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REPRESENTATION OF POSITIVE INTEGERS BY THE
FORM 23 + 4% + 23 — 3ayz

VLADIMIR SHEVELEV

ABSTRACT. We study a representation of positive integers by the form
3 + 3% + 23 — 3zyz in the conditions 0 < x <y <z, z2>x+1.

1. INTRODUCTION

Let F(z,y,2) = 2® + 3> + 2% — 3ayz. For a positive integer n, denote by
v(n) the number of ways to write n in the form F(z,y, z) in the conditions
0<z<y<z z>x+1.Indeed, the case z = x is not interesting, since in
this case F(z,y,2) = F(x,z,z) = 0. Below we proved the following results:
(i)for every positive n, except for n = £3 (mod 9) (cf.A074232 [3]), v(n) >=
L
(ii) for the exceptional n, v(n) = 0;

(iii) for every prime p # 3, v(p) = v(2p) = 1,
(iv) limsup(v(n)) = oo;
(v) for every positive n, there exists k such that v(k) = n.

2. LOWER ESTIMATE OF F(x,y, 2)
Proposition 1. If z > x4+ 1, then

(1) F(z,y,z) >3z — 2.

Proof. Previously note that

a) F((z—1),(z+1),(z+1)) =122 +4>3(z + 1) — 2;

b) F(z, (2 +1),(24+1)) = 3z2+2>3(z+1)—2;

c) F(z, z, (z+1)) = 3(z+1) - 2.

Now we use induction over z > 1. Evidently, for z = 1, when either (z,y) =
(0,0) or (x,y) = (0,1), the inequality (II) holds. Suppose () holds for
some z > 1. Now setting z := z + 1, in view of a), b), ¢), we can take
0<x<z2-1, y<z Then F(z,y,2+1) = F(x,y, 2)+32>+32+1—3zy and,
according the supposition, F(z,y, 2+1) > (32—2)+322+32+1-3(2—1)z =
92 —1>3(z+1) -2 O

The second proof.
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Proof. We have
Fl(z,y,2) =32 — 32y > 32> —3(z — 1)z = 32 > 3.

So, for any fixed z,y, F(z,y, z) increases over z. Hence, F'(x,y, z) > F(x,Y, Zmin)-
1) Inthecase y = x+ 1, zppin =+ 1; 2) If y < z + 1, then y = x. Since

z > x, then z,;,, = x+1; 3) If y > x + 1, then z,,;, = v.

Incase 1) F(z,y,z) > F(z,z+1,24+1)=32+2=3(z—1)+2=3z—1>

3z — 2;

In case 2) F(x,y,2) > F(z,xz,x +1) =3x+1=32—2;

In case 3) F(z,y,2) > F(z,y,y) = ° + 2y> — 3zy”. Note that F(z,y,y), =

6y* — 6xy > 6y* — 6(y — 2)y = 12y > 24. Since Ypin = T + 2, then we have
F(x,y,z) > F(z,y,y) > F(zx,x 4+ 2,2 +2) =120+ 16 = 12(2 — 2) + 16 >

3z — 2. 0

Proposition 2. If z > x + 2, then
(2) F(z,y,2) > 9z — 10.

Here there exist also at least two possibilities of proof. We show the
second way.

Proof. Again
Fl(z,y,2) =32 — 3zy > 32> — 3(2 — 2)z = 62 > 12.

1)-3) y = x,x + 1,z + 2 respectively, 2, = = + 2;

4)y >+ 2, Zmin = Y-

We have

in case 1) F(z,z,x+2) =120 4+8 =122 — 16 > 92 — 10, z > 2;

incase 2) F(z,z+1,24+2)=92+9=9(2—1) > 9z — 10;
Fz,z+2,24+2)=12x 4+ 16 =122 — 8 > 9z — 10;

in case 4) F(z,y,y) = 2° + 2y> — 3zy% As in proof of Proposition [
F(x,y,y), > 0. Since Ynin = x + 3, then we have F(z,y,2) > F(z,y,y) >
Flr,x+3,2+3)=2Tx +54=27(z—1) > 10z — 1, z>3. O

in case 3)

3. RESuLTS (i), (i7)

Proposition 3. 1) For every positive n, except forn = £3 (mod 9), v(n) >
1;2) If n = £3 (mod 9), then v(n) = 0.

Proof. 1) The statement follows from the following three equalities:

(3) F(k—1,k k) =3k —1;
(4) Fk—1,k—1k) =3k —2;

(5) Fk,k+1,k+2)=9(k+1).
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2) Let, for n = 43 (mod 9), we have
(6) n=F(ry,z2).

However, we show that, if F'(x,y, 2) is divisible by 3, then it divisible by 9.

Note that, since 22 = 2 mod 3, then

(7) F(z,y,2)=x+y+2z (mod 3).
So, by ({])
(8) r4+y+2=0 (mod 3).

By the symmetry, it is sufficient to consider the cases (z,y,z) = (i,1,17)
(mod 3), i = 0,1,2, and (z,y,z) = (0,1,2) (mod 3). Furthermore, note
that

(9) F(rv,y,2) = (x+y+2)(2® +y* +2* — 2y — 22 — y2)

and it is easy to see that in the considered cases also

(10) Py —ay—2z—y2z=0 (mod 3).

So, by ) - (I0), F(x,y,z) =0 (mod 9) which contradicts the representa-
tion ({@). O

4. RESULT (7i1)
Proposition 4. For every prime p # 3, v(p) = v(2p) = 1.
Proof. In view of ([B))-(4)), for every prime p other than 3, we have v(p) > 1.

However, in ([3])-(#]) are used the only two possibilities, when z = z + 1. In
both these cases

(11) P4y —ay—rz—yz=1.
Let us show that, if z > x 4 2, a representation of prime p is impossible. In

this case z + y + z > 2. In view of (@), if p = F(x,y, z), then it should be
x 4y + z = p such that (II]) holds. However, using Proposition 2] we have

F(z,y,2)
2 2 2 y Y
xr° 4+ +z2z—xy—z2—YyYyr= —-—- >
y y y rT+y+z
9z — 10
(12) Z—_ , 2> 2,
(z —2)+ 2z

and (II]) is impossible. So, for p # 3, v(p) = 1. Finally, for the representa-
tion of 2p in case z > x + 2, note that, since (II]) does not hold, it should
be x +y+ 2z =pand 22 +y> + 22 — 2y — vz — yz = 2. But, according
to (I2)), it is possible only if z = 2. In this case x =0, y = 0,1 or 2 and
F(z,y,z) = 8,9 or 16. Thus, for p # 3, v(2p) = 1. O
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For example, we have a unique representation
p=a"+y*+2* — 3ayz
Witha::y:z—lzp%lifprimepzl (mod 3) and with z +1 =y =
5 — ptl
3

Also we have a unique representation

if prime p =2 (mod 3).

2p =2 +y* + 2* — 3ayz

with z+1 =y =z = 2t

T3
2= if prime p = 2 (mod 3).

if prime p=1 (mod 3) and withz =y =2—-1=

5. RESULT (1v)
Lemma 1.
(13) (F(x,y,2))° = F(u,v,w),
where
u=F(z,y,2)+ 92yz, v=3(%+y’z+ %), w=3x2+ 2%y +y’z).
Proof. The identity is proved straightforward. O

Lemma 2. [If the numbers x,y,z in (I3) form an arithmetic progression
with the difference d > 1, then the numbers v,u,w form an arithmetic
progression with the difference 3d3.

Proof. Let for x > 0,d > 1, we have y = v + d, z = x + 2d. Then
v =3(*y + v’z + 2%x) = 92° + 272%d + 27xd” + 6d°,
u=a2>+y> + 2% + 6xyz = 923 + 272%d + 272xd® + 9d°,
w = 3(22 + 2%y + y’x) = 92 4+ 272%d + 2Txd? + 12d°.
Thus v = v +d;, w= v+ 2d,, where d; = 3d>. O

Remark 1. Since here v < u < w, then (I3) we can write in the form
(F(2,,2))* = F(v,u,w); further (F(v,u,w))® = F(€,,C), such that £ <
n < ¢, etc.

Proposition 5. limsup(v(n)) = oc.

Proof. Consider sequence 27,273,273, 27%° ..., 273" .... Representation 273" =
F(0,0, 2731@71) we call trivial. We are interested in non-trivial representa-
tions of b, = 273", Note that by = 27 has a unique non-trivial representation
defined by (B): by = F(2,3,4). Thus, by Lemma B, b; = b has at least 2
distinct non-trivial representations: by (&) with d; = 1 and with dy = 3.
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Further, again by Lemma 2, by = b} has at least 3 distinct non-trivial
representations: by (B) with d; = 1, dy = 3 and 3 - 33 = 3*. Analogously
bs = b3 has at least 4 distinct non-trivial representations: by (B) with d; = 1,
dy = 3,d3 = 3" and dy = 3-81% = 33, ..., by = b} | has at least k + 1
distinct non-trivial representations: 1,3,3%,33, ..., 33"=1/2_ This completes
the proof. O

We give also the second proof.

Proof. We use the homogeneity of F(z,y, z) of degree 3. By induction, show
that v(8%) > k + 1. It is evident for k = 0. Suppose that it is true for some
value of k. Take k + 1 triples (;,y;, 2;) such that 8% = F(xy,v:,2), i =
1,....k + 1. Then for k + 1 triples of even numbers (2x;,2y;, 2z;), we have
81 = F(2x;,2y;,22;). But, by @)-H), always there is a triple of not all
even numbers = (n—1)/3, y = (n—1)/3, z = (n+2)/3) or v =
(n—2)/3, y=(n+1)/3, z=(n+1)/3), where n = 8+ for which
8l = F(x,y,2). So v(8F1) > k + 2. O

6. REsuLT (V)

Lemma 3. There is a unique representation of 8¢ by the form F(x,y,2)

with not all even numbers x,y, z.

Proof. In ([B)-() we used the only two possibilities, when z = z + 1 and in
both these cases we have the equality (IIl). This gives one representation
of 8% when 8 = 1 (mod 3) (even k) and one representation of 8%, when
8 = 2 (mod 3).(odd k). Let now z > x + 2. Since Fuz,y,2) = (z +
y+ 2)(x? + y* + 2% — 2y — vz — yz), and, in view of the symmetry, the
case, when the numbers z,7, 2z in a representation of 8 are not all even,
reduces, say, for the case when x and y are odd, while z is even. But then
2?2 +y? + 22— 2y —xz—yz is odd. In Section 3 we saw that, in the condition
2> a0+2 22 +yP+ 22 —ay —xz—yz > 2. So it is odd > 3. This is
impossible in representation of 8¢ by F(xz,y, z). O

Theorem 1. For every positive n, there exists k such that v(k) = n.

Proof. In the second proof of Result iv, we showed that v(8%) > k + 1. To
prove the theorem, it suffices to prove that really we have here the equality:
v(8%) = k+1. Again use induction. Suppose that it is true for some value of
k. As in the second proof of Result iv, take k+ 1 triples (z;, y;, z;) such that
8 = F(x;,9;,2), i = 1,...,k+ 1. By Lemma [B] among these triples there

exists a unique triple, say, (Tgi1, Yr+1, 2k+1) With not all even numbers.
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Then for k + 1 triples of even numbers (2z;,2y;,22;), we have 8¥1 =
F(2x;,2y;,2%), and only one of them (2z441, 2yk11,22541) contains not all
numbers divisible by 4. Besides, there is a unique triple with odd two num-
bers. Suppose now, that there is an additional (k + 3)-th triple (zx, yx*, z%)
such that 81 = F(xx*, y*, z*). All numbers zx, y*, zx should be divisible
by 4. But then a triple (zx /2,y /2, 2% /2) is an additional (k+ 2)-th triple
for representation of 8*. This contradicts the inductional supposition. The
theorem follows. 0

In conclusion, note that the sequence of {v(n)} is A261029 [3] (including
also n = 0). Besides, the smallest numbers k& = k(n) from Theorem 1 are
presented in our with Peter J. C. Moses sequence A260935 [3].

7. ON A CARMICHAEL PAPER

While browsing the Bulletin of the American Mathematical Society, Michel
Marcus found a Carmichael paper [1] on the same topic (now it is available
in the sequence A074232). The methods of [I] and the present paper are
quite different. So comparing the results, we can consider proof of (i)-(iii)
as a short proof of the main results of [I], while (iv)-(v) give new results.

The author is happy to unwittingly continue with a new approach a re-
search of the outstanding mathematician Robert Daniel Carmichael in exact
CENTENARY (Aug 1915 - Aug 2015) of his paper.

Note that we published almost at the same time also the paper [2] which
was inspired by the sequences A072670 and A260803 [3] by R. Zumkeller and
D. A. Corneth respectively. These sequences with its restriction conditions
essentially inspired also the present paper, since the author always remem-
bered the remarkable form 22 + y3 + 2% — 3xy2 which is the determinant of
the circulant matrix with the first row (z,y, 2).
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