REPRESENTATION OF POSITIVE INTEGERS BY THE FORM $x^{3}+y^{3}+z^{3}-3 x y z$

VLADIMIR SHEVELEV

Abstract

We study a representation of positive integers by the form $x^{3}+y^{3}+z^{3}-3 x y z$ in the conditions $0 \leq x \leq y \leq z, \quad z \geq x+1$.

1. Introduction

Let $F(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$. For a positive integer n, denote by $\nu(n)$ the number of ways to write n in the form $F(x, y, z)$ in the conditions $0 \leq x \leq y \leq z, z \geq x+1$. Indeed, the case $z=x$ is not interesting, since in this case $F(x, y, z)=F(x, x, x)=0$. Below we proved the following results: (i)for every positive n, except for $n \equiv \pm 3(\bmod 9)($ cf.A074232 [3] $), \nu(n)>=$ 1;
(ii) for the exceptional $n, \nu(n)=0$;
(iii) for every prime $p \neq 3, \nu(p)=\nu(2 p)=1$;
(iv) $\lim \sup (\nu(n))=\infty$;
(v) for every positive n, there exists k such that $\nu(k)=n$.

2. Lower estimate of $F(x, y, z)$

Proposition 1. If $z \geq x+1$, then

$$
\begin{equation*}
F(x, y, z) \geq 3 z-2 \tag{1}
\end{equation*}
$$

Proof. Previously note that
a) $F((z-1),(z+1),(z+1))=12 z+4>3(z+1)-2$;
b) $F(z,(z+1),(z+1))=3 z+2>3(z+1)-2$;
c) $\mathrm{F}(\mathrm{z}, \mathrm{z},(\mathrm{z}+1))=3(\mathrm{z}+1)-2$.

Now we use induction over $z \geq 1$. Evidently, for $z=1$, when either $(x, y)=$ $(0,0)$ or $(x, y)=(0,1)$, the inequality (11) holds. Suppose (1) holds for some $z \geq 1$. Now setting $z:=z+1$, in view of a), b), c), we can take $0 \leq x \leq z-1, y \leq z$. Then $F(x, y, z+1)=F(x, y, z)+3 z^{2}+3 z+1-3 x y$ and, according the supposition, $F(x, y, z+1) \geq(3 z-2)+3 z^{2}+3 z+1-3(z-1) z=$ $9 z-1>3(z+1)-2$.

The second proof.

REPRESENTATION OF POSITIVE INTEGERS BY THE FORM $x^{3}+y^{3}+z^{3}-3 x y z 2$
Proof. We have

$$
F_{z}^{\prime}(x, y, z)=3 z^{2}-3 x y \geq 3 z^{2}-3(z-1) z=3 z \geq 3
$$

So, for any fixed $x, y, F(x, y, z)$ increases over z. Hence, $F(x, y, z) \geq F\left(x, y, z_{\text {min }}\right)$.

1) In the case $y=x+1, z_{\text {min }}=x+1 ; 2$) If $y<x+1$, then $y=x$. Since $z>x$, then $\left.z_{\text {min }}=x+1 ; 3\right)$ If $y>x+1$, then $z_{\text {min }}=y$.
In case 1) $F(x, y, z) \geq F(x, x+1, x+1)=3 x+2=3(z-1)+2=3 z-1>$ $3 z-2$;
In case 2) $F(x, y, z) \geq F(x, x, x+1)=3 x+1=3 z-2$;
In case 3) $F(x, y, z) \geq F(x, y, y)=x^{3}+2 y^{3}-3 x y^{2}$. Note that $F(x, y, y)_{y}^{\prime}=$ $6 y^{2}-6 x y \geq 6 y^{2}-6(y-2) y=12 y \geq 24$. Since $y_{\text {min }}=x+2$, then we have $F(x, y, z) \geq F(x, y, y) \geq F(x, x+2, x+2)=12 x+16=12(z-2)+16 \geq$ $3 z-2$.

Proposition 2. If $z \geq x+2$, then

$$
\begin{equation*}
F(x, y, z) \geq 9 z-10 \tag{2}
\end{equation*}
$$

Here there exist also at least two possibilities of proof. We show the second way.

Proof. Again

$$
F_{z}^{\prime}(x, y, z)=3 z^{2}-3 x y \geq 3 z^{2}-3(z-2) z=6 z \geq 12
$$

1)-3) $y=x, x+1, x+2$ respectively, $z_{\text {min }}=x+2$;
4) $y>x+2, z_{\text {min }}=y$.

We have
in case 1) $F(x, x, x+2)=12 x+8=12 z-16 \geq 9 z-10, z \geq 2$;
in case 2) $F(x, x+1, x+2)=9 x+9=9(z-1)>9 z-10$;
in case 3) $F(x, x+2, x+2)=12 x+16=12 z-8>9 z-10$;
in case 4) $F(x, y, y)=x^{3}+2 y^{3}-3 x y^{2}$. As in proof of Proposition 1, $F(x, y, y)_{y}^{\prime}>0$. Since $y_{\text {min }}=x+3$, then we have $F(x, y, z) \geq F(x, y, y) \geq$ $F(x, x+3, x+3)=27 x+54=27(z-1)>10 z-1, \quad z \geq 3$.

3. Results (i), (ii)

Proposition 3.1) For every positive n, except for $n \equiv \pm 3(\bmod 9), \nu(n) \geq$ 1; 2) If $n \equiv \pm 3(\bmod 9)$, then $\nu(n)=0$.

Proof. 1) The statement follows from the following three equalities:

$$
\begin{gather*}
F(k-1, k, k)=3 k-1 \tag{3}\\
F(k-1, k-1, k)=3 k-2 \tag{4}\\
F(k, k+1, k+2)=9(k+1) \tag{5}
\end{gather*}
$$

2) Let, for $n \equiv \pm 3(\bmod 9)$, we have

$$
\begin{equation*}
n=F(x, y, z)) \tag{6}
\end{equation*}
$$

However, we show that, if $F(x, y, z)$ is divisible by 3 , then it divisible by 9 . Note that, since $x^{3} \equiv x \bmod 3$, then

$$
\begin{equation*}
F(x, y, z) \equiv x+y+z \quad(\bmod 3) \tag{7}
\end{equation*}
$$

So, by (6)

$$
\begin{equation*}
x+y+z \equiv 0 \quad(\bmod 3) \tag{8}
\end{equation*}
$$

By the symmetry, it is sufficient to consider the cases $(x, y, z) \equiv(i, i, i)$ $(\bmod 3), i=0,1,2$, and $(x, y, z) \equiv(0,1,2)(\bmod 3)$. Furthermore, note that

$$
\begin{equation*}
F(x, y, z)=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right) \tag{9}
\end{equation*}
$$

and it is easy to see that in the considered cases also

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-x y-x z-y z \equiv 0 \quad(\bmod 3) \tag{10}
\end{equation*}
$$

So, by (8) - (10), $F(x, y, z) \equiv 0(\bmod 9)$ which contradicts the representation (6).

4. Result (iii)

Proposition 4. For every prime $p \neq 3, \nu(p)=\nu(2 p)=1$.
Proof. In view of (3)-(4), for every prime p other than 3 , we have $\nu(p) \geq 1$. However, in (3)-(4) are used the only two possibilities, when $z=x+1$. In both these cases

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}-x y-x z-y z=1 . \tag{11}
\end{equation*}
$$

Let us show that, if $z \geq x+2$, a representation of prime p is impossible. In this case $x+y+z \geq 2$. In view of (9), if $p=F(x, y, z)$, then it should be $x+y+z=p$ such that (11) holds. However, using Proposition 2, we have

$$
\begin{gather*}
x^{2}+y^{2}+z^{2}-x y-x z-y z=\frac{F(x, y, z)}{x+y+z} \geq \\
\frac{9 z-10}{(z-2)+2 z} \geq 2, \quad z \geq 2 \tag{12}
\end{gather*}
$$

and (11) is impossible. So, for $p \neq 3, \nu(p)=1$. Finally, for the representation of $2 p$ in case $z \geq x+2$, note that, since (11) does not hold, it should be $x+y+z=p$ and $x^{2}+y^{2}+z^{2}-x y-x z-y z=2$. But, according to (12), it is possible only if $z=2$. In this case $x=0, y=0,1$ or 2 and $F(x, y, z)=8,9$ or 16 . Thus, for $p \neq 3, \nu(2 p)=1$.

For example, we have a unique representation

$$
p=x^{3}+y^{3}+z^{3}-3 x y z
$$

with $x=y=z-1=\frac{p-1}{3}$ if prime $p \equiv 1(\bmod 3)$ and with $x+1=y=$ $z=\frac{p+1}{3}$ if prime $p \equiv 2(\bmod 3)$.
Also we have a unique representation

$$
2 p=x^{3}+y^{3}+z^{3}-3 x y z
$$

with $x+1=y=z=\frac{2 p+1}{3}$ if prime $p \equiv 1(\bmod 3)$ and with $x=y=z-1=$ $\frac{2 p-1}{3}$ if prime $p \equiv 2(\bmod 3)$ 。

5. Result (IV)

Lemma 1.

$$
\begin{equation*}
(F(x, y, z))^{3}=F(u, v, w) \tag{13}
\end{equation*}
$$

where

$$
u=F(x, y, z)+9 x y z, \quad v=3\left(x^{2} y+y^{2} z+z^{2} x\right), \quad w=3\left(x^{2} z+z^{2} y+y^{2} x\right)
$$

Proof. The identity is proved straightforward.
Lemma 2. If the numbers x, y, z in (13) form an arithmetic progression with the difference $d \geq 1$, then the numbers v, u, w form an arithmetic progression with the difference $3 d^{3}$.

Proof. Let for $x \geq 0, d \geq 1$, we have $y=x+d, z=x+2 d$. Then

$$
\begin{aligned}
v & =3\left(x^{2} y+y^{2} z+z^{2} x\right)=9 x^{3}+27 x^{2} d+27 x d^{2}+6 d^{3}, \\
u & =x^{3}+y^{3}+z^{3}+6 x y z=9 x^{3}+27 x^{2} d+27 x d^{2}+9 d^{3}, \\
w & =3\left(x^{2} z+z^{2} y+y^{2} x\right)=9 x^{3}+27 x^{2} d+27 x d^{2}+12 d^{3} .
\end{aligned}
$$

Thus $u=v+d_{1}, \quad w=v+2 d_{1}$, where $d_{1}=3 d^{3}$.
Remark 1. Since here $v<u<w$, then (13) we can write in the form $(F(x, y, z))^{3}=F(v, u, w) ;$ further $(F(v, u, w))^{3}=F(\xi, \eta, \zeta)$, such that $\xi<$ $\eta<\zeta$, etc.

Proposition 5. $\lim \sup (\nu(n))=\infty$.
Proof. Consider sequence $27,27^{3}, 27^{3^{2}}, 27^{3^{3}}, \ldots, 27^{3^{k}}, \ldots$. Representation $27^{3^{k}}=$ $F\left(0,0,27^{3^{k-1}}\right)$ we call trivial. We are interested in non-trivial representations of $b_{k}=27^{3^{k}}$. Note that $b_{0}=27$ has a unique non-trivial representation defined by (5): $b_{0}=F(2,3,4)$. Thus, by Lemma 2, $b_{1}=b_{0}^{3}$ has at least 2 distinct non-trivial representations: by (5) with $d_{1}=1$ and with $d_{2}=3$.

Further, again by Lemma 2, $b_{2}=b_{1}^{3}$ has at least 3 distinct non-trivial representations: by (5) with $d_{1}=1, d_{2}=3$ and $3 \cdot 3^{3}=3^{4}$. Analogously $b_{3}=b_{2}^{3}$ has at least 4 distinct non-trivial representations: by (5) with $d_{1}=1$, $d_{2}=3, d_{3}=3^{4}$ and $d_{4}=3 \cdot 81^{3}=3^{13} ; \ldots, b_{k}=b_{k-1}^{3}$ has at least $k+1$ distinct non-trivial representations: $1,3,3^{4}, 3^{13}, \ldots, 3^{\left(3^{k}-1\right) / 2}$. This completes the proof.

We give also the second proof.
Proof. We use the homogeneity of $F(x, y, z)$ of degree 3 . By induction, show that $\nu\left(8^{k}\right) \geq k+1$. It is evident for $k=0$. Suppose that it is true for some value of k. Take $k+1$ triples $\left(x_{i}, y_{i}, z_{i}\right)$ such that $8^{k}=F\left(x_{i}, y_{i}, z_{i}\right), i=$ $1, \ldots, k+1$. Then for $k+1$ triples of even numbers $\left(2 x_{i}, 2 y_{i}, 2 z_{i}\right)$, we have $8^{k+1}=F\left(2 x_{i}, 2 y_{i}, 2 z_{i}\right)$. But, by (3)-(4), always there is a triple of not all even numbers $x=(n-1) / 3, y=(n-1) / 3, z=(n+2) / 3)$ or $x=$ $((n-2) / 3, y=(n+1) / 3, z=(n+1) / 3)$, where $n=8^{k+1}$, for which $8^{k+1}=F(x, y, z)$. So $\nu\left(8^{k+1}\right) \geq k+2$.

6. Result (v)

Lemma 3. There is a unique representation of 8^{k} by the form $F(x, y, z)$ with not all even numbers x, y, z.

Proof. In (3)-(4) we used the only two possibilities, when $z=x+1$ and in both these cases we have the equality (11). This gives one representation of 8^{k}, when $8^{k} \equiv 1(\bmod 3)$ (even k) and one representation of 8^{k}, when $8^{k} \equiv 2(\bmod 3) .($ odd $k)$. Let now $z \geq x+2$. Since $\left.F x, y, z\right)=(x+$ $y+z)\left(x^{2}+y^{2}+z^{2}-x y-x z-y z\right)$, and, in view of the symmetry, the case, when the numbers x, y, z in a representation of 8^{k} are not all even, reduces, say, for the case when x and y are odd, while z is even. But then $x^{2}+y^{2}+z^{2}-x y-x z-y z$ is odd. In Section 3 we saw that, in the condition $z \geq x+2, x^{2}+y^{2}+z^{2}-x y-x z-y z \geq 2$. So it is odd ≥ 3. This is impossible in representation of 8^{k} by $F(x, y, z)$.

Theorem 1. For every positive n, there exists k such that $\nu(k)=n$.
Proof. In the second proof of Result iv, we showed that $\nu\left(8^{k}\right) \geq k+1$. To prove the theorem, it suffices to prove that really we have here the equality: $\nu\left(8^{k}\right)=k+1$. Again use induction. Suppose that it is true for some value of k. As in the second proof of Result $i v$, take $k+1$ triples $\left(x_{i}, y_{i}, z_{i}\right)$ such that $8^{k}=F\left(x_{i}, y_{i}, z_{i}\right), \quad i=1, \ldots, k+1$. By Lemma 3, among these triples there exists a unique triple, say, $\left(x_{k+1}, y_{k+1}, z_{k+1}\right)$ with not all even numbers.

Then for $k+1$ triples of even numbers $\left(2 x_{i}, 2 y_{i}, 2 z_{i}\right)$, we have $8^{k+1}=$ $F\left(2 x_{i}, 2 y_{i}, 2 z_{i}\right)$, and only one of them $\left(2 x_{k+1}, 2 y_{k+1}, 2 z_{k+1}\right)$ contains not all numbers divisible by 4 . Besides, there is a unique triple with odd two numbers. Suppose now, that there is an additional $(k+3)$-th triple $(x *, y *, z *)$ such that $8^{k+1}=F(x *, y *, z *)$. All numbers $x *, y *, z *$ should be divisible by 4 . But then a triple $(x * / 2, y * / 2, z * / 2)$ is an additional $(k+2)$-th triple for representation of 8^{k}. This contradicts the inductional supposition. The theorem follows.

In conclusion, note that the sequence of $\{\nu(n)\}$ is A261029 3] (including also $n=0$). Besides, the smallest numbers $k=k(n)$ from Theorem 1 are presented in our with Peter J. C. Moses sequence A260935 [3].

7. On a Carmichael paper

While browsing the Bulletin of the American Mathematical Society, Michel Marcus found a Carmichael paper [1] on the same topic (now it is available in the sequence A074232). The methods of [1] and the present paper are quite different. So comparing the results, we can consider proof of (i)-(iii) as a short proof of the main results of [1], while (iv)-(v) give new results.

The author is happy to unwittingly continue with a new approach a research of the outstanding mathematician Robert Daniel Carmichael in exact CENTENARY (Aug 1915-Aug 2015) of his paper.

Note that we published almost at the same time also the paper [2] which was inspired by the sequences A072670 and A260803 [3] by R. Zumkeller and D. A. Corneth respectively. These sequences with its restriction conditions essentially inspired also the present paper, since the author always remembered the remarkable form $x^{3}+y^{3}+z^{3}-3 x y z$ which is the determinant of the circulant matrix with the first row (x, y, z).

References

[1] R. D. Carmichael, On the representation of numbers in the form $x^{3}+y^{3}+z^{3}-3 x y z$, Bull. Amer. Math. Soc. 22 (1915), 111-117.
[2] V. Shevelev, Representation of positive integers by the form $x_{1} \cdot \ldots \cdot x_{k}+x_{1}+\ldots+x_{k}$, arXiv:1508.03970 [math.NT], 2015.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org,
Departments of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. e-mail:Shevelev@bgu.ac.il

