REPRESENTATION OF POSITIVE INTEGERS BY THE
 FORM $x_{1} \ldots x_{k}+x_{1}+\ldots+x_{k}$

VLADIMIR SHEVELEV

Abstract

For an arbitrary given $k \geq 3$, we consider a possibility of representation of a positive number n by the form $x_{1} \ldots x_{k}+x_{1}+\ldots+$ $x_{k}, 1 \leq x_{1} \leq \ldots \leq x_{k}$. We also study a question on the smallest value of $k \geq 3$ in such a representation.

1. Introduction

In 2002, R. Zumkeller published in OEIS the sequence A072670: "Number of ways to write n as $i j+i+j, \quad 0<i<=j$ ". This sequence possesses a remarkable property.

Proposition 1. Positive integer n is not represented by the form $i j+i+$ $j, 0<i<=j$, if and only if $n=p-1$, where p is prime.

Proof. Condition $n=p-1$ is sufficient, since if $n=i j+i+j$, then $n+1=$ $(i+1)(j+1)$ cannot be prime. Thus n of the form $p-1$ is not represented by the form $i j+i+j, \quad 0<i<=j$. Suppose that, conversely, n is not represented by this form. Show that $n+1$ is prime. If $n+1 \geq 4$ is composite, then $n+1=r s, s \geq r \geq 2$. Set $i=r-1, j=s-1$. We have

$$
i j+i+j=(r-1)(s-1)+(r-1)+(s-1)=n+1-1=n
$$

This contradicts the supposition. So $n+1$ is prime.
In this note, for an arbitrary given $k \geq 3$, we consider a more general form $x_{1} \ldots x_{k}+x_{1}+\ldots+x_{k}, 1 \leq x_{1} \leq \ldots \leq x_{k}$. In particular, we study a question on the smallest value of $k \geq 3$ in a a possible representation of n.

2. NECESSARY CONDITION FOR NON-REPRESENTATION OF N

Denote by $\nu_{k}(n)$ the number of ways to write n by the

$$
\begin{gather*}
F_{k}=F\left(x_{1}, \ldots, x_{k}\right)= \\
x_{1} \ldots x_{k}+x_{1}+\ldots+x_{k}, \quad 1 \leq x_{1} \leq \ldots \leq x_{k}, \quad k \geq 3 \tag{1}
\end{gather*}
$$

Proposition 2. If, for a given $k \geq 3$, for $n \geq k-1$ we have $\nu_{k}(n)=0$, then $n-k+3$ is prime.

Proof. If $n-k+3 \geq 4$ is composite, then $n-k+3=r s, s \geq r \geq 2$. Set $x_{i}=1$ for $i=1, \ldots, k-2$ and $x_{k-1}=r-1, x_{k}=s-1$. We have
$F_{k}=(r-1)(s-1)+(k-2)+(r-1)+(s-1)=(n-k+3)+(k-2)-1=n$.
This contradicts the condition $\nu_{k}(n)=0$. So $n-k+3$ is prime.
Proposition 3. If $k_{1}<k_{2}$ and $\nu_{k_{1}}(n)>0$, then $\nu_{k_{2}}\left(n+k_{2}-k_{1}\right)>0$.
Proof. By the condition, there exist $x_{1}, \ldots, x_{k_{1}}$ such that

$$
n=x_{1} \ldots x_{k_{1}}+x_{1}+\ldots+x_{k_{1}}, \quad 1 \leq x_{1} \leq \ldots \leq x_{k_{1}}, \quad k_{1} \geq 3
$$

Set $y_{i}=1, i=1, \ldots, k_{2}-k_{1}$, and $y_{k_{2}-k_{1}+1}=x_{1}, \ldots, y_{k_{2}}=x_{k_{1}}$. Then we have $y_{1} \ldots y_{k_{2}}+y_{1}+\ldots+y_{k_{2}}=x_{1} \ldots x_{k_{1}}+k_{2}-k_{1}+x_{1}+\ldots+x_{k_{1}}=n+x_{k_{2}}-x_{k_{1}}$.

Corollary 1. If $k_{1}<k_{2}$ and $\nu_{k_{1}}\left(n+k_{1}-3\right)>0$, then $\nu_{k_{2}}\left(n+k_{2}-3\right)>0$.
Corollary 2. If $k_{1}<k_{2}$ and $\nu_{k_{2}}\left(n+k_{2}-3\right)=0$, then $\nu_{k_{1}}\left(n+k_{1}-3\right)=0$.
Note that, by Proposition 2, in Corollary 2 the number n is prime.

$$
\text { 3. CASES } k=3 \text { AND } k=4
$$

Consider more detail the case $k=3$, when

$$
F_{3}=x_{1} x_{2} x_{3}+x_{1}+x_{2}+x_{3}, \quad 1 \leq x_{1} \leq x_{2} \leq x_{3}
$$

The numbers of ways to write the positive numbers by the form F_{3} are given in the sequence A260803 by D. A. Corneth. Note that, by Proposition 2, a number $n \geq 2$, could be not represented by F_{3} only in case when n is prime. However, note that sequence of primes p not represented by F_{3} should grow fast enough. Indeed, p should not be a prime of the form

$$
\begin{equation*}
(2 t+1) m+(t+2), \quad t, m \geq 2 \tag{2}
\end{equation*}
$$

where $t \equiv 0$ or $2(\bmod 3)$. Indeed, in this case $p=x_{1} x_{2} x_{3}+x_{1}+x_{2}+x_{3}$ for $x_{1}=2, x_{2}=t, x_{3}=m$, if $t \leq m$, and for $x_{1}=2, x_{2}=m, x_{3}=t$ otherwise. Since $\operatorname{gcd}(2 t+1, t+2)=\operatorname{gcd}(2(t+2)-3, t+2)=1$, then, by Dirichlet's theorem, for any admissible $t \geq 2$, the progression (2) contains infinitely many primes p. For all these primes, $\nu_{3}(p)>0$.

Question 1. Is the sequence of primes $\left\{p \mid \nu_{3}(p)=0\right\}$ infinite?
However, in case of $k=4$, in view of Corollary 1, to the set of progressions (2) one can add, for example, the following set of progressions

$$
\begin{equation*}
(4 t+1) m+(t+3), \quad t, m \geq 2 \tag{3}
\end{equation*}
$$

Here $\operatorname{gcd}(4 t+1, t+3)=\operatorname{gcd}(4(t+3)-11, t+3)=1$, except for $t \equiv-3$ $(\bmod 11)$. Hence, for any admissible $t \geq 2$ the progression (3) contains infinitely many primes p. For such p we have

$$
p+k-3=p+1=2 \cdot 2 t m+2+2+t+m=F_{4}
$$

with $x_{1}=x_{2}=2, x_{3}=t, x_{4}=m$, if $t \leq m$, and $x_{1}=x_{2}=2, x_{3}=$ $m, x_{4}=t$, if $t>m$. So for such $p, \nu_{4}(p+1)>0$. Therefore, and, by the observations in table in Corneth's sequence A260804 for $k=4$, the following question has another tint.

Question 2. Is the sequence of primes $\left\{p \mid \nu_{4}(p+1)=0\right\}$ only finite?
4. Smallest k for representation of prime $+k-3$

According to Proposition 2, if m is not represented in the form F_{k}, then $m-k+3$ is prime. Denote by p_{n} the n-th prime. Let $m-k+3=p_{n}$. Then, for every n, it is interesting a question, for either smallest $k \geq 3$ the number $p_{n}+k-3$ is represented by F_{k} ? Denote by $s(n), n \geq 1$, this smallest k and let us write $s(n)=0$, if $p_{n}+k-3$ is not represented by F_{k} for any $k \geq 3$. The sequence $\{s(n)\}$ starts with the following terms (A260965):

$$
\begin{gather*}
0,0,0,0,0,0,0,3,4,3,0,0,4,0,3,0,3,3,0,4,3,3,4,3, \\
4,0,3,5,3,4,3, \ldots \tag{4}
\end{gather*}
$$

Conjecture 1. The sequence (4) contains only a finite number of zero terms.

For example, a solution in affirmative of Question 2, immediately proofs Conjecture 1. Here we will concern only a question on estimates of $s(n)$.

Proposition 4.

$$
\begin{equation*}
s(n) \leq\left\lfloor\left(\log _{2}\left(p_{n}\right)\right\rfloor .\right. \tag{5}
\end{equation*}
$$

Proof. Suppose, for a given p_{n}, there exists k such that $p_{n}+k-3$ is represented by the form F_{k}. Then for the smallest possible k such a representation we call an optimal representation with a given p_{n}. Let us show that in an optimal representation all $x_{i}>=2$. Indeed, let $x_{1}=\ldots=x_{u}=1$ and $x_{i}>=2$ for $u+1<=i<=k$, such that $p_{n}+k-3=x_{u+1} \ldots x_{k}+u+x_{u+1}+\ldots+x_{k}$ be an optimal representation. Note that $u<k$, otherwise $F_{k}=1+k$ which is not $k-3+$ prime. Set $k_{1}=k-u ; y_{j}=x_{u+j}$. Then $p_{n}+k_{1}-3=$ $y_{1} \ldots y_{k_{1}}+y_{1}+\ldots+y_{k_{1}}$. Since $k_{1}<k$, it contradicts the optimality of the form F_{k}. The contradiction shows that all x_{i} in an optimal represen-
tation are indeed more than or equal 2. So for an optimal representation, $p_{n}+k-3=F_{k}>=2^{k}+2 k$ and $2^{k}+k+3<=p_{n}$. Hence $s(n)=k_{\min }<$ $\log _{2}\left(p_{n}\right)$ and the statement follows.

Now we need a criterion for $s(n)>0$.
Proposition 5. $s(n)>0$ if and only if either there exists $t_{2} \geq$ such that

$$
B\left(t_{2}\right)=2^{t_{2}}+t_{2}+3=p_{n}
$$

or there exist $t_{2} \geq 0, t_{3} \geq 1$ such that

$$
B\left(t_{2}, t_{3}\right)=2^{t_{2}} 3^{t_{3}}+t_{2}+2 t_{3}+3=p_{n}
$$

or there exist $t_{2} \geq 0, t_{3} \geq 0, t_{4} \geq 1$ such that

$$
B\left(t_{2}, t_{3}, t_{4}\right)=2^{t_{2}} 3^{t_{3}} 4^{t_{4}}+t_{2}+2 t_{3}+3 t_{4}+3=p_{n}
$$

etc.
Proof. Distinguish the following cases for $x_{i} \geq 2, i=1, \ldots, k$, and $F_{k}=$ $x_{1} \ldots x_{k}+x_{1}+\ldots+x_{k}:$
(i) All $x_{i}=2, i=1, \ldots, t_{2}$. Here $k=t_{2}$ and $F_{k}=2^{t_{2}}+2 t_{2}$. If this is $t_{2}-3+p_{n}$, then $p_{n}=2^{t_{2}}+t_{2}+3=B\left(t_{2}\right)$.
(ii) The first t_{2} consecutive $x_{i}=2$ and t_{3} consecutive $x_{i}=3$. Note that $t_{3} \geq$ 1 (otherwise, we have case (i)). Here $k=t_{2}+t_{3}$ and $F_{k}=2^{t_{2}} 3^{t_{3}}+2 t_{2}+3 t_{3}$. If this is $k-3+p_{n}=t_{2}+t_{3}-3+p_{n}$, then $p_{n}=2^{t_{2}} 3^{t_{3}}+t_{2}+2 t_{3}+3=B\left(t_{2}, t_{3}\right)$, etc.

Note that in the expressions $B\left(t_{2}\right), B\left(t_{2}, t_{3}\right), \ldots$ defined in Proposition 5 , we can consider only the case when the last variable is positive. Indeed, in $B\left(t_{2}\right), t_{2} \geq 1$ and if $t_{j+1}=0$, then, evidently, $B\left(t_{2}, \ldots, t_{j}, 0\right)=B\left(t_{2}, \ldots, t_{j}\right)$.

Corollary 3. If $v<j$ is the smallest number such that, for some $t_{2}, \ldots, t_{v}, t_{j}$ $B\left(t_{2}, \ldots, t_{v}, t_{j}\right)=p_{n}$, then $s(n)=t_{2}+\ldots+t_{v}+t_{j}$. If, for a given n, for any j there is no such v, then $s(n)=0$.

Practically, using this algorithm for different j (cf. Section 5), we rather quickly reduce the number of variables t_{i} for the evaluation of $s(n)$.
5. Cases of $p_{n}=97$ and $p_{n}=101$

Here we show that, for $p_{25}=97, p_{26}=101$, we have $s(25)=4$ and $s(26)=$ 0 . Note that $B\left(0,0, \ldots, 0, t_{j}\right)=2(j+1)$ and, for $j \geq 3, B\left(t_{2}, 0, \ldots, 0, t_{j}\right)=$ $\left(2^{t_{2}}+1\right) j+t_{2}+2$. For $t_{2}=1,, \ldots, 5$, we have $3 j+3,5 j+4,9 j+5,17 j+6,33 j+7$ respectively. None of these expressions is equal to 97 or 101.

Further, for $j \geq 4, B\left(t_{2}, t_{3}, 0, \ldots, 0, t_{j}\right)=\left(2^{t_{2}} 3^{t_{3}}+1\right) j+t_{2}+2 t_{3}+2$. Here $t_{2}>0$, otherwise we have even values. For $\left(t_{2}, t_{3}\right)=(1,1),(2,1),(3,1)$, we have $7 j+5,13 j+6,25 j+7$ respectively. None of these expressions is equal to 97 or 101 , expect for $13 j+6=97$ for $j=7$ which corresponds to $t_{2}=$ $2, t_{3}=1, t_{7}=1$. Hence, by Corollary 3, $s(25)=2+1+1=4$. Continuing the research for $p=101$, note that, for $j \geq 5, B\left(t_{2}, t_{3}, t_{4}, 0, \ldots, 0, t_{j}\right)=$ $\left(2^{t_{2}} 3^{t_{3}} 4^{t_{4}}+1\right) j+t_{2}+2 t_{3}+3 t_{4}+2$. Here already for: $\left(t_{2}, t_{3}, t_{4}\right)=(1,1,1)$ we have $25 j+8>101$. It completes the case $t_{j}=1$. In case $t_{j}=2$ we have $B\left(t_{2}, 0, \ldots, 0, t_{j}\right)=2^{t_{2}} j^{2}+t_{2}+2(j-1)+3, j \geq 3$. Here t_{2} should be even (otherwise $B\left(t_{2}, 0, \ldots, 0, t_{j}\right)$ is even). For $t_{2}=2$, 4 , we have $4 j^{2}+2 j+$ $3,16 j^{2}+2 j+5$. respectively. None of these expressions is equal 101. For $j \geq 4, B\left(t_{2}, t_{3}, 0, \ldots, 0, t_{j}\right)=2^{t_{2}} 3^{t_{3}} j^{2}+t_{2}+2 t_{3}+2(j-1)+3$ is ≥ 108 already for $t_{2}=t_{3}=1$. Finally, in case $t_{j} \geq 3, j \geq 3$ we have $B\left(t_{2}, 0, \ldots, 0, t_{j}\right)=64$ for $t_{2}=1, j=3, t_{j}=3$ and >101 otherwise. So, $s(26)=0$.

References

[1] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org,
Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. E-MAIL:SHEVELEV@BGU.AC.IL

