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REPRESENTATION OF POSITIVE INTEGERS BY THE

FORM x1...xk + x1 + ...+ xk

VLADIMIR SHEVELEV

Abstract. For an arbitrary given k ≥ 3, we consider a possibility of
representation of a positive number n by the form x1...xk + x1 + ... +
xk, 1 ≤ x1 ≤ ... ≤ xk. We also study a question on the smallest value
of k ≥ 3 in such a representation.

1. Introduction

In 2002, R. Zumkeller published in OEIS the sequence A072670: ”Number

of ways to write n as ij + i + j, 0 < i <= j”. This sequence possesses a

remarkable property.

Proposition 1. Positive integer n is not represented by the form ij + i+

j, 0 < i <= j, if and only if n = p− 1, where p is prime.

Proof. Condition n = p− 1 is sufficient, since if n = ij+ i+ j, then n+1 =

(i+ 1)(j + 1) cannot be prime. Thus n of the form p− 1 is not represented

by the form ij + i + j, 0 < i <= j. Suppose that, conversely, n is not

represented by this form. Show that n + 1 is prime. If n + 1 ≥ 4 is

composite, then n + 1 = rs, s ≥ r ≥ 2. Set i = r − 1, j = s− 1. We have

ij + i+ j = (r − 1)(s− 1) + (r − 1) + (s− 1) = n+ 1− 1 = n.

This contradicts the supposition. So n+ 1 is prime. �

In this note, for an arbitrary given k ≥ 3, we consider a more general

form x1...xk + x1 + ... + xk, 1 ≤ x1 ≤ ... ≤ xk. In particular, we study a

question on the smallest value of k ≥ 3 in a a possible representation of n.

2. Necessary condition for non-representation of n

Denote by νk(n) the number of ways to write n by the

Fk = F (x1, ..., xk) =

(1) x1...xk + x1 + ... + xk, 1 ≤ x1 ≤ ... ≤ xk, k ≥ 3.

Proposition 2. If, for a given k ≥ 3, for n ≥ k − 1 we have νk(n) = 0,

then n− k + 3 is prime.
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Proof. If n − k + 3 ≥ 4 is composite, then n − k + 3 = rs, s ≥ r ≥ 2. Set

xi = 1 for i = 1, ..., k − 2 and xk−1 = r − 1, xk = s− 1. We have

Fk = (r−1)(s−1)+(k−2)+(r−1)+(s−1) = (n−k+3)+(k−2)−1 = n.

This contradicts the condition νk(n) = 0. So n− k + 3 is prime. �

Proposition 3. If k1 < k2 and νk1(n) > 0, then νk2(n+ k2 − k1) > 0.

Proof. By the condition, there exist x1, ..., xk1 such that

n = x1...xk1 + x1 + ... + xk1 , 1 ≤ x1 ≤ ... ≤ xk1 , k1 ≥ 3.

Set yi = 1, i = 1, ..., k2− k1, and yk2−k1+1 = x1, ..., yk2 = xk1 . Then we have

y1...yk2 + y1 + ...+ yk2 = x1...xk1 + k2 − k1 + x1 + ... + xk1 = n+ xk2 − xk1 .

�

Corollary 1. If k1 < k2 and νk1(n+ k1 − 3) > 0, then νk2(n+ k2 − 3) > 0.

Corollary 2. If k1 < k2 and νk2(n+ k2 − 3) = 0, then νk1(n+ k1 − 3) = 0.

Note that, by Proposition 2, in Corollary 2 the number n is prime.

3. Cases k = 3 and k = 4

Consider more detail the case k = 3, when

F3 = x1x2x3 + x1 + x2 + x3, 1 ≤ x1 ≤ x2 ≤ x3.

The numbers of ways to write the positive numbers by the form F3 are given

in the sequence A260803 by D. A. Corneth. Note that, by Proposition 2, a

number n ≥ 2, could be not represented by F3 only in case when n is prime.

However, note that sequence of primes p not represented by F3 should grow

fast enough. Indeed, p should not be a prime of the form

(2) (2t+ 1)m+ (t + 2), t,m ≥ 2,

where t ≡ 0 or 2 (mod 3). Indeed, in this case p = x1x2x3 + x1 + x2 + x3

for x1 = 2, x2 = t, x3 = m, if t ≤ m, and for x1 = 2, x2 = m, x3 = t

otherwise. Since gcd(2t + 1, t + 2) = gcd(2(t + 2)− 3, t + 2) = 1, then, by

Dirichlet’s theorem, for any admissible t ≥ 2, the progression (2) contains

infinitely many primes p. For all these primes, ν3(p) > 0.

Question 1. Is the sequence of primes {p | ν3(p) = 0} infinite?

However, in case of k = 4, in view of Corollary 1, to the set of progressions

(2) one can add, for example, the following set of progressions

(3) (4t+ 1)m+ (t + 3), t,m ≥ 2.
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Here gcd(4t+ 1, t+ 3) = gcd(4(t+ 3)− 11, t+ 3) = 1, except for t ≡ −3

(mod 11). Hence, for any admissible t ≥ 2 the progression (3) contains

infinitely many primes p. For such p we have

p+ k − 3 = p+ 1 = 2 · 2tm+ 2 + 2 + t+m = F4

with x1 = x2 = 2, x3 = t, x4 = m, if t ≤ m, and x1 = x2 = 2, x3 =

m, x4 = t, if t > m. So for such p, ν4(p + 1) > 0. Therefore, and, by the

observations in table in Corneth’s sequence A260804 for k = 4, the following

question has another tint.

Question 2. Is the sequence of primes {p | ν4(p+ 1) = 0} only finite?

4. Smallest k for representation of prime+ k − 3

According to Proposition 2, if m is not represented in the form Fk, then

m−k+3 is prime. Denote by pn the n-th prime. Let m−k+3 = pn. Then,

for every n, it is interesting a question, for either smallest k ≥ 3 the number

pn+k−3 is represented by Fk? Denote by s(n), n ≥ 1, this smallest k and

let us write s(n) = 0, if pn + k − 3 is not represented by Fk for any k ≥ 3.

The sequence {s(n)} starts with the following terms (A260965):

0, 0, 0, 0, 0, 0, 0, 3, 4, 3, 0, 0, 4, 0, 3, 0, 3, 3, 0, 4, 3, 3, 4, 3,

(4) 4, 0, 3, 5, 3, 4, 3, ....

Conjecture 1. The sequence (4) contains only a finite number of zero

terms.

For example, a solution in affirmative of Question 2, immediately proofs

Conjecture 1. Here we will concern only a question on estimates of s(n).

Proposition 4.

(5) s(n) ≤ ⌊(log2(pn)⌋.

Proof. Suppose, for a given pn, there exists k such that pn + k − 3 is repre-

sented by the form Fk. Then for the smallest possible k such a representation

we call an optimal representation with a given pn. Let us show that in an op-

timal representation all xi >= 2. Indeed, let x1 = ... = xu = 1 and xi >= 2

for u+ 1 <= i <= k, such that pn + k − 3 = xu+1...xk + u+ xu+1 + ...+ xk

be an optimal representation. Note that u < k, otherwise Fk = 1+ k which

is not k − 3+ prime. Set k1 = k − u; yj = xu+j . Then pn + k1 − 3 =

y1...yk1 + y1 + ... + yk1. Since k1 < k, it contradicts the optimality of the

form Fk. The contradiction shows that all xi in an optimal represen-
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tation are indeed more than or equal 2. So for an optimal representation,

pn + k − 3 = Fk >= 2k + 2k and 2k + k + 3 <= pn. Hence s(n) = kmin <

log2(pn) and the statement follows. �

Now we need a criterion for s(n) > 0.

Proposition 5. s(n) > 0 if and only if either there exists t2 ≥ such that

B(t2) = 2t2 + t2 + 3 = pn

or there exist t2 ≥ 0, t3 ≥ 1 such that

B(t2, t3) = 2t23t3 + t2 + 2t3 + 3 = pn

or there exist t2 ≥ 0, t3 ≥ 0, t4 ≥ 1 such that

B(t2, t3, t4) = 2t23t34t4 + t2 + 2t3 + 3t4 + 3 = pn,

etc.

Proof. Distinguish the following cases for xi ≥ 2, i = 1, ..., k, and Fk =

x1...xk + x1 + ...+ xk :

(i) All xi = 2, i = 1, ..., t2. Here k = t2 and Fk = 2t2 + 2t2. If this is

t2 − 3 + pn, then pn = 2t2 + t2 + 3 = B(t2).

(ii) The first t2 consecutive xi = 2 and t3 consecutive xi = 3. Note that t3 ≥

1 (otherwise, we have case (i)). Here k = t2+ t3 and Fk = 2t23t3 +2t2+3t3.

If this is k−3+pn = t2+t3−3+pn, then pn = 2t23t3+t2+2t3+3 = B(t2, t3),

etc. �

Note that in the expressions B(t2), B(t2, t3), ... defined in Proposition 5,

we can consider only the case when the last variable is positive. Indeed, in

B(t2), t2 ≥ 1 and if tj+1 = 0, then, evidently, B(t2, ..., tj, 0) = B(t2, ..., tj).

Corollary 3. If v < j is the smallest number such that, for some t2, ..., tv, tj

B(t2, ..., tv, tj) = pn, then s(n) = t2 + ...+ tv + tj . If, for a given n, for any

j there is no such v, then s(n) = 0.

Practically, using this algorithm for different j (cf. Section 5), we rather

quickly reduce the number of variables ti for the evaluation of s(n).

5. Cases of pn = 97 and pn = 101

Here we show that, for p25 = 97, p26 = 101, we have s(25) = 4 and s(26) =

0. Note that B(0, 0, ..., 0, tj) = 2(j + 1) and, for j ≥ 3, B(t2, 0, ..., 0, tj) =

(2t2+1)j+t2+2. For t2 = 1, , ..., 5, we have 3j+3, 5j+4, 9j+5, 17j+6, 33j+7

respectively. None of these expressions is equal to 97 or 101.
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Further, for j ≥ 4, B(t2, t3, 0, ..., 0, tj) = (2t23t3 + 1)j + t2 + 2t3 + 2. Here

t2 > 0, otherwise we have even values. For (t2, t3) = (1, 1), (2, 1), (3, 1), we

have 7j+5, 13j+6, 25j+7 respectively. None of these expressions is equal

to 97 or 101, expect for 13j + 6 = 97 for j = 7 which corresponds to t2 =

2, t3 = 1, t7 = 1. Hence, by Corollary 3, s(25) = 2 + 1 + 1 = 4. Continuing

the research for p = 101, note that, for j ≥ 5, B(t2, t3, t4, 0, ..., 0, tj) =

(2t23t34t4 + 1)j + t2 + 2t3 + 3t4 + 2. Here already for: (t2, t3, t4) = (1, 1, 1)

we have 25j + 8 > 101. It completes the case tj = 1. In case tj = 2 we

have B(t2, 0, ..., 0, tj) = 2t2j2 + t2 + 2(j − 1) + 3, j ≥ 3. Here t2 should be

even (otherwise B(t2, 0, ..., 0, tj) is even). For t2 = 2, 4, we have 4j2 + 2j +

3, 16j2 + 2j + 5. respectively. None of these expressions is equal 101. For

j ≥ 4, B(t2, t3, 0, ..., 0, tj) = 2t23t3j2+ t2+2t3+2(j−1)+3 is ≥ 108 already

for t2 = t3 = 1. Finally, in case tj ≥ 3, j ≥ 3 we have B(t2, 0, ..., 0, tj) = 64

for t2 = 1, j = 3, tj = 3 and > 101 otherwise. So, s(26) = 0.
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