)m

D

P
.

Hence,

D(t) = M

(
1− 1

P
, tP 2, 1

)
D

P
+ 1.
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Theorem 3.9. Let D(t) be the length generating function for permutations which are
sortable by a deque, and let P (t) be the length generating function for permutations which
are sortable by two stacks in parallel. Then D and P satisfy the following two (equivalent)
equations:

P (t) =
(D − 1)(D − t− 1)

2t(D − 1−Dt)
(9)

and
2D(t) = 2 + t+ 2Pt− 2Pt2 − t

√
1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt. (10)

Proof. First we substitute (6) into (7), to remove Q1:

T (a, u, x) = M

(
1 +

a− 1

Q
, uQ2,

2x

2Q− xQ+ x

)
T

Q
+ 1.

Now we combine this with (4) to get

T

(
1

P
− 1,

tP 2

(1− 2P )2
, x

)
= M

(
1− 1

P
, tP 2,

x

2P − 1− Px+ x

)
T

2P − 1
+ 1.

Therefore,

T

(
1

P
− 1,

tP 2

(1− 2P )2
, 2− 1

P

)
= M

(
1− 1

P
, tP 2, 1

)
T

2P − 1
+ 1.

Using (8), we can write M in terms of D and P . So

T

(
1

P
− 1,

tP 2

(1− 2P )2
, 2− 1

P

)
=

(D − 1)P

D
· T

2P − 1
+ 1.

Solving for T gives the relation

T

(
1

P
− 1,

tP 2

(1− 2P )2
, 2− 1

P

)
=

(2P − 1)D

DP + P −D
. (11)

Finally, using the formula (5) for T and rearranging gives the desired result.

4 Analysis

The main purpose of this section is to reduce the problem of showing that the generating
functions P and D have the same radius of convergence to a few conjectures about the
generating function Q(a, u) for quarter plane loops. We will also give some evidence for
the stronger conjecture below.

Conjecture 4.1. For n ∈ Z≥0, let pn be the number of permutations of size n which are
sortable by two stacks in parallel and let dn be the number of permutations of size n which
are sortable by a deque. We conjecture based on theorem 3.9 that pn ∼ const · µn · nγ and
dn ∼ const · µn · n−3/2 for some constants µ and γ.

We first list three conjectures which are needed to show the above conjectures. The
following are conjectures 10, 11 and 12 in [2], respectively.
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Conjecture 4.2. The series Q(a, u) is (a+ 1)-positive. That is, Q takes the form

Q(a, u) =
∑
n≥0

unPn(a+ 1),

where each polynomial Pn has positive coefficients.

Conjecture 4.3. the radius of convergence ρQ(a) of Q(a, ·) is given by

ρQ(a) =


1

(2 +
√

2 + 2a)2
, if a ≥ −1/2,

−a
2(a− 1)2

, if a ∈ [−1,−1/2].

Conjecture 4.4. The series Qu(a, u) = ∂Q
∂u is convergent at u = ρQ(a) for a ≥ −1/3.

Let tc denote the radius of convergence of the generating function P (t). Theorem 23
in [2] states that assuming the two Conjectures 4.2 and 4.4 are both true,

t

(2− 1
P (t))2

≤ ρQ(1/P (t)− 1),

for 0 ≤ t ≤ tc, with equality if and only if t = tc, and

P (tc) ≤
3

2
.

Moreover, the following corollary in [2] states that assuming the last three conjectures are
all true, the following equation holds:√

2P (tc) = 1 +
√

2tcP (tc). (12)

Note that in [2] the symbol S is used instead of P to denote the generating function for
permutations sortable by two stacks in parallel.

Theorem 4.5. Assuming the conjectures 4.2, 4.3 and 4.4, the number of permutations
of size n sortable by two stacks in parallel and the number of permutations sortable by a
deque of size n have the same exponential growth rate.

Proof. It suffices to prove that the generating functions P (t) and D(t) have the same radius
of convergence tc. Since every permutation which is sortable by two stacks in parallel is
also sortable by a deque, the coefficients of D(t) are no smaller than the coefficients of
P (t). Hence the radius of convergence tD of D(t) satisfies tD ≤ tc. Therefore, it suffices
to prove that D(t) is convergent for t ∈ [0, tc).

Since P (t) is convergent for t ∈ [0, tc), the series

1− 4P (t) + 4P (t)2 − 8P (t)2t+ 4P (t)2t2 − 4P (t)t

is also convergent in this region. Since P (t) has positive coefficients, it is increasing on
the interval [0, tc]. Hence,

1 = P (0) ≤ P (t) ≤ P (tc) ≤
3

2
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inside this interval. Therefore, since we are assuming Conjecture 4.3, we have the inequal-
ity

t

(2− 1
P (t))2

≤ ρQ(1/P (t)− 1) =
1

(2 +
√

2/P (t))2
,

where equality holds if and only if t = tc. Taking square roots on both sides and rearrang-
ing, noting that 2(2− 1/P (t)) = (2 +

√
2/P (t))(2−

√
2/P (t)), we get the inequality√

2P (t) ≥ 1 +
√

2tP (t),

with equality if and only if t = tc. Now we can remove the square roots as follows to get
the inequality

0 ≤(
√

2P − 1−
√

2tP )(
√

2P + 1−
√

2tP )(
√

2P − 1 +
√

2tP )(
√

2P + 1 +
√

2tP )

=1− 4P (t) + 4P (t)2 − 8P (t)2t+ 4P (t)2t2 − 4P (t)t,

with equality if and only if t = tc. Since the series

1− 4P (t) + 4P (t)2 − 8P (t)2t+ 4P (t)2t2 − 4P (t)t

is convergent and positive for t ∈ [0, tc), the series√
1− 4P (t) + 4P (t)2 − 8P (t)2t+ 4P (t)2t2 − 4P (t)t

is also convergent in this domain. Hence, the series

2D(t) = 2 + t+ 2Pt− 2Pt2 − t
√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt

is also convergent in this domain.

For the following analysis, we will assume that

P (t) = c0 + c1(1− t/tc) + cα(1− t/tc)α + o((1− t/tc)α), (13)

for some constants c0, c1 and cα and α, with cα 6= 0. In the next section we will present
numerical evidence that α ≈ 1.473, but for the following theorem we will assume only that
2 > α > 1.

Theorem 4.6. Assuming that P takes the form given in (13), and assuming the three
conjectures 4.2, 4.3 and 4.4, we have D(t) = D(tc) + kD(1 − t/tc)1/2 + o((1 − t/tc)1/2),
where kD is given by the equation

kD = −tc
√

(2c0)3/2tc − 2c1

√
tc.

Proof. First, using (10), we can rewrite (12) as

√
2c0 = 1 +

√
2tcc0.

It follows that

0 = (1 +
√

2tcc0 −
√

2c0)(1 +
√

2tcc0 +
√

2c0)(1−
√

2tcc0 −
√

2c0)(1−
√

2tcc0 +
√

2c0)

= 1− 4c0 + 4c2
0 − 8c2

0tc + 4c2
0t

2
c − 4c0tc
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Now, recall that

2D(t) = 2 + t+ 2Pt− 2Pt2 − t
√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt.

Using (13) we can expand the expression under the square root as a power series in
(1− t/tc).

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt

=(1− 4c0 + 4c2
0 − 8c2

0tc + 4c2
0t

2
c − 4c0tc)

+(−4c1 + 8c0c1 − 16c0c1tc + 8c0c1t
2
c − 4c1tc + 8c2

0tc + 4c0tc − 8c2
0t

2
c)(1− t/tc)

+(−4cα + 8c0cα − 16c0cαtc + 8c0cαt
2
c − 4cαtc)(1− t/tc)α

+o((1− t/tc)α)

=(−4c1 + 8c0c1 − 16c0c1tc + 8c0c1t
2
c − 4c1tc + 8c2

0tc + 4c0tc − 8c2
0t

2
c)(1− t/tc)

+(−4cα + 8c0cα − 16c0cαtc + 8c0cαt
2
c − 4cαtc)(1− t/tc)α

+o((1− t/tc)α)

=q1(1− t/tc) + qα(1− t/tc)α + o((1− t/tc)α).

Here q1 and qα are constants defined by

q1 = −4c1 + 8c0c1 − 16c0c1tc + 8c0c1t
2
c − 4c1tc + 8c2

0tc + 4c0tc − 8c2
0t

2
c

and
qα = −4cα + 8c0cα − 16c0cαtc + 8c0cαt

2
c − 4cαtc.

Since this expression is non-negative for t ∈ [0, tc], we must have q1 ≥ 0.
Taking the square root of this, we get√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt

=(1− t/tc)1/2
√
q1 + qα(1− t/tc)α−1 + o((1− t/tc)α−1)

=
√
q1(1− t/tc)1/2 + o((1− t/tc)1/2)

Finally, we can use this to determine the asymptotics of D

2D(t) =2 + t+ 2Pt− 2Pt2 − t
√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt

=(2 + tc + 2c0tc − 2c0t
2
c)− tc

√
q1(1− t/tc)1/2 + o((1− t/tc)1/2)

Simplifying this using the equation
√

2c0 = 1 +
√

2tcc0 gives the desired expression for
kD.

Theorem 4.7. With the same assumptions as in the previous theorem, and the additional
assumptions that kD > 0 and α < 3/2, we have the expansion

D(t) = D(tc) + kD(1− t/tc)1/2 + kα(1− t/tc)α−1/2 + o((1− t/tc)α−1/2),

where kα is given by the equation

kα =
−t3/2c cα√

(2c0)3/2tc − 2c1
√
tc
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Proof. From the proof of the previous theorem we have√
1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt

=(1− t/tc)1/2
√
q1 + qα(1− t/tc)α−1 + o((1− t/tc)α−1)

Since q1 > 0, we can expand this as a power series in (1− t/tc) as follows

(1− t/tc)1/2
√
q1 + qα(1− t/tc)α−1 + o((1− t/tc)α−1)

=(1− t/tc)1/2

(
√
q1 +

qα
2
√
q1

(1− t/tc)α−1 + o((1− t/tc)α−1)

)
=
√
q1(1− t/tc)1/2 +

qα
2
√
q1

(1− t/tc)α−1/2 + o((1− t/tc)α−1/2)

Therefore, we have

2D(t) =2 + t+ 2Pt− 2Pt2 − t
√

1− 4P + 4P 2 − 8P 2t+ 4P 2t2 − 4Pt

=(2 + tc + 2c0tc − 2c0t
2
c)− tc

√
q1(1− t/tc)1/2 +

tcqα
2
√
q1

(1− t/tc)α−1/2 + o((1− t/tc)α−1/2)

Simplifying this using the equation
√

2c0 = 1 +
√

2tcc0 gives the desired expression for
kα.

5 Asymptotics

In this section we make a numerical study of various generating functions related to
quarter-plane loops, tsips and deques. We use the two most common methods of se-
ries analysis, the ratio method and the method of differential approximants. Full details
of these methods can be found in, for example, [6]. Both methods aim to estimate the
radius of convergence (r.c.) zc and associated exponent θ of functions whose asymptotic
behaviour is given by

F (z) ∼ A
(

1− z

zc

)θ
, as z → z−c . (14)

It follows that

fn = [zn]F (z) ∼ An−θ−1

Γ(−θ)znc
. (15)

5.1 Ratio method.

The ratio method, as the name implies, relies on extrapolating the ratio of successive
coefficients, rn. One has

rn =
fn
fn−1

=
1

zc

(
1− θ + 1

n
+ o(1/n)

)
. (16)

Clearly, extrapoltating the ratios rn against 1/n should, for sufficiently large n, give a
linear plot which extrapolates to 1/zc at 1/n = 0. The gradient is −(θ + 1)/zc. So from
the intercept one can estimate the radius of convergence, and from the gradient and the
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estimate of the radius of convergence, one can estimate the exponent θ. In favourable
cases, where the singularity is precisely as given in (14), the term o(1/n) can be replaced
by O(1/n2), and the ratio plot will usually be linear from quite low values of n.

If the r.c. is known, or very accurately estimated from some other method, it follows
from (16) that a more precise estimate of the exponent can be made from estimators

θn = n(1− zc · rn)− 1 + o(1), (17)

where in favourable cases the term o(1) can be replaced by O(1/n).
Even if the r.c. is not known, one can obtain an estimate of the exponent independent

of the r.c. by extrapolating ratios of ratios, so that

tn =
rn
rn−1

=

(
1 +

1 + θ

n2
+ o

(
1

n2

))
. (18)

So we can define θn, an estimator of the exponent θ, as

θn = (tn − 1)n2 − 1 = θ + o(1). (19)

where again, in favourable cases, the term o(1) can be replaced by O(1/n).

5.2 Method of differential approximants

The method of differential approximants [6] fits the known coefficients of a power series
to a number (typically 10 or 12) of holonomic differential equations, and uses the critical
parameters (the radius of convergence and exponent at that point) of those differential
equations as estimators of the corresponding quantities for the underlying series expansion.

More precisely, one uses the known series coefficients to find polynomials Qk(z) and
P (z) such that the power series solution F̃ (z) of the holonomic differential equation

M∑
k=0

Qk(z)

(
z

d

dz

)k
F̃ (z) = P (z) (20)

agrees with the known coefficients of the function F (z) being approximated. The order
M of the ode we refer to as the order of the approximant.

Constructing such differential approximants (DAs) is straightforward computationally,
and only involves solving a linear system of equations. Several such DAs are constructed
by varying the degrees of the polynomials Qk(z) and P (z), while still using most, or all
of the known series coefficients. The singularities are given by the zeros zi, i = 1, . . . , NM

of QM (z), where NM is the degree of QM (z). We take as the dominant singularity that
which is both closest to the origin and common to all (or almost all) the DAs. Critical
exponents θi follow from the indicial equation of the DA. For the simplest (and most
frequent) situation where there is a single root of QM (z) at zi,

θi = 1−M +
QM−1(zi)

ziQ′M (zi)
.

Slightly more complicated expressions are known for the cases of double, triple etc. roots.
Further details of both methods can be found in [6].
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5.3 Quarter-plane loops

We first studied quarter-plane loops, introduced by Albert and Bousquet-Mélou in [2] and
described in the previous sections. We generated 500 terms in the ogf from the recurrence
relation given in the next sub-section.

Using the method of differential approximants, in particular third-order approximants,
we were able to estimate the critical point to an accuracy of between 6 and 20 significant
digits, depending on the value of the parameter a. Based on these numerical results, we
conjectured the a-dependence of the radius of convergence, which is given as Conjecture
11 in [2], and is stated here immediately below Conjecture 4.1. For a = −1 and a = 1
the ogf is holonomic, and we found the defining differential equation explicitly. That is
to say, in those cases the differential approximants were precisely the defining odes. It is
for these two values of a that 15 digit accuracy in the radius of convergence was obtained.
For other values of a, the precision of our estimates was lower, which incidentally is good
heuristic evidence that the underlying generating function is non-holonomic.

We also confirmed the variation of the critical exponent with the parameter a, as
reported in [2]. As a point of clarification, the exponents we refer to relate to the generating
function, not the coefficients. For example, at a = 0, uc = (6 + 4

√
2)−1, and we conjecture

Q(u, 0) = q0 + q1(1− u/uc)θ + o((1− u/uc)θ),

whereas [un]Q(u, 0) ∼ const · u−nc · n−1−θ, where θ = π
arccos(

√
2−1)

and q0 and q1 are

constants. Similarly, we find

Q

(
u,−1

2

)
= q̃0 + q̃1(1− u/uc)3/4 + o((1− u/uc)3/4),

where q̃0 and q̃1 are constants, and uc = 1/9, so that [un]Q(u,−1/2) ∼ const · u−nc ·n−7/4.
While we were unable to find an exact expression for the critical exponent for all values

of a, we estimated the exponent values for several values of a ≥ −1/2, and found that the
exponent appears to be discontinuous at a = −1/2, which is also the case for half-plane
and full-plane walks. In particular, we found that the exponent increased monotonically
with a for a > −1/2. However it appears that the exponent when lima→−1/2+ is 1, but
at a = −1/2 it is 3/4. Such monotonic, continuously varying exponents would preclude
holonomic generating functions, except at isolated values of a. Subsequently, in as yet
unpublished work, Kilian Raschel told us of his conjectured result for the exponent, which
is

π

arccos
(

a−1
a+1+

√
2+2a

) for a ≥ 0.

Raschel’s conjecture agrees with our numerical results for an even broader range, notably
a > −1/2. As mentioned, at a = −1/2 our series analysis gives 0.750± 0.002, from which
we conjecture the exact value of 3/4. So not only do we observe the unusual phenomenon
of a critical exponent varying steadily with a parameter, but also the phenomenon of a
jump-discontinuity at a particular value of a, in this case at a = −1/2.
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5.4 Deques and two stacks in parallel.

Recall that D(t) is the ogf of the number of permutations sortable by a deque, and P (t)
is the corresponding ogf for the number of permutations sortable by two stacks in parallel
(tsips). Then, as shown above in Theorem 3.9,

P (t) =
(D(t)− 1)(D(t)− t− 1)

2t(D(t)− 1− tD(t))
, (21)

and equivalently that

D(t) =
t

2
+1+tP (t)−t2P (t)− t

2

√
1− 4P (t) + 4P (t)2 − 8tP (t)2 + 4t2P (t)2 − 4tP (t). (22)

The series start:

P (t) = 1 + t+ 2t2 + 6t3 + 23t4 + 103t5 + 513t6 + 2760t7 + 15741t8 + · · · tsips,

D(t) = 1 + t+ 2t2 + 6t3 + 24t4 + 116t5 + 634t6 + 3762t7 + 23638t8 + · · · deques.

We generated 500 terms in the tsip series from the functional equations in [2] using the
following method:

For integers n, k, x, y, let s(n, k, x, y) denote the number of n step quarter plane walks
with k ES or NW corners which start at (0, 0) and end at (x, y), so that

Q(a, u) =

∞∑
n=0

∞∑
k=0

s(n, k, 0, 0)akun.

We calculated the values s(n, k, x, y) for n ≤ 500 via the recurrence relation

s(n, k, x, y) =s(n− 1, k, x− 1, y) + s(n− 1, k, x, y − 1)

+s(n− 1, k, x+ 1, y) + s(n− 1, k, x, y + 1)

+s(n− 2, k − 1, x+ 1, y − 1)− s(n− 2, k, x+ 1, y − 1)

+s(n− 2, k − 1, x− 1, y + 1)− s(n− 2, k, x− 1, y + 1).

Now that we have calculated coefficients of Q(a, u), we can expand

F (p, t) = Q

(
−p, t

(1− p)2

)
− 2p+ 1

as a series in p and t. Next we calculated the first 500 terms of the series p(t) which sends
F (p(t), t) to 0. Note that p is called S• in [2]. Finally we calculated the first 500 terms of
P (t), using the equation

P (t) =
1

1− p(t)
.

Calculating the series P (t) from the terms in Q(a, u) is very fast, so most of the time in
this algorithm was spent calculating the coefficients of Q.

Using the tsip series, along with Theorem 3.9, we then generated the first 500 terms
in the deque series. We subjected these two long series to differential approximant [6]
analysis.
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For tsips, 6th order DAs show the dominant singularity to be at tc = 0.1207524975763(2)
with an exponent 1.47309(3), with another exponent with the value 1.94652(2) at tc =
0.1207524975763(1). A third exponent at the same place with the value 4.72(4) is also
suggested. The quoted errors reflect only the scatter in individual approximant estimates,
and because of the presence of confluent singularities should be multiplied by a factor of
10 at least to be on the safe side.

With 8th order DAs, we find the dominant singularity to be at tc = 0.1207524975763(2)
with an exponent 1.47309(4), and with another exponent 1.94652(2) at tc = 0.1207524975764(8).
A third exponent at the same place with the value 4.72(4) is also suggested.

For the deque series, the unbiased analysis showed the dominant singularity to be at
zc = 0.12075249773(4), with exponents values of 0.507(4), 0.970(2), and 1.414(1). The
uncertainties quoted just reflect the variability in the estimates across many DAs, and
the lack of overlap between zc estimates for deques and tsips beyond the 10th significant
digit suggests that they are too optimistic. Nevertheless, 10-digit agreement gives consid-
erable credence to the conjecture that they are indeed equal, and we assume this for the
subsequent analysis. The dominant exponent is very close to 1/2 exactly, which provides
numerical support for the conjectured square-root singularity obtained in the previous
section.

Another way to study the exponents for these two problems is by the ratio method.
We write [tn]P (t) ∼ const ·µn ·ngp and [tn]D(t) ∼ const ·µn ·ngd . Then from the Hadamard
(coefficient-by-coefficient) quotient,

qn =
[tn]P (t)

[tn]D(t)
∼ const · nθ,

where θ = gp − gd. Then the ratios of successive coefficients rn behave as

rn =
qn
qn−1

∼ 1 +
θ

n
+ o(1/n).

We can estimate the exponent θ by extrapolating a sequence of estimators {θn}, defined by
n · (rn−1) ∼ θn+ o(1). The result is shown in Figure 4, in which θn is shown extrapolated
against 1/n. While it is difficult to extrapolate this curve, a limit in the range [-0.975–
-0.972] looks plausible.

We also analysed the deque series by the ratio method. From eqn (19), estimators of
the deque exponent gd can be found, and these are shown extrapolated against 1/n in Fig
5. The plot is quite linear and is clearly going to a value close to −1.5.

We can refine this by calculating the exponent g more precisely from the local gradient
of the previous curve. This is hn = (gn − gn−1)n(1− n), where gn is the nth estimator of
gd. Then a straight line with this gradient will meet the ordinate at gn− hn

n , which should
be a refined estimator of the exponent g. This plot is shown in Fig 6. That the curve
appears to be going slightly below -1.5 is, we believe, of no consequence. We believe that
if we had several thousand terms we would see this curve pass through a minimum, and
increase to -1.5 exactly.

Accepting the conjectured square-root singularity of the deque generating function,
numerical results thus far suggest that

D(t) = D(tc) +D1(tc)
√

1− t/tc +D2(tc) · (1− t/tc)1/2+∆ + · · · (23)

25



Figure 4: Exponent estimates θn plotted against 1/n. Note limit appears to be around
-0.974.

Figure 5: Exponent estimates gn plotted against 1/n for deques. The limit appears to be
g ≈ −1.5.
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Figure 6: Extrapolated exponent estimates hn plotted against 1/n for deques. The limit
appears to be around g ≈ −1.500.

where 0 < ∆ ≈ 0.47 < 1/2, as this gives the value 0.97 observed as the sub-dominant
exponent for deques. Similarly, it appears that

P (t) = P (tc)− tcP ′(tc)(1− t/tc) + P1(tc)(1− t/tc)1+∆ + o((1− t/tc)1+∆). (24)

To see how this is consistent with (21) and (22), write (23) as

D(t) = D(tc) +D1(tc)(1− t/tc)1/2 +D2(tc)(1− t/tc)β + · · · ,

where β = 1/2 + ∆. Substitute into (21). This gives an expression for P (t) which includes
terms of O(

√
1− t/tc) and O((1− t/tc)β). Then a little algebra shows that the coefficients

of both these terms vanish if

D(tc) =
1 + t

3/2
c

1− tc
. (25)

Remarkably, this is the case, as follows from the results of (12).
More precisely, in the proof of (4.6) we have shown that

P (tc) =
1

2(1−
√
tc)2

and
2D(tc) = 2 + tc + 2P (tc)(tc − t2c),

which can readily be shown to give (25).
From eqn (24) and the proof of (4.6), we have

D1(tc) = −23/4 · t3/2c

√
P (tc)3/2 +

√
P (tc) · tc(1−

√
tc) · P ′(tc). (26)
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We also estimated the value of P ′(tc) numerically from Padé approximants to the series
for P (t)−P (tc), evaluated at t = tc. Numerical estimates of P ′(tc) give D1(tc) ≈ −0.0540
from (26), which is precisely equal to direct estimates of d1(tc) obtained from our numerical
analysis of the deque series. There we formed the series for

D(t)−D(tc)√
1− t/tc

and evaluated the approximants at t = tc. Furthermore, using this amplitude value D1(tc),
and subtracting D(tc) + D1(tc)

√
1− t/tc from the deque series D(t) gives a remainder

series that behaves as const · (1 − t/tc)θ, where θ ≈ 0.973. So both ratio and differential
approximant analyses clearly identify this confluent exponent.

Similarly, we analysed the series for two stacks in parallel by the ratio method. The
exponent estimators gn, given by eqn (17), are plotted against 1/n in Fig. 7. The plot is
visually quite straight and is clearly going to a limit of about -2.475, as shown in Fig 7.

Figure 7: Exponent estimates gn plotted against 1/n for two stacks in parallel. The limit
appears to be about g ≈ −2.475.

As with the deque series, we can refine this exponent estimate by calculating the
exponent g more precisely from the local gradient of the previous curve. The refined
estimate of the exponent g is shown in Fig 8, and from that plot a limit around -2.474
seems quite plausible.

So the ratio plots support the conclusion that the exponent for the deque generating
function is very close to 0.5, corresponding to a square-root singularity, as conditionally
proved in Theorem 4.6. The first confluent exponent for deques has the approximate value
0.973, and these two exponents add to give the observed value 1.473 for the exponent of
the ogf for tsips, as can be seen from (21). A direct ratio analysis of the ogf for tsips also
gives an exponent value around 1.472− 1.474.
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Figure 8: Extrapolated exponent estimates gn plotted against 1/n for two stacks in parallel.
The limit appears to be around g ≈ −2.474.

Finally, we calculate the amplitudes, or pre-multiplying constants κd and κp, where

[tn]D(t) = dn ∼ κd · t−nc · n−3/2, and [tn]P (z) = pn ∼ κp · t−nc · n−2.473.

We do this by forming the sequences dn · tnc ·n3/2 ∼ κd+o(1) and pn · tnc ·n2.473 ∼ κp+o(1),
and extrapolating these against 1/n. In this way we estimate κd = 0.01524± 0.0005, and
κp = 0.08025± 0.0010.

Moving now from the arena of careful numerical work to that of wild speculation, in
some unpublished work we have studied the behaviour of 421-3 pattern-avoiding permu-
tations. We identified the critical exponent numerically, as

2

3

(
1 +

2π

3
√

3

)
= 1.472799717437 . . . .

We were struck by the fact that this is tantalisingly close to the observed exponent of
two stacks in parallel, though there is no obvious reason that the two problems should be
connected, except that they both involve pattern-avoiding permutations.

6 Conclusion

For quarter-plane loops we have provided numerical support for the variation of the critical
point with corner-parameter a, as conjectured in [2]. We also estimated the value of the
critical exponent for a variety of values of a ≥ −1/2. Our numerical exponent values
agree with the conjectured formula provided, in private correspondence, by Kilian Raschel.
There appears to be an exponent discontinuity at a = −1/2.
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Our principal result is Theorem 3.9, giving the solution of the deque generating func-
tion in terms of that for tsips. Other conclusions are subject to the validity of certain
conjectures. These include the result that the critical point for both the deque and tsip
generating functions are equal. We also provide compelling numerical evidence for this,
finding estimates that agree to 10 significant digits. Subject to these conjectures, we prove
in Theorem 4.6 that the deque generating function has a square-root singularity.

From the solutions of the deque and tsip generating functions, we produced 500 terms
of the generating functions, and subjected these to careful numerical analysis. The asymp-
totic form of the generating functions was found to be, for deques,

D(t) ∼ D(tc) +D1(tc)
√

1− t/tc +D2(tc) · (1− t/tc)1/2+∆ + · · · (27)

where ∆ ≈ 0.473, tc = 0.1207524977, d0(tc) = 1+t
3/2
c

1−tc ≈ 1.185059767, and d1(tc) ≈
−0.0543. For tsips we found

P (t) ∼ P (tc)+−tcP ′(tc)(1− t/tc)+P1(tc)(1− t/tc)1+∆ +P2(tc)(1− t/tc)1+2∆ + · · · , (28)

where P (tc) = 1
2(1−

√
tc)2
≈ 1.174361446, P1(tc) ≈ 0.1940, and ∆ ≈ 0.473. At the coefficient

level we have
[tn]D(z) ≈ 0.01524 · t−nc · n−3/2,

and
[tn]P (t) ≈ 0.08025 · t−nc · n−2.473.

Given the simplicity of the relationship (1) between the two generating functions P (t)
and D(t) characterising tsips and deques respectively, there could be a much simpler proof
than the one we have constructed. It also remains a source of some frustration that we
cannot establish the asymptotics rigorously, nor even unequivocally prove that the critical
points of deques and tsips are identical, but hopefully our results will stimulate work in
this direction.
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