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Abstract

We consider the ensemble of real symmetric random matrices H(n,ρ) ob-
tained from the determinant form of the Ihara zeta function of random graphs
that have n vertices with the edge probability ρ/n. We prove that the nor-
malized eigenvalue counting function of H(n,ρ) weakly converges in average as
n, ρ → ∞ and ρ = o(nα) for any α > 0 to a shift of the Wigner semi-circle dis-
tribution. Our results support a conjecture that the large Erdős-Rényi random
graphs satisfy in average the weak graph theory Riemann Hypothesis.

1 Ihara zeta function of graphs and random matrices

The Ihara zeta function (IZF) associated to a finite connected graph Γ = (V,E) is
defined at u ∈ C, for |u| sufficiently small, by

ZΓ(u) =
∏

[C]

(1 − uν(C))−1, (1.1)

where the product runs over the equivalence classes of primitive closed backtrack-
less, tail-less cycles C = (α1, α2, . . . , αl = α1) of positive length l in Γ, αi ∈ V and
ν(C) = l − 1 is the number of edges in C [24]. Being introduced by Y. Ihara [13]
in the algebraic context, IZF represents now an intensively developing subject of
combinatorial graph theory with applications in the number theory and the spectral
theory (see e.g. [12, 24] and references therein); it has also been studied in various
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other aspects, in particular in relations with the heat kernels on graphs [3], quantum
walks on graphs [22], certain theoretical physics models [27].

Ihara’s theorem [13] proved first for (q + 1)-regular graphs Γ says that the IZF
(1.1) is the reciprocal of a polynomial and that for sufficiently small |u|

ZΓ(u)
−1 = (1− u2)r−1 det(I + u2(B − I)− uA), (1.2)

where A = (aij)i,j=1,...,n is the adjacency matrix of Γ = Γn, n is the number of
vertices of Γn, B = diag(

∑n
j=1 aij)i=1,...,n and r−1 = Tr(B−2I)/2. This statement

has been proven also for possibly irregular finite graphs (see [1, 23] for the combina-
torial proofs of (1.2) and references related). The right-hand side of (1.2) represents
an entire function; this means that ZΓ(u) has a meromorphic continuation to the
whole complex u-plane. Note also that r− 1 can be expressed in terms of the Euler
characteristic of the graph because Tr(B − 2I)/2 = |E| − n, where |E| is the total
number of edges of Γ.

While the Ihara’s determinant formula (1.2) gives a powerful tool in the studies
of the Ihara zeta function, the explicit form of ZΓ(u) can be computed for relatively
narrow families of finite graphs. Regarding the case of infinite graphs, the definition
of the Ihara zeta function represents an important problem that requires a number
of additional restrictions and assumptions (see, in particular, [4, 10, 11, 17]). In
the most cases, the graphs under consideration have a bounded vertex degree (in
particular, regular or essentially regular graphs).

A complementary approach is represented by a stochastic point of view, when
the graphs are chosen at random from a set of all possible graphs on n vertices. This
description ”in the whole” naturally leads to the limiting transition of infinitely in-
creasing dimension of the graphs, n → ∞. Certain aspects of large random d-regular
graphs have been studied in [8]. The present note is related with the Ihara zeta func-
tion (1.1) of random graphs whose average vertex degree ρ infinitely increases in the
limit n → ∞.

Let us consider an ensemble of n×n real symmetric matrices A(n,ρ) whose entries
are determined by a collection of jointly independent Bernoulli random variables

A(ρ)
n = {a(n,ρ)ij , 1 ≤ i ≤ j ≤ n} such that

(

A(n,ρ)
)

ij
= a

(n,ρ)
ij =

{

1− δij , with probability
ρ
n ,

0, with probability 1− ρ
n ,

(1.3)

where δij is the Kronecker δ-symbol and 0 < ρ < n, ρ ∈ N. The adjacency matrices
{A(n,ρ)} represent the ensemble of random graphs {Γ(n,ρ)} that can be referred to as
the Erdős-Rényi random graphs [2]. With this definition in hands, one can determine
the random Ihara zeta function ZΓ(n,ρ) and to study it in the limit of infinite graph
dimension, n → ∞. In the present note, we consider the asymptotic regime of sparse
random graphs, when 1 ≪ ρ ≪ nα for any α > 0.
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Passing to the normalized logarithm of (1.2), we get the following relation,

− 1

n
logZΓ(n,ρ)(u) =

1

2n
Tr

(

B(n,ρ) − 2I
)

log(1− u2)

+
1

n
log det

(

(1− u2)I + u2B(n,ρ) − uA(n,ρ)
)

, (1.4)

where
(

B(n,ρ)
)

ij
= δij

n∑

l=1

a
(n,ρ)
il .

Regarding the first term of the right-hand side of (1.4)

Θ(n,ρ)(u) =
1

2n
Tr

(

B(n,ρ) − 2I
)

log(1− u2),

it is easy to compute its mathematical expectation EΘ(n,ρ)(u) with respect to the

measure generated by the family A(ρ)
n (1.3),

EΘ(n,ρ)(u) =

(
n− 1

2n
ρ− 1

)

ln(1− u2) →
(ρ

2
− 1

)

ln(1− u2), n → ∞. (1.5)

The last expression shows that to obtain a finite value of EΘ(n,ρ)(u) in the limit
n, ρ → ∞, one has to rescale the parameter u = uρ as follows,

u2ρ =
v2

ρ
. (1.6)

Then the last term of (1.4) takes the form

Ξ(n,ρ)(v) =
1

n
log det

(

(1− v2/ρ)I +H(n,ρ)(v)
)

, (1.7)

where

H(n,ρ)(v) =
v2

ρ
B(n,ρ) − v√

ρ
A(n,ρ). (1.8)

The presence of the factor ρ−1/2 in front of A(n,ρ) is fairly natural from the point
of view of the spectral theory of large random matrices. The normalization of B(n,ρ)

by v2/ρ is less common and arises because of the condition (1.5). Therefore it would
be natural to say that {H(n,ρ)(v)} is the random matrix ensemble of the Ihara zeta
function of random graphs. It is interesting to note that similar rescaling of the
spectral parameter u2 (1.6) by the vertex degree q + 1 is needed when instead of
{Γ(n,ρ)} the ensemble of (q + 1)-regular random graphs is considered in the limit of
infinite q [18].
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Let us note that in the case of u = 1, the last term of the right-hand side of (1.4)

gives the discrete version of the Laplace operator ∆
(n,ρ)
Γ = B(n,ρ)−A(n,ρ) determined

on the graph Γ(n,ρ). The spectral properties of ∆
(n,ρ)
Γ of large random graphs have

been studied in a number of works (see e. g. [5, 15]). The eigenvalue distribution of

a version of the graph’s Laplacian given by ρ−1/2∆
(n,ρ)
Γ for finite and infinite values

of 0 < ρ < n was studied in the limit n → ∞ in [16]. Let us stress that this

matrix ρ−1/2∆
(n,ρ)
Γ is again different from (1.8). The ”zeta-function” normalization

induced by (1.5) essentially changes the properties of the ensemble with respect to
the graph’s Laplacian. In particular, in contrast to ∆Γ(n,ρ) the matrix H(n,ρ)(v) with
given v > 0 (1.8) is no more positively determined for large values of ρ, even the
finite ones.

Summing up, we can say that the random matrix ensemble H(n,ρ)(v) (1.8) is the
new one that up to our knowledge has not been studied. In the present note we
consider (1.8) with v ∈ R and study the eigenvalue distribution of real symmetric
random matrices H(n,ρ)(v) in the limit

n, ρ → ∞, ρ = o(nα), for any α > 0 (1.9)

that we denote by (n, ρ)α → ∞. Our main proposition is that the normalized
eigenvalue counting function of H(n,ρ)(v) weakly converges in average to the well-
known Wigner semicircle distribution shifted by v2. This statement is proved in
Section 2. In Section 3, we discuss our results in relation with the limiting values of
the correspondingly re-normalized Ihara zeta function for complex v ∈ C.

2 Limiting eigenvalue distribution of H(n,ρ)(v)

Let us rewrite definition (1.8) in the form

H(n,ρ)(v) = v2B̃(n,ρ) − vÃ(n,ρ), v ∈ R. (2.1)

Denoting the eigenvalues of H(n,ρ)(v) by λ
(n,ρ)
1 (v) ≤ · · · ≤ λ

(n,ρ)
n (v), one introduces

the normalized eigenvalue counting function,

σ(n,ρ)
v (λ) =

1

n
#

{

j : λ
(n,ρ)
j (v) ≤ λ

}

, λ ∈ R. (2.2)

The moments of this measure satisfy the following relation,

M
(n,ρ)
k (v) = E

(
1

n
Tr

(

H(n,ρ)(v)
)k

)

=

∫ +∞

−∞
λkdσ̄(n,ρ)

v (λ), k = 0, 1, 2, . . . , (2.3)

where σ̄
(n,ρ)
v represents the averaged eigenvalue counting function, σ̄

(n,ρ)
v = Eσ

(n,ρ)
v .

The main result of the present note is as follows.
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Theorem 1. For any given k ∈ N, the averaged moment (2.3) converges in the
limit (1.9),

lim
(n,ρ)α→∞

M
(n,ρ)
k (v) = m̃k(v) =







v4l+2
l∑

p=0

1
v2p

(
2l + 1

2p

)

tp, if k = 2l + 1,

v4l
l∑

p=0

1
v2p

(
2l

2p

)

tp, if k = 2l,

(2.4)

where l = 0, 1, 2, . . . and

tp =
(2p)!

p! (p + 1)!
, p = 0, 1, 2, . . . (2.5)

are the Catalan numbers.

Proof. To study the moment M
(n,ρ)
k , we consider the product

L
(n,ρ)
k (P̄ , Q̄) =

1

n

n∑

i0=1

E

(

Ãp1 B̃q1 · · · ÃpsB̃qs
)

i0i0
, (2.6)

where
∑s

i=1 pi = P ,
∑s

i=1 qi = Q, P+Q = k, and where we denoted P̄ = (p1, . . . , ps)
and Q̄ = (q1, . . . , qs). In (2.6), we assume p2 ≥ 1, . . . , ps ≥ 1, q1 ≥ 1, . . . , qs−1 ≥ 1
and p1 ≥ 0, qs ≥ 0. In what follows, we omit the bars over P and Q when no
confusion can arise.

We study the limiting behavior of variables L
(n,ρ)
k (P̄ , Q̄) with the help of the

diagram technique close to that developed in [16]. We consider the product

(

Ãp1 · · · B̃qs
)

i0i0
=

n∑

i0,i1,...ips=1

(
Ãp1

)

i0ip1

(
B̃(q1)

)

ip1 ip1
· · ·

(
Ãps

)

ip1+···+ps−1+1,i0

(
B̃(qs)

)

i0i0

as a sum over the generalized trajectories
(
I(1)
p1 ,J (1)

q1 , . . . ,I(s)
ps ,J (s)

qs

)
, where the closed

trajectory of P steps is given by

IP = (I(1)
p1 ,I(2)

p2 , . . . ,I(s)
ps ) = (i0, i1, . . . , ip1 , ip1+1, . . . , ip1+p2 , . . . , iP−1, i0) (2.7)

and J (k)
qk = (j

(k)
1 , . . . , j

(k)
qk ), k = 1, . . . , s.

Regarding (2.7), we associate to i0 a root vertex α and draw the new vertex
β, γ, δ, . . . each time when we see a value of il that is not equal to one of the values
previously seen. We draw the blue edges that correspond to the steps of IP and get
a graphical representation of the trajectory IP by a closed chain GP with P blue
edges. Clearly, GP is a connected multi-graph with the root vertex α. We denote
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by β1, . . . , βh the vertices of GP that correspond to different values of variables
i0, ip1 , ip1+p2 , . . . , ip1+p2+···+ps−1 , 1 ≤ h ≤ P .

The q1-plet J (1)
q1 can be represented by a set of q1 oriented red edges (β1, γl) with

1 ≤ l ≤ q1. We can put a flesh at the head vertex γl. If the value of j
(1)
r does not

coincide with any element of IP (2.7), then we say that the corresponding vertex
γr is the red one. In the opposite case we have γr ∈ V (GP ). Then we construct,

by the same procedure, a representation of the remaining parts J (2)
q2 , . . . ,J (s)

qs and
get a multi-graph that we denote by H(P̄ , Q̄) = GP̄ ⊎ FQ̄. We say that GP̄ and FQ̄

represent the blue and the red sub-graphs of the diagram H(P̄ , Q̄), respectively.
Let denote by Ḡ = ḠP̄ and F̄ = F̄Q̄ the simple graphs associated with G = GP̄

and F = FQ̄, respectively and consider a part F̄ ′
Q̄

of the red sub-graph of H̄(P̄ , Q̄)

such that there is no edge of E(F̄ ′
Q̄
) that coincide with the elements of E(ḠP̄ ). We

denote by Vr(F̄
′) the set of red vertices with fleshes of F̄ ′

Q̄
and write that F̄ ′′

Q̄
=

F̄Q̄ \ F̄ ′
Q̄
. It is clear that

ΠA,B(IP ,JQ) =
(ρ

n

)|E(Ḡ)|+|E(F̄ ′)|

where F̄ ′ = F̄ ′
Q̄
. Also it is easy to see that

|C(GP̄⊎FQ̄)| = n(n−1) · · · (n−|V (Ḡ)|−|Vr(F̄
′)|+1) = n|V (Ḡ)|+|Vr(F̄ ′)|(1+o(1)), n → ∞.

Then
1

nρP/2+Q

∑

{IP ,JQ}∈C(GP̄⊎FQ̄)

ΠA,B(IP ,JQ)

=
ρ|E(Ḡ)|−P/2

n|E(Ḡ)|−|V (Ḡ)|+1
· ρ

|E(F̄ ′)|−|E(F ′)|−|E(F ′′)|

n|E(F̄ ′)|−|Vr(F̄ ′)|
(1 + o(1)), n → ∞, (2.8)

where F ′′ = F ′′
Q̄
.

By using (2.8), it is not hard to prove that the terms of (2.6) that do not vanish
in the limit (n, ρ)α → ∞ (1.9) have the diagrams that satisfy inequality

|E(Ḡ)| − |V (Ḡ)|+ |E(F̄ ′)| − |Vr(F̄
′)|+ 1 ≤ 0. (2.9)

Indeed, if (2.9) is not satisfied, then the right-hand side of (2.8) gets a factor n−k,
k ≥ 1 that suppress any power of ρ. The following two conditions are also necessary
to have a non-zero limit: |E(Ḡ)| ≥ P/2 and

|E(F̄ ′)| − |E(F ′)| − |E(F ′′)| ≥ 0. (2.10)

Let us denote a diagram that verifies these three conditions by H̃(P̄ , Q̄) = G̃P̄ ⊎ F̃Q̄.
Due to the Euler relation for the planar embedding of connected graphs, the only
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equality is possible in (2.9) and this means that the simple graph G̃ ⊎ F̃ ′ is given
by a tree. This tree is a plane rooted tree such that its blue sub-graph G̃ is also a
tree with P/2 = p edges. Indeed, let us denote by (δ1, ǫ1) the first leaf of the tree G̃.
Then in the trajectory IP (2.7) there is a couple of steps (il−1, il), (il, il+1) such that
il−1 = il+1. Removing this couple, we get the reduced trajectory I ′

p−2 such that its

representation G̃ is again a tree. Proceeding by recurrence, we see that P is pair,
P = 2p and that |E(G̃)| ≤ P/2. Thus, p = |E(G̃)|.

Let us note that given a graph G̃P̄ that is a rooted tree Tp, one can easily
restore the original multi-graph ΓP̄ and corresponding sequence of vertices W2p by
considering the chronological run over the tree Tp. In this case the walk W2p is such
that ΓP̄ is a multi-graph, where each couple of vertices {γ, δ} is joined by either zero
edges or exactly two edges - in there and back directions, (γ, δ) and (δ, γ).

Regarding the red sub-graph F = F ′ ⊔ F ′′ of H̃(P̄ , Q̄), one can easily see that
|E(F̄ ′)| − |E(F ′)| ∈ {0,−1,−2, . . . } and that |E(F ′′)| ∈ {0, 1, 2, . . . }. Then (2.10)
is possible only when F̃ ′′ is empty and when F̄ ′ = F̃ ′. The last relation means that
the red part F̃ ′ = F̃ has no multiple edges.

It is known that the number of rooted trees of p edges is given by the Catalan
number tp. The positions and numbers of red edges being determined by (P̄ , Q̄), we
deduce from (2.8) that the following relation is true,

L
(n,ρ)
k (P̄ , Q̄) = tpv

2Q+p(1 + o(1)), (n, ρ)α → ∞. (2.11)

Returning to the moments (2.3) and regarding the trace

1

n
E

(

TrHk
n

)

=
1

n

n∑

i0=1

E
(
HnHn · · ·Hn
︸ ︷︷ ︸

k times

)

i0i0
,

we have to choose 2p elements Hn of the last product that will be represented by

−Ã. This can be done in

(
k

2p

)

ways and this choice determines uniquely the s-plets

P̄ , Q̄. Combining this observation with (2.11), we get relation (2.4). Theorem 1
is proved. �

It is known that the Catalan numbers tk verify the recurrence

tk+1 =

k∑

j=0

tk−jtj , k ≥ 0 and t0 = 1, (2.12)

and that the family of moments

v2ptp =

∫

R

λ2pdµv(λ), p = 0, 1, 2, . . .

7



uniquely determines an even measure µv with the density

dµv

dλ
= µ′

v(λ) =
1

2πv2

{√
4v2 − λ2, if λ ∈ [−2v, 2v],

0, otherwise,
(2.13)

known in the spectral theory of random matrices as the semi-circle or the Wigner
distribution [26]. It follows from (2.4) that the limiting moments m̃k(v) can be
represented as follows,

m̃k(v) =

∫

R

(v2 + λ)k dµv(λ), k = 0, 1, 2, . . . (2.14)

and therefore the corresponding measure σ̃v such that m̃k(v) =
∫
λkdσ̃v(λ) is given

by a shift of the semi-circle distribution (2.13),

σ̃′
v(λ) =

1

2πv2

√

4v2 − (λ− v2)2, |λ− v2| ≤ 2|v|. (2.15)

It follows from (2.15) that

m̃k(v) ≤ (2v + v2)k, k ≥ 0.

The family of moments {m̃k(v)} satisfies the Carleman condition and therefore the
measure σ̃v is uniquely determined. Thus, Theorem 1 implies the weak convergence

in average of measures σ
(n,ρ)
v to σ̃v; this means that for any continuous bounded

function f : R 7→ R the following is true,

lim
n,ρ→∞

∫

R

f(λ) dσ̄(n,ρ)
v (λ) =

∫

R

f(λ) dσ̃v(λ). (2.16)

In this connection it should be noted that the generating function

f(ξ) = −
∞∑

k=0

1

ξk+1
v2ktk =

∫ 2v

−2v

dµv(λ)

λ− ξ

verifies the following equation that can be easily deduced from (2.12),

f(ξ) =
1

−ξ − v2f(ξ)
. (2.17)

Regarding the generation function g(ξ) of m̃k(v) and using (2.14), we get equality

g(ξ) = −
∞∑

k=0

1

ξk+1
m̃k(v) =

∫ ∞

−∞

dσv(λ)

λ− ξ
=

∫ ∞

−∞

dµv(λ− v2)

λ− ξ
= f(ξ − v2).

8



This means that g(ξ) verifies the deformed version of (2.17),

g(ξ) =
1

v2 − ξ − v2g(ξ)
. (2.18)

Relation (2.18) shows that the numbers m̃k(v), k ≥ 0 are determined by the recur-
rence (cf. (2.12))

m̃k+1(v) = v2m̃k(v) + v2
k−1∑

j=0

m̃k−1−j(v) m̃j(v), k ≥ 1 (2.19)

with the initial conditions m̃0(v) = 1 and m̃1(v) = v2. In the particular case of
v2 = 1 the first ten values of m̃k(1), k ≥ 0 (2.19) are given by 1, 1, 2, 4, 9, 21, 51,
127, 323, 835. One can compute this also with the help of (2.4). These numbers are
the Motzkin numbers [20].

Using the diagram technique developed above, one can get the following im-
provement of Theorem 1.

Theorem 2. Given k, the following relation holds,

lim
(n,ρ)α→∞

ρ
(

M
(n,ρ)
k − m̃k(v)

)

= R
(1)
k (v), (2.20)

where
R

(1)
k (v) = v2k−2p tp

×





⌊k/2⌋
∑

p=0

(
k

2p

)
p(p− 1)

p+ 2
+ 4

⌊(k−1)/2⌋
∑

p=0

(
k

2p+ 1

)

p+

⌊(k−2)/2⌋
∑

p=0

(
k

2p+ 2

)
4p + 2

p+ 2



 .

(2.21)

Proof. Let us consider a diagram Ĥ(P̄ , Q̄) such that corresponding sum over

C(Ĥ(P̄ , Q̄)) represents the term of the order O(ρ−1) of M
(n,ρ)
k in the limit n, ρ → ∞,

ρ = o(n). It follows from (2.8) that the diagram Ĥ(P̄ , Q̄) verifies condition (2.9)
and therefore its blue part Ĝ together with its red part F̂ ′ represents a plane rooted
tree Ĝ⊎ F̂ ′ = Tr. In these relations, we denoted by Ĝ and F̂ simple graphs obtained
from corresponding multi-graphs G and F . The red part F̂ ′ contains such red edges
that do not coincide with edges of Ĝ.

The next consequence of (2.8) is that the following condition is verified by Ĥ,

|E(Ĝ)| − P/2 + |E(F̂ ′)| − |E(F ′)| − |E(F ′′)| = −1, (2.22)

where F ′′ = F \ F ′. It is clear that (2.22) is possible in one of the three following
situations:
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- either |E(Ĝ)| − P/2 = −1, |E(F̂ ′)| − |E(F ′)| = 0 and |E(F ′′)| = 0,
- or |E(Ĝ)| − P/2 = 0, |E(F̂ ′)| − |E(F ′)| = 0 and |E(F ′′)| = −1,
- or |E(Ĝ)| − P/2 = 0, |E(F̂ ′)| − |E(F ′)| = −1 and |E(F ′′)| = 0.

In the first case the chain of vertices of ĜP is such that the corresponding walk
Ŵ2p generates a multi-graph of the tree-type such that there exists one edge passed
four times and that remaining p − 2 edges are passed two times in there and back
directions. The number of such walks is given by the formula

#
{

Ŵ2p

}

=
(2p)!

(p − 2)! (p + 2)!
= tp

p(p− 1)

(p+ 2)
(2.23)

(see [14] for the proof). Then the remaining k − 2p red edges are to be distributed
over 2p + 1 instants of time. This gives the factor

( k
2p

)
in the right-hand side of

(2.21).

The second case describes a graph such that the chain of vertices such that the
blue diagram ĜP is a rooted tree of p = P/2 edges passed two times and there exists
one red edge of the form (β, γ) such that γ ∈ V (ĜP ). It is not hard to see that
obtain the corresponding chain, we have to consider a tree Tp, to choose an edge e
from it, to join one red edge η′ to one or another side of e, to choose the orientation
of the flesh of e′ and to distribute k − 2p− 1 red edges over 2p+ 2 instants of time.
This gives the second term of the right-hand side of (2.21).

Finally, the third case determines such diagrams Ĥ that ĜP is a tree of p edges
and there exist two red edges that make a multi-edge and the remaining red edges
are simple. Let us describe how to construct corresponding diagrams and chains of
vertices (walks). We consider two red edges of the form e′ = (β, γ) and e′′ = (β, γ).
Then we attach to the vertex β a tree Ta that have a edges and point out an instant
of time that will represent the starting and ending point of the corresponding walk.
This can be done in 2a + 1 ways. Finally, we attach to β a tree T ′

b of b edges,
b = p − a in the way that it will represent the part of the walk performed between
the fist and the second passages of (β, γ) given by e′ and e′′, respectively. Now it
remains to distribute r − 2 − 2p red edges among 2p + 1 + 2 instant of times. This
gives the factor

( k
2p+2

)
. Taking into account elementary equality

∑

a,b≥0,a+b=p

(2a+ 1)tatb = (p+ 1)tp+1, (2.24)

we get the third term of the right-hand side of (2.21). Relation (2.24) can be proved
with the help of the generating function f(ξ) [14]. Also one can observe that the
right-hand side of (2.24) represents the number of Catalan trees of p+1 edges with
one marked edge; this gives the right-hand side of (2.24).

Theorem 2 is proved. �
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3 Applications to IZF

Variable (1.7) can be rewritten with the help of (2.2) in the following form,

Ξ(n,ρ)(v) =
1

n
log det

(

1ρ + v2B̃(n,ρ) − vÃ(n,ρ)
)

=

∫ ∞

−∞
log

(
1ρ + λ

)
dσ(n,ρ)

v (λ), (3.1)

where we denoted 1ρ = 1 − v2/ρ. Then the convergence of IZF for a sequence
of graphs can be reduced to the question of the convergence of the corresponding
spectral measures. This approach has been used for the first time in the studies of
IZF of infinite regular graphs in paper [11].

It is known that the normalized adjacency matrix Ã(n,ρ) = ρ−1/2A(n,ρ) of the
Erdős-Rényi random graphs has all eigenvalues, excepting the maximal one, concen-
trated with probability 1 in the limit n, ρ → ∞ on the interval [−2, 2], while this
maximal eigenvalue is of the order

√
ρ [6, 9]. Regarding (3.1) for the negative values

of v, one can therefore expect that the limit

lim
(n,ρ)α→∞

Ξ(n,ρ)(v) = Ξ(v) (3.2)

exists with probability 1 for all v such that −1/2 < v < 0. Moreover, observing
that B̃(n,ρ) is asymptotically close to the unit matrix in the limit (1.9), it would be
natural to assume that convergence in average

lim
(n,ρ)α→∞

1

n
E
(
logZΓ(n,ρ)(v/

√
ρ)
)
=

v2

2
− Ξ(v), (3.3)

where

Ξ(v) =
1

2πv2

∫ 2|v|

−2|v|
log(1 + λ)

√

4v2 − (λ− v2)2 dλ (3.4)

holds for all v ∈ (−1, 1). While (3.3) is close to the weak convergence result

σ̄
(n,ρ)
v → σ̃v (2.16) established by Theorem 1 above, one cannot use it directly be-

cause the function log(1 + λ) is not bounded in the vicinity of −1. To justify (3.3),
the detailed analysis of fine properties of eigenvalues of H̃(n,ρ) is needed. This goes
beyond the scope of the present note.

Expression (3.4) can be rewritten in the form

Ξ(v) =
2

π

∫ 1

−1
log

(
1 + v2 + 2vν

)√

1− ν2 dν, (3.5)

where the last integral converges for any real v. Moreover, the right-hand side of
(3.5) can be continued to a function holomorphic in any domain

Cǫ = {v : v ∈ C, |v| ≤ 1− ǫ}, 0 < ǫ < 1.
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Thus, assuming that (3.2) and (3.3) hold and remembering the relation between
parameters u and v (1.6), one can say that our results support the conjecture that
the family of random graphs {Γ(n,ρ)} satisfies in the limit (n, ρ)α → ∞ (1.9) a version
of the weak graph theory Riemann Hypothesis [12, 25] that says that the Ihara zeta
function ZΓ(u) is pole free for |u| < 1/

√
q, where u ∈ C and q + 1 is the maximum

degree of all the vertices of Γ. In our setting, the maximum degree normalization
is naturally replaced by the averaged vertex degree ρ. Let us say that to prove this
conjecture, one has to establish convergence (3.2) for complex v and this problem
goes also far beyond the frameworks of our results.

In the present note we follow a stochastic approach to the studies of the Ihara
zeta function of graphs. We assume the graph’s edges to be present at random and
consider the ensemble of such graphs in the limit of their infinite dimensions. Such a
reasoning is completely in the spirit of the spectral theory of large random matrices
used for the first time in the spectral theory of heavy atomic nuclei [21, 26], see
also [19]. In the frameworks of the stochastic approach, the collective properties of
complex systems remain valid while the difficulties are mostly related with special
cases that are relatively rare. This can be regarded as a kind of simplified description
that nevertheless catches the principal features of the system under consideration.

It should be noted that even in the frameworks of the stochastic approach to
IZF of graphs, the problem of the limiting transition of the infinitely increasing
dimension of graphs, n → ∞, still persists. The main difficulty in the establishing
of convergence of the normalized logarithm of IZF (1.4) is that because of possible
presence of negative eigenvalues of H(n,ρ), one can guarantee the existence of the
function Ξ(n,ρ)(v) (1.7) for small values of |v| only, and this smallness can converge to
0 as n → ∞. However, the proportion of the graphs that exhibit such anomalously
small area of convergence can be sufficiently weak. The fact that the integral of the
right-hand side of (3.5) converges confirms this conjecture. We also see that due to
(3.3), a kind of the averaged version of the the graph theory Riemann Hypothesis
can be true for the large irregular random graphs.

Let us finally point out that statements similar to our results could be obtained
for the family of d-regular random graphs Γ̂(n,d). Regarding logZΓ̂(n,d) (u) (1.4) with
the spectral parameter u = v/

√
d− 1, we get the following version of (3.1),

Ξ̂(n,d)(v) =
1

n
log det

(

I(1 + v2)− v√
d− 1

Â(n,d)

)

, (3.6)

where Â(n,d) is the adjacency matrix of Γ̂(n,d). With the help of the results of
[18], one can show that the right-hand side of (3.6) converges as n, d → ∞ for all
−1 < v < 0 to the corresponding integral over the shifted semicircle distribution
(2.15). Here again, regarding convergence of Ξ̂(n,d)(v) in average, one can extend the

12



above domain up to v ∈ (−1, 1). To justify this, one would need to know the fine
properties of the graph’s spectrum, including statements similar to the well-known
Alon’s second eigenvalue conjecture (see e. g. [7]) as well as estimates of the lowest
eigenvalue of Â(n,d)/

√
d− 1 in the limit n, d → ∞.

References

[1] H. Bass, The Ihara-Zelberg zeta function of a tree lattice, Internat. J. Math. 3
(1992) 717-797

[2] B. Bollobás, Random Graphs, Cambridge studies in advances mathematics 73,
Cambridge University Press, Cambridge (2001) 498 pp.

[3] G. Chinta, J. Jorgenson, and A. Karlsson, Heat kernels on regular graphs and
generalized Ihara zeta function formulas, Monash. Math. 178 (2015) 171-190

[4] B. Clair and S. Mokhtari-Sharghi, Convergence of zeta function of graphs, Proc.
Amer. Math. Soc. 130 (2002) 1881-1886

[5] A. Coja-Oghlan, On the Laplacian eigenvalues of Gn,p, Combin. Probab. Com-
put. 16 (2007) 923-946

[6] U. Feige and E. Ofek, Spectral techniques applied to sparse random graphs,
Random Structures Algorithms 27 (2005) 251-275

[7] J. Friedman, A proof of Alon’s second eigenvalue conjecture and related prob-
lems, Mem. Amer. Math. Soc. 195 (2008) no. 910

[8] J. Friedman, Formal Zeta function expansions and the frequency of Ramanujan
graphs, Preprint arXiv:1406.4557
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