REPRESENTATION OF POSITIVE INTEGERS BY THE FORM $x^3 + y^3 + z^3 - 3xyz$

VLADIMIR SHEVELEV

ABSTRACT. We study a representation of positive integers by the form $x^3 + y^3 + z^3 - 3xyz$ in the conditions $0 \le x \le y \le z$, $z \ge x + 1$.

1. INTRODUCTION

Let $F(x, y, z) = x^3 + y^3 + z^3 - 3xyz$. For a positive integer n, denote by $\nu(n)$ the number of ways to write n in the form F(x, y, z) in the conditions $0 \le x \le y \le z, \ z \ge x+1$. Indeed, the case z = x is not interesting, since in this case F(x, y, z) = F(x, x, x) = 0. Below we proved the following results: (i)for every positive n, except for $n \equiv \pm 3 \pmod{9}$ (cf.A074232 [3]), $\nu(n) >= 1$;

- (ii) for the exceptional $n, \nu(n) = 0$;
- (iii) for every prime $p \neq 3$, $\nu(p) = \nu(2p) = 1$;
- (iv) $\limsup(\nu(n)) = \infty;$
- (v) for every positive n, there exists k such that $\nu(k) = n$.

2. Lower estimate of F(x, y, z)

Proposition 1. If $z \ge x + 1$, then

(1) $F(x, y, z) \ge 3z - 2.$

Proof. Previously note that

- a) F((z-1), (z+1), (z+1)) = 12z + 4 > 3(z+1) 2;
- b) F(z, (z+1), (z+1)) = 3z+2 > 3(z+1)-2;

c) F(z, z, (z+1)) = 3(z+1) - 2.

Now we use induction over $z \ge 1$. Evidently, for z = 1, when either (x, y) = (0, 0) or (x, y) = (0, 1), the inequality (1) holds. Suppose (1) holds for some $z \ge 1$. Now setting z := z + 1, in view of a), b), c), we can take $0 \le x \le z - 1$, $y \le z$. Then $F(x, y, z + 1) = F(x, y, z) + 3z^2 + 3z + 1 - 3xy$ and, according the supposition, $F(x, y, z + 1) \ge (3z - 2) + 3z^2 + 3z + 1 - 3(z - 1)z = 9z - 1 > 3(z + 1) - 2$.

The second proof.

Proof. We have

$$F'_{z}(x, y, z) = 3z^{2} - 3xy \ge 3z^{2} - 3(z - 1)z = 3z \ge 3.$$

So, for any fixed x, y, F(x, y, z) increases over z. Hence, $F(x, y, z) \ge F(x, y, z_{min})$. 1) In the case y = x + 1, $z_{min} = x + 1$; 2) If y < x + 1, then y = x. Since z > x, then $z_{min} = x + 1$; 3) If y > x + 1, then $z_{min} = y$. In case 1) $F(x, y, z) \ge F(x, x + 1, x + 1) = 3x + 2 = 3(z - 1) + 2 = 3z - 1 > 3z - 2$; In case 2) $F(x, y, z) \ge F(x, x, x + 1) = 3x + 1 = 3z - 2$; In case 3) $F(x, y, z) \ge F(x, y, y) = x^3 + 2y^3 - 3xy^2$. Note that $F(x, y, y)'_y = 6y^2 - 6xy \ge 6y^2 - 6(y - 2)y = 12y \ge 24$. Since $y_{min} = x + 2$, then we have $F(x, y, z) \ge F(x, y, y) \ge F(x, x + 2, x + 2) = 12x + 16 = 12(z - 2) + 16 \ge 3z - 2$.

Proposition 2. If $z \ge x + 2$, then

(2)
$$F(x, y, z) \ge 9z - 10.$$

Here there exist also at least two possibilities of proof. We show the second way.

Proof. Again

 $\begin{aligned} F_{z}'(x,y,z) &= 3z^{2} - 3xy \geq 3z^{2} - 3(z-2)z = 6z \geq 12. \\ 1)\text{-}3) \ y &= x, x+1, x+2 \text{ respectively}, \ z_{min} = x+2; \\ 4) \ y &> x+2, z_{min} = y. \\ \text{We have} \\ \text{in case 1)} \ F(x,x,x+2) &= 12x+8 = 12z-16 \geq 9z-10, \ z \geq 2; \\ \text{in case 2)} \ F(x,x+1,x+2) &= 9x+9 = 9(z-1) > 9z-10; \\ \text{in case 3)} \ F(x,x+2,x+2) &= 12x+16 = 12z-8 > 9z-10; \\ \text{in case 4)} \ F(x,y,y) &= x^{3} + 2y^{3} - 3xy^{2}. \text{ As in proof of Proposition 1,} \\ F(x,y,y)_{y}' &> 0. \text{ Since } y_{min} = x+3, \text{ then we have } F(x,y,z) \geq F(x,y,y) \geq \\ F(x,x+3,x+3) &= 27x+54 = 27(z-1) > 10z-1, \ z \geq 3. \end{aligned}$

3. Results (i), (ii)

Proposition 3. 1) For every positive n, except for $n \equiv \pm 3 \pmod{9}$, $\nu(n) \ge 1$; 2) If $n \equiv \pm 3 \pmod{9}$, then $\nu(n) = 0$.

Proof. 1) The statement follows from the following three equalities:

- (3) F(k-1,k,k) = 3k-1;
- (4) F(k-1, k-1, k) = 3k 2;
- (5) F(k, k+1, k+2) = 9(k+1).

2) Let, for
$$n \equiv \pm 3 \pmod{9}$$
, we have

(6)
$$n = F(x, y, z)).$$

However, we show that, if F(x, y, z) is divisible by 3, then it divisible by 9. Note that, since $x^3 \equiv x \mod 3$, then

(7)
$$F(x, y, z) \equiv x + y + z \pmod{3}.$$

So, by (6)

(8)
$$x + y + z \equiv 0 \pmod{3}$$

By the symmetry, it is sufficient to consider the cases $(x, y, z) \equiv (i, i, i)$ (mod 3), i = 0, 1, 2, and $(x, y, z) \equiv (0, 1, 2) \pmod{3}$. Furthermore, note that

(9)
$$F(x, y, z) = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)$$

and it is easy to see that in the considered cases also

(10)
$$x^2 + y^2 + z^2 - xy - xz - yz \equiv 0 \pmod{3}.$$

So, by (8) - (10), $F(x, y, z) \equiv 0 \pmod{9}$ which contradicts the representation (6).

4. Result (iii)

Proposition 4. For every prime $p \neq 3$, $\nu(p) = \nu(2p) = 1$.

Proof. In view of (3)-(4), for every prime p other than 3, we have $\nu(p) \ge 1$. However, in (3)-(4) are used the only two possibilities, when z = x + 1. In both these cases

(11)
$$x^{2} + y^{2} + z^{2} - xy - xz - yz = 1.$$

Let us show that, if $z \ge x + 2$, a representation of prime p is impossible. In this case $x + y + z \ge 2$. In view of (9), if p = F(x, y, z), then it should be x + y + z = p such that (11) holds. However, using Proposition 2, we have

(12)
$$x^{2} + y^{2} + z^{2} - xy - xz - yz = \frac{F(x, y, z)}{x + y + z} \ge \frac{9z - 10}{(z - 2) + 2z} \ge 2, \quad z \ge 2,$$

and (11) is impossible. So, for $p \neq 3$, $\nu(p) = 1$. Finally, for the representation of 2p in case $z \ge x + 2$, note that, since (11) does not hold, it should be x + y + z = p and $x^2 + y^2 + z^2 - xy - xz - yz = 2$. But, according to (12), it is possible only if z = 2. In this case x = 0, y = 0, 1 or 2 and F(x, y, z) = 8, 9 or 16. Thus, for $p \neq 3$, $\nu(2p) = 1$. For example, we have a unique representation

$$p = x^3 + y^3 + z^3 - 3xyz$$

with $x = y = z - 1 = \frac{p-1}{3}$ if prime $p \equiv 1 \pmod{3}$ and with x + 1 = y = $z = \frac{p+1}{3}$ if prime $p \equiv 2 \pmod{3}$.

Also we have a unique representation

$$2p = x^3 + y^3 + z^3 - 3xyz$$

with $x+1 = y = z = \frac{2p+1}{3}$ if prime $p \equiv 1 \pmod{3}$ and with x = y = z - 1 = z + 1 $\frac{2p-1}{3}$ if prime $p \equiv 2 \pmod{3}$.

Lemma 1.

(13)
$$(F(x, y, z))^3 = F(u, v, w),$$

where

$$u = F(x, y, z) + 9xyz, v = 3(x^2y + y^2z + z^2x), w = 3(x^2z + z^2y + y^2x).$$

Proof. The identity is proved straightforward.

Lemma 2. If the numbers x, y, z in (13) form an arithmetic progression with the difference $d \geq 1$, then the numbers v, u, w form an arithmetic progression with the difference $3d^3$.

Proof. Let for
$$x \ge 0, d \ge 1$$
, we have $y = x + d$, $z = x + 2d$. Then
 $v = 3(x^2y + y^2z + z^2x) = 9x^3 + 27x^2d + 27xd^2 + 6d^3$,
 $u = x^3 + y^3 + z^3 + 6xyz = 9x^3 + 27x^2d + 27xd^2 + 9d^3$,
 $w = 3(x^2z + z^2y + y^2x) = 9x^3 + 27x^2d + 27xd^2 + 12d^3$.
Thus $u = v + d_1$, $w = v + 2d_1$, where $d_1 = 3d^3$.

Thus $u = v + d_1$, $w = v + 2d_1$, where $d_1 = 3d^3$.

Remark 1. Since here v < u < w, then (13) we can write in the form $(F(x, y, z))^3 = F(v, u, w);$ further $(F(v, u, w))^3 = F(\xi, \eta, \zeta),$ such that $\xi < \xi$ $\eta < \zeta, \ etc.$

Proposition 5. $\limsup(\nu(n)) = \infty$.

Proof. Consider sequence $27, 27^3, 27^{3^2}, 27^{3^3}, ..., 27^{3^k}, ...$ Representation $27^{3^k} = 10^{3^k}$ $F(0, 0, 27^{3^{k-1}})$ we call trivial. We are interested in non-trivial representations of $b_k = 27^{3^k}$. Note that $b_0 = 27$ has a unique non-trivial representation defined by (5): $b_0 = F(2,3,4)$. Thus, by Lemma 2, $b_1 = b_0^3$ has at least 2 distinct non-trivial representations: by (5) with $d_1 = 1$ and with $d_2 = 3$.

REPRESENTATION OF POSITIVE INTEGERS BY THE FORM $x^3 + y^3 + z^3 - 3xyz$ 5

Further, again by Lemma 2, $b_2 = b_1^3$ has at least 3 distinct non-trivial representations: by (5) with $d_1 = 1$, $d_2 = 3$ and $3 \cdot 3^3 = 3^4$. Analogously $b_3 = b_2^3$ has at least 4 distinct non-trivial representations: by (5) with $d_1 = 1$, $d_2 = 3$, $d_3 = 3^4$ and $d_4 = 3 \cdot 81^3 = 3^{13}$; ..., $b_k = b_{k-1}^3$ has at least k + 1 distinct non-trivial representations: $1, 3, 3^4, 3^{13}, ..., 3^{(3^k-1)/2}$. This completes the proof.

We give also the second proof.

Proof. We use the homogeneity of F(x, y, z) of degree 3. By induction, show that $\nu(8^k) \ge k + 1$. It is evident for k = 0. Suppose that it is true for some value of k. Take k + 1 triples (x_i, y_i, z_i) such that $8^k = F(x_i, y_i, z_i)$, i =1, ..., k + 1. Then for k + 1 triples of even numbers $(2x_i, 2y_i, 2z_i)$, we have $8^{k+1} = F(2x_i, 2y_i, 2z_i)$. But, by (3)-(4), always there is a triple of not all even numbers x = (n - 1)/3, y = (n - 1)/3, z = (n + 2)/3 or x =((n - 2)/3, y = (n + 1)/3, z = (n + 1)/3), where $n = 8^{k+1}$, for which $8^{k+1} = F(x, y, z)$. So $\nu(8^{k+1}) \ge k + 2$. \Box

6. Result (V)

Lemma 3. There is a unique representation of 8^k by the form F(x, y, z) with not all even numbers x, y, z.

Proof. In (3)-(4) we used the only two possibilities, when z = x + 1 and in both these cases we have the equality (11). This gives one representation of 8^k , when $8^k \equiv 1 \pmod{3}$ (even k) and one representation of 8^k , when $8^k \equiv 2 \pmod{3}$.(odd k). Let now $z \ge x + 2$. Since $Fx, y, z) = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz)$, and, in view of the symmetry, the case, when the numbers x, y, z in a representation of 8^k are not all even, reduces, say, for the case when x and y are odd, while z is even. But then $x^2 + y^2 + z^2 - xy - xz - yz$ is odd. In Section 3 we saw that, in the condition $z \ge x + 2$, $x^2 + y^2 + z^2 - xy - xz - yz \ge 2$. So it is odd ≥ 3 . This is impossible in representation of 8^k by F(x, y, z).

Theorem 1. For every positive n, there exists k such that $\nu(k) = n$.

Proof. In the second proof of Result iv, we showed that $\nu(8^k) \ge k+1$. To prove the theorem, it suffices to prove that really we have here the equality: $\nu(8^k) = k+1$. Again use induction. Suppose that it is true for some value of k. As in the second proof of Result iv, take k+1 triples (x_i, y_i, z_i) such that $8^k = F(x_i, y_i, z_i)$, i = 1, ..., k+1. By Lemma 3, among these triples there exists a unique triple, say, $(x_{k+1}, y_{k+1}, z_{k+1})$ with not all even numbers.

REPRESENTATION OF POSITIVE INTEGERS BY THE FORM $x^3 + y^3 + z^3 - 3xyz$ 6

Then for k + 1 triples of even numbers $(2x_i, 2y_i, 2z_i)$, we have $8^{k+1} = F(2x_i, 2y_i, 2z_i)$, and only one of them $(2x_{k+1}, 2y_{k+1}, 2z_{k+1})$ contains not all numbers divisible by 4. Besides, there is a unique triple with odd two numbers. Suppose now, that there is an additional (k + 3)-th triple (x*, y*, z*) such that $8^{k+1} = F(x*, y*, z*)$. All numbers x*, y*, z* should be divisible by 4. But then a triple (x*/2, y*/2, z*/2) is an additional (k+2)-th triple for representation of 8^k . This contradicts the inductional supposition. The theorem follows.

In conclusion, note that the sequence of $\{\nu(n)\}$ is A261029 [3] (including also n = 0). Besides, the smallest numbers k = k(n) from Theorem 1 are presented in our with Peter J. C. Moses sequence A260935 [3].

7. On a Carmichael paper

While browsing the Bulletin of the American Mathematical Society, Michel Marcus found a Carmichael paper [1] on the same topic (now it is available in the sequence A074232). The methods of [1] and the present paper are quite different. So comparing the results, we can consider proof of (i)-(iii) as a short proof of the main results of [1], while (iv)-(v) give new results.

The author is happy to unwittingly continue with a new approach a research of the outstanding mathematician Robert Daniel Carmichael in exact CENTENARY (Aug 1915 - Aug 2015) of his paper.

Note that we published almost at the same time also the paper [2] which was inspired by the sequences A072670 and A260803 [3] by R. Zumkeller and D. A. Corneth respectively. These sequences with its restriction conditions essentially inspired also the present paper, since the author always remembered the remarkable form $x^3 + y^3 + z^3 - 3xyz$ which is the determinant of the circulant matrix with the first row (x, y, z).

References

- [1] R. D. Carmichael, On the representation of numbers in the form $x^3 + y^3 + z^3 3xyz$, Bull. Amer. Math. Soc. 22 (1915), 111-117.
- [2] V. Shevelev, Representation of positive integers by the form $x_1 \cdot \ldots \cdot x_k + x_1 + \ldots + x_k$, arXiv:1508.03970 [math.NT], 2015.
- [3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org.

DEPARTMENTS OF MATHEMATICS, BEN-GURION UNIVERSITY OF THE NEGEV, BEER-SHEVA 84105, ISRAEL. E-MAIL:SHEVELEV@BGU.AC.IL