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THE VAN DEN BERG–KESTEN–REIMER OPERATOR AND

INEQUALITY FOR INFINITE SPACES

RICHARD ARRATIA, SKIP GARIBALDI, AND ALFRED W. HALES

Abstract. We remove the hypothesis “S is finite” from the BKR inequality
for product measures on Sd, which raises some issues related to descriptive
set theory. We also discuss the extension of the BKR operator and inequality,
from 2 events to 2 or more events, and we remove, in one sense, the hypothesis
that d be finite.
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1. The classic BKR inequality

The BKR inequality, named for van den Berg–Kesten–Reimer, was conjectured
in [vdBK85] and proved in [vdBF87] and [Rei00]; see [CPS99] or [BCR99] for a
clear exposition. The setup involves a probability space of the form Sd, with S
finite, and P a product measure, and the inequality takes the form: for two events
A,B ⊂ Sd, with A @ B for the event that, informally, “A and B occur for disjoint
reasons”,

P(A @ B) ≤ P(A)P(B).

The somewhat convoluted history is summarized as follows: Kesten and van
den Berg [vdBK85] defined the operation A @ B on subsets of Sd, and proved the
(BK) inequality for the special case where A and B are assumed to be increasing
events. Then van den Berg and Fiebig [vdBF87] proved a conditional implication,
not involving increasing events: “If the inequality holds for the cases Sd = {0, 1}d
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and P is the uniform distribution, with all 2d points of Sd equally likely, then
the inequality holds for any finite S and any product measure on Sd.” Finally,
Reimer [Rei00] proved the inequality in {0, 1}d, a purely combinatorial fact, so
that combined with the earlier conditional implication from [vdBF87], the general
inequality was established.

In [AGMS15], still in the context of S finite and P a product measure on Sd,
we had a Florida-lottery-crimefighting reason to need an extension of the BKR
inequality, from r = 2 events, to the more general case r = 2, 3, . . .. An easy example
shows that sometimes (A @ B) @ C 6= A @ (B @ C), so we gave a natural definition
for the r-fold operator

er

1 Ai, proved that
er

1 Ai ⊂ (· · · ((A1 @ A2) @ A3) · · · @ Ar),
and gave the easy induction, from the classic BKR inequality, to conclude that

P

(

rm

1

Ai

)

≤
r
∏

1

P(Ai).

Although the case S finite was sufficient for our application, it seemed strange to
have to quote the hypothesis “S is finite”, before invoking the inequality. Indeed,
the first draft of [AGMS15] made the mistake of omitting this hypothesis — but
thankfully was called to the carpet by a referee.

In this paper, we remove the restriction that S be finite, allowing S = N or
S = R, along with an arbitrary product probability measure on Sd, for our main
result, Theorem 6. This raises issues related to descriptive set theory; the BKR
combination of Borel sets need not be a Borel set, and the BKR combination of
Lebesgue measurable sets need not be Lebesgue measurable, see Example 2. We
will also, in Section 7, remove the restriction that d be finite, for one of the two
natural ways of generalizing the BKR operator to spaces of the form SN.

Other extensions and complements to the BKR inequality are given in [Ale93,
GR07, KSS11]. In greater detail, [GR07] gives a generalization of the BKR operator
and inequality which applies to spaces such as Rd; however, the combination of sets
which [GR07, formula (5)] identifies as “A and B occur for disjoint reasons” is
somewhat different from the original BKR combination A@B, and depends on the
choice of measure and notions of essential infimum. It is easy to see the the BKR
combination of events from [GR07] is a superset of the standard A @ B, hence the
result from [GR07], with the corrections and improvements provided in [GR15],
proves the outer measure assertion in our Theorems 3 and 6, via a method which
finesses all issues of projective sets by an appeal to Tonelli’s theorem. In contrast
to their approach, ours extends the BKR operator and inequality to infinite spaces
in a way that closely follows the original definitions, meaning as a combination of
events, rather than a combination of events and measures.

Acknowlegement. We thank Yiannis Moschovakis for a helpful conversation.

2. Definition of the BKR operators

The formal definition of A@B, copied from [vdBK85], begins with the notation
ω = (ω1, . . . , ωd) or ω = (ω1, . . . , ωd) for elements of Sd. For ω ∈ Sd and K ⊂
[d] := {1, . . . , d}, consider the thin cylinder Cyl(K,ω) := {ω : ωi = ωi, i ∈ K}.
For A,B ⊂ Sd define A @ B as the set of ω for which there exists a K ⊂ [d] such
that Cyl(K,ω) ⊂ A and Cyl(Kc, ω) ⊂ B, where Kc := [d] \K is the complement
of K relative to the universe of coordinate indices.
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A small paraphrase of this definition is based on [A]K defined to be the largest
cylinder set1 contained in A and free in the directions indexed by Kc:

(1) for A ⊂ Sd, [A]K := {ω : Cyl(K,ω) ⊂ A}.

With this notation,

(2) for A,B ⊂ Sd, A @ B :=
⋃

K⊂[d]

[A]K ∩ [B]Kc .

An obvious relation, that J ⊂ K ⊂ [d] implies [A]J ⊂ [A]K , shows that (2) is
equivalent to the following:

(3) for A,B ⊂ Sd, A @ B :=
⋃

disjoint J,K⊂[d]

[A]J ∩ [B]K .

The definition of the simultaneous r-fold BKR operator given in [AGMS15] is,
for A1, . . . , Ar ⊂ Sd,

(4)
m

1≤i≤r

Ai ≡ A1 @ A2 @ · · · @ Ar :=
⋃

J1,...,Jr

[A1]J1 ∩ [A2]J2 ∩ · · · ∩ [Ar]Jr
,

where the union is taken over disjoint subsets J1, . . . , Jr of {1, . . . , d}. It is clear
that for the case r = 2, definition (4) agrees with (3), and hence with (2).

2.1. Careful notation for cylinders, projections, extensions. We follow the
strict convention that, for any sets U, V , the set UV is the set of all functions from
V to U , and an element f ∈ UV carries the information: what is the domain of
f , and what is the range of f . For the case V = ∅, there is one point exactly in
UV . Since we use the notational convention, common in combinatorics, that for
d = 0, 1, 2, . . ., [d] := {1, 2, . . . , d}, the d-fold Cartesian product of a set S with

itself, Sd, is exactly equal to S[d]. But for 0 ≤ k ≤ d, there are
(

d
k

)

subsets K ⊂ [d],

with |K| = k, and there are
(

d
k

)

different sets SK ; only one of these is equal to Sk,
namely, the one with K = [k].

It will be convenient to work first with the case S = [0, 1], allowing us to specialize
to the uniform distribution.

For K ⊂ [d], the projection

projK : [0, 1][d] → [0, 1]K

is, naturally, the function f 7→ f |K which restricts a function f ∈ [0, 1][d] to have
domain K. There is a single one-to-many relation extd, with domain ∪K⊂[d][0, 1]

K ,
which serves as the inverse for all of maps projK , namely, (g, f) ∈ extd if and only
if, for some K ⊂ [d], g ∈ [0, 1]K , f ∈ [0, 1][d], and g = f |K .

For any set D, we write 2D for the power set of D, i.e., the set of all subsets of D.
We will be fussy, to distinguish a function from D to D′, and its inverse relation,
written with lowercase, from the induced functions, mapping 2D to 2D

′

and back,
written with uppercase.

1Both Cyl(K,ω) and [A]K are defined relative to Sd. We have several occasions in this paper

to work simultaneously with two different sets in the role of S, and it should be understood that
the definition of the BKR operator for sets A,B ⊂ Sd also involves the choice of S and d. Apart
from Section 8, we use the same symbol @ for every operator of this form, and leave it to the
reader to understand the appropriate context.
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Thus, we have 2d projection functions

ProjK : 2[0,1]
[d]

→ 2[0,1]
K

,

and a single extension function,

Extd : 2∪K [0,1]K → 2[0,1]
[d]

.

In particular, for K ⊂ [d],

for C ⊂ [0, 1]K ,Extd(C) := {f ∈ [0, 1][d] : f |K ∈ C} = Proj−1
K (C).

With k = |K|, if C is Borel then so is Extd(C), and mk(C) = md(Extd(C)), and
if C is Lebesgue measurable then so is Extd(C), and λk(C) = λd(Extd(C)) — see
Section 3.2 for our notation for Lebesgue measures.

3. Measurability considerations

3.1. Introductory motivation. In 1905, Lebesgue [Leb05, pages 191–192] stated,
incorrectly, that projections of Borel sets are Borel sets, and Suslin [Sus17] showed
otherwise. Superficially, this is an obstacle to extending the BKR inequality from
Sd with S countable to the case with S = [0, 1], since in [0, 1]d, even starting with
Borel sets A,B, we cannot assert that A @ B is also a Borel set. In more detail,

A @ B := ∪K⊂[d][A]K ∩ [B]Kc

where [A]K is the maximal cylinder subset of A free in the directions in [d] \ K,
equivalently, using notation from Section 2.1,

(5) [A]K := Extd
(

[0, 1]K \ ProjK(Ac)
)

.

However, Suslin also showed that projections of Borel sets are nice, in the concrete
sense of having equal inner and outer measure, i.e., being measurable in the com-

pletion of the Borel sigma-algebra with respect to Lebesgue measure [Coh13, 8.4.1].
For history, see [Dud02, p 500],[Pot04, p 232],[Mos09, Kec95].

3.2. Notation: md versus λd. It is a very common and confusing practice to use
the name Lebesgue measure, here in the context of [0, 1]d, to refer to two different

objects. The first object called Lebesgue measure is the measure on the Borel sets
of [0, 1]d, determined by the requirement that it extends the notion of volume for
solid rectangles [a1, b1] × · · · × [ad, bd]. We shall use the notation md for this first
measure, so that for a Borel set A ⊂ [0, 1]d, we may write md(A). The second
object called Lebesgue measure is the completion of the first object; we shall use
the notation λd for this measure. Hence, the sentence

x = λd(B)

is shorthand for the statement that (there exist Borel sets A,C ⊂ [0, 1]d with
A ⊂ B ⊂ C and md(A) = md(C) = x). There is no ambiguity in the phrase
Lebesgue measurable, since this describes elements of the completed sigma-algebra,
which is the domain of λd.

The
(

d
k

)

different spaces [0, 1]K , for K ⊂ [d] with |K| = k, are all naturally

measure isomorphic to [0, 1]k. Rather than writing the explicit isomorphism, or
naming the corresponding copies of Lebesgue measures as mK and λK , we simply
write mk and λk. This is a minor abuse of notation, and not a capital crime.
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3.3. Details for measurability.

Lemma 1. Assume that A is a Borel subset of [0, 1]d, and that K ⊂ [d]. Then,

the cylinder [A]K is Lebesgue measurable. If A,B are Borel subsets of [0, 1]d, then
A @ B is Lebesgue measurable, and if A1, . . . , Ar are Borel subsets of [0, 1]d, thener

1 Ai is Lebesgue measurable.

Proof. To start, A is a Borel subset of [0, 1]d so Ac := [0, 1]d \ A is also Borel, and
the projection C := ProjK(Ac) is an analytic subset of [0, 1]K . Since analytic sets
are Lebesgue measurable, there exist Borel subsets B,D ⊂ [0, 1]K with

B ⊂ C ⊂ D, mk(B) = mk(D) =: 1− x.

Taking complements relative to [0, 1]K , we have

Dc ⊂ Cc ⊂ Bc, mk(D
c) = mk(B

c) = x.

Let E = Extd(D
c), F = Extd(B

c), so that E and F are Borel subsets of [0, 1]d,
with

E ⊂ [A]K ⊂ F, md(E) = md(F ) = x.

This shows that [A]K is Lebesgue measurable, with λd([A]K) = x.
The Lebesgue measurability claims for A@B and

er
1 Ai now follow immediately

from the definitions (2) and (4). �

The following example shows why, in Corollary 4, with the hypothesis that A
and B are Lebesgue measurable, we could not simply state that λd(A @ B) ≤
λd(A)λd(B).

Example 2. The BKR combination of Lebesgue measurable sets need not be
Lebesgue measurable, as shown by this example with d = 2. Take a set C ⊂ [0, 1]
which is not a Lebesgue measurable subset of [0,1]. Then C2 ⊂ [0, 1]2 is not a
Lebesgue measurable subset of [0, 1]2. The diagonal in [0, 1]2 is

D := {(x, x) : x ∈ [0, 1]} ⊂ [0, 1]2,

and this is a Borel subset of [0, 1]2, with m2(D) = 0. Hence the set

E := {(x, x) : x ∈ ([0, 1] \ C)} ⊂ D ⊂ [0, 1]2

is Lebesgue measurable, with λ2(E) = 0. Now, taking complement relative to
[0, 1]2, let

A := [0, 1]2 \ E,

so that A is Lebesgue measurable, with λ2(A) = 1. We have

[A]{1} = C × [0, 1], [A]{2} = [0, 1]× C,

and with B := A we have

A @ B = C2.

4. Approximation, from [0,1] to a finite set

Theorem 3. For Borel subsets A,B in [0, 1]d,

λd(A @ B) ≤ md(A)md(B).
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4.1. Overview of the argument. . We want to prove that, for Borel A,B ⊂
[0, 1]d, we have λd(A @ B) ≤ md(A) md(B), and we proceed by contradiction.
Thus, we assume that we have A,B with

(6) 4 ε := λd(A @ B)−md(A) md(B) > 0,

and we work to provide an example, with finite S, in which the classic BKR in-
equality on Sd is violated.

In this example, for some large but finite n, we have |S| = 2n, |Sd| = 2nd,
corresponding to the number of atoms in the “observe the first n bits” sigma-algebra

F
(d)
n on [0, 1]d. The product measure P on Sd will be the uniform distribution, with

mass 2−nd at each point of Sd. We will produce subsets A′′, B′′ ⊂ Sd for which

(7) P(A′′ @ B′′) ≥ λd(A @ B)− ε

and

(8) P(A′′) ≤ md(A) + ε, P(B′′) ≤ md(B) + ε,

so that A′′, B′′ violate the classic BKR inequality.

4.2. Set approximation, in 1 dimension. To lighten the notational burden,
we start with dimension 1, and review a familiar martingale, from for example
[Bil95, Examples 35.3, 35.10]. The probability space is [0,1], with the Borel sigma-
algebra, and the probability measure is m1. For n = 0, 1, 2, . . ., define Fn to be
the sigma-algebra generated by the 2n disjoint intervals, [0, 1/2n), [1/2n, 2/2n), . . .,
[(n − 2)/2n, (n − 1)/2n), [1 − 1/2n, 1]. Note that the last of these intervals is
exceptional, in that it is closed at both ends, but all 2n intervals I have length
m1(I) = 1/2n. The sigma-algebra Fn has 2n atoms, and is a family of 22

n

subsets
of [0,1]. These sigma-algebras are nested, and σ(∪n≥0Fn) is the usual Borel sigma-
algebra on [0,1].

Hence for any Borel measurable h : [0, 1] → [0, 1], Mn := E (h|Fn) is a mar-
tingale. Explicitly, on an atom I of Fn, Mn = 2nE (h; I) = 2n

∫

I
h(x) dx. The

martingale convergence theorem implies that Mn converges to h, almost surely and
in L1, with the L1 convergence meaning that E |Mn − h| → 0 as n → ∞.

In particular, given a Borel measurable C ⊂ [0, 1], we take h to be the indicator
function h = 1C . Explicitly, on an atom I of Fn, Mn = 2n m1(C ∩ I). From this
martingale, we round values in [0,1/2] down to 0, and values in (1/2,1] up to 1, to
get a deterministic set Cn ∈ Fn. Explicitly,

Cn := {ω ∈ [0, 1] : Mn(ω) > 1/2}.

For a point x to be in the symmetric difference set, C∆Cn, the rounding error is
at least one half. This implies that m1(C∆Cn) ≤ 2E |Mn − 1C |.

4.3. Set approximation, in k dimensions. The above extends to dimension k,
for k = 1, 2, . . ., with no difficulties, only extra notation. The probability space is
[0, 1]k, with mk serving as the probability measure. We define, for n = 0, 1, 2, . . .,

the analogous sigma-algebra F
(k)
n with 2nk atoms, and for any Borel measurable

set C ⊂ [0, 1]k, the martingale argument gives us determinstic sets Cn, with

(9) mk(C∆Cn) → 0,

and Cn is F
(k)
n measurable.
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4.4. Approximation in [0, 1]d to control BKR ingredients. Recall that for
A ⊂ [0, 1]d and K ⊂ [d], [A]K ⊂ [0, 1]d is the (maximal) cylinder subset of A, in
the directions not restricted by K.

We write

(10) [[A]]K := ProjK([A]K) = [0, 1]K \ ProjK([Ac]K) ⊂ [0, 1]K

for the base of this cylinder. From the proof of Lemma 1, [[A]]K is Lebesgue
measurable, and there is a Borel subset C ⊂ [0, 1]K with

(11) C ⊂ [[A]]K , mk(C) = λk([[A]]K).

Observe that, with 1 ≤ k = |K| < d,

[A]K = Extd([[A]]K) ⊃ Extd(C)

and

λd([A]K) = λk([[A]]K) = mk(C) = md(Extd(C)).

Taking A or B, and K ⊂ [d], we have 2d+1 instances of a set C ⊂ [[A]]K or
C ⊂ [[B]]K , with 0 ≤ k := |K| ≤ d, to serve as the target for an approximation as
given by the martingale argument, summarized by (9). Since

(12) A @ B =
⋃

K

[A]K ∩ [B]Kc ,

has 2d+1 ingredients, we take

δ := ε/2d+1,

and pick a single value of n so that for each of the instances of C,

(13) mk(C∆Cn) < δ.

When C ⊂ [[A]]K , the dyadic approximation Cn is a subset of [0, 1]K , and we
write

An,K := Extd(Cn) ⊂ [0, 1]d

for the cylinder set whose base is Cn. Thus, with similar notation for B and
approximations Bn,K to [B]K , we have, from (11) and (13), that

(14) λd([A]K \An,K) < δ, λd([B]K \Bn,K) < δ,

and since [A]K ⊂ A, [B]K ⊂ B,

(15) md(An,K \A) < δ, md(Bn,K \B) < δ.

Note also that An,K , Bn,K ∈ F
(d)
n . We take

(16) A′ := ∪KAn,K , B′ := ∪KBn,K ,

so that

A′, B′ ∈ F (d)
n ,

and for every K, [A′]K ⊃ An,K , similarly for B, so that by (14),

(17) λd([A]K \ [A′]K) < δ, λd([B]K \ [B′]K) < δ.

Using (17),

λd([A
′]K ∩ [B′]Kc) > λd([A]K ∩ [B]Kc)− 2δ,

and hence for the unions, with 2d values for K, using 2d+1δ = ε,

λd(A
′ @ B′) > λd(A @ B)− ε.
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To get an inequality in the opposite direction, combining (15) with (16),

md(A
′ \A) < 2d δ < ε, hence md(A

′) < md(A) + ε,

and similarly md(B
′) < md(B) + ε.

Finally, since A′, B′ ∈ F
(d)
n , we take equivalence classes modulo the atoms of

F
(d)
n , to produce our sets A′′, B′′ ∈ Sd for S with |S| = 2n, to get the example

satisfying (7) and (8). This completes a proof of Theorem 3.

Corollary 4. For Lebesgue measurable A,B ⊂ [0, 1]d, there exists a Borel set C,

with

(A @ B) ⊂ C, md(C) ≤ λd(A)λd(B).

Proof. Take Borel sets A1, B1 ⊂ [0, 1]d with A ⊂ A1, B ⊂ B1, and md(A1) =
λd(A),md(B1) = λd(B). Obviously A @ B ⊂ A1 @ B1, and Theorem 3 implies the
existence of a Borel set C with A1 @ B1 ⊂ C and md(C) ≤ md(A1)md(B1). �

5. Extension to 3 or more events

Theorem 5. For Borel subsets A1, . . . , Ar in [0, 1]d,

(18) λd

(

rm

1

Ai

)

≤
r
∏

1

md(Ai).

For Lebesgue measurable A1, ..., Ar in [0, 1]d, there exists a Borel set D with
er

1 Ai ⊂
D and md(D) ≤

∏

λd(Ai).

Proof. Define setsB1, B2, . . . , Br ⊂ [0, 1]d, Lebesgue measurable sets C1, C2, . . . , Cr ⊂
[0, 1]d, and Borel sets D1, D2, . . . , Dr recursively, with

A1 = B1 = C1 = D1

and for i = 2 to r, using Lemma 1,

Bi = Bi−1 @ Ai,

Ci = Di−1 @ Ai,

Di is a Borel set with Ci ⊂ Di, λd(Ci) = md(Di).

The BKR monotonicity relation that B ⊂ D implies B @ A ⊂ D @ A, and
induction, shows that for all i, Bi ⊂ Ci ⊂ Di. We check that Ci is Lebesgue
measurable by noting the it is the BKR combination of two Borel sets, namely
Di−1 and Ai.

Theorem 3 implies that λd(Ci) ≤ md(Di−1)md(Ai), and together with the defin-
ing property of Di this yields

λd(Ci) ≤ λd(Ci−1)md(Ai)

and it follows by induction that λd(Cr) ≤
∏r

1 md(Ai).
It is shown in [AGMS15] that

er
1 Ai ⊂ Br.

Combined with Br ⊂ Cr, we have
er

1 Ai ⊂ Cr. Lemma 1 shows that
er

1 Ai is
Lebesgue measurable, so we have proved (18).

The case with Lebesgue measurable inputs A1, . . . , Ar now follows from the Borel
case, by the same reasing used to derive Corollary 4 from Theorem 3. �
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6. Extension of the BKR inequalities to R
d

Say we are given a product probability measure P on R
d. This is equivalent to

saying that P is the law, with the Borel sigma-algebra on R
d, of X = (X1, . . . , Xd),

with X1, X2, . . . , Xd mutually independent, and with some given marginal distri-
butions — given by, say, the cumulative distribution functions Fi, where Fi(t) :=
P(Xi ≤ t) for −∞ < t < ∞. Let Gi be what is commonly called “F−1

i , the in-
verse cumulative distribution function for Xi”, or “the quantile function for the
distribution of Xi”. Specifically, we take the domain of Gi to be (0,1), and for
0 < u < 1,

Gi(u) := sup{x : P(Xi ≤ x) ≤ u},

this being a choice that makes Gi(·) right-continuous. It is standard to use this in
a coupling: with U uniformly distributed in (0,1), Gi(U) is equal in distribution to
Xi.

The net effect of this is to reassure the reader we have no claim to originality, if
we define

(19) g : (0, 1)d → R
d, u = (u1, . . . , ud) 7→ x := (G1(u1), . . . , Gd(ud)).

Also, it is obvious that under the uniform distribution on (0, 1)d, g(ω) is equal in
distribution to X, i.e., for every Borel set A in R

d, md(g
−1(A)) = P(A).

Theorem 6. For Borel subsets A,B of Rd, under any complete product probability

measure P on R
d,

(20) P(A @ B) ≤ P(A)P(B).

For Borel subsets A1, . . . , Ar of Rd, under any complete product probability measure

P on R
d,

(21) P(

rm

1

Ai) ≤
r
∏

1

P(Ai).

Proof. The map g defined by (19) is Borel measurable. Since the ith coordinate of
g(u) depends only on ui, the BKR operators respect g, that is,

(22) for a := g−1(A), b := g−1(B) ⊂ [0, 1]d, a @ b = g−1(A @ B).

Of course, the BKR operator @ appearing in a @ b in (22) is defined for [0, 1]d by
(2) and (5), while the BKR operator @ appearing in A@B in (22) is defined for Rd

by the appropriate analog of (5); these are different operators.
Now apply Theorem 3 to get (20). For the r-fold BKR operator, the same g,

combined with Theorem 5, implies (21). �

Corollary 7. Suppose S ⊂ R is Borel measurable. For Borel subsets A,B and

A1, . . . , Ar of Sd, under any complete product probability measure P on Sd, (20)
and (21) hold.

Proof. Extend A ⊂ Sd to Â ⊂ R
d given by Â := A ∪ (Rd \ Sd), likewise extend B

or A1, ..., Ad, and apply Theorem 6. �
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7. Infinite products

How should the BKR operator be extended from Sd to S∞ ≡ SN? For A ⊂ SN,
and K ⊂ N, the definition of [A]K extends in the obvious way from (1): [A]K is the
maximal cylinder subset of A, free in all coordinates indexed by N \K.

Definition (3) for the BKR operator @ on spaces of the form Sd, if modified to
apply to SN merely by replacing [d] by N, yields an operator we shall call @=∞:

(23) A @=∞ B :=
⋃

disjoint J,K⊂N

[A]J ∩ [B]K .

One problem with this operator is that it involves an uncountable union, so in the
measurability argument from Lemma 1, the cylinders such as [A]J are Lebesgue
measurable, but this fails to imply that for Borel set A,B, the result A @=∞ B is
Lebesgue measurable. A more severe problem with definition (23) is that it does
not seem to yield to any approximation scheme down to a known version of the
BKR inequality, as in the heart of this paper, Section 4.1.

Hence, for spaces of the form SN, we adopt the following definitions:

(24) for A,B ⊂ SN, A @ B :=
⋃

finite disjoint J,K⊂N

[A]J ∩ [B]K

and for A1, . . . , Ar ⊂ SN,

(25)
m

1≤i≤r

Ai ≡ A1 @ · · · @ Ar :=
⋃

finite disjoint J1,...,Jr⊂N

r
⋂

1

[Ai]Ji
.

It may have been nice to use the customary BKR symbol @ in the above definitions,
rather than contrive new notation, perhaps @finite or @∞. It is valid, and would
allow a single universal definition, to replace all of (3), (4), (24), and (25): for
countable index set I (such as I = [d] or I = N), for r ≥ 2 and for A1, . . . , Ar ⊂ SI ,
we define the event that A1, . . . , Ar occur for finite disjoint sets of reasons,

(26)

rm

1

Ai := A1 @ · · · @ Ar :=
⋃

finite disjoint J1,...,Jr⊂I

r
⋂

1

[Ai]Ji
.

However, in light of the natural alternate extension given by (23), users of the
symbol @ in the context of infinite products spaces should attach warning prose, as
we do in Theorems 9 and 10 below.

Example 8. Consider (Ω,F ,P) with Ω = [0, 1]N, F = the Borel sets, and P = m,
Lebesgue measure; as usual let Xi := the ith coordinate, Sn := X1 + · · ·+Xn. Let
A = {lim supSn/n ≥ .2}. Then A@B = ∅ for every event B, but P(A @=∞ A) = 1,
which can be seen by taking J = the odd positive integers, K = the even positive
integers. Consider the r-fold @=∞ operator defined in the natural way. Take A1 =
· · · = Ar = A, Br := A1 @=∞ A2 @=∞ · · ·@=∞ Ar, and Cr := A1 @A2 @ · · ·@Ar ≡er

1 Ai . We have Br = ∅ if and only if r > 5, and P(B1) = P(B2) = 1,P(B3) =
P(B4) = P(B5) = 0. We have Cr = ∅ for r = 1, 2, 3, . . . with the case r = 1 serving
to highlight a difference between the two forms of notation,

er

1 Ai and A1 @ · · ·@Ar

— does the latter reduce to A1 when r = 1? Of course not.

The extension of theorems 3 and 5 from [0, 1]d to [0, 1]N is relatively easy. Fol-
lowing the notational scheme from Section 3.2, we write m for Lebesgue measure
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on the Borel subsets of [0, 1]N, and λ for the completion of m, so λ is Lebesgue
measure on the Lebesgue measurable subsets of [0, 1]N.

Theorem 9. Consider the BKR combination of events, that they occur for finite
disjoint sets of reasons, as specified by (24) and (25). For Borel subsets A,B in

[0, 1]N, A @ B is Lebesgue measurable, and

λ(A @ B) ≤ m(A)m(B).

For Borel subsets A1, . . . , Ar in [0, 1]N, A1 @ · · · @ Ar is Lebesgue measurable, and

(27) λ

(

rm

1

Ai

)

≤
r
∏

1

m(Ai).

Proof. The Lebesgue measurability of the BKR products is clear from the sentence
following (23). Define the level-d BKR operator on [0, 1]N by

(28) A @d B :=
⋃

disjoint J,K⊂[d]

[A]J ∩ [B]K .

It is obvious that A @ B is the countable, nested union of these, hence

A @ B = ∪d≥0A @d B and lim
d→∞

λ(A @d B) = λ(A @ B).

Therefore, it suffices to show that for d < ∞, λ(A @d B) ≤ m(A)m(B).
Fix d and let C = A@dB. Extend the notation [[A]]K for the base of the cylinder

[A]K , from (10) to the situation with A ⊂ [0, 1]N, and apply it with K = [d]. Take
A′ := [[A]][d] ⊂ [0, 1]d, so [A][d] ⊂ A, and λd(A

′) = λ([A][d]) ≤ m(A). Similarly take
B′ := [[B]][d] and C′ := [[C]][d]. Note that C is a cylinder, free in the coordinates
of index greater than d, so C = [C][d] and λ(C) = λd(C

′). It is “obvious” (and we

supply details in the next paragraph) that with the usual BKR operator on [0, 1]d,
A′ @ B′ = C′, so Corollary 4 applies, showing that λd(C

′) ≤ λd(A
′)λd(B

′), and
chaining together inequalities completes the proof that λ(A @ B) ≤ m(A)m(B).

Details for A′ @ B′ = C′: We start with C := A @d B as defined by (28), and
apply Proj[d]. The relation ([A]J )K = [A]J∩K in [0, 1]N, used with K = [d], shows

that for J ⊂ [d],

([A][d])J = [A]J , and hence, in [0, 1]d, [A′]J = Proj[d]([A]J ).

The function Proj = Proj[d], which is the set-to-set function induced by proj[d] :

[0, 1]N → [0, 1]d, distributes over unions. For J,K ⊂ [d], [A′]J = Proj([A]J ) and
[B′]K = Proj([B]K), also, both [A]J and [B]K are cylinders free in all coordinates of
index greater than d, so that Proj([A]J )∩Proj([B]K) = Proj([A]J ∩ [B]K). Hence,
with all unions taken over disjoint J,K ⊂ [d],

A′ @ B′ =
⋃

[A′]J ∩ [B′]K

=
⋃

Proj([A]J ) ∩ Proj([B]K)

= Proj
(

⋃

[A]J ∩ [B]K

)

= Proj (A @d B) = Proj(C) = Proj([C][d]) = C′.

Finally, the result for the simultaneous r-fold BKR operator follows by a similar
argument, starting with an extension of (28) to define a level-d r-fold BKR operator.

�
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Theorem 10. Consider the BKR combination of events, that they occur for finite
disjoint sets of reasons, as specified by (24) and (25). For Borel subsets A,B of

R
N, under any complete product probability measure P on R

N,

(29) P(A @ B) ≤ P(A)P(B).

For Borel subsets A1, . . . , Ar of RN, under any complete product probability measure

P on R
N,

(30) P(

rm

1

Ai) ≤
r
∏

1

P(Ai).

Proof. The result follows immediately from Theorem 9, by adapting (19) and the
argument used to prove Theorem 6, from the context of R

d, to the context of
R

N. �

8. Relaxing the sample space

In this paper we consider a sample space SI for I countable and S = [0, 1] — with
Lebesgue measure on SI , or S = R, with arbitrary complete product probability
measure on SI . However, all results can be carried over to the superficially more
general case Ω :=

∏

i∈I Si for Si a Polish subspace (equivalently, Gδ subset) of R,
each Si is endowed with a probability measure Pi defined on the Borel subsets, and
Ω has the product measure P =

∏

Pi.

Extend Pi, P to measures P̂i, P̂ on R, RI respectively by taking them to be 0 on
the complement. The definition of the BKR operation from (4) or (25) rephrases
in a natural way to Ω. One finds, for Borel sets Aj ⊂ Ω: a) @jAj is P-measurable
by the argument of Lemma 1, and b), writing @̂ for the BKR operation computed

with respect to R
I and Âj := Aj ∪ (RI \ Ω), that

@jAj =
(

@̂jÂj

)

∩ Ω.

Therefore, P(@jAj) = P̂(@̂jÂj) and
∏

j P̂(Âj) =
∏

j P(Aj), and it is clear that

Theorems 6 and 10 for RI imply the BKR inequality for
∏

i∈I Si.

9. From Ω to Ω

It is tempting to attempt to extend our results to get something symmetric,
where we assume that the inputs A,B are in a larger family of sets than the Borel
sets, and the output A@B, satisfying λd(A@B) ≤ λd(A)λd(B), is in the same fam-
ily. Since defining the BKR product requires only complement, countable union,
and projection, the “larger family” should be the class of projective sets, the small-
est extension of the class of Borel sets closed under projection, complement and
countable union, see [Mos09, Kec95]. Then the version of Lemma 1, If A,B are

projective, then the cylinders [A]K and the BKR product A@B are also projective,
is immediately true.

Probabilists may be familiar with the construction of the family of Borel sets,
starting from the family of open sets, take complements and countable unions, to
get a larger family, then iterate – see [Bil95, pages 30–32]. The construction of pro-
jective sets is similar; start with the Borel sets, take projections, countable unions,
and complements, to get a larger family, then iterate. But there is a difference: the
construction of Borel sets requires iteration out to the first uncountable ordinal,
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usually denoted Ω, while the construction of projective sets is finished at the first
infinite ordinal ω.

In view of Corollary 4, to get BKR inequalities, we need only show that Lebesgue
measure extends to projective sets. Here the situation is somewhat complex. It is
consistent with ZFC to assume that such extension is false, in fact that there are
nonmeasurable projective sets only one level in the projective hierarchy above an-
alytic sets [Göd40]. On the other hand, the existence of an inaccessible cardinal
would imply that all projective sets are measurable [Sol70]. Though such exis-
tence cannot be proved to be consistent with ZFC, it is widely assumed that this
(consistency) is true — and often such existence is accepted as a useful extra axiom.

10. Open problems

Problem 11. For the BKR operator @=∞ defined by (23), prove or give a coun-
terexample: For Borel subsets A,B in [0, 1]N, there exists a Borel set C, with

A @ B ⊂ C and m(C) ≤ m(A)m(B).

It is not hard to determine, for the special case d = 2, when the BKR inequality
holds with equality: for Borel sets A,B ⊂ [0, 1]2, λ2(A@B) = m2(A)m2(B) if and
only if if and only if 0) m1(A)m2(B) = 0, or 1) A or B is all of [0, 1]2, or 2) A and
B are each unions of a “cylinder” and a measure zero set, with the two cylinders
being “orthogonal”, i.e., in different directions.

Problem 12. Give a simple necesary and sufficient condition for A,B ⊂ [0, 1]d, to
satisfy λd(A @ B) = md(A)md(B).

As background for problems 13 and 14: in [AGMS15, Prop. 5.5], for arbitrary S
and A1, . . . , Ar ⊂ Sd, we showed that

er

1 Ai ⊂ (· · · ((A1@A2)@A3) · · ·@Ar−1)@Ar).
For brevity we omit the symbol for binary BKR operator, and write simply

er

1 Ai ⊂
(· · · ((A1A2)A3) · · ·Ar−1)Ar) For a binary operator, the number of ways to associate
a product with r factors is given by the Catalan number Cr−1, and the same
argument shows that the simultaneous r-fold BKR product,

er

1 Ai, is a subset of
each of the binary-associated products.

Problem 13. Prove or disprove: for r = 3, 4, . . ., there exist S and d, and
A1, . . . , Ar ⊂ Sd, such that the Cr−1 binary-associated products for A1A2 · · ·Ar

are all distinct.

Problem 14. For r = 3, 4, . . ., for any S and d, and for any A1, . . . , Ar ⊂ Sd,
we already know that

er

1 Ai is a subset of the intersection of the Cr−1 binary-
associated products for A1A2 · · ·Ar. Prove or disprove: for r = 3, 4, . . ., there
exists an example where the containment of

er

1 Ai is strict.

Now consider cases where all r factors are the same set A. Commutativity of the
binary BKR product implies that (A @A) @A = A @ (A @A), but does not resolve
the situation for r = 4 factors. Example 15 example does resolve the situation for
r = 4.

Example 15 ( ((AA)A)A 6= (AA)(AA) can occur). In {0, 1}6, let A be the union
of the following 2-cylinders, each of which is a set of size 16:

11****, **11**, 1**0**, *11***,
**00**, ****00, **1**0, ***00*.
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Note that the first two 2-cylinders combine to show that 1111** ⊂ AA, the next
two show that 1110** ⊂ AA. Hence the first four 2-cylinders show that 111*** ⊂
AA. Similarly, the last four 2-cylinders show that ***000 ⊂ AA. Combining, we see
that 111000 ∈ (AA)(AA). Computer-exhaustive checking shows that ((AA)A)A =
∅, hence ((AA)A)A 6= (AA)(AA).

In honor of Wedderburn [Wed22], [Slo, Sequence A001190], write Wn for the
number of ways to binary-associate a product of the form An, up to equivalence
modulo the commutative property of the binary relation; for example,W2,W3, . . . ,W7 =
1, 1, 1, 2, 3, 6, 11.

Problem 16. (a) For r = 5, 6, . . . , does there exist an example with a single
set A, such that all Wr equivalence classes of association yield different
results?

(b) As above, with the additional restriction that A ⊂ {0, 1}d for some d de-
pending on r.

(c) If, for a given r, there is an example with A ⊂ {0, 1}d such that all Wr

equivalence classes of association yield different results, write Dr for the
smallest such d, following the notation Ramsey numbers. Example 15 shows
that D4 ≤ 6. Can you prove that D4 > 5? Can you determine D5? Or give
nontrivial upper or lower bounds for Dr for general r?
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