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REPRESENTATION OF POSITIVE INTEGERS BY THE

FORM x3 + y3 + z3 − 3xyz

VLADIMIR SHEVELEV

Abstract. We study a representation of positive integers by the form
x
3 + y

3 + z
3 − 3xyz in the conditions 0 ≤ x ≤ y ≤ z, z ≥ x+ 1.

1. Introduction

Let F (x, y, z) = x3 + y3 + z3 − 3xyz. For a positive integer n, denote by

ν(n) the number of ways to write n in the form F (x, y, z) in the conditions

0 ≤ x ≤ y ≤ z, z ≥ x+1. Indeed, the case z = x is not interesting, since in

this case F (x, y, z) = F (x, x, x) = 0. Below we proved the following results:

(i)for every positive n, except for n ≡ ±3 (mod 9) (cf.A074232 [3]), ν(n) >=

1;

(ii) for the exceptional n, ν(n) = 0;

(iii) for every prime p 6= 3, ν(p) = ν(2p) = 1;

(iv) lim sup(ν(n)) = ∞;

(v) for every positive n, there exists k such that ν(k) = n.

2. Lower estimate of F (x, y, z)

Proposition 1. If z ≥ x+ 1, then

(1) F (x, y, z) ≥ 3z − 2.

Proof. Previously note that

a) F ((z − 1), (z + 1), (z + 1)) = 12z + 4 > 3(z + 1)− 2;

b) F (z, (z + 1), (z + 1)) = 3z + 2 > 3(z + 1)− 2;

c) F(z, z, (z+1)) = 3(z+1) - 2.

Now we use induction over z ≥ 1. Evidently, for z = 1, when either (x, y) =

(0, 0) or (x, y) = (0, 1), the inequality (1) holds. Suppose (1) holds for

some z ≥ 1. Now setting z := z + 1, in view of a), b), c), we can take

0 ≤ x ≤ z−1, y ≤ z. Then F (x, y, z+1) = F (x, y, z)+3z2+3z+1−3xy and,

according the supposition, F (x, y, z+1) ≥ (3z−2)+3z2+3z+1−3(z−1)z =

9z − 1 > 3(z + 1)− 2. �

The second proof.
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Proof. We have

F ′

z(x, y, z) = 3z2 − 3xy ≥ 3z2 − 3(z − 1)z = 3z ≥ 3.

So, for any fixed x, y, F (x, y, z) increases over z. Hence, F (x, y, z) ≥ F (x, y, zmin).

1) In the case y = x + 1, zmin = x + 1; 2) If y < x + 1, then y = x. Since

z > x, then zmin = x+ 1; 3) If y > x+ 1, then zmin = y.

In case 1) F (x, y, z) ≥ F (x, x+1, x+1) = 3x+2 = 3(z− 1)+2 = 3z− 1 >

3z − 2;

In case 2) F (x, y, z) ≥ F (x, x, x+ 1) = 3x+ 1 = 3z − 2;

In case 3) F (x, y, z) ≥ F (x, y, y) = x3 +2y3− 3xy2. Note that F (x, y, y)′y =

6y2 − 6xy ≥ 6y2 − 6(y − 2)y = 12y ≥ 24. Since ymin = x+ 2, then we have

F (x, y, z) ≥ F (x, y, y) ≥ F (x, x+ 2, x + 2) = 12x+ 16 = 12(z − 2) + 16 ≥

3z − 2. �

Proposition 2. If z ≥ x+ 2, then

(2) F (x, y, z) ≥ 9z − 10.

Here there exist also at least two possibilities of proof. We show the

second way.

Proof. Again

F ′

z(x, y, z) = 3z2 − 3xy ≥ 3z2 − 3(z − 2)z = 6z ≥ 12.

1)-3) y = x, x+ 1, x+ 2 respectively, zmin = x+ 2;

4) y > x+ 2, zmin = y.

We have

in case 1) F (x, x, x+ 2) = 12x+ 8 = 12z − 16 ≥ 9z − 10, z ≥ 2;

in case 2) F (x, x+ 1, x+ 2) = 9x+ 9 = 9(z − 1) > 9z − 10;

in case 3) F (x, x+ 2, x+ 2) = 12x+ 16 = 12z − 8 > 9z − 10;

in case 4) F (x, y, y) = x3 + 2y3 − 3xy2. As in proof of Proposition 1,

F (x, y, y)′y > 0. Since ymin = x + 3, then we have F (x, y, z) ≥ F (x, y, y) ≥

F (x, x+ 3, x+ 3) = 27x+ 54 = 27(z − 1) > 10z − 1, z ≥ 3. �

3. Results (i), (ii)

Proposition 3. 1) For every positive n, except for n ≡ ±3 (mod 9), ν(n) ≥

1; 2) If n ≡ ±3 (mod 9), then ν(n) = 0.

Proof. 1) The statement follows from the following three equalities:

(3) F (k − 1, k, k) = 3k − 1;

(4) F (k − 1, k − 1, k) = 3k − 2;

(5) F (k, k + 1, k + 2) = 9(k + 1).
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2) Let, for n ≡ ±3 (mod 9), we have

(6) n = F (x, y, z)).

However, we show that, if F (x, y, z) is divisible by 3, then it divisible by 9.

Note that, since x3 ≡ x mod 3, then

(7) F (x, y, z) ≡ x+ y + z (mod 3).

So, by (6)

(8) x+ y + z ≡ 0 (mod 3).

By the symmetry, it is sufficient to consider the cases (x, y, z) ≡ (i, i, i)

(mod 3), i = 0, 1, 2, and (x, y, z) ≡ (0, 1, 2) (mod 3). Furthermore, note

that

(9) F (x, y, z) = (x+ y + z)(x2 + y2 + z2 − xy − xz − yz)

and it is easy to see that in the considered cases also

(10) x2 + y2 + z2 − xy − xz − yz ≡ 0 (mod 3).

So, by (8) - (10), F (x, y, z) ≡ 0 (mod 9) which contradicts the representa-

tion (6). �

4. Result (iii)

Proposition 4. For every prime p 6= 3, ν(p) = ν(2p) = 1.

Proof. In view of (3)-(4), for every prime p other than 3, we have ν(p) ≥ 1.

However, in (3)-(4) are used the only two possibilities, when z = x + 1. In

both these cases

(11) x2 + y2 + z2 − xy − xz − yz = 1.

Let us show that, if z ≥ x+2, a representation of prime p is impossible. In

this case x + y + z ≥ 2. In view of (9), if p = F (x, y, z), then it should be

x+ y + z = p such that (11) holds. However, using Proposition 2, we have

x2 + y2 + z2 − xy − xz − yz =
F (x, y, z)

x+ y + z
≥

(12)
9z − 10

(z − 2) + 2z
≥ 2, z ≥ 2,

and (11) is impossible. So, for p 6= 3, ν(p) = 1. Finally, for the representa-

tion of 2p in case z ≥ x + 2, note that, since (11) does not hold, it should

be x + y + z = p and x2 + y2 + z2 − xy − xz − yz = 2. But, according

to (12), it is possible only if z = 2. In this case x = 0, y = 0, 1 or 2 and

F (x, y, z) = 8, 9 or 16. Thus, for p 6= 3, ν(2p) = 1. �
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For example, we have a unique representation

p = x3 + y3 + z3 − 3xyz

with x = y = z − 1 = p−1
3

if prime p ≡ 1 (mod 3) and with x + 1 = y =

z = p+1
3

if prime p ≡ 2 (mod 3).

Also we have a unique representation

2p = x3 + y3 + z3 − 3xyz

with x+1 = y = z = 2p+1
3

if prime p ≡ 1 (mod 3) and with x = y = z−1 =
2p−1
3

if prime p ≡ 2 (mod 3).

5. Result (iv)

Lemma 1.

(13) (F (x, y, z))3 = F (u, v, w),

where

u = F (x, y, z) + 9xyz, v = 3(x2y + y2z + z2x), w = 3(x2z + z2y + y2x).

Proof. The identity is proved straightforward. �

Lemma 2. If the numbers x, y, z in (13) form an arithmetic progression

with the difference d ≥ 1, then the numbers v, u, w form an arithmetic

progression with the difference 3d3.

Proof. Let for x ≥ 0, d ≥ 1, we have y = x+ d, z = x+ 2d. Then

v = 3(x2y + y2z + z2x) = 9x3 + 27x2d+ 27xd2 + 6d3,

u = x3 + y3 + z3 + 6xyz = 9x3 + 27x2d+ 27xd2 + 9d3,

w = 3(x2z + z2y + y2x) = 9x3 + 27x2d+ 27xd2 + 12d3.

Thus u = v + d1, w = v + 2d1, where d1 = 3d3. �

Remark 1. Since here v < u < w, then (13) we can write in the form

(F (x, y, z))3 = F (v, u, w); further (F (v, u, w))3 = F (ξ, η, ζ), such that ξ <

η < ζ, etc.

Proposition 5. lim sup(ν(n)) = ∞.

Proof. Consider sequence 27, 273, 273
2

, 273
3

, ..., 273
k

, ....Representation 273
k

=

F (0, 0, 273
k−1

) we call trivial. We are interested in non-trivial representa-

tions of bk = 273
k

. Note that b0 = 27 has a unique non-trivial representation

defined by (5): b0 = F (2, 3, 4). Thus, by Lemma 2, b1 = b30 has at least 2

distinct non-trivial representations: by (5) with d1 = 1 and with d2 = 3.
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Further, again by Lemma 2, b2 = b31 has at least 3 distinct non-trivial

representations: by (5) with d1 = 1, d2 = 3 and 3 · 33 = 34. Analogously

b3 = b32 has at least 4 distinct non-trivial representations: by (5) with d1 = 1,

d2 = 3, d3 = 34 and d4 = 3 · 813 = 313; ..., bk = b3k−1 has at least k + 1

distinct non-trivial representations: 1, 3, 34, 313, ..., 3(3
k
−1)/2. This completes

the proof. �

We give also the second proof.

Proof. We use the homogeneity of F (x, y, z) of degree 3. By induction, show

that ν(8k) ≥ k + 1. It is evident for k = 0. Suppose that it is true for some

value of k. Take k + 1 triples (xi, yi, zi) such that 8k = F (xi, yi, zi), i =

1, ..., k + 1. Then for k + 1 triples of even numbers (2xi, 2yi, 2zi), we have

8k+1 = F (2xi, 2yi, 2zi). But, by (3)-(4), always there is a triple of not all

even numbers x = (n − 1)/3, y = (n − 1)/3, z = (n + 2)/3) or x =

((n − 2)/3, y = (n + 1)/3, z = (n + 1)/3), where n = 8k+1, for which

8k+1 = F (x, y, z). So ν(8k+1) ≥ k + 2. �

6. Result (v)

Lemma 3. There is a unique representation of 8k by the form F (x, y, z)

with not all even numbers x, y, z.

Proof. In (3)-(4) we used the only two possibilities, when z = x+ 1 and in

both these cases we have the equality (11). This gives one representation

of 8k, when 8k ≡ 1 (mod 3) (even k) and one representation of 8k, when

8k ≡ 2 (mod 3).(odd k). Let now z ≥ x + 2. Since Fx, y, z) = (x +

y + z)(x2 + y2 + z2 − xy − xz − yz), and, in view of the symmetry, the

case, when the numbers x, y, z in a representation of 8k are not all even,

reduces, say, for the case when x and y are odd, while z is even. But then

x2+y2+z2−xy−xz−yz is odd. In Section 3 we saw that, in the condition

z ≥ x + 2, x2 + y2 + z2 − xy − xz − yz ≥ 2. So it is odd ≥ 3. This is

impossible in representation of 8k by F (x, y, z). �

Theorem 1. For every positive n, there exists k such that ν(k) = n.

Proof. In the second proof of Result iv, we showed that ν(8k) ≥ k + 1. To

prove the theorem, it suffices to prove that really we have here the equality:

ν(8k) = k+1. Again use induction. Suppose that it is true for some value of

k. As in the second proof of Result iv, take k+1 triples (xi, yi, zi) such that

8k = F (xi, yi, zi), i = 1, ..., k + 1. By Lemma 3, among these triples there

exists a unique triple, say, (xk+1, yk+1, zk+1) with not all even numbers.
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Then for k + 1 triples of even numbers (2xi, 2yi, 2zi), we have 8k+1 =

F (2xi, 2yi, 2zi), and only one of them (2xk+1, 2yk+1, 2zk+1) contains not all

numbers divisible by 4. Besides, there is a unique triple with odd two num-

bers. Suppose now, that there is an additional (k + 3)-th triple (x∗, y∗, z∗)

such that 8k+1 = F (x∗, y∗, z∗). All numbers x∗, y∗, z∗ should be divisible

by 4. But then a triple (x∗/2, y ∗/2, z ∗/2) is an additional (k+2)-th triple

for representation of 8k. This contradicts the inductional supposition. The

theorem follows. �

In conclusion, note that the sequence of {ν(n)} is A261029 [3] (including

also n = 0). Besides, the smallest numbers k = k(n) from Theorem 1 are

presented in our with Peter J. C. Moses sequence A260935 [3].

7. On a Carmichael paper

While browsing the Bulletin of the American Mathematical Society, Michel

Marcus found a Carmichael paper [1] on the same topic (now it is available

in the sequence A074232). The methods of [1] and the present paper are

quite different. So comparing the results, we can consider proof of (i)-(iii)

as a short proof of the main results of [1], while (iv)-(v) give new results.

The author is happy to unwittingly continue with a new approach a re-

search of the outstanding mathematician Robert Daniel Carmichael in exact

CENTENARY (Aug 1915 - Aug 2015) of his paper.

Note that we published almost at the same time also the paper [2] which

was inspired by the sequences A072670 and A260803 [3] by R. Zumkeller and

D. A. Corneth respectively. These sequences with its restriction conditions

essentially inspired also the present paper, since the author always remem-

bered the remarkable form x3 + y3 + z3 − 3xyz which is the determinant of

the circulant matrix with the first row (x, y, z).
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