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EHRHART POLYNOMIAL FOR LATTICE SQUARES, CUBES AND

HYPERCUBES

EUGEN J. IONASCU

Abstract. In this paper we are constructing integer lattice squares, cubes or hypercubes in Rd

with d ∈ {2, 3, 4}. We find a complete description of their Ehrhart polynomial. We characterize
all the integer squares in R4, in terms of two Pythagorean quadruple representations of the form
a2+ b2+ c2 = d2, and then prove a parametrization in terms of two quaternions of all such squares.
We introduce the sequence of almost perfect squares in dimension n. In dimension two, this is very
close to the sequence A194154 (in OEIS).

1. INTRODUCTION

Eugène Ehrhart ([8],[9]) proved that given a d-dimensional compact simplicial complex in Rn

(1 ≤ d ≤ n), denoted here generically by P, whose vertices are in the lattice Zn, there exists a

polynomial L(P, t) ∈ Q[t] of degree d, associated with P, satisfying

L(P, t) = the cardinality of {tP} ∩ Zn, t ∈ N.

It is very interesting that one can say more about three of the coefficients of L(P, t):

(1) L(P, t) = V ol(P)td +
1

2
V ol(∂P)td−1 + ...+ χ(P),

where V ol(P) is the usual volume of P normalized with respect to the sublattice containing P,

V ol(∂P) is the surface area of P normalized with respect to the sublattice on each face of P and

χ(P) is the Euler characteristic of P (in the sense of polytopal complexes, so for a convex polytope

it is equal to one). In general, the other coefficients in (1) may have complicated expressions in

terms of the vertices of P.

It is also known that the number of points in the interior of tP is given by (−1)dL(P,−t). For

a polytope that is a cross product of two polytopes, the Ehrhart polynomial is the product of the

corresponding smaller degree Ehrhart polynomials. In this article, we are studying this polynomial

for lattice squares, cubes, and hypercubes in Rn. Such objects have been constructed and counted

in several works (see [12], [24], [14], [19]).
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Figure 1. Square with a=5 and b=2

2. Squares

2.1. Squares in two dimensions. How general can a lattice square in two dimensions look like?

We may assume that one of the vertices is at the origin. Then the other vertices, in counterclockwise

order, are given by A(a, b), B(a− b, a+ b) and C(−b, a) where a and b are integers, not both zero,

and such that gcd(a, b) = 1. Using the facts mentioned in the Introduction, the polynomial in (1)

is simply E�(t) = (a2 + b2)t2 + 2t+ 1 and of course, E ◦

�

(t) = (a2 + b2)t2 − 2t+ 1, t ∈ N.

In Figure 1, we see the 28 points inside of the square OABC, with A(5, 2), B(3, 8) and C(−2, 5).

One interesting problem here is to determine the sequence of possible lattice points in the interior

of such a square. The first hundred terms of this sequence, listed in increasing order, are included

in the table below:

0 1 4 5 9 12 13 16 17 24 25 28 33 36 37 40 41 49 52 57

60 61 64 65 72 73 81 84 85 88 96 97 100 101 105 108 112 113 116 121

124 129 133 136 144 145 148 153 156 161 168 169 172 177 180 181 184 192 193 196

197 201 204 209 217 220 221 225 228 229 232 240 241 249 256 257 264 265 268 273

276 280 288 289 292 293 297 301 304 305 312 313 316 324 325 328 336 337 345 348

Let us call this sequence the almost perfect squares sequence. In Figure 2 we see some of the

squares that show that the above numbers are indeed in the sequence. As a curiosity, 2015 is

not in this sequence but 2016 is. This sequence is very close to A194154 in the OEIS (On-Line

Encyclopedia of Integer Sequences), but 20 is the first term that is not in our sequence.
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Figure 2. Various squares

Let us give a reformulation of the exact form of the Ehrhart polynomial above in conjunction

with the reciprocity property (about interior points), which can by shown independently using

Pick’s Theorem.

PROPOSITION 2.1. Given a, b with gcd(a, b) = 1 and t ∈ N, then

♯{(x, y) ∈ Z2 : ax+ by, ay − bx ∈ [1, t(a2 + b2)− 1]} = (a2 + b2)t2 − 2t+ 1.

PROOF. Counting the points inside the square OABC, with O(0, 0), A(a, b), B(a − b, a + b)

and C(−b, a), is equivalent to count the solutions (x, y) of the system (x, y) = α(ta, tb)+β(−tb, ta)

with α, β ∈ (0, 1). Since α = (x, y) · (a, b)/t(a2 + b2) = ax+by
t(a2+b2)

and β = (x, y) · (−b, a)/t(a2 + b2) =
ay−bx

t(a2+b2)
we see that the constraints on α and β is equivalent to ax+ by, ay− bx ∈ [1, t(a2+ b2)−1].

Hence, the result follows from the Ehrhart polynomial expression.

So, every term of the sequence of almost perfect squares is the answer to a counting as in

Proposition 2.1, which in particular gives the justification of one of our earlier claims:

♯{(x, y) ∈ Z2 : 44x+ 9y, 44y − 9x ∈ [1, 2016]} = 2016.

2.2. Squares in three dimensions. In R3, we can obtain a lattice square by taking two orthog-

onal vectors with integer coordinates of the same length: u = (a, b, c), v = (a′, b′, c′) such that

a2 + b2 + c2 = a′2 + b′2 + c′2 = ℓ and aa′ + bb′ + cc′ = 0. In [12], two such vectors are call twin

vectors. The number of such twin vectors having a given length is calculated in [12]. In [19], this

concept is generalized to m dimensions and called m-icube (a set of m vectors in Zn, mutually

orthogonal and of the same length). Since we are interested in generalizing these ideas to any

dimension, we are going to use this terminology also.
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Although it does not make much of a difference it is natural to assume that the square is

irreducible, i.e., gcd(a, b, c, a′, b′, c′) = 1. If we set d = gcd(a, b, c), d′ = gcd(a′, b′, c′) and D =

gcd(bc′−b′c, ac′−a′c, ab′−b′a), we have the following more general formula, than in two dimensions,

for the E�(t).

THEOREM 2.2. The Ehrhart polynomial of a lattice square embedded into R3, described above

and with the notation introduced is given by

(2) E�(t) = Dt2 + (d+ d′)t+ 1.

PROOF. The fundamental domain of the lattice containing the triangle has a volume equal to
√

n2
1 + n2

2 + n2
3 where −→n = [n1, n2, n3] is a vector normal to the plane containing the triangle and

such that gcd(n1, n2, n3) = 1 (see [1] and [18]). Such a vector is given clearly by the cross-product of

u and v: n = 1
D
u×v = 1

D
(bc′−b′c,−(ac′−a′c), ab′−b′a). Let us observe that because of Lagrange’s

Identity ℓ2 = (a2+b2+c2)(a′2+b′2+c′2) = (aa′+bb′+cc′)2+(bc′−b′c)2+(ac′−a′c)2+(ab′−b′a)2,

we conclude that |n| = ℓ
D
. Hence, we see that the first coefficient of the Ehrhart polynomial is

√
ℓ
2
/( ℓ

D
) = D. Similar argument goes for the second coefficient.

Standard Examples: Let us analyze some examples which are not xy, xz or yz-plane examples.

First, let us take u = (3,−3, 0) and v = (1, 1, 4); observe that |u|2 = |v|2 = 18 and u · v = 0. In this

case n = 6(−2,−2, 1), and the equation of the plane is 2x+ 2y − z = 0 and E�(t) = 6t2 + 4t + 1.

We know that E�(−1) = 3 represents the number of lattice points in the interior of the square.

We notice that 3 (and E�(−2) = 17) was not an almost perfect number. Hence we may want to

generalize that sequence to almost perfect squares in dimension n.

What is interesting is that in the plane 2x+ 2y − z = 0 we have another square: u = (2,−1, 2)

and v = (−1, 2, 2). Also, the square above can be written in terms of this one basically like in

two dimensions: u = u − v and v = u + v. For this square, n = 3(−2,−2, 1) and so the Ehrhart

polynomial is E{u,v}(t) = 3t2 + 2t+1. We see that E{u,v}(−1) = 2 which is yet new for the almost

perfect square sequence compared with dimension two.

If we take the twin vectors u = (6,−2, 3) and v = (−2, 3, 6) we get n = 7(−3,−6, 2) and so the

Ehrhart polynomial is E(t) = 7t2+2t+1. There seems to be very few numbers that are not perfect

squares in 3D: 7, 14, 23,...

For an example of an irreducible square, for which d and d′ in Theorem 2.2 are both greater than

one, we refer to u = 5(8, 12, 9) and v = 17(0,−3, 4). Its polynomial is E(t) = (5t+ 1)(17t + 1).

How does one construct such squares in R3? We observed in the proof of Theorem 2.2 that every

such square is contained in a plane whose normal n = (n1, n2, n3) satisfies

(3) ℓ2 = n2
1 + n2

2 + n2
3.
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A solution of this type of Diphantine equation is usually referred in the literature as a Pythagorean

quadruple. For the number of primitive solutions of (3) in terms of ℓ, we refer the reader to a recent

paper of Werner Hürlimann ([14]) but also [3]. There are at least two other terms used for these

quadruples of integers: cuboids ([14]) and Lorenz quadruples (see [13]). We include in the next

tables all primitive solutions for odd values ℓ ∈ {1, 3, ..19}:

ℓ [a,b,c], gcd(a, b, c) = 1, c even
1 [1,0,0]
3 [1,2,2]
5 [3,4,0]
7 [3,6,2]
9 [1, 4, 8], [7, 4, 4]

,

ℓ [a,b,c], gcd(a, b, c) = 1 , c even
11 [9, 2, 6], [7, 6, 6]
13 [5, 12, 0], [3, 4, 12]
15 [5, 14, 2], [11, 2, 10]
17 [15, 0, 8], [1, 12, 12], [9, 12, 8]
19 [1, 6, 18], [17, 6, 6], [15, 6, 10]

So, having a Pythagorean quadruple, how can we construct a related twin set of vectors? We

include a partial answer to this question at this point, but we will include the complete solution

later in this paper.

THEOREM 2.3. Suppose that u′ = (a, b, c) satisfies n1a+n2b+n3c = 0, where n2
1+n2

2+n2
3 = ℓ2

with all variables involved being integers. Then there exist v = (a′, b′, c′) such that ℓu′ and v define

a lattice square in the plane of normal n = (n1, n2, n3).

PROOF. We define v to be the cross-product of u′ and n. Clearly, v is perpendicular to n and

so it is in the right plane. Since u′ and n are perpendicular, |v| = |u′||n| = ℓ|u′|.
It is natural to look for the “smallest” square in the plane n1a + n2b + n3c = 0. This leads

us to the shortest vector problem (SVP), i.e., finding a non-zero vector in a lattice of minimum

norm. An interesting problem, at this point, is to characterize all the values ℓ so that
√
ℓ appears

as side-lengths for an lattice embedded square in Rm, m ≥ 2. If we denote this set by L, from
the two dimensions construction, we see that L is invariant under multiplication with numbers

which are sums of two squares. For m = 3, it is also clear all the numbers of the form 4k(8s − 1)

are not in L, since these are not representable as sums of three squares (Legendre’s three-square

theorem). Also, 3, 11 or 19 (see the sequence A223732 in OEIS) are not in L, since they have only

one representation as sum of three squares and these representations contain only odd numbers.

Hence the sum aa′ + bb′ + cc′ is also odd and so, it cannot be zero. We will describe the set L at

the end of the subsection. We will see that in R4 and beyond, L = N.

We have the following parametrization for those squares whose side-lengths are natural numbers

of the form x2 + y2 + z2 + t2 (see [17] and [24]):

(4) u := (2ty + 2zx, 2tz − 2yx, t2 − z2 − y2 + x2), v := (2zy − 2tx, z2 − t2 + x2 − y2, 2tz + 2yx),
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having normal vector n = (−x2 + t2 − y2 + z2,−2(tx + zy), 2(ty − zx)), |n| = x2 + y2 + z2 + t2.

Next, we show that, as in [17] and [24], the following similar parametrization for the solutions of

(3) takes place. The proof is essentially the same as in [24] but we include it for the convenience of

the reader.

THEOREM 2.4. ([24]) Every primitive solution of (3), after a permutation of variables and

change of signs, is given by n1 = 2(zy − tx), n2 = 2(tz + yx) and n3 = z2 − t2 + x2 − y2, and

ℓ = x2 + y2 + z2 + t2 for some integers x, y, z and t.

PROOF. As usual, a primitive solution of (3) is one for which gcd(n1, n2, n3) = 1. We must

have ℓ odd since otherwise gcd(n1, n2, n3) ≥ 2. In this case, one of the ni must be odd and the

other two even. Without loss of generality, let us assume that n1 and n2 are even. Then, we have

(ℓ− n3)(ℓ+ n3) = n2
1 + n2

2.

We know that ℓ+ n3 = 2α and ℓ− n3 = 2β are both even, and then the above equality becomes

αβ = (n1/2)
2 + (n2/2)

2 = A2 +B2 = (A+Bi)(A−Bi),

where A = n1/2 and B = n2/2. A Gaussian prime of the form p = 4k + 3 which divides αβ, must

divide both A and B. So, it cannot divide both α and β because it then divides ℓ = (α + β)/2

and n3 = (α− β)/2, which implies that gcd(n1, n2, n3) ≥ p. Hence, α and β are both sums of two

squares. If we let gcd(A+ iB, α) = t+ iy and gcd(A+ iB, β) = x+ iz. Let us make the observation

that these equalities are defined up to a unit, i.e., ±1 or ±i.

Since α is real, t− iy divides α and so α = (t2 + y2)α′. But every prime factor of α, appears as

a factor of either A + Bi or A − Bi. Taking into account the multiplicities we see that α divides

t2 + y2 and so α′ = 1. Similarly, we have β = x2 + z2. Also, t+ iy divides A+ iB and also x+ iz

divides A+ iB. Hence A+ iB = (t+ iy)(x+ iz)k and from here A2 +B2 = (t2 + y2)(x2 + z2)|k|2

which together with what we have shown earlier forces |k| = 1. So, by changing x and y we can

assume that k = 1. Hence we have A = tx−zy and B = xy+ tz. Then ℓ = α+β = x2+y2+z2+ t2

and n3 = α− β = t2 + y2 − x2 − z2.

Theorem 2.4 allows us to characterize L. The result is not new, as we found recently, it is

contained in [12]. We include a proof of it, based on our development of the ideas.

THEOREM 2.5. The set of all ℓ so that
√
ℓ is the side-lengths for an embedded square in Z3 is

the set of positive integers which are sums of two squares.

PROOF. In one direction, i.e., L contains the set of all positive integers which are sums of two

squares, we can observe that the lengths for squares in two dimensions are of the form
√
a2 + b2.
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For the other direction, if we start with an arbitrary square, S, in Z3, let us suppose the side is
√
ℓ. As in the proof of Theorem 2.3, this square is contained in a plane of normal n = (n1, n2, n3),

with n2
1 + n2

2 + n2
3 = ℓ2. By Theorem 2.4, we can find x, y, z and t, such that n1 = 2zy − 2tx,

n2 = 2tz+2yx and n3 = z2− t2+x2− y2. Then the parametrization (4) gives a square in the same

plane as S, whose sides are ℓ. We can then write the vector of this square in the basis given by two

of the vectors in S: w = αu+βv for some α and β ∈ Q. Then, taking norms we get ℓ2 = α2ℓ+β2ℓ

so ℓ = α2 + β2. This shows that ℓ = A2 +B2 for some A, B ∈ Z.

Theorem 2.3 and Theorem 2.5 imply the next consequence which one can also prove elementary.

COROLLARY 2.6. Given a point P = (x, y, z) ∈ Z3 in the plane of equation n1x+n2y+n3z = 0

with n2
1 + n2

2 + n2
3 = ℓ2 for some ℓ ∈ N, then the number x2 + y2 + z2 is actually a sum of two

squares.

2.3. Squares in R4. Perhaps, one of the simplest ways to construct squares in Z4 is to take two

squares in two dimensions and “add” them together, each on its own dimensions. In other words,

the two vectors u and v that define the square, as we have seen before, are of the form u = (a, b, c, d)

and v = (−b, a,−d, c). We have clearly u · v = 0 and ‖u‖2 = ‖v‖2 = a2 + b2 + c2 + d2. This simple

example allows us to answer the question about the possible side-lengths of such a squares. By

Lagrange’s Four Square Theorem, we see that every natural number is a possible side-length of a

square. Are these squares the most general situation that one can expect? We observe that u and

v are essentially the first two rows of the following pseudo-orthogonal matrix (every two rows are

mutually orthogonal and have the same norm):

Oa,b,c,d =




a b c d
−b a d −c
−c −d a b
−d c −b a


 .

It is not difficult to see that the product of matrices like these (OTO = tI) is of the same form.

This allows one to define a certain multiplication on vectors in R4 which is exactly the quaternion

multiplication that we will be using latter.

Example 1. Let us compute the Ehrhart polynomial for a particular case like this that which

gives a new value for its sides. We have u = (2, 1, 1, 1) and v = (−1, 2,−1, 1). Using the same idea

as in the three dimensions we are computing two normal vectors that define the orthogonal space

of the plane generated by u and v. For a generic point P = (x, y, z, t) ∈ R4, the two equations,

computed with the help of the cross-product in the three dimensions, are

3x− y − 5z = 0 and 2y + z − 3t = 0.
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We observe that both u and v satisfy these equations. Since these two equations can be solved for

y and t, we can find two integer vectors which generate the lattice Z4 intersected with the plane

defined by u and v: y = 3x − 5z and t = 2x − 3z which gives the two vectors α = (1, 3, 0, 2) and

β = (0,−5, 1,−3). We know then that these two vectors form a fundamental domain, so we need

to compute the area of the parallelogram generated by these two vectors: A = |α||β| sin(γ) where
cos γ = α · β/|α||β| = −3/

√
10. This gives A = 7 and so, the Ehrhart polynomial is

E�(t) = t2 + 2t+ 1 = (t+ 1)2.

For a set of vectors S in R4 we denote as usual by S⊥ the set of all vectors x ∈ R4 perpendicular

to every vector v in S, i.e.,

S⊥ = {(x1, x2, x3, x4) ∈ R4|x1v1 + x2v2 + x3v3 + x4v4 = 0 for all v = (v1, v2, v3, v4), v ∈ S}.

THEOREM 2.7. (i) Given integer vectors u = (u1, u2, u3, u4) and v = (v1, v2, v3, v4) such that

0 < ℓ = u21 + u22 + u23 + u24 = v21 + v22 + v23 + v24 , u1v1 + u2v2 + u3v3 + u4v4 = 0,

then there exist an odd k ∈ N dividing ℓ and two vectors w1 and w2 with integer coordinates such

that

w1 = (0, α1 − β1, α2 − β2, α3 − β3) and w2 = (α3 − β3,−α2 − β2, α1 + β1, 0) with

(5) k2 = α2
1 + α2

2 + α2
3 = β2

1 + β2
2 + β2

3 ,

αi and βi of the same parity and u, v ∈ {w1, w2}⊥. One can permute the coordinates of u and v

and/or change their signs in order to have w1 and w2 linearly independent.

(ii) If gcd(α1, β1, α2, β2, α3, β3) = 1 then the volume of the fundamental domain of the minimal

lattice containing u and v is equal to k.

PROOF. Using Lagrange’s Identity, we get

ℓ2 = (

4∑

i=1

u2i )(

4∑

i=1

v2i ) = (

4∑

i=1

uivi)
2 +

∑

1≤i<j≤4

(uivj − ujvi)
2.

Since u1v1 + u2v2 + u3v3 + u4v4 = 0, this implies that

(6) ℓ2 =
∑

1≤i<j≤4

(uivj − ujvi)
2.

If we denote by ∆ij = (−1)i−j(uivj − ujvi), it is not difficult to check that
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(7) ∆12∆34 −∆13∆24 +∆14∆23 = 0.

This helps us change (6) into

(8) ℓ2 = (∆12 ±∆34)
2 + (∆13 ∓∆24)

2 + (∆14 ±∆23)
2.

One can check that

(9)





u1(0) + u2∆34 + u3∆24 + u4∆23 = 0

v1(0) + v2∆34 + v3∆24 + v4∆23 = 0

u1∆23 + u2∆13 + u3∆12 + u4(0) = 0

v1∆23 + v2∆13 + v3∆12 + v4(0) = 0.

Let us observe that if 2 divides ℓ, then all ∆ij are divisible by 2, because all ui (vi) are all even

or all odd. In order to prove the claim, we simplify (8) by the greatest power of 2 possible and

take α1 = (∆12 + ∆34)/ℓ
′, α2 = (−∆13 + ∆24)/ℓ

′, α3 = (∆14 + ∆23)/ℓ
′, β1 = (∆12 − ∆34)/ℓ

′,

β2 = (−∆13 −∆24)/ℓ
′, and β3 = (∆14 −∆23)/ℓ

′, with ℓ′ so that gcd(α1, β1, α2, β2, α3, β3) = 1.

It is easy to check that if α3 6= β3 then the two vectors w1 and w2 are linearly independent and

so the orthogonal space {w1, w2}⊥ is two-dimensional. By permuting coordinates and/or changing

their signs, we can insure that α3 − β3 = 2∆23/ℓ
′ 6= 0, since by (6) and the assumption that ℓ > 0,

we see that not all of the ∆ij are equal to zero.

(ii) Let us denote by L the minimal lattice which contains the given square {u, v} and by V its

volume. As we observed in part (i) this lattice is the same as Z4 ∩ {w1, w2}⊥ if α3 6= β3. Let us

observe that the two vectors U := (0,∆12,−∆13,∆14) and V := (∆14,−∆24,∆34, 0) are in L. This
shows that 2U/ℓ′ = (0, α1 + β1, α2 + β2, α3 + β3) and 2V/ℓ′ = (α3 + β3,−α2 + β2, α1 − β1, 0) are in

L also. The area of the parallelogram determined by these two vectors is given by the square root

of the Gramian determinant

∣∣∣∣
(α1 + β1)

2 + (α2 + β2)
2 + (α3 + β3)

2 (α1 + β1)(β2 − α2) + (α2 + β2)(α1 − β1)
(α1 + β1)(β2 − α2) + (α2 + β2)(α1 − β1) (α3 + β3)

2 + (α2 − β2)
2 + (α1 − β1)

2

∣∣∣∣ =

=

∣∣∣∣
2(k2 + α1β1 + α2β2 + α3β3) 2(α1β2 − β1α2)

2(α1β2 − β1α2) 2(k2 + α3β3 − α2β2 − α1β1)

∣∣∣∣ .

This means that the vectors U/ℓ′ and V/ℓ′, still in L, form a parallelogram of an area, which is the

square root of

(1/4)[(k2 + α3β3)
2 − (α2β2 + α1β1)

2 − (α1β2 − β1α2)
2] =
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(1/4)[k4 + 2k2α3β3 + α2
3β

2
3 − (k2 − α2

3)(k
2 − β2

3)] = k2((α3 + β3)/2)
2.

It follows that V divides k|α3+β3|/2. In a similar way we can show that V divides k|αi±βi|/2 for

i = 1, 2, 3. Given the assumption that gcd(α1, β1, α2, β2, α3, β3) = 1, we conclude that V divides k.

In order to conclude that V = k, let us look at the Gram determinant of the vectors w1/(α3−β3)

and w2/(α3 −β3), which if added to L extends the lattice and gives a basis for it. Since its volume

can be determined by the same method as above, a similar calculation gives V ′ = k/|α3 − β3|.
This implies that V/V ′ is an integer, or k divides V |α3 − β3|. Since we can obtain similarly that k

divides V |αi ± βi|, we conclude that V = k.

Example 2: As in the case of equilateral triangles (see [16]), there is a converse of Theorem 2.7.

Let us take the first odd ℓ for which we get two essentially different representations as in (5):

112 = 92 + 62 + 22 = 72 + 62 + 62.

We can then choose α1 = 9, β1 = 7, α2 = 6, β2 = 6, α3 = 2, and β3 = 6. Then the two vectors,

defined in Theorem 2.7, are w1 = (0, 2, 0,−4) and w2 = (−4,−12, 16, 0). Then the space {w1, w2}⊥

is defined by the equations y − 2t = 0 and x+ 3y − 4z = 0. These can be simplified to y = 2t and

x = 4z − 6t. Because the generic vector in {w1, w2}⊥ ∩ Z4 is u = (4z − 6t, 2t, z, t) = z(4, 0, 1, 0) +

t(−6, 2, 0, 1) we can calculate, as before the “volume ” of the fundamental domain and obtain indeed

11. Then we get a quadratic form QF (z, t) = (4z − 6t)2 + (2t)2 + z2 + t2 = 17z2 − 48zt+41t2 that

should lead to the solutions we need solving the Diophantine equation QF (z, t) = 11k. It turns

out that the smallest multiple for which we have solutions is k = 11 and then two of the vectors

which define the square are u = (−4, 8, 5, 4) and v = (10, 2, 4, 1). Its Ehrhart polynomial is then

E�(t) = 11t2 + 2t + 1. We observe that we get new terms, such as 10, 94, and 266 for instance,

for the sequence of almost perfect squares in dimension 4, compared to dimension 2. This is an

example when all the ∆ij are divisible by 11.

As we have seen in ([16]), the following result gives a certain converse to Theorem 2.7.

THEOREM 2.8. Given k odd, and two different representations

k2 = a2 + b2 + c2 = a′2 + b′2 + c′2, with gcd(a, b, c, a′, b′, c′) = 1, c′ > c,

and a, a′ both odd. Then if we set ∆12 =
a′−a
2 , ∆34 =

a+a′

2 , ∆13 = − b′−b
2 , ∆24 =

b+b′

2 , ∆14 =
c+c′

2 ,

and ∆23 = c′−c
2 the equations (7) and (8) are satisfied. Moreover, the two dimensional space S of

all vectors [u, v, w, t] ∈ Z4, such that

(10)

{
(0)u +∆34v +∆24w +∆23t = 0

∆23u+∆13v +∆12w + (0)t = 0
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contains a family of squares.

PROOF. By construction we see that (8) is true. Since a, a′ are odd, the others must be even and

so, all numbers defined above are integers. We have then indeed

∆12∆34 −∆13∆24 +∆14∆23 = (1/4)[a′2 − a2 − (b2 − b′2) + (c′2 − c2)] = 0.

One can also check that k2 =
∑

i<j ∆
2
ij . We see that the assumption ∆23 > 0 insures that the

equations (10) define a two dimensional space in R4. We can solve the equations (10) for t and u:

t = −∆34v +∆24w

∆23
, u = −∆13v +∆12w

∆23
, with v,w ∈ Z.

If we denote a generic point P ∈ R4 in the plane (10), in terms of v and w, i.e.,

P (v,w) = [−∆13v +∆12w

∆23
, v, w,−∆34v +∆24w

∆23
],

we observe that for two pairs of the parameters, (v,w) and (v′, w′), we obtain ∆′
23 = wv′ − vw′,

∆′
12 = v(−∆13v

′ +∆12w
′

∆23
) +

∆13v +∆12w

∆23
v′ = ∆12∆

′
23/∆23,

and similarly ∆′
13 = ∆13∆

′
23/∆23, etc.

We want show that a non-zero square the formOP (v,w)P (v′, w′)Q (OQ = OP (v,w)+OP (v′, w′))

exists for some integer values of v, w, v′ and w′. We need to have OP (v,w)2 = OP (v′, w′)2 = ℓ

and P (v,w) · P (v′, w′) = 0.

If such a square exists, by Theorem 2.7, we may want to ℓ of the form ℓ = kℓ′ for some ℓ′ ∈ N.

By Lagrange’s identity, calculations similar to those in the derivation of (6), show that if

|P (v,w)|2 = |P (v′, w′)|2 = kℓ′ then

(P (v,w) · P (v′, w′))2 = k2ℓ′2 − (
∑

i,j

∆2
ij)

(
∆′

23

∆23

)2

= k2ℓ′2 − k2
(
∆′

23

∆23

)2

.

Hence, to get P (v,w) · P (v′, w′) = 0, it is enough to have ∆′
23 = ℓ′∆23 (provided that we have

already shown that |P (v,w)|2 = |P (v′, w′)|2 = kℓ′). In other words, a square exists if there exist

integer pairs (v,w) and (v′, w′) such that

(11) |OP (v,w)|2 = |OP (v′, w′)|2 = k
∆′

23

∆23
.

The essential object in this analysis is the quadratic form

QF (v,w) := |OP (u, v)|2 =

(
∆34v +∆24w

∆23

)2

+ v2 + w2 +

(
∆13v +∆12w

∆23

)2

,

or
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QF (v,w) =
(∆2

34 +∆2
13 +∆2

23)v
2 + 2(∆34∆24 +∆13∆12)vw + (∆2

24 +∆2
12 +∆2

23)w
2

∆2
23

.

We use Lagrange’s identity again, which we will write in the form

(α2 + β2 + γ2)(ζ2 + η2 + θ2) = (αζ − βη + γθ)2 + (αη + βζ)2 + (αθ − γζ)2 + (βθ + γη)2.

Then the determinant of the form QF (v,w) (excluding its denominator) is equal to

−∆/4 = (∆2
34 +∆2

13 +∆2
23)(∆

2
12 +∆2

24 +∆2
23)− (∆34∆24 +∆13∆12)

2 =

(∆12∆34 −∆13∆24 +∆2
23)

2 + (∆12∆23 −∆34∆23)
2 + (∆13∆23 +∆24∆23)

2 ⇒

−∆/4 = ∆2
23

[
(∆23 −∆14)

2 + (∆12 −∆34)
2 + (∆13 +∆24)

2
]
= ∆2

23(k
2)

⇒ ∆ = −(2k∆23)
2.

This implies that for v0 = −(∆34∆24 +∆13∆12) and w0 = ∆2
13 +∆2

23 +∆2
34 we get

QF (v0, w0) = k2(∆2
34 +∆2

13 +∆2
23),

and

(12) QF (v,w) =
(w0v − v0w)

2 + k2w2∆2
23

∆2
23w0

.

So, by (11) and (12) we need to have solutions (v,w) and (v′, w′) of

(13) (w0v − v0w)
2 + k2w2∆2

23 = (w0v
′ − v0w

′)2 + k2w′2∆2
23 = k∆23w0(wv

′ − vw′).

In general, if the Diophantine quadratic equation x2 + y2 = n has a solution (x, y), then it has

other solutions such as (y,−x).

Given (v,w), let us assume that (v′, w′) gives exactly this other solution (x = w0v−v0w, y = kw∆23)

when substituted in (13):





w0v
′ − v0w

′ = kw∆23

k∆23w
′ = −(w0v − v0w).

This allows us to solve for v′ and w′ in order to calculate ∆′
23:

v′ =
v20w − v0w0v + k2∆2

23w

2k∆23w0
, w′ =

v0w − w0v

k∆23
,
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Figure 3. Minimal Squares

∆′
23 = wv′ − vw′ =

(w0v − v0w)
2 + k2w2∆2

23

k∆23w0
.

This means that (13) is automatically satisfied with this choice of (v′, w′). In fact, we have shown

that, for every integer values of (v,w), such that

(14) (w0v − v0w)
2 + k2w2∆2

23 = (kw0ℓ
′)∆2

23

taking (v′, w′) as above, we automatically get a square determined by vectors OP (v,w), P (v′, w′) ∈
Q4, which may not have integer coordinates. In order for (14) to have rational solutions, in v and

w, we need to have kw0ℓ
′ a positive integer which is a product of primes of the form 4s+1, and all

the other primes, in its prime factorization, have even exponents. Clearly, there exists a smallest

positive integer ℓ′ with this property.

As we have seen in Proposition 2.2 ([16]), we can similarly show the existence in every plane

of equations (10), of a square that is minimal, in the sense that the side-lengths are the smallest

possible. Then, a similar result to Proposition 2.2 ([16]) takes place: every square in the same

plane can be written in terms of a square that is minimal (same formulae as in 2 dimensions). For

a proof we just invite the reader to study Figure 3 (a proof “without words” exercise).

As in dimension 3, we also have parametric formulae for squares, which are more general than

the ones at the beginning of the subsection. The two vectors are
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(15)
u = ±(−ta− zb+ yc− xd,−tb+ za− yd− xc,−tc− zd− ya+ xb,−td+ zc+ yb+ xa)

v = ±(ax− by − cz − dt, ay + bx+ ct− dz, az − bt+ cx+ dy, at+ bz − cy + dx)

and one can check that u · v = 0 and |u|2 = |v|2 = (x2 + y2 + z2 + t2)(a2 + b2 + c2 + d2). The two

relations as in (5) can be simplified by (x2+ y2+ z2+ t2)2 and (a2 + b2+ c2+ d2)2 respectively and

reduced to

(16)
(x2 + y2 + z2 + t2)2 = (x2 + y2 − z2 − t2)2 + (2xt+ 2yz)2 + (2ty − 2xz)2,

(a2 + b2 + c2 + d2)2 = (a2 + b2 − c2 − d2)2 + (2ad − 2bc)2 + (2ac + 2bd)2.

These relations can be reduced even farther depending upon what q1 and q2 are. A simple

observation here is that the simplified relations (16) depend only on the plane containing the

square and every other square contained in the same plane has the same simplified relations. This

implies that the minimal square contained in the plane has the sides at most
√
k1k2, where the

k2i = A2
i +B2

i + C2
i are the primitive versions of (16).

Example 3. We start with two equalities as in (16): 92 = 72+42+42 and 152 = 112+102+22.

This implies that 452 = 332 + 302 + 62 = 352 + 202 + 202. As in Theorem 2.8, we can take a = 33,

a′ = 35, b = 30, b′ = 20, c = 6 and c′ = 20. Then ∆12 = 1, ∆34 = 34, ∆13 = 5, ∆24 = 25, ∆14 = 13,

and ∆23 = 7, and the equations of the plane are 34v + 25w + 7t = 0 and

7u + 5v + w = 0. The system can be solved easily in terms of u and v: w = −7u − 5v and

t = 25u + 13v. Then two vectors that generate the lattice in this plane are (1, 0,−7, 25) and

(0, 1,−5, 13). Then the “volume” of the fundamental domain is 45. The quadratic form is Q(u, v) =

675u2 + 720uv + 195v2 or Q(u, v) = 15(45u2 + 48uv + 13v2). So, the equation Q(u, v) = 45ℓ is

equivalent to (13v + 24u)2 + 9u2 = 3(13)ℓ. Then it is clear that v has to be a multiple of 3 and

if we take ℓ = 3, v = 3 and u = −2 we obtain a solution. This gives u = (−2, 3,−1,−11), and

v = 6 and u = −3 gives v = (−3, 6,−9, 3) = 3(−1, 2,−3, 1) (which is indeed a square). This

means that the Ehrhart polynomial of this square is E�(t) = 3t2 + 4t+ 1 = (t+ 1)(3t + 1), t ∈ N.

Taking the parameterizations as in Theorem 2.4 for the two equalities, 92 = 72 + 42 + 42 and

152 = 112 +102 + 22, we observe that this square is covered by the parametrization (15) by taking

a = x = z = 1, b = d = t = 2, c = 0, and y = 3. It is surprising that such a square with a big size

for its side lengths has no lattice points in the interior.

In order to understand better what is happening we will reformulate everything in terms of

quaternions.

We remind the reader that the Hamilton quaternion algebra over the real numbers, denoted by

H(R), is the associative unitary algebra given by the requirements:

(I) H(R) is the free R-module over the symbols i, j, and k, with 1 the multiplicative unit;
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(II) i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i and ki = −ik = j.

If q = x + yi + zj + tk ∈ H(R) the conjugate of q is q = x − yi − zj − tk and the norm of q is

N(q) = x2 + y2 + z2 + t2. Some standard notation is then naturally appearing: Re(q) = x and

Im(q) = yi+ zj + tk.

By H(Z) we denote the subset of quaternions whose components are all integers. We imbed Z4

into H(Z) in the natural way: (x, y, z, t) →֒ x+ yi+ zj + tk. Also, we will think of R3 imbedded in

H(R) in a, more or less, natural way (y, z, t) →֒ yi+ zj + tk; in other words, R3 is the hyperplane

Re(q) = 0.

It is known that this norm is multiplicative, i.e. N(q1q2) = N(q1)N(q2), and q1q2 = q2 q1.

For the important results about the arithmetic of H(Z), we recommend the reader the recent

treatment in [4]. Using the same terminology as in [4], a quaternion q is called odd, if N(q) is an

odd number.

The parametrization in Theorem 2.4 is basically equivalent to

(17) n1i+ n2j + n3k = q(ǫ)q, where q = x+ yi+ zj + tk, and ǫ ∈ {i, j, k}.

In case ǫ = k, n1 = 2(xz + yt), n2 = 2(zt− xy), and n3 = x2 − y2 − z2 + t2.

The parametrization (15) is equivalent to

(18) u = q1ǫ2q2 and v = q1ǫ3q2, where q1 = x+ yi+ zj + tk, q2 = a+ bi+ cj + dk,

with ǫ2 and ǫ3 fixed in {i, j, k}. In what follows we are going to take ǫ2 = j and ǫ3 = k. This square

is in a plane defined by equations similar to (10) obtained from the two Pythagorean quadruples

defined by q1 and q2 as in (17) using ǫ = ǫ1 such that {ǫ1, ǫ2, ǫ3} = {i, j, k}.
Observation 1: If we substitute q = q̃(α+βk) into (17) for ǫ = k, we see that because (α+βk)k =

k(α + βk), we have

n1i+ n2j + n3k = q̃(k)(α + βk)(α− βk)q̃ = (α2 + β2)q̃(k)q̃ = (α2 + β2)(ñ1i+ ñ2j + ñ3k).

This implies that ni = ñi(α
2 + β2), i = 1, 2, 3, which means that the primitive solutions of the

equation (3) have to arise from quaternions q which have no right factors of the form α+ βk. We

obtain the same conclusion if q = q̃(1 + i) or q = q̃(1 + j), because (1 + i)k = −j(1 + i) and

(1 + j)k = i(1 + j). We have the following converse of this observation.

PROPOSITION 2.9. If in (17), we have gcd(n1, n2, n3) = n > 1, i.e. if n1 = 2(xz + yt), n2 =

2(zt−xy) and n3 = x2−y2−z2+t2, are divisible by n, then q = x+yi+zj+tk = (x′+y′i+z′j+t′k)η

where η ∈ {1 + i, 1 + j, α+ kβ} for some integers α and β.
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PROOF. Let us pick a prime p which divides n. Since

n2
1 + n2

2 = 4[(xz + yt)2 + (zt− xy)2] = 4(x2 + t2)(y2 + z2)

is divisible by n2 it is divisible by p. First, we assume that p > 2. Then p divides either A := x2+t2

or B := y2 + z2. Since n3 = A−B and p divides n3, we must have, in fact, A and B both divisible

by p. If p = 2, then A and B are either both even or both odd. If A and B are both even, then

we have the same conclusion as in the case p > 2. In the case A and B are both odd, we have, lets

say x = 2x′, y = 2y′, z = 2z′ + 1, t = 2t′ + 1. This implies that

q = x+yi+zj+tk = 2x′+2y′i+2z′j+2t′k+j+k = (x′+y′i+z′j+t′k)(1−i)(1+i)+k(1+i) = q̃(1+i)

which proves our claim. Similar conclusion can be drawn if x and z, t and y, or t and z are even.

If p is a prime of the form 4k + 3, then automatically x = px′, z = pz′, t = pt′, and y = py′,

which shows that q = x+ yi+ zj+ tk = (x′+ y′i+ z′j+ t′k)p and the conclusion of our proposition

follows, with α = p and β = 0.

Finally, if p is a prime of the form 4k + 1, then p = α2 + β2. Because A = (x+ tk)(x− tk) and

η = α+βk is a Gaussian prime integer, it divides x+tk or x−tk. Without loss of generality we may

assume that η divides x+ tk. If this is not the case we continue with η. Next we observe that since

p divides xz+ yt and zt−xy, then p divides (x+ tk)(y+ zk) = (xy− tz)+ (ty+xz)k. This implies

that if η does not divides x+ tz, then η must divide y + zk. Since η divides B = (y + zk)(y − zk),

then η divides either y+ zk or y− zk. Let us assume first that η divides y− zk. Then we can write

q = x+ yi+ zj + tk = x+ tk + i(y − zk) = (x′ + t′k)η + i(y′ + z′k)η = q̃η.

If η divides y + zk, then η divides y − zk. If η divides z + tz then we proceed as above, with a

small change:

q = x+ yi+ zj + tk = x+ tk + i(y − zk) = (x′ + t′k)η + i(y′ + z′k)η = q̃η.

If η does not divides x+ tz, then we have shown above that in this case, η must divide y + zk,

which is the same thing as η dividing y − zk. This puts us in the same position as above.

Observation 2: If we substitute q1 = q̃1(α+βi) into (18), we see that because (α+βi)k = αk−βj

and (α + βi)j = αj + βk, we have ũ = αu − βv and ṽ = βu + αv. This is saying that the twin

pair ũ and ṽ is in the same plane as u and v. A similar statement can be obtained if we substitute

q2 = q̃2(α+ βi) into (18).

Let us recall, for the convenience of the reader, the statement of Lemma 2.6.5 in [4], with the

only difference that the important factors appear on the right (so, this new statement follows by

conjugation and a symmetry type transformation i → −i, j → −j, and k → −k).
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LEMMA 2.10. ([4]) Every integer quaternion q ∈ H(Z) has unique factorization

(19) q = 2ℓq q̃η,

where q̃ ∈ H(Z) is odd, ηq ∈ {1, 1 + i, 1 + j, 1 + k, (1 + j)(1 + i), (1 − k)(1 + i)} and for some

non-negative ℓq ∈ Z.

This new statement follows by conjugation and a symmetry type transformation i → −i, j → −j,

and k → −k from the original statement in [4].

THEOREM 2.11. (i) We assume that q1 and q2 in the parametrization (18) represented as in

(19), are not right-divisible by quaternions of the form π = α+ βi, |π| > 1, then the square in the

parametrization (18) is minimal.

(ii) The parametrization (18) represents all the integer squares.

PROOF. (i) We observe first that under our hypothesis, ℓq1 = ℓq2 = 0 and ηq1 , ηq2 ∈ {1+j, 1+k}
in (19). By way of contradiction, if the construction of the square S = {u, v} in (18) is not minimal,

there exists an integer square S0 = {u0, v0} in the same plane in such a way S can be obtain from

S0 by a simple transformation which involves two integer parameters α and β: u = αu0 + βv0

and v = −βu0 + αv0. We may assume that p = α2 + β2 is a prime, otherwise we redefine the

twin pair S0 in such a way this condition is satisfied. Let us first assume that p > 2. Since q1

is not right-divisible by η = α + βi (which is a prime in H(Z), η odd quaternion), we conclude

that gcd(q1, η)r = 1 (the right greatest-common divisor as defined in [4]). By Theorem 2.6.6 in [4],

which is the equivalent of Bézout’s relation in H(Z), we can find γ and δ in H(Z[12 ]) such that

γq1 + δη = 1.

If p = 2, then |u|2 = |v|2 = N(q1)N(q2) = 2|u0|2 and so 2 divides N(q1) or N(q2). Using

Lemma 2.10 we conclude that q1 is of the form q′1(1 + k) or q′1(1 + j) with q′1 odd. So we can still

obtain a Bézout’s relation as above, with q′1 and η, which can be easily transformed into one for q1

and η.

Solving for u0, the above system, in terms of u and v, we have

u0 = (1/p)(αu − βv) = (1/p)q1(α+ iβ)kq2.

Multiplying on the right with (1/p)(α + iβ)kq2 the above Bézout’s relation, we obtain

γu0 + δkq2 = (1/p)(α + iβ)kq2.

From this relation we see that q2 = q̃2(α − iβ) for some q̃2 ∈ H(Z[12 ]). Hence 2kq2 = q′2(α − iβ)

for some q′2 ∈ H(Z). Using Lemma 2.10 again, we conclude that q2 is right divisible by α− iβ which
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is in contradiction with our hypothesis. Therefore, it must be true that the S = {u, v} in (18) is

minimal.

(ii) Let us start with an arbitrary square, S0. We then use Theorem 2.7 to find the reduced

equations of the plane that it is contained in, as those given by (10). Then we can apply the

Theorem 2.4 twice, and finally use the two sets of parameters (8 in total) to construct a square S1,

with formulae (15). The quaternions involved have the property in part (i) (both odd), and so the

square S1 is minimal. Then S0 can be written in terms of S1 using two numbers α andβ. Using

the substitutions described before the statement the theorem, we can we can write S0 as in (18)

by multiplying either of the quaternions by α+ βi.

THEOREM 2.12. Assuming we have two odd integer quaternions q1 and q2 as in (ii) in Theo-

rem 2.11, then the fundamental domain of the integer lattice containing the square {u, v} in (18),

has “volume” equal to V = lcm(N(q1)), N(q2)). The Ehrhart polynomial of the square (18) is

E�(t) = gcd(N(q1), N(q2))t
2 + (D1 +D2)t+ 1,

where D1 = gcd(u1, u2, u3, u4) and D2 = gcd(v1, v2, v3, v4).

PROOF. This follows from Theorem 2.7 (part (ii)), Proposition 2.9 and the observation that

lcm(N(q1), N(q2))
2 = a2 + b2 + c2 = a′2 + b′2 + c′2 for some integers a, b, c, a′, b′, and c′ with

gcd(a, b, c, a′, b′, c′) = 1.

Observation 3: To get back in dimension 3, we identified R3 with the subspace of quaternions q

for which Re(q) = 0. We have seen that only one Pythagorean quadruple equation is necessary:

∆13 = ∆12 = 0 which implies ∆14 = 0. To accomplish this, we can take q1 = q2 = q where q is

odd. This implies that the most general square in dimension 3 is of the form (4) combined with

the usual variations from dimension 2 in the respective plane: ũ = αu− βv and ṽ = βu+ αv with

{u, v} as in (4).

There seems to be plenty of numerical evidence that the sequence of almost perfect squares in

dimension four is the set of all non-negative integers. Let us denote the set of all such numbers by

APS4. We include some partial result in this direction.

THEOREM 2.13. (i) The set APS4 contains all odd numbers.

(ii) The set APS4 contains all even numbers of the form p− 1 with p a prime p ≥ 11.

PROOF. (i) Let us take an odd k, k ≥ 1, and a primitive Pythagorean quadruple representation

k2 = a2 + b2 + c2. Without loss of generality we may assume that a is odd and both b and c are

even. If we multiply this equality by 2, we obtain 2k2 = 2a2 +2b2 +2c2 = 2c2 + (a+ b)2 + (a− b)2.

Hence we can build the square u = (k, k, 0, 0) and v = (c,−c, a + b, a− b). It is clear that D1 = k
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and D2 = 1 (a− b and a+ b are odd) as defined in Theorem 2.12. Since the sides have length k
√
2

and the two equation defining the plane containing {u, v} are k2 = (−c)2+b2+a2 = (−c)2+a2+b2,

we conclude by Theorem 2.12 that the Ehrhart polynomial is Eu,v(t) = 2kt2 + (k + 1)t+ 1. Hence

Eu,v(−1) = k. This proves the first statement.

(ii) If p is a prime p ≥ 11, then we can find two distinct primitive Pythagorean quadruple

representations p2 = a2 + b2 + c2 = a′2 + b′2 + c′2 and construct a square as in (18), whose Ehrhart

polynomial is E(t) = pt2 + (D1 +D2)t + 1, where Di divide p. It is not possible to have Di = p

since this puts us in the position where one of the vectors defining the square, say u, is of the

form u = (p, 0, 0, 0). This leads essentially to only one equation which defines the plane containing

{u, v}, but we have two different equations that define the plane. Hence, since E(−1) = p− 1 the

claim in (ii) follows.

Numerical evidence shows that given an odd k ≥ 9, one can find a square whose Ehrhart

polynomial is E(t) = kt2+2t+1. For instance, for k = 2015 we found u = (−836, 584,−1592,−697)

and v = (−506, 1414, 203, 1328) that does the job.

2.4. Cubes. If a general lattice cube in R3 is given by the orthogonal matrix

(20) Cℓ =
1

ℓ




a1 b1 c1
a2 b2 c2
a3 b3 c3


 ,

with ai, bi and ci integers satisfying aiaj + bibj + cicj = δi,jℓ
2 for all i, j in {1, 2, 3}), we define

di := gcd(ai, bi, ci). It is clear that the di are divisors of ℓ. Assuming that the matrix in (20)

is irreducible (no smaller ℓ can be used, which implies ℓ odd), then we have shown in [18] the

following.

THEOREM 2.14. Given a cube Cℓ constructed from a matrix as in (20), its Ehrhart polynomial

is given by

(21) L(Cℓ, t) =
ℓ3t3 + ℓ(d1 + d2 + d3)t

2 + (d1 + d2 + d3)t+ 1 or

(ℓt+ 1)[ℓ2t2 + (d1 + d2 + d3 − ℓ)t+ 1]
, t ∈ N.

Similar formula takes place for the cubes in dimension four. In general a square can be completed

in various ways to a cube and even to a hypercube. Let us assume that the cube is given by the

first three vectors in the rows of the following matrix

(22)




a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4


 ,
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with ai, bi, ci and di integers aiaj+bibj+cicj+didj = δi,jℓ for all i, j in {1, 2, 3, 4}). In this case, we

define Di := gcd(ai, bi, ci, di) and ζij be the greatest common divisor of all the 2-by-2 determinants

of the matrix
[

ai bi ci di
aj bj cj dj

]
,

for every i and j with 1 ≤ i < j ≤ 3.

THEOREM 2.15. Given a cube Cℓ constructed from a matrix as in (22), its Ehrhart polynomial

is given by

(23) L(Cℓ, t) = ℓD4t
3 +∆t2 +∆′t+ 1, t ∈ N,

where ∆ := ζ12 + ζ13 + ζ23 and ∆′ := D1 +D2 +D3.

PROOF. For the first coefficient the volume of the cube is ℓ
√
ℓ and the volume of the fundamen-

tal domain of the lattice containing it is equal to
√

a24 + b24 + c24 + d24/D4 =
√
ℓ

D4
. For the second

coefficient, the area of each of the six faces is ℓ. Using the Theorem 2.11 to find the “volume” of

the fundamental domain of the lattice containing the faces determined by rows i and j, we obtain

ℓ/δij , which implies the stated value of ∆. Finally, for the coefficient ∆′, we proceed like in the

proof of Theorem 2.14 ([18]). The main idea is essentially based on the fact that the topological

equivalent in our cube to [0, 1)3 (containing κ lattice points) has the fundamental domain property:

the dilation with a factor t contains exactly t3κ lattice points. This implies that κ = ℓD4 and so

ℓD4 = 1 + (ℓD4 −∆+∆′ − 1) +
∑

ij

(ζij − (Di +Dj) + 1) +
∑

i

(Di − 1).

Solving for ∆′ we obtain the stated value in the theorem.

2.5. Hypercubes. Hypercubes in dimension four can be constructed using quaternion techniques

described earlier. A few orthogonal matrices in dimension 4, together with the Ehrhart polynomial

associated to the corresponding hypercube, are included next:

1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 0 −1




4t4 + 8t3 + 8t2 + 4t+ 1
= (2t2 + 2t+ 1)2

,
1√
3




1 1 1 0
−1 1 0 1
0 −1 1 1
−1 0 1 −1




9t4 + 12t3 + 6t2 + 4t+ 1
= (t+ 1)(3t + 1)(3t2 + 1)

,
1

2




1 1 1 −1
−1 1 1 1
1 −1 1 1
1 1 −1 1




16t4 + 16t3 + 12t2 + 4t+ 1
= (1 + 2t+ 4t2)2

,
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1√
5




2 1 0 0
1 −2 0 0
0 0 2 1
0 0 1 −2




25t4 + 20t3 + 14t2 + 4t+ 1
= (1 + 2t+ 5t2)2

,
1√
6




2 1 1 0
1 −2 0 1
1 0 −2 −1
0 1 −1 2




36t4+24t3+8t2+4t+1

,
1√
7




2 1 1 1
1 −2 −1 1
1 1 −2 −1
1 −1 1 −2




49t4+28t3+6t2+4t+1

,

1

3




3 0 0 0
0 2 2 1
0 2 −1 −2
0 1 −2 2




81t4 + 54t3 + 18t2 + 6t+ 1
= (3t+ 1)2(9t2 + 1)

,
1

3




2 2 1 0
2 −2 0 1
1 0 −2 −2
0 1 −2 2




81t4+36t3+6t2+4t+1

,
1√
10




2 2 1 1
2 −2 −1 1
1 1 −2 −2
1 −1 2 −2




100t4+40t3+16t2+4t+1

,

1√
10




3 −1 0 0
1 3 0 0
0 0 3 1
0 0 1 −3




100t4 + 40t3 + 24t2 + 6t+ 1
= (10t2 + 2t+ 1)2

,
1√
11




3 1 1 0
1 −3 0 1
1 0 −3 −1
0 1 −1 3




121t4+44t3+6t2+4t+1

, and
1√
13




2 2 2 1
2 −2 1 −2
2 −1 −2 2
1 2 −2 −2




169t4+53t3+6t2+4t+1

.

We see that several of these examples are cross polytopes (squares in two dimensions) and indeed

the resulting polynomial is the product of the smaller degree polynomials involved. Let us assume

that in general we have

(24) Hℓ =
1√
ℓ




a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4


 ,

where aiaj + bibj + cicj + didj = δijℓ for i, j ∈ {1, 2, 3, 4}. We define Di = gcd(ai, bi, ci, di) for

i ∈ {1, 2, 3, 4} and assume that Hℓ is irreducible, i.e., gcd(D1,D2,D3,D4) = 1. The Ehrhart

polynomial associated to the hypercube constructed in a natural way using the orthogonal matrix

Hℓ is then

(25) EH(ℓ)(t) = ℓ2t4 + α1t
3 + α2t

2 + α3t+ 1.

PROPOSITION 2.16. With the notation introduced earlier α1 = ℓ(D1 +D2 +D3 +D4).

PROOF. Let us look at a 3-dimensional face, say generated by first three rows of (22). Its volume

is ℓ
√
ℓ and the volume of the lattice containing it is equal to

√
a24 + b24 + c24 + d24/D4 =

√
ℓ

D4
. Since

there are eight such faces the general theory gives the value claimed.
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THEOREM 2.17. We have

(26) α2 = α3 + δ −∆,

where δ =
∑

1≤i<j≤4 ζij and ∆ = D1 +D2 +D3 +D4.

PROOF. We are going to use the same property of the part of hypercube that is topologically

equivalent to [0, 1)4, as in the proof of Theorem 2.15. The balancing of points in each of the

corresponding sets of the partition

[0, 1)4 = (0, 0, 0, 0) ∪ (0, 1)4
⋃

all four 3D cubes

(0, 1)3
⋃

all six 2D faces

(0, 1)2
⋃

all four 1D sides

(0, 1)

gives (using Theorem 2.15 )

ℓ2 = 1 + (ℓ2 − α1 + α2 − α3 + 1) + (ℓ∆− 2δ + 4∆− 4) +
∑

1≤i<j≤4

(ζij − (Di +Dj) + 1) + ∆− 4.

From this, one can easily derive (26).

Looking at the examples we have so far, we notice that α3 = ∆, and so the Ehrhart polynomial

of an hypercube would result into the follows simple form

(27) EH(ℓ)(t) = ℓ2t4 + ℓ∆t3 + δt2 +∆t+ 1.

This is indeed the case since it follows from Theorem 9.9 in [2]. Of course, one may want to

generalize all these concepts to dimensions bigger than four.
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