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Abstract

In this paper we consider the critical group of finite connected graphs which
admit harmonic actions by the dihedral groupDn, extending earlier work by the
author and Criel Merino. In particular, we show that the critical group of such
a graph can be decomposed in terms of the critical groups of the quotients of
the graph by certain subgroups of the automorphism group. This is analogous
to a theorem of Kani and Rosen which decomposes the Jacobians of algebraic
curves with a Dn-action.

1. Introduction

This note picks up where the author’s previous article with Criel Merino
[7] left off. In particular, that article added to the growing literature (see, for
example: [1],[6],[11]) exploring the analogy between the Jacobians of curves and
the Jacobians of graphs, also known as critical groups. Those papers, and others
in the literature, prove theorems about Jacobians of graphs that are equivalent
to theorems from algebraic geometry such as the Riemann-Roch Theorem and
the Hurwitz bound on the size of the automorphism group. Our article looked
at a theorem of Kani and Rosen [9] that shows a relationship between the
Jacobians of curves that admit certain group actions and the Jacobians of the
quotients of that curve and explored whether their theorem carried over to
the graph theoretic setting. In particular, we showed how to decompose the
Jacobian of a graph that had a harmonic action by the dihedral group Dn

in terms of the Jacobians of its quotients. However, our results required the
additional hypothesis that the Dn-orbits of the vertices each had precisely n or
2n elements. This hypothesis is very restrictive, and in this note, we remove
that condition and prove the following theorem about Jacobians of graphs that
admit a harmonic action of Dn independent of the size of the orbits.

Theorem 1.1. Let G be a graph admitting a harmonic action of the dihedral
group Dn generated by the involutions σ1 and σ2, and define an orbit of the
vertices to be inertial if any element of the orbit is fixed by either σ1 or σ2. For
all primes p ∤ 2n, we have that the p-Sylow subgroups of the two groups

Jac(G/σ1)⊕ Jac(G/σ2)⊕ Jac(G/σ1σ2)⊕ Z/nZ

and

Jac(G)⊕ Jac(G/Dn)
2 ⊕

(

⊕

O inertial

(Z/
n

|O|Z)
)

are isomorphic. If p|2n then these p-Sylow subgroups have the same order but
may not be isomorphic.
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We believe this theorem is of interest largely because it helps strengthen the
connection between the study of Jacobians of graphs and Jacobians of curves.
Moreover, it is computationally useful because the quotient graphs G/σ1, G/σ2,
and G/σ1σ2 all have fewer vertices than G, and therefore computing their Ja-
cobians directly from the Laplacian matrix will be faster. When n is odd we
will get a further efficiency from the fact that σ1 and σ2 are conjugate elements
and thus Jac(G/σ1) ∼= Jac(G/σ2). In particular, given that best algorithms for
computing the critical group of a graph with k vertices take somewhat less than
O(k3) time [8], this approach could speed up the computation by a factor of
roughly 8.

We note that when n = 2, we are looking at the case where our graph
admits a harmonic action of the Klein-Four group, and Theorem 1.1 simplifies
as follows:

Corollary 1.2. Let K = {id, σ1, σ2, σ3} ∼= (Z/2Z)2 and let G be a graph
which admits a harmonic K-action so that there are exactly o points fixed by
the entire group. Then for any prime p 6= 2, the p-part of the finite abelian
group Jac(G) ⊕ (Jac(G/K))2 is isomorphic to the p-part of the direct sum
Jac(G/σ1) ⊕ Jac(G/σ2) ⊕ Jac(G/σ3). Moreover, if the 2-part of Jac(G/σ1) ⊕
Jac(G/σ2)⊕ Jac(G/σ3) is of order 2n then the 2-part of Jac(G)⊕ (Jac(G/K))2

has order 2n−o+1.

In the next section we introduce notation that we will use in our proof
and discuss the general structure of our argument, which is very similar to
the techniques used in [7]. The following sections prove some technical results
about sets of divisors on graphs that admit harmonic dihedral actions. Section
6 combines these results in order to describe the Jacobian of our graph in terms
of the Jacobians of its quotients. A final section gives additional examples,
including a proof of Corollary 1.2.

2. Notation and Structure

Throughout this paper, we assume that G is a graph that admits a harmonic
action of the dihedral group Dn generated by two involutions σ1 and σ2 and we
set τ = σ1σ2 so that τ is an element of order n. We recall that the action is
harmonic if anytime an element of the group fixes an edge it switches the two
vertices that are endpoints of that edge. Given a Dn-orbit O of vertices on the
graph G, we wish to define the following two invariants: the type and the index.

Definition 2.1. For each orbit O of the vertices of G under a harmonic Dn-
action, we define it to be either Type I, II, or III as follows:

• A Type I orbit is an orbit O so that σ2 fixes some element of O. We let
t1 be the number of orbits of Type I.

• A Type II orbit is an orbit O so that σ2 does NOT fix any element, but
σ1 does fix an element of O. We let t2 be the number of orbits of Type II.
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• A Type III orbit is be an orbit O so that neither σ1 or σ2 fix any elements
of O. We let t3 be the number of orbits of Type III.

Going along with the definition given in Theorem 1.1, we will refer to Type
I and Type II orbits jointly as ‘inertial’, and we note that these are orbits on
which the subgroup 〈τ〉 acts transitively. Similarly, we refer to Type III orbits
as ‘non-inertial’ and observe that the subgroup 〈τ〉 splits these orbits into two
suborbits of equal size. In particular, if an orbit is inertial then the order of the
orbit must be a divisor of n, and we define the index of O to be kO = n/|O|.
On the other hand, the order of a non-inertial orbit will be twice a divisor of n,
and we define the index to be kO = 2n/|O|. When it is clear which orbit we are
talking about, we will often drop the subscripts and just write k for the index.
For a given graph G, we will find it useful to set κ to be the least common
multiple of the indices kO.

We note that if n is odd then there are no Type II orbits, as σ1 and σ2 are
conjugates of one another, and in particular τ iσ1 = σ2τ

i for some i. Thus, if
σ1(v) = v then σ2(τ

i(v)) = τ i(v), meaning that σ2 fixes an element in the same
orbit as v. A similar argument holds showing that there are no Type II orbits
when n is even and O is an orbit so that n/kO is odd. Moreover, without loss
of generality we assume that if there are any Type II orbits then there are also
Type I orbits; otherwise, we switch the labels of σ1 and σ2.

Remark 2.2. In what follows, it will be helpful to set the following notation.

• Any Type I orbit of index k can be denoted by the set {zi}n/ki=1 where
σ1(zi) = zn/k+1−i and σ2(zi) = zn/k+2−i, where the subscripts should
all be taken mod n/k. In particular, it will have one fixed point under
each involution if n

k is odd and two under σ2 and none under σ1 if n
k is

even.

• Any Type II orbit of index k can be denoted by the set {wi}n/ki=1 where
σ1(wi) = wn/k−i and σ2(wi) = wn/k+1−i with the subscripts again being
taken mod n/k. In particular, σ2 will not fix any points while σ1 will fix
two points.

• Any Type III orbit can be split into two suborbits {xi}n/ki=1 , {yi}
n/k
i=1 , where

σ1(xi) = yn/k+1−i and σ2(xi) = yn/k+2−i, so the reflections take elements
of one suborbit to the other, and the ‘rotations’ generated by τ = σ1σ2 fix
each of the suborbits.

We illustrate this notation in Figure 1, which shows graphs admitting D3 and
D4 actions. In each case, σ1 denotes reflection in the vertical axis and σ2 is
reflection in the diagonal line indicated. The graphs each have one orbit of each
Type, all of index one and labeled with the above notation.

Example 2.3. Throughout this note, we will consider the running example of
the complete bipartite graph K4,4, as pictured in Figure 2. While the Jacobian of
this graph is easy to compute from first principles, we believe it will be useful to
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Figure 1: Graphs with harmonic actions

keep in mind when working through our results. With vertices labelled as in the
picture, we define involutions on the vertices by letting σ1 = (z1 z4)(z2 z3)(x y)
and σ2 = (z2 z4)(w1 w2)(x y). One can compute that the product τ = σ2σ1 =
(z1 z2 z3 z4)(w1 w2) has order four, and therefore the group generated by 〈σ1, σ2〉
is isomorphic to the dihedral group D4.

z4

z3

z2

z1

w2

w1

y

x

Figure 2: D4 action on K4,4

It is straightforward to check that this group action is harmonic. The vertices
of K4,4 have three orbits under this group action:

• {z1, z2, z3, z4} is an orbit of Type I and index k = 1.

• {w1, w2} is an orbit of Type II and index k = 2.

• {x, y} is an orbit of Type III and index k = 4.

Moreover, we see that κ = lcm(1, 2, 4) = 4.
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One consequence of a morphism φ : G → H between graphs being harmonic
is that for any vertex w ∈ V (H) and v ∈ V (G) so that φ(v) = w we have that
all edges of H adjacent to w have the same number of preimages in G that
are adjacent to v; following Baker and Norine in [2] we call this the horizontal
multiplicity of φ at w and denote it by mφ(w). Recalling that a divisor on a
graph can be thought of as a function δ from the vertices of the graph to Z, we
define the pullback map from the set of divisors on H to the set of divisors on

G by setting φ∗(δ) =
∑

w∈V (H)

∑

v∈V (G)
φ(v)=w

mφ(w)(δ(w))(v).

Definition 2.4. Let G be a graph that admits a harmonic Dn-action. We define
the following sets of divisors on the graph G:

• D is the set of divisors δ so that
∑

v∈G δ(v) = 0.

• P0 is the set of divisors δ that can be viewed as pullbacks of divisors of
degree zero on the quotient graph Ĝ = G/Dn. In particular, it follows
from [7, Lemma 3.2] that P0 is the set of divisors of total degree zero
whose values are constant on each orbit O and whose value on the vertices
of O are all multiples of 2n/|O|.

• For i = 1, 2 we set Pi to be the set of divisors that can be viewed as
pullbacks of divisors of degree zero on the quotient graph Hi = G/〈σi〉. In
particular, Pi will consist of divisors of degree zero so that δ(v) = δ(σi(v))
for all v and δ(v) is even if σi(v) = v.

• P3 is the set of divisors δ that can be viewed as pullbacks of divisors of
degree zero on the quotient graph H3 = G/〈τ〉 where τ = σ1σ2. We have
that δ ∈ P3 if and only if δ is of total degree zero, δ(v) is constant on all
orbits of Type I and II and constant on each of the xi and yi suborbits of
any orbit of Type III and, moreover, that the value of δ(v) is a multiple of
the index of the orbit containing v for all vertices.

• We set P = P1 + P2 + P3.

Example 2.5. We illustrate these definitions by computing these sets for the
bipartite graph with the D4 action described in Example 2.3. Figure 3 illustrates
the symmetry conditions for the sets Pi; note that a divisor will be in the set Pi

exactly when it takes this form (where all of the letters represent integer values)
and has total degree equal to zero. Understanding the set P = P1 + P2 + P3 is
in general more subtle and will be the main topic of Section 3.

Definition 2.6. In addition to understanding the sets of divisors, it is important
to understand the operation of ‘firing vertices’ that defines the Jacobian of a
graph. More precisely:

• For each vertex v we define the divisor ℓv to be the divisor corresponding
to ‘firing’ at v. In particular, ℓv(v) = −deg(v) while for all w 6= v we set
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Figure 3: Generic elements of the sets Pi for the D4 action on K4,4

ℓv(w) equal to the number of edges between v and w. We define L to be
the set of divisors that can be written as integer linear combinations of the
ℓv, and note that Jac(G) is defined to be the quotient group D/L.

• L′ is defined to be the set which is generated by those divisors on G that
are pullbacks of the divisors corresponding to firing vertices on H1, H2 and
H3. We will explore this set more concretely in Section 5.

In [7], we show that we have the following inclusion of these groups

L′ P ∩ L�

�

// P ∩ L

P

o�

��❄
❄❄

❄❄
P ∩ L

L

/

�

??⑧⑧⑧⑧⑧

P

P + L

�

/

??⑧⑧⑧⑧⑧

L

P + L

� o

��❄
❄❄

❄❄

P + L D�

�

//

which allows us to use the isomorphism theorems in order to prove the following
result:

Theorem 2.7. We have the following exact sequences between the quotients of
groups:

1 → (P ∩ L)/L′ → L/L′→D/P → D/(P + L) → 1

1 → (P ∩ L)/L′ → P/L′→ Jac(G) → D/(P + L) → 1

1 → K → Jac(H1)⊕ Jac(H2)⊕ Jac(H3) → P/L′ → 1

Our proof of this theorem is independent of the size of the orbits and there-
fore applies to the more general setting of this note. In that paper we then use
the additional hypotheses to prove specific results about the groups in these
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exact sequence. We will follow a similar approach here, and subsequent sec-
tions will give explicit formulations for the finite abelian groups D/P (Theo-
rem 3.11), K (Theorem 4.7), and L/L′ (Theorem 5.3). Along with the above
exact sequences, these results determine the relationship between Jac(G) and
Jac(H1)⊕ Jac(H2)⊕ Jac(H3), allowing us to prove Theorem 1.1.

3. Sums of Pullbacks

Our goal in this section is to understand the group D/P , and Theorem 3.11
will give a precise formula for this group. To prove this theorem, we give a
precise characterization of the divisors in P . We begin by considering the sum
P1 + P2, for which we need to define some auxiliary functions.

Definition 3.1. For each orbit O of vertices of G under the Dn action we
define a function FO : {divisors on G} → Z as follows:

• Let O = {zi} denote a Type I orbit of vertices of G using the notation of

Remark 2.2. Then FO(δ) =
∑n/k

i=1 2iδ(zi).

• If O = {wi} is a Type II orbit then FO(δ) =
∑n/k

i=1(2i+ 1)δ(wi).

• If O = {xi, yi} is a Type III orbit then FO(δ) =
∑n/k

i=1 2i(δ(xi) + δ(yi)).

Note that we define FO(δ) as a function on the set of all divisors δ on G, but
its value depends only on the value of the divisor at vertices in the orbit O.

We note the similarities between the function FO and the function τ defined
in [5, Defn 2]. The individual functions FO can vary quite a bit, but it turns
out that adding these together captures important global information about the
divisor δ, and we define the function F (δ) =

∑

O FO(δ).

Example 3.2. Returning to our running example, we consider a divisor δ1 on
K4,4 that is in the set P1 as illustrated in Example 2.5. Keeping in mind that
we must have a1 + b1 + c1 + d1 + e1 = 0, we compute that

F (δ1) =

4
∑

i=1

2iδ1(zi) +

2
∑

i=1

(2i+ 1)δ1(wi) + 2(δ1(x) + δ1(y)) (1)

= 2a1 + 4b1 + 6b1 + 8a1 + 3e1 + 5e1 + 4c1 + 4d1 (2)

= 10a1 + 10b1 + 8e1 + 4c1 + 4d1 (3)

= 6a1 + 6b1 + 4e1 (4)

which we note is an even number. Similarly, if δ2 ∈ P2 we can compute that
F (δ2) = 8a2+8b2+4d2, which will also be even. Because the definition of FO(δ)
is linear in δ, it follows that any divisor δ ∈ P1 +P2 will also have that F (δ) is
even.

More generally, we can prove the following result:
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Lemma 3.3. Let G be a graph with a Dn action and let κ be the least common
multiple of the indices kO of the orbits of this action. For every divisor δ ∈ P1

we have that F (δ) is a multiple of 2n/κ. The same result holds for divisors
δ ∈ P2.

Proof. Let δ ∈ P1 and let O be a Type I orbit, so that δ(zi) = δ(zn/kO+1−i).
We then compute:

FO(δ) =

n/kO
∑

i=1

2iδ(zi)

=

n/kO
∑

i=1

(

iδ(zi) + iδ(zn/kO+1−i)
)

=

n/kO
∑

i=1

iδ(zi) +

n/kO
∑

i=1

iδ(zn/kO+1−i)

=

n/kO
∑

i=1

iδ(zi) +

n/kO
∑

j=1

(n/kO + 1− j)δ(zj)

=

n/kO
∑

i=1

(iδ(zi) + (n/kO + 1− i)δ(zi))

=

(

n

kO
+ 1

)

∑

v∈O

δ(v)

where the equality at line three comes from setting j = n/kO + 1− i.
Similarly, one can use the symmetry properties of Type II and Type III

orbits to see that the same conclusion holds for those orbits as well. Using these
facts as well as the fact that δ must have total degree equal to zero, we then
compute that

F (δ) =
∑

O

(

(
n

kO
+ 1)

∑

v∈O

δ(v)

)

=
∑

O

(

n

kO

∑

v∈O

δ(v)

)

+
∑

v∈G

δ(v)

=
∑

O

(

n

kO

∑

v∈O

δ(v)

)

=
n

κ

∑

O

(

κ

kO

∑

v∈O

δ(v)

)

which is clearly a multiple of n/κ. Moreover, for symmetry reasons we know
that if δ ∈ P1 then for each orbit O we have that

∑

v∈O δ(v) will be even,
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which in turn implies that κ
kO

∑

v∈O δ(v) is even. The desired result follows for
divisors in P1. The argument is similar for divisors in P2.

We are now able to prove a result about the divisors that can be written as
the sum of divisors in P1 and P2.

Theorem 3.4. A divisor δ ∈ D will be in the set P1 + P2 if and only if δ
satisfies the following conditions:

(1) For each orbit O, we have that
∑

v∈O δ(v) is even.

(2) If O = {xi} ∪ {yi} is an orbit of Type III then
∑

δ(xi) =
∑

δ(yi).

(3) F (δ) is a multiple of 2n/κ, where κ is defined as above.

Proof. It is straightforward to check that that the first two conditions holds for
all elements in P1 and P2. The fact that the third condition holds for elements
of P1 and P2 is the content of Lemma 3.3. Moreover, these conditions are all
linear and will therefore hold for all elements of P1 + P2. It follows that the
conditions are necessary for a divisor to be in P1 + P2. To check that these
conditions are also sufficient, let δ be a divisor satisfying all three of them. We
wish to define divisors δ1 ∈ P1 and δ2 ∈ P2 so that δ = δ1 + δ2.

Using the notation above, we first define auxiliary divisors δ̂1 and δ̂2 on
orbits of Type III as follows:

δ̂1(xi) = (δ(x1) + · · ·+ δ(xi))− (δ(yn/k) + · · ·+ δ(yn/k+2−i))

δ̂1(yi) = δ̂1(xn/k+1−i)

δ̂2(xi) = (δ(yn/k) + · · ·+ δ(yn/k+2−i)− (δ(x1) + · · ·+ δ(xi−1))

δ̂2(yi) = δ̂2(xn/k+2−i)

We note that we need Condition (2) of the Lemma to hold in order for these

terms to be well-defined. It is clear by definition that δ̂1 and δ̂2 satisfy the
required symmetry properties. One can easily see that δ̂1(xi) + δ̂2(xi) = δ(xi)
and we compute:

δ̂1(yi) + δ̂2(yi) = δ̂1(xn/k+1−i) + δ̂2(xn/k+2−i)

=





n/k+1−i
∑

j=1

δ(xj)−
n/k
∑

j=i+1

δ(yj)



 +





n/k
∑

j=i

δ(yj)−
n/k+1−i
∑

j=1

δ(xj)





= δ(yi)

For inertial orbits, we define δ̂1 and δ̂2 as follows:
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δ̂1(zi) = (δ(z1) + · · ·+ δ(zi))− (δ(zn/k) + · · ·+ δ(zn/k+2−i))

δ̂1(wi) = (δ(w1) + · · ·+ δ(wi))− (δ(wn/k−1) + · · ·+ δ(wn/k+1−i))

δ̂2(zi) = (δ(zn/k) + · · ·+ δ(zn/k+2−i))− (δ(z1) + · · ·+ δ(zi−1))

δ̂2(wi) = (δ(wn/k−1) + · · ·+ δ(wn/k+1−i))− (δ(w1) + · · ·+ δ(wi−1))

The reader can check that each δ̂i satisfies the required parity and symmetry
conditions on all orbits in order to be in Pi, as well as the fact that the value of
δ̂1+ δ̂2 on these vertices agrees with the value of δ. Unfortunately, it may not be
the case that the δ̂i have total degree zero, and therefore we must adjust them
accordingly. In particular, we look at the sum of the values of δ̂1 on specific
orbits and see the following:

O Type I:
∑

v∈O

δ̂1(v)=

n/kO
∑

i=1

(

n

kO
+ 2− 2i

)

δ(zi)

O Type II:
∑

v∈O

δ̂1(v)=

n/kO
∑

i=1

(

n

kO
+ 1− 2i

)

δ(wi)

O Type III:
∑

v∈O

δ̂1(v)=

n/kO
∑

i=1

(

n

kO
+ 2− 2i

)

(δ(xi) + δ(yi))

Thus, for each orbit O we have
∑

v∈O δ̂1(v) = ( n
kO

+ 2)
∑

v∈O δ(v)− FO(δ),
and it therefore follows that

∑

v∈G

δ̂1(v) = 2
∑

v∈G

δ(v) +
∑

O

(

n

kO

∑

v∈O

δ(v)− FO(δ)

)

Using Conditions (1) and (3) in the statement of the lemma, we can conclude
that this is a multiple of 2n/κ. Moreover, we note that

∑

v∈G δ(v) = 0 so in

particular
∑

v∈G δ̂1(v) = −∑v∈G δ̂2(v). Recall that, because
∑

v∈G δ̂1(v) is

a multiple of 2n/κ, there exists a divisor δ̃ ∈ Q with total degree equal to
∑

v∈G δ̂1(v). Choose one such divisor and set δ1 = δ̂1 − δ̃ and δ2 = δ̂2 + δ̃. One
can easily verify that δ1 ∈ P1 and δ2 ∈ P2, and δ1 + δ2 = δ, completing the
proof.

We note that in the case where the graph has any points that are fixed by
all group elements there is an orbit of index n and in particular, κ = n. In this
case, the third condition in Theorem 3.4 becomes vacuously true. At the other
extreme, if all orbits have index 1 then this result is equivalent to [7, Thm 3.5].
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Example 3.5. Returning to Example 2.3, we have that n = κ = 4 and therefore
we again see that the third condition in Theorem 3.4 follows immediately from
the others. In particular, applying this result to our example, we see that a
divisor δ will be in P1+P2 if and only if its total degree is equal to zero and the
following conditions all hold:

• δ(w1) + δ(w2) + δ(w3) + δ(w4) is even,

• δ(z1) and δ(z2) have the same parity, and

• δ(x) = δ(y)

The functions FO(δ) are also well-behaved if δ ∈ P3, and the following lemma
is a straightforward calculation from the definitions:

Lemma 3.6. Let δ be a divisor in P3.

• On any orbit O of Type I, the divisor δ takes on a constant value of aOkO,
and we have FO(δ) = naO(n/kO + 1)

• On any orbit O of Type II, the divisor δ takes on a constant value of
aOkO, and we have FO(δ) = naO(n/kO + 2)

• On any orbit O of Type III, the divisor δ takes on a constant value of
aOkO (resp. bOkO) on the xi (resp. yi) suborbit, and we can compute
that FO(δ) = n(aO + bO)(n/kO + 1)

We now wish to categorize the divisors that are elements of P = P1+P2+P3.
Our categorization will break into different cases depending on the parity of n
and κ, and we cover three different cases in the next three theorems. We will
give a complete proof of the case where n is odd in Theorem 3.7, but for the
subsequent theorems we choose to highlight where the proof is different and
leave the remaining details to the reader.

Theorem 3.7. Assume n is odd. Then a divisor δ ∈ P1 + P2 + P3 if and only
if δ satisfies the following conditions:

•
∑

v δ(v) = 0

• For all Type III orbits O = {xi} ∪ {yi}, we have that
∑

δ(xi) ≡
∑

δ(yi)
(mod n).

• F (δ) is a multiple of n/κ.

Proof. The conditions in the hypothesis of this Theorem are less restrictive
than those in Theorem 3.4 and therefore any divisor that is in P1 + P2 will
automatically satisfy them. We wish to show that if δ3 ∈ P3 that it will also
satisfy the conditions in the statement of the Theorem. By definition, all divisors
in P3 have total degree equal to zero, ensuring that δ3 satisfies the first condition.
From the remarks in Definition 2.4 we know that if δ3 ∈ P3 then it is constant
on the xi and yi suborbits of all Type III orbits. In particular, for each Type
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III orbit we have that
∑

δ3(xi) ≡
∑

δ3(yi) ≡ 0 mod n, so it satisfies the second
condition as well.

Recall that the hypothesis that n is odd implies that all orbits are either of
Type I or Type III. Lemma 3.6 therefore implies that for each O we have that
FO(δ3) is a multiple of n/kO, so will be a multiple of n/κ. This implies that
F (δ) is a multiple of n/κ. Therefore, we see that any divisor in P3 will satisfy
the conditions in the statement of the theorem, and by linearity it is clear that
any divisor in P = P1 + P2 + P3 will as well.

Conversely, assume that δ satisfies the conditions in the statement of the
theorem. We wish to define a divisor δ3 ∈ P3 so that δ − δ3 ∈ P1 + P2. To
do this, we first note that for each orbit of Type III we have by hypothesis
that

∑

δ(xi) ≡ ∑

δ(yi) (mod n). This implies that (
∑

δ(xi) −
∑

δ(yi))/n is
an integer, and we set this integer equal to aO. Moreover, let α =

∑

O aO. We
now consider separately the case where n does and does not have an orbit of
Type I.

Case 1: At least one orbit of Type I.
On each orbit O of Type III, let us define δ3 on the suborbits by setting

δ3(xi) = kOaO and δ3(yi) = 0 for all i. By hypothesis, there exists at least one
Type I orbit so choose one of them and designate it Ω. On all other Type I
orbits, we define δ3(v) = 0 if

∑

v∈O δ(v) is even and δ3(v) = kO if
∑

v∈O δ(v)
is odd. For vertices in Ω, we define δ3 so that the total degree of the divisor is
zero; in particular, for all ω ∈ Ω we set δ3(ω) = −kΩ(α + t̂1), where t̂1 is the
number of Type I orbits so that

∑

v∈O δ(v) is odd. It is clear that δ3 satisfies
the necessary symmetry properties to be in P3 and also that kO|δ(v) for each

v ∈ O. Therefore, δ3 ∈ P3 and we set δ̂ = δ − δ3. We wish to show that
δ̂ ∈ P1 + P2 by showing that it satisfies the hypotheses of Theorem 3.4.

To begin, we compute that for any orbit of Type III:

∑

δ̂(xi) =
∑

δ(xi)−
∑

δ3(xi)

=
∑

δ(xi)−
n

kO
kOaO

=
∑

δ(xi)− n ·
∑

δ(xi)−
∑

δ(yi)

n

=
∑

δ(yi)

=
∑

δ̂(yi)

This shows that Condition (2) is satisfied, and also implies that
∑

v∈O δ̂(v)
is even on orbits of Type III. For orbits of Type I, one can check that by
construction we have that

∑

v∈O δ3(v) ≡ ∑

v∈O δ(v) (mod 2) and therefore
∑

v∈O δ̂(v) is even on orbits of Type I as well. Therefore, the first two conditions

of Theorem 3.4 apply to δ̂.
To see that the third holds as well, we note that the fact that there are no

orbits of Type II implies that for any divisor β, it must be the case that FO(β)
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is even. By hypothesis, we know that F (δ) is a multiple of n/κ, and n/κ must
be odd, so we can conclude that F (δ) ≡ 0 (mod 2n/κ). On the other hand,
Lemma 3.6 implies that for all divisors β ∈ P3 we have F (β) is a multiple of
n/κ, so we can similarly conclude that F (δ3) is a multiple of 2n/κ as well. It

is an immediate consequence that δ̂ ≡ 0 (mod 2n/κ), showing that δ̂ satisfies

all of the conditions of Theorem 3.4. In particular, this shows that δ̂ ∈ P1 +P2

and thus δ ∈ P .

Case 2: n odd, all orbits are of Type III
This case works in a similar manner to what we did above. In order to define

our divisor δ3 we first note that If every orbit of G is of Type III, then we have

α =
∑

O

aO

=
∑

O

∑

δ(xi)−
∑

δ(yi)

n

=
∑

O

∑

δ(xi)−
∑

δ(yi)

n
+

∑

δ(xi) +
∑

δ(yi)

n

=
∑

O

2
∑

δ(xi)

n

and in particular α will be even. We choose one orbit and designate it Ω. For
the vertices in the xi suborbit of Ω, we let δ3 have the value kΩ(aΩ − α/2) and
for the vertices in the yi-suborbit we give δ3 the value −kΩα/2. On all orbits
O 6= Ω, we define δ3(xi) = kOaO and δ3(yi) = 0 for all i. It is easy to check
that δ3 has the necessary symmetry and divisibility properties to be an element
of P3. Moreover, one can go through very similar computations as in Case 1 to
see that δ̂ = δ − δ3 satisfies the conditions of Theorem 3.4 and thus δ ∈ P .

Theorem 3.8. Assume n and κ are both even. Then a divisor δ ∈ P1+P2+P3

if and only if δ satisfies the following conditions:

• ∑v δ(v) = 0

• If O is an orbit of Type III then
∑

δ(xi) ≡
∑

δ(yi) (mod n).

• ∑v∈O δ(v) is even for all inertial orbits.

• F (δ) is a multiple of 2n/κ.

Proof. The proof of this Theorem is similar to that of Theorem 3.7. In par-
ticular, it is straightforward to check that all four conditions hold for divisors
that are in P1 +P2, and the first three conditions are again straightforward for
divisors in P3. To see the fourth condition must hold for divisors in P3, we note
that Lemma 3.6 implies that if δ3 ∈ P3 then FO(δ3) is a multiple of n for all
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orbits O. Moreover, because κ is even we see that n = 2n
κ · κ2 and therefore that

FO(δ3) is a multiple of 2n/κ.
To see that the conditions are sufficient, we define δ3(xi) = kOaO at all

vertices in the xi-suborbit of each orbit O of Type III, where aO is defined as
above. If there are any orbits of Type I, we choose one and designate it Ω, and
as above we define δ3(zi) = −kΩα for each vertex in Ω. For all other vertices,
we define δ3(v) = 0. The proof of Case 1 of Theorem 3.7 then carries through
with minor modifications.

If all orbits have Type III then we can follow the argument from Case 2 of
Theorem 3.7 by choosing one orbit Ω and setting δ3(ω) = kΩ(aΩ − α/2) for
the vertices in the xi-suborbit and δ3(ω) = −kΩα/2 for the vertices in the yi-
suborbit of Ω. As above, we define δ3(xi) = kOaO and δ3(yi) = 0 for the orbits

O 6= Ω. It is clear that δ3 ∈ P3, and it is straightforward to check that δ̂ = δ−δ3
satisfies the conditions of Theorem 3.4. The theorem follows.

Theorem 3.9. Assume n is even and κ is odd. Then a divisor δ ∈ P1+P2+P3

if and only if δ satisfies the following conditions:

• ∑v δ(v) = 0

• If O is an orbit of Type III then
∑

δ(xi) ≡
∑

δ(yi) (mod n).

• If O is an inertial orbit, we have
∑

v∈O δ(v) is even.

• F (δ) is a multiple of n/κ.

Proof. As above, we first check that the conditions are all necessary. The proof
is identical to the previous theorem except that if κ is odd then we have that
n ≡ n

κ mod 2n
κ , which means that we can only conclude that for divisors δ3 ∈ P3

we have that F (δ3) is a multiple of n/κ rather than 2n/κ.
In order to check the sufficiency of these conditions, we consider two cases.

If it is the case that F (δ) is a multiple of 2n/κ then we are able to use the same
constructions as in the proof of Theorem 3.8 and the proofs will carry through
exactly.

It remains to consider the case where F (δ) ≡ n/κ (mod 2n/κ). We note
that if this is the case then there must be at least one Type II orbit, which
in turn implies the existence of at least one Type I orbit. We wish to choose
one Type I orbit and designate it by Ω and one Type II orbit and designate
it by Θ. As in the previous cases, we define δ3(xi) = kOaO at all vertices in
the xi-suborbit of each orbit O of Type III and δ3(yi) = 0 for the vertices in
the other suborbits. For each vertex θ ∈ Θ we define δ3(θ) = kΘ, and for each
ω ∈ Ω we set δ3(ω) = −kΩ(α + 1). Finally, we set δ3(v) = 0 for all vertices in
Type I and II orbits other than Ω. It is clear that this defines a divisor in P3,
and moreover we can compute:
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F (δ3) =
∑

O Type III

aOn

(

n

kO
+ 1

)

+ n

(

n

kΘ
+ 2

)

− (α+ 1)n

(

n

kΩ
+ 1

)

=
∑

O Type III

naO

(

n

kO
− n

kΩ

)

+ n

(

n

kΘ
− n

kΩ

)

+ n

≡ n (mod
2n

κ
)

≡ n

κ
(mod

2n

κ
)

In particular, if we define δ̂ = δ − δ3 then we see that F (δ̂) is a multiple of

2n/κ. It is straightforward to check that δ̂ satisfies the other conditions in the
statement of Theorem 3.4, which proves the Theorem.

We now wish to use the structure of P to analyze the group D/P .

Example 3.10. Before proving the general case, we return to the case of the
graph K4,4 discussed in Example 2.3. In particular, we have n = κ = 4, and
therefore according to Theorem 3.8, a divisor of total degree zero will be in P if
and only if we have:

• δ(x) ≡ δ(y) (mod 4).

• δ(w1) + δ(w2) + δ(w3) + δ(w4) is even, and

• δ(z1) + δ(z2) is even.

In particular, the divisor must satisfy one condition mod 4 and two conditions
mod 2. However, we note that the first condition implies that δ(x) and δ(y)
have the same parity and in particular that δ(x) + δ(y) will be even. Because
the total degree of the divisor is zero, the third condition will therefore follow
immediately from the first two. This implies that the group D/P is isomorphic
to (Z/4Z)⊕ (Z/2Z).

More generally, a similar phenomenon will occur and some of the conditions
will be automatically satisfied if the others are. Explicitly, we have the following.

Theorem 3.11. Let D be the set of divisors of degree zero on G. Then

D/P ∼=











Z/n
κZ⊕ (Z/nZ)t3 if n odd

Z/n
κZ⊕ (Z/nZ)t3 ⊕ (Z/2Z)t̃ if n even and κ is odd

Z/ 2n
κ Z⊕ (Z/nZ)t3 ⊕ (Z/2Z)t̃ if n and κ are both even

where t̃ = min(t1 − 1, 0) + min(t2 − 1, 0).
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Proof. Let δ be a divisor in D. For each inertial orbit O, we define the map
AO : D → Z/2Z by setting AO(δ) =

∑

v∈O δ(v). On the other hand, if O =
{xi} ∪ {yi} is a Type III orbit then we define AO : D → Z/nZ by setting
AO =

∑

(xi)−
∑

(yi).
If n is odd then we define the surjective map α : D → Z/(n/κ)Z⊕ (Z/nZ)t3

by setting

α(δ) =



F (δ),
⊕

O Type III

AO(δ)





and we note that Theorem 3.7 gives us that the kernel of α is exactly the
elements of P , proving the theorem in this case.

If n is even, we set ǫ = 1 (resp. 0) if κ is odd (resp. even). Similar to the
above, we define the map α : D → Z/ ǫn

κ Z⊕ (Z/nZ)t3 ⊕ (Z/2Z)t1+t2 by setting

α(δ) =



F (δ),
⊕

O Type III

AO(δ),
⊕

O Type I

AO(δ),
⊕

O Type II

AO(δ)





and once again it is clear that this map is surjective. The content of Theorems
3.8 and 3.9 is that elements of P will be in the kernel of α, but in this case these
conditions are not sufficient. In particular, we note that if δ ∈ P then F (δ) will
be even, and therefore we have that

0 ≡ F (δ)

≡
∑

O Type II

FO(δ)

≡
∑

O Type II

(

∑

v∈O

δ(v)

)

≡
∑

O Type II

AO(δ) (mod 2)

Moreover, we know that for a divisor δ ∈ P and a Type III orbit O =
{xi} ∪ {yi} we have

∑

δ(xi) ≡ ∑

δ(yi) mod n, and because n is even this
implies that

∑

v∈O δ(v) is even. Because we know that the total degree of δ is
equal to zero, these facts further imply that

∑

O Type I AO(δ) is even as well.

This implies that D/P ∼= Z/ ǫn
κ Z⊕ (Z/nZ)t3 ⊕ (Z/2Z)t̃, as desired.

4. Intersections of Pullbacks

In this section, we wish to determine the structure of K, which we defined
to be the kernel of the map Φ : Jac(H1)⊕ Jac(H2)⊕ Jac(H3) → P/L′. In some
sense, the previous section computed P1 + P2 + P3 and in this section we wish
to understand the difference between that set and P1 ⊕P2 ⊕P3. In order to do
this, we want to look at the intersections of the groups Pi.
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Example 4.1. Considering the graph in Example 2.3, we display in Figure 4
the generic elements of both P0 and P1 ∩ P2.

2a0

2a0

2a0

2a0

4b0

4b0

4c0

4c0

(a) P0

2a1

2a1

2a1

2a1

2b1

2b1

c1

c1

(b) P1 ∩ P2

0

0

0

0

2

2

−2

−2

(c) A divisor γ1

Figure 4: Understanding the relationship between P0 and P1 ∩ P2 for the D4

action on K4,4

We note that a divisor in P1 ∩ P2 must have total degree zero, so it follows
that 8a1+4b1+2c1 = 0, from which we can conclude that c1 = −4a1−2b1 must
also be even. In particular, any element of P1 ∩ P2 is either an element of P0

or differs from one by the divisor γ1 depicted in Figure 4. Thus, we have that
P1 ∩ P2

∼= P0 ⊕ Z/2Z.

Definition 4.2. Let O be an orbit of Type III. We define δO to be the divisor
which has value 1 at all vertices in O and value 0 at all vertices outside of O.
Similarly, if O is an inertial orbit then we define δO to be the divisor which has
value 2 at all vertices in O and value 0 at all vertices outside of O. Set Q to
be the set of divisors {∑ sOδO|sO ∈ Z}. We note that divisors in Q all possess
the necessary symmetry and parity conditions to be in both P1 and P2, although
in general they do not also have total degree equal to zero.

Recall that κ is the least common multiple of the indices kO, and in particular
we can see that 2n/κ is the greatest common divisor of the sizes of all orbits
of Type III and double the sizes of all orbits of Type I and II. Thus, there is
some divisor γ =

∑

sOδO ∈ Q so that the total degree of γ is equal to 2n/κ,
and we wish to fix one such divisor. One can compute that this is equivalent to
the numerical condition that

∑

O
sO
kO

= 1
κ . We note that, if there is an orbit Ω

whose index is equal to κ then we may choose γ = δΩ.

Lemma 4.3. We have that (P1 ∩ P2)⊕ (Z/κZ) ∼= P0 ⊕ (
⊕

O Z/kOZ).

Proof. It follows from the definitions and the fact that σ1 and σ2 generate
all of Dn that P1 ∩ P2 consists of divisors on G of total degree zero that are
constant on all orbits and take on even values on inertial orbits. In particular,
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P1 ∩ P2 = Q ∩ D. On the other hand, it follows from the definition that
P0 = 〈kOδO〉 ∩ D.

For any orbit O, define the divisor γO = δO − κ
kO

γ. One can check that this
divisor has total degree zero and therefore is an element of Q∩D. Moreover, it
is clear that kOγO ∈ P0. We define a map Φ : P0 ⊕ (

⊕

O Z/kOZ) → (P1 ∩ P2):

Φ(δ,⊕iO) = δ +
∑

O

iOγO ∈ P1 ∩ P2.

This map is surjective, but it is not quite injective. In particular, we compute:

Φ(0,⊕sO) =
∑

O

sOγO

=
∑

O

sOδO −
∑

O

sO
κ

kO
γ

= γ − γκ
∑

O

sO
kO

= γ − γ

= 0

One checks that this is the unique choice of elements ⊕iO in the kernel of Φ. By
the Chinese Remainder Theorem,

⊕

O Z/kOZ ∼= Z/κZ, proving the result.

Next, we will consider the set (P1 + P2) ∩ P3.

Example 4.4. It follows from our calcuations above that in the case of K4,4

defined in Example 2.3, a divisor of total degree zero will be in (P1+P2)∩P3 if
and only if it is constant on all orbits and each entry is a multiple of the index
of the orbit. On the other hand, a divisor will be in P0 if it is constant on all
orbits, each δ(wi) is even, and each δ(zi), δ(x), and δ(y) is a multiple of four.
Because the total degree is zero, this allows us to conclude that (P1+P2)∩P3

∼=
P0 ⊕ (Z/2Z).

More generally, we can prove the following formula:

Lemma 4.5. Assume that G has t1 orbits of Type I and t2 orbits of Type II.
Recall that we set t̃ = min(t1−1, 0)+min(t2−1, 0) Then we have the following:

((P1 + P2) ∩ P3) ∼=











P0 if n odd

P0 ⊕ (Z/2Z)t̃ if n even and κ is odd

P0 ⊕ (Z/2Z)t̃+1 if n and κ are both even

Proof. Consider a divisor δ in P0. It follows from the remarks in Definition 2.4
that the value of the divisor is constant on all vertices in an orbit; we denote
this value by δ(O). Moreover, we have that (2n/|O|)|δ(O), and thus

∑

v∈O δ(v)
is a multiple of 2n and in particular must be even. Moreover, the fact that δ
is constant on all orbits means that

∑

δ(xi) =
∑

δ(yi) for all Type III orbits.
Similar to Lemma 3.6, we can compute FO(δ) for each orbit O as follows:
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O Type I: FO(δ)=

(

n

kO

)(

n

kO
+ 1

)

δ(O)

O Type II: FO(δ)=

(

n

kO

)(

n

kO
+ 2

)

δ(O)

O Type III: FO(δ)=2

(

n

kO

)(

n

kO
+ 1

)

δ(O)

In all three cases, we see that FO(δ) is a multiple of 2n/kO and therefore
a multiple of 2n/κ, so it must be the case that F (δ) is a multiple of 2n/κ.
Thus, δ satisfies all three conditions in Theorem 3.4 and must be an element
of P1 + P2. On the other hand, it follows immediately from the remarks in
Definition 2.4 that any divisor in P0 is also in P3. Therefore, we can see that
P0 ⊆ (P1 + P2) ∩ P3.

Conversely, consider a divisor δ ∈ (P1+P2)∩P3. Because δ ∈ P3, it must be
constant on all inertial orbits as well as each of the suborbits of a non-inertial
orbit. We note that it follows from Condition (2) of Theorem 3.4 that in order
to be in P1 + P2 we must have that

∑

δ(xi) =
∑

δ(yi), from which we can
conclude that δ is constant on orbits of Type III as well. As above, we will use
δ(O) to denote the value of the divisor at all vertices in O. We further know
from the fact that δ ∈ P3 that for each orbit we have kO|δ(O).

Let n be odd and let O be an orbit of Type I or Type II. Because δ ∈ P1+P2

we must have that
∑

v∈O δ(v) is even. However,
∑

v∈O δ(v) = nδ(O) = nkOaO
for some integer aO. Because n is odd, kO must be as well, which implies that
aO is even. In particular, this tells us that (2n/|O|) divides δ(O) for all orbits.
Combining this with the results of the previous paragraph, we see that δ ∈ P0

and in particular this proves that if n is odd that P0 = (P1 + P2) ∩ P3.
On the other hand, if n is even then (P1+P2)∩P3 contains divisors that are

not in P0. In particular, let us assume that there are t1 ≥ 1 orbits of Type I,
and designate one of these orbits as Ω. For each Type I orbit O 6= Ω we define
the divisor γO so that γO(v) = kO for all v ∈ O, γO(ω) = −kΩ for each ω ∈ Ω,
and γO(v) = 0 for all other vertices. One quickly checks that the total degree of
this divisor is 0, that it is constant on all orbits, and that the sum on all orbits
is even. Moreover, we check that FO(γO)+FΩ(γO) = n( n

kO
− n

kΩ
) which will be

a multiple of n/κ. This shows that γO ∈ (P1 + P2) ∩ P3. One can check that
γO 6∈ P0 but 2γO ∈ P0.

Similarly, if there is more than one orbit of Type II then we can designate
one of them to be Θ and for all other orbits of Type II we define γO so that
γO(v) = kO for all v ∈ O, γO(θ) = −kΘ for each θ ∈ Θ, and γO(v) = 0
for all other vertices. Once again, we will see that γO ∈ (P1 + P2) ∩ P3 and
γO 6∈ P0 but 2γO ∈ P0. Finally, we define γ∞ to be the divisor which has value
γO(θ) = −kΘ for each θ ∈ Θ and γO(ω) = kΩ for each ω ∈ Ω. As above, one
sees that γ∞ 6∈ P0 but 2γ∞ ∈ P0. It is also clear that γ∞ ∈ P3 and satisfies
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the first two conditions required by Theorem 3.4 in order to be in P1 + P2. To
check the third condition, we compute that

F (γ∞) = FΘ(γ∞) + FΩ(γ∞)

= n

(

n

kΘ
+ 2

)

− n

(

n

kΩ
+ 1

)

= n

(

n

kΘ
− n

kΩ
+ 1

)

If κ is even then n is a multiple of 2n/κ and therefore F (γ∞) is as well,
implying that γ∞ ∈ P1 + P2 as well. On the other hand, if κ is odd then kΘ

and kΩ must both be odd, which in turn implies that
(

n
kΘ

− n
kΩ

+ 1
)

is odd.

Moreover, we have already seen that n ≡ n
κ (mod 2n/κ), and in particular we

will see that F (γ∞) is not a multiple of 2n/κ, so in this case γ∞ is not an
element of P1 + P2.

Every divisor in (P1 + P2) ∩ P3 can be written as the sum of a divisor in
P0 and some combination of the γO (including, if κ is even, γ∞). The lemma
follows.

We are now ready to recall from [7] the definition of the natural surjection
Φ : Jac(H1)⊕Jac(H2)⊕Jac(H3) → P/L′ discussed earlier. We set φi : G → Hi

to be the natural surjection, and φ∗
i to be the pullback map associated to this

map. By definition, we have that Jac(Hi) = Di/Li, so we can define maps
Φi : Jac(Hi) → P/L′ by letting Φi(di +Li) = φ∗

i (di)+L′. One can easily check
that this map is well defined, as the pullback of a divisor in Li will be in L′.
We then define Φ as follows:

Definition 4.6. Let Φ : Jac(H1) ⊕ Jac(H2) ⊕ Jac(H3) → P/L′ be the map
defined by Φ(δ1, δ2, δ3) = Φ1(δ1) + Φ2(δ2) + Φ3(δ3).

Any element of P can be decomposed as the sum of pullbacks of elements
on the three quotient graphs, and therefore this map is surjective. Determining
its kernel is the contents of the following theorem.

Theorem 4.7. Assume that G is a graph with a harmonic Dn-action so that
G/Dn = Ĝ. We define the map Φ : Jac(H1) ⊕ Jac(H2) ⊕ Jac(H3) → P/L′ as
above, setting the kernel of Φ equal to the set K. Then

K⊕(Z/κZ) ∼=











Jac(Ĝ)2 ⊕ (
⊕

O(Z/kOZ)) if n odd

Jac(Ĝ)2 ⊕ (Z/2Z)t̃ ⊕ (
⊕

O(Z/kOZ)) if n even and κ is odd

Jac(Ĝ)2 ⊕ (Z/2Z)t̃+1 ⊕ (
⊕

O(Z/kOZ)) if n and κ are both even

Proof. We note that the only elements in the kernel of the map come from
situations where elements in P can be decomposed as elements of the Pi in
more than one way. In particular, Φ will be injective if and only if the sets
P1,P2,P3 are all strongly disjoint in the sense that for any permutation of the
three sets we have that Pi ∩ (Pj + Pk) = {0}.
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More explicitly, we know that the kernel of this map can be computed as
having a piece coming from P1∩P2 and another piece coming from (P1+P2)∩P3.
Computing these sets was the content of the previous two lemmata, and the
Theorem is an immediate consequence.

Example 4.8. In the case of our running example of the bipartite graph K4,4,
we note that it is easy to compute the various quotient graphs, as depicted in
Figure 5. In particular, K4,4/D4 is a tree and it is straightforward to com-
pute the critical groups Jac(K4,4/〈σ1〉) ∼= Jac(K4,4/〈σ2〉) ∼= Z/4Z ⊕ Z/8Z and
Jac(K4,4/〈τ〉) ∼= Z/2Z.

(a) K4,4/D4 (b) K4,4/〈σ1〉 (c) K4,4/〈σ2〉 (d) K4,4/〈τ〉

Figure 5: Quotient Graphs from the D4 action on K4,4

We further recall that we have one orbit of each type (so in particular t̃ = 0)
and that the indices of the three orbits are 1, 2. and 4. Thus, this theorem tells
us that K⊕Z/4Z ∼= (Z/2Z)⊕ (Z/2Z)⊕ (Z/4Z). In particular, this implies that
there is a short exact sequence given by:

1 → (Z/2Z)2 → Jac(K4,4/〈σ1〉)⊕ Jac(K4,4/〈σ2〉)⊕ Jac(K4,4/〈τ〉) → P/L′ → 1

This allows us to conclude that P/L′ will be a subgroup of (Z/2Z)⊕ (Z/4Z)2 ⊕
(Z/8Z)2 whose quotient is (Z/2Z)2.

5. Firing Vertices

Recall that the set L consists of divisors on G that correspond to firing
at combinations of vertices in G, while the set L′ is generated by pulling back
divisors on G/〈σ1〉, G/〈σ2〉, and G/〈τ〉 that correspond to firing vertices on those
graphs. The goal of this section is to understand the relationship between L
and L′.

Example 5.1. If we represent divisors on K4,4 by column vectors correspond-
ing to the transpose of [δ(w1), δ(w2), δ(w3), δ(w4), δ(z1), δ(z2, δ(x), δ(y)] then one
can easily determine that the set L consists of all integer linear combinations of
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the divisors:






































































−4
0
0
0
1
1
1
1

























,

























0
−4
0
0
1
1
1
1

























,

























0
0
−4
0
1
1
1
1

























,

























0
0
0
−4
1
1
1
1

























,

























1
1
1
1
−4
0
0
0

























,

























1
1
1
1
0
−4
0
0

















































1
1
1
1
0
0
−4
0

















































1
1
1
1
0
0
0
−4







































































On the other hand, the set L′ will be defined by looking at the pullbacks of
the divisors corresponding to ‘firing’ vertices on the quotient graphs as depicted
in Figure 5. Explicitly, the pullbacks of the divisors corresponding to ‘firing’ the
vertices on K4,4/〈σ1〉 are given by :






































































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0
0
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2
2
2
2
























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























0
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0
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2
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2

























,
























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2
2
2
0
0
−4
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























,

























1
1
1
1
−4
0
0
0
























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












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1
1
1
0
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0
0







































































The set L′ will be generated by integer combinations of those vectors along with
the set of vectors that are pullbacks of ‘firing’ on the other two quotients:








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


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
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












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























0
0
0
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1
1
1
1

























,

























2
2
2
2
−4
−4
0
0
























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























2
2
2
2
0
0
−4
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























,

























1
1
1
1
0
0
−4
0

























,

























1
1
1
1
0
0
0
−4

























,

























−4
−4
−4
−4
4
4
4
4







































































It is an elementary, if tedious, exercise to see that in this case L = L′.

Lemma 5.2. If v is a vertex in a Type I or Type II orbit then ℓv ∈ L′.

Proof. Let v be a vertex that is fixed by σ1, and let φ1 : G → H1 = G/〈σ1〉
be the natural quotient map. With a possible abuse of notation, let us define
fx,y to be the number of edges of H1 between two vertices x, y ∈ V (H1) and let
ℓφ1(v) be the divisor that corresponds to firing the vertex φ1(v) on H1. We can
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compute:

φ∗
1(ℓφ1(v)) =

∑

y∈V (G1)

∑

x∈V (G)
φ(x)=y

mφ1
(x)(ℓφ1(v)(y))(x)

=
∑

x∈V (G)
σ1(x)=x

2ℓφ1(v)x+
∑

{x,y}⊂V (G)
σ1(x)=y

ℓφ1(v)(φ1(x))(x + y)

= −2degH1
(φ1(v)) +

∑

x∈V (G)
σ1(x)=x

x 6=v

2fφ1(v),φ1(x)x+
∑

{x,y}⊂V (G)
σ1(x)=y

fφ1(v),φ1(x)(x+ y)

= −degG(v)v +
∑

x∈V (G)
x 6=v

ev,xx

= ℓv

This shows that ℓv ∈ L′ for any vertex fixed by σ1 and a similar argument
will show that ℓv ∈ L′ for any vertex fixed by σ2. However, we know that the
set L′ is symmetric under the Dn-action, and therefore ℓv ∈ L′ for all vertices
in inertial orbits.

Theorem 5.3. L/L′ ∼=
⊕

O Z/( n
kO

Z), where the sum ranges over all non-
inertial orbits.

Proof. The set L is generated by the elements ℓv as v ranges over all vertices
v ∈ V (G). It follows from Lemma 5.2 that for vertices in inertial orbits then
ℓv ∈ L′ as well, so it suffices to consider vertices in orbits of Type III.

Let O = {xi}∪ {yi} is an orbit of Type III and index kO. One can compute
in a manner similar to the proof of Lemma 5.2 that φ∗

1(ℓφ1(xi)) = ℓxi
+ ℓyn+1−i

,
and therefore we have that ℓyn+1−i

= −ℓxi
∈ L/L′ . Moreover, by the symmetry

of the Dn-action, one can see that for any pair xi, yj we will have that ℓyj
=

−ℓxi
∈ L/L′, and in particular the full contribution of the orbit O to L′ can be

represented by the element ℓx1
. We further note that if we consider the natural

quotient map φ3 : G → H3 = G/〈τ〉 then we can compute that φ∗
3(ℓφ3(x1)) =

∑n/k
i=1 ℓxi

∈ L′. In other words, the pullback of firing φ3(x1) corresponds to
firing all of the vertices in the xi-suborbit of O. In particular, this implies that
n
kO

ℓx1
∈ L/L′, which concludes the proof of the theorem.

In particular, we note that L = L′ if there are no Type III orbits or if all
Type III orbits are of index kO = n. This is the case in the example of the D4

action on K4,4 that we have previously discussed.

6. Summary of Results

Now that we have been able to precisely determine the structure of many of
the sets defined in Section 2, we wish to consider what this tells us about the
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Jacobian of the original graph G. Before we do this in general, let us revisit our
running example one final time.

Example 6.1. Recall that in the case of the D4 action on K4,4 defined in
Example 2.3, we have shown the following facts:

• D/P ∼= Z/4Z⊕ Z/2Z

• P/L′ is a finite abelian group of order 29

• L = L′

Looking at the exact sequences in Theorem 2.7, we see that the fact that L = L′

implies that D/P ∼= D/(P + L) and that we have a short exact sequence

1 → P/L′ → Jac(K4,4) → D/P → 1

We can therefore conclude that Jac(K4,4) is a finite abelian group of order 212.
In fact, a more careful examination of these results would allow us to eliminate
many of the groups of this order but these results do not allow us to specify the
group exactly. We note that it follows from a direct computation or from [10]
that Jac(K4,4) ∼= (Z/4Z)4 ⊕ (Z/16Z).

More generally, we would like to revisit the exact sequences of Theorem 2.7
in light of the results of the previous sections. Recall that t̃ = min(t1 − 1, 0) +
min(t2 − 1, 0) appeared in the earlier results when n is even; for notational
simplicity, we set t̃ = 0 in the case where n is odd. Further recall that we
defined ǫ to be 2 if n and κ are both even, and 1 otherwise. Then the results of
the previous sections imply that we have the following exact sequences:

1 → (P∩L)/L′
→

⊕

O Type III

Z/(
n

kO
Z) → (Z/2Z)t̃⊕(Z/nZ)t3⊕Z/(

ǫn

κ
Z) → D/(P+L) → 1

1 → (P ∩ L)/L′
→ P/L′

→ Jac(G) → D/(P + L) → 1

1 → Z/κZ → Jac(Ĝ)2⊕(Z/2Z)t̃+ǫ−1
⊕

(

⊕

O

(Z/kOZ)

)

→
⊕

i=1,2,3

Jac(Hi) → P/L′
→ 1

In order to help understand what this says about the relationship between
Jac(G), Jac(Ĝ) and Jac(H1) ⊕ Jac(H2) ⊕ Jac(H3) we first make the following
definition:

Definition 6.2. Let A (resp. B) be a finite abelian group, and for each prime
p let Ap (resp. Bp) be its p-Sylow subgroup. Then for any positive integer m
we say that A and B are m-equivalent if |Ap| = |Bp| for all p and moreover
Ap

∼= Bp for all p ∤ m.

We are now able to prove our main theorem, which we state in the following
form:
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Theorem 6.3. Let G be a graph which admits a harmonic Dn-action. Then
the group Jac(H1) ⊕ Jac(H2) ⊕ Jac(H3) ⊕ Z/nZ is 2n-equivalent to the group

Jac(G)⊕ Jac(Ĝ)2 ⊕
(

⊕

O inertial

(Z/kOZ)

)

.

Proof. We note that the definition above implies that given an exact sequence

1 → A1 → A2 → . . . → Ak → 1

then we have that
⊕

i oddAi is m-equivalent to
⊕

i evenAi as long as every
prime dividing |Ai| is also a divisor of m. Therefore, if we use ∼ to denote 2n-
equivalence then the above exact sequences imply the following equivalences:

(P∩L)/L′⊕(Z/2Z)t̃⊕(Z/nZ)t3⊕Z/(
ǫn

κ
Z) ∼





⊕

O Type III

Z/(
n

kO
Z)



⊕D/(P+L)

(P ∩ L)/L′ ⊕ Jac(G) ∼ P/L′ ⊕D/(P + L)

Z/κZ⊕





⊕

i=1,2,3

Jac(Hi)



 ∼ Jac(Ĝ)2 ⊕ (Z/2Z)t̃+ǫ−1 ⊕
(

⊕

O

(Z/kOZ)

)

⊕P/L′

If we start with the third equation and add copies of Z/n
κZ and D/(P + L)

to both sides and then plug in the second equation to the third, we obtain that

D/(P + L)⊕ Z/nZ⊕
(

⊕

i=1,2,3 Jac(Hi)
)

is 2n-equivalent to

Z/
n

κ
Z⊕ Jac(Ĝ)2 ⊕ (Z/2Z)t̃+ǫ−1 ⊕

(

⊕

O

(Z/kOZ)

)

⊕ (P ∩ L)/L′ ⊕ Jac(G).

Using the first equation, this second term is equivalent to

Jac(G)⊕ Jac(Ĝ)2 ⊕





⊕

O Type I or II

(Z/kOZ)



⊕D/(P + L)

from which the theorem follows.

7. Examples and Applications

7.1. Klein Four Actions

Let us begin by considering what Theorem 6.3 tells us about graphs ad-
mitting a Klein-Four action. In particular, we note that the only orbits which
contribute to the results are the orbits consisting of a single point fixed by the
entire group action; all other orbits either are Type III or have k = 1.
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Corollary 7.1. Let G be a graph which admits a K-action so that there are
o ≥ 1 points that are fixed by the entire group K. Then for any prime p 6= 2,
the p-part of Jac(G) ⊕ Jac(Ĝ)2 is isomorphic to the p-part of the direct sum
Jac(H1)⊕ Jac(H2)⊕ Jac(H3). Moreover, if the 2-part of Jac(H1)⊕ Jac(H2)⊕
Jac(H3) is of order 2n and the 2-part of Jac(Ĝ) is of order 2m then the 2-part
of Jac(G) has order 2n−o−2m+1.

As an example, let G be the graph corresponding to the vertices and edges
of a regular octahedron, as pictured in Figure 6. In particular, let {a, b, c, d} be
four vertices connected in a cycle, and let x and y be two additional vertices
which are each connected to all of {a, b, c, d} but not to each other. We can
define a Klein-Four action on this graph by letting σ1 permute the vertices by
(a, b)(c, d) and σ2 permute them as (a, d)(b, c). In particular, both x and y are
fixed by the entire group action.

x

a b

cd

y

(a) W8 (b) H1
∼= H2 (c) H3 (d) Ĝ

Figure 6: The octahedron graph and its various quotients

The quotientsH1 and H2 are each isomorphic to two triangles attached at an
edge, so we can easily compute that Jac(H1) ∼= Jac(H2) ∼= Z/8Z. At the same
time, the quotient by the involuton σ1σ2 will have critical group Jac(H3) ∼=
Z/12Z. Because Ĝ = G/D2 is a tree, Corollary 7.1 tells us that Jac(G) ∼=
Z/3Z ⊕ K, where K is a finite abelian group of order 27. In fact, an explicit
calculation shows that Jac(G) ∼= Z/3Z ⊕ Z/2Z ⊕ (Z/8Z)2. We note that this
graph is also the circulant graph C1,2

6 and as such it also admits an action by the
group D3; one can derive the same result by decomposing the graph according
to this action and Theorem 6.3.

7.2. Graphs with large and small orbits

In [7], we considered the situation where all of the Dn-orbits had either n or
2n points. In the language of this paper, that meant that all orbits of Type I
or II had index 1 and orbits of Type III had index either 1 or 2. In particular,
Theorem 6.3 then implies that we have that Jac(H1) ⊕ Jac(H2) ⊕ Jac(H3) ⊕
Z/nZ is 2n-equivalent to the group Jac(G)⊕ Jac(Ĝ)2. This is equivalent to the
conclusions of that paper.
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At the other end of the spectrum, if we assume that G is a graph that
has a harmonic Dn-action such that a point ω is fixed by the entire action,
then the orbit {ω} is a Type I orbit of index n. In particular, the theorem
then tells us that Jac(H1) ⊕ Jac(H2) ⊕ Jac(H3) is 2n-equivalent to the group

Jac(G)⊕ Jac(Ĝ)2
⊕

O Type I or II
O6={ω}

(Z/kOZ)

(a) W8 (b) H1
∼= H2 (c) H3

Figure 7: The graph W8 and its various quotients

As an example of a family of graphs with a fixed point, we consider the wheel
graphs W2n obtained by starting with a 2n-cycle and adding a single vertex in
the center which is connected to each of the other vertices. (We illustrate the
specific case where n = 4 in Figure 7) This graph admits a harmonic Dn-action
where σ1 and σ2 act by reflections through opposing pairs of edges. One can
see that the quotients H1 = W2n/〈σ1〉 and H2 = W2n/〈σ2〉 are each isomorphic
to a ‘chain’ of n − 1 triangles, and it follows from results in [3] (or a direct
calculation) that Jac(H1) ∼= Jac(H2) ∼= Z/F2n−1Z where Fk is the kth Fibonacci
number, defined by the recurrence F0 = F1 = 1 and Fk = Fk−1 + Fk−2 for all
k ≥ 2. Moreover, one can see that H3 = W2n/〈σ1σ2〉 consists of a triangle
with one edge doubled, and therefore Jac(H3) ∼= Z/5Z. Because the graph Ĝ =
W2n/Dn is a tree, our theorem therefore implies that Jac(W2n) is 2n-equivalent
to (Z/F2n−1Z)

2 ⊕ Z/5Z. In many cases we have that gcd(5F2n−1, 2n) = 1, in
which case this equivalence is actually an isomorphism. We note that the case
of a wheel graph was previously considered in [4] using different techniques.

7.3. Square webs

Consider the family of graphs SWn given by placing n concentric squares on
top of four radial lines, an example of which is illustrated in Figure 8.

We will define a harmonic action of the group (Z/2Z)2 on this graph by
letting σ1 be reflection in the x-axis and σ2 be reflection in the y-axis. This
action will lead to a single fixed point and n non-inertial orbits that have
four vertices apiece. Moreover, it is clear that SWn/〈σ1〉 ∼= SWn/〈σ2〉 and
SWn/(Z/2Z)

2 is a tree, so corollary 7.1 implies that Jac(SWn) is 2-equivalent to
(Jac(SWn/〈σ1〉)2 ⊕ Jac(SWn/〈σ1σ2〉). The graphs SWn/〈σ1〉 and SWn/〈σ1σ2〉
can be viewed in Figure 9.
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Figure 8: Square Web SW3

(a) SW3/〈σ1〉 (b) SW3/〈σ1σ2〉

Figure 9: The quotient graphs of SW3

Each of these quotient graphs can be thought of as a chain of polynomials
in the sense of [3], and in particular that paper shows that each of these critical
groups will be cyclic. More precisely, Theorem 3.1 of that paper implies that
Jac(SWn/〈σ1〉) ∼= Z/anZ and Jac(SWn/〈σ1σ2〉) ∼= Z/bnZ, where an satisfies
the recurrence relation a0 = 1, a1 = 3, an = 4an−1 − an−2 for n ≥ 2 and bn
satisfies the recurrence relations b0 = 1, b1 = 5, bn = 6bn−1 − bn−2 for n ≥ 2.
One can easily deduce that all of the an and bn are odd, and we thus obtain that
Jac(SWn) ∼= (Z/anZ)

2 ⊕ Jac(Z/bnZ). We note that an (resp. bn) is sequence
A001835 (resp. A001653) in the Online Encyclopedia of Integer Sequences[12],
and explicit formulas are given by

an =
(1 +

√
3)(2 +

√
3)n + (1 −

√
3)(2 −

√
3)n

2

bn =
(
√
2 + 1)(3 + 2

√
2)n + (

√
2− 1)(3−

√
2)n

2
√
2

7.4. Example where groups are isomorphic

Let G be the graph in Figure 10, and let σ1 act on the vertices by the
permutation (x y)(a b) and σ2 act by the permutation (x y)(a c). Then 〈σ1, σ2〉 ∼=
D3 and {x, y} is an orbit of Type III and index 3 while {a, b, c} is an orbit of
Type I and index 1. One can compute that Jac(G/〈σ1〉) ∼= Jac(G/〈σ2〉) ∼= Z/2Z
and see that G/〈σ1σ2〉 is a tree so has trivial Jacobian, which also implies
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x y

a

b

c

Figure 10: Graph with D3 action

that Jac(Ĝ) is trivial. Moreover, it is a straightforward calculation to see that
Jac(G) ∼= Z/2Z⊕ Z/6Z.

In particular, Jac(G)⊕ Jac(Ĝ)2 ⊕





⊕

O Type I or II

(Z/kOZ)




∼= Z/2Z⊕ Z/6Z

and Jac(H1) ⊕ Jac(H2)⊕ Jac(H3) ⊕ (Z/nZ) ∼= (Z/2Z)2 ⊕ (Z/3Z). As the the-
orem predicts, these two groups are 6-equivalent. In fact, in this case they are
isomorphic.
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