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Abstract

We investigate nil-Temperley-Lieb algebras of type A. We give a
general description of the structure of monomials formed by the gen-
erators. We also show that the dimensions of these algebras are the
famous Catalan numbers by providing a bijection between the mono-
mials and Dyck paths. We show that the distribution of these mono-
mials by degree is the same as the distribution of Dyck paths by the
sum of the heights of the peaks minus the number of peaks.

1 Introduction

This research was done as a part of PRIMES: a program that helps high-
school students conduct research. The project was suggested by Prof. Alexan-
der Postnikov.

Postnikov suggested the following construction to generate an algebra
from a graph [9]:

Given a simple graph G, we construct a unital algebra associated with
it. For every vertex we have a generator. The square of each generator is
0. Suppose x and y are two generators. If their corresponding two vertices
are not connected by an edge, then the corresponding generators commute:
xy = yx. If there is an edge connecting the vertices, then the following
relations hold: xyx = 0 and yzy = 0.

Postnikov called these algebras XYX algebras. The algebras were inspired
by the idea of fully-commutative elements of Coxeter groups [12].

When we discovered that the dimensions of XYX algebras related to
path are Catalan numbers, we discussed it with Prof. Richard Stanley, the
author of a recent book on Catalan Numbers [11]. Richard Stanley recognized
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the algebras we studied as nil-Temperley-Lieb algebras. The fact that the
dimensions of nil-Temperley-Lieb algebras of type A are Catalan numbers is
widely known [I}, 5], [T1].

In our research we also calculated the distribution of the dimensions of
these algebras by degree and found a bijection to a statistic of Dyck paths.

We later discovered that our statistic is equivalent to counting inversions
in 321-avoiding permutations [3].

In this paper, we provide some basic definitions and examples of the di-
mensions of the algebras for small cases in Section [2] We go on to describe
the structure of the monomials in the algebra and divide them into descend-
ing runs of generators in Section [3} We then provide a bijection between
the monomials and Dyck paths, by corresponding the descending runs of
generators to peaks in the Dyck paths in Section In Section [5| we show
that the number of monomials of degree d in the algebra corresponding to
the path graph P, is equal to the number of Dyck paths of length 2n such
that the sum of the heights of the peaks minus the number of peaks is d. In
Section [0] we explain the connection to 321-avoiding permutations. In Sec-
tion 7| we conclude with some corollaries of our bijection and some interesting
properties.

2 Definitions and Small Examples

In this paper, we deal only with path graphs. Let P, be the path graph with
n vertices. From now on we will number the vertices along the path, and
represent the generators as x;, where 1 < ¢ < n and n is the length of the
path. We denote the path graph with n vertices as P,.

The nil-Temperley-Lieb algebra corresponding to P, is a unital algebra
generated by x; and the following relations:

° xf =0

o vz, =xjx;, if [i —j] > 1

o rixvix; =0, for1 <i<n

o v, x;xi =0, forl <i<n.

We start with small examples of Py, P, and P,. Here are the bases and
dimensions of the corresponding algebras:



e F,. Basis: 1. Dimension 1.
e P,. Basis: 1, ;. Dimension 2.
e P,. Basis: 1, x1, x9, 122, and xox;. Dimension 5.

e P;. Basis: 1, x, z9, 3, 1172, T173, ToT1, Tox3, T3Ta, T1Tol3, T1T3T2,
ToX1X3, 3Ly, LoX1XT3T2. Dimension 14.

We see that the dimensions of these algebras form one of the most famous
sequences in mathematics: the Catalan numbers [6, [11].

We would like to look at the structure of the monomials in this algebra
in more detail.

3 Structure of the monomaials

The algebra corresponding to a path as a vector space is generated by mono-
mials. Each of the monomials is a product of generators corresponding to
vertices.

We call two monomials equivalent if they correspond to the same element
in the basis. We call a monomial reducible if it is equivalent to the zero
monomial. We call a monomial an nTL-monomial if it is an irreducible
monomial that is lexicographically smallest in its equivalency class.

Consider some examples: monomials z3x1xs and zi1x325 are equivalent
and the latter is an nTL-monomial. The monomials z3x1222x1 and 1232921
are equivalent and reducible.

The decreasing strings of letters in an nTL-monomial are very important
in our study. Let us call the longest consecutive sequence of letters in an
nTL-monomial that is decreasing a decreasing run.

Lemma 1. The indices in a decreasing run go down by one.

Proof. If an nTL-monomial contains a substring z;x; with j < ¢ — 1, then it
is not in its earliest lexicographic form as we can switch z; and x;. O

Call the first generator of a decreasing run a peak. Thus we can write
down an nTL-monomial as a sequence of pairs (p;,r;), where p; is the index
of the i-th peak and r; is the length of the i-th run.

For example, the nTL-monomial z3xox12423 has two runs and can be
represented as two pairs (3,3), (4,2).



Notice that the sum of the runs’ lengths, ) . r;, is the degree of the nTL-
monomial.

We want to find the properties of the nTL-monomials and the constraints
under which they are in one-to-one correspondence with the sequences of
pairs. The first lemma does not need a proof.

Lemma 2. The length of a run of an nTL-monomial cannot be greater than
the index of its peak: r; < p;.

Here is the next constraint.

Lemma 3. The indices of the peaks of an nTL-monomial are in increasing
order: p; < Piy1-

Proof. Suppose x; and z; are two consecutive peaks in an nTL-monomial.
The run that starts with x; ends in xj, where £ < j, otherwise, x; is not a
peak. If 7 <7, then z; also is in the run, and we will be able to reduce the
nTL-monomial to zero. O]

Let us define a wvalley as the last generator in a run. We denote the
ith valley as v;. As the indices in a run go down by one, we can see that
vi=p; — 1+ L

The following lemma can be proved the same way as Lemma (3 or by
invoking the symmetry between runs and valleys.

Lemma 4. The indices of the valleys of an nTL-monomial are in increasing
order: v; < Vii1.

The following theorem shows that there are no more constraints.

Theorem 5. If there is a sequence of pairs satisfying the constraints defined
in Lemmas then there exists an nTL-monomial corresponding to it.

Proof. First, any nTL-monomial constructed by a sequence of pairs follow-
ing the given constraints cannot be permuted to create a monomial that is
lexicographically before our nTL-monomial. Now, we wish to show that the
constructed nTL-monomial cannot be reduced to zero. Take any element x;
anywhere in our nTL-monomial. If this element is not a peak or a valley,
it will be impossible to move it, because it is surrounded by elements that
it does not commute with. So, we will not be able to form the patterns



XTiTi, T;iTir1T;, O XT;y12;T;11, and therefore we will be unable to reduce our
nTL-monomial to zero.

If our chosen element x; is a valley, then we will be able to move it in
the forward direction until we reach an element z;,;. However, since the
valleys are strictly increasing and the valley will have the lowest index of all
the elements in the run, there will be no more x; elements. So, it will be
impossible to create the pattern x;x;.1z;. The argument for if the chosen
element is a peak is essentially the same, except for the fact that the peak
can only move backwards instead of forwards in the nTL-monomial.

So, any monomial constructed from pairs following these constraints is
an nTL-monomial. O

4 Dyck Paths

Now we want to build a bijection between the nTL-monomials and Dyck
paths. We will use the Dyck paths represented as mountain ranges: the up
direction is NE and the down direction is SE. In addition, the range never
crosses the z-axis and ends on the z-axis.

We correspond an nTL-monomial to a Dyck path in the following manner.
Suppose there is a hill with the top located at coordinates (a,b). Then
we correspond it to a run of length b — 1 starting with a letter z;, where
k = (a+b—2)/2. That is, we correspond it to a pair ((a +b—2)/2,b—1).

In particular, the last index of the runis (a+b—2)/2—b+1= (a—10)/2.
In addition, all the small hills of height 1 are ignored.

Figure[I|shows 14 Dyck paths of length 8. The caption under each picture
describes the corresponding nTL-monomials.

Theorem 6. The described correspondence is a bijection.

Proof. Let us show that a Dyck path generates the sequence of pairs with
correct constraints.

The length of the run. We need to show that b —1 < (a+ b —2)/2. This
is equivalent to b < a, which is true as the Dyck path does not go over the
line x = y.

The peaks are increasing. Suppose (a;,b;) and (a;11,b;+1) are two con-
secutive non-trivial hills. Then a;y; + b;x1 > a; + b;. This is the same as
saying that the line corresponding to the right side of the next hill is above
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Figure 1: The Dyck paths of length eight and their corresponding nTL-
monomials

the line corresponding to the right side of the previous hill. This is exactly
the condition p;y1 > p;.

The valleys are increasing. The valley v; = p; —r; +1 = (a; +b; —2)/2 —
b; +1 = (a; — b;) /2. The statement is true because the line corresponding to
the left side of the next hill is below the line corresponding to the left side of
the previous hill.

This shows that the map is onto. What is left to see is that we cannot
get the same nTL-monomial from two different Dyck paths. A Dyck path is
uniquely defined by its non-trivial hills. And different sequences of non-trivial
hills produce different sequences of pairs. n

The reversal of this bijection describes how we correspond a Dyck path
to a sequence of pairs. For every pair (p;,r;) we draw a mountain top with
coordinates (p; + r; + 1,7; + 1). Furthermore, in order to get the complete
picture, we superimpose the different peaks corresponding to the different
runs on top of each other and if we have a flat space, we replace that space
with hills of height one.

5 What follows from the bijection

Given that we found a bijection with Dyck paths, the Catalan numbers ap-
pear immediately.

Corollary 7. The dimension of the algebra corresponding to the path graph
P, is the (n+ 1)-st Catalan number.



The bijection also allows us to describe the distribution of nTL-monomials
by degree.

Theorem 8. The number of nTL-monomials of degree d in the algebra cor-
responding to the path graph P, is equal to the number of Dyck paths of length
2n such that the sum of heights of peaks minus the number of peaks is d.

Proof. We only need to mention that trivial hills contribute zero to the sum.
O

For example, the distribution by degree for Psis: 1, 3, 5, 4, and 1, with
the total dimension of 14.

6 321-avoiding permutations

The distribution by degree appears in the On-Line Encyclopedia of Integers
Sequences as sequence A140717 [7]. It is defined there through 321-avoiding
permutations having a given inversion number.

The connection between nil-Temperley-Lieb algebras and permutations is
well known [2], 3, §]. We correspond to an element x; a permutation switching
elements 7 and ¢ + 1. This element is denoted as s;. Then a run z;_;...x;
corresponds to the product s,_; ... s; that is a permutation that swaps ¢ and
j. This swap is usually denoted as the transposition (i, 7).

A well-known property of the 321-avoiding permutations is that each has
a unique reduced expression of the form (ay,by),..., (ax,by), where ap >
ag—1 > ... > a; and by > b1 > ... > by [I0]. The a; and b; represent
the peaks and valleys, respectively, in our nTL-monomials and we know that
the peaks and valleys in our monomials must be increasing. So, from each
monomial we can create a unique 321-avoiding permutation. In paper [3] the
number of inversions of 321-avoiding permutations is explained in terms of
Dyck paths.

7 Other properties

Here we would like to mention some nice properties that follow from our
bijection.

Suppose an element z; is the j-th smallest/largest index in an nTL-
monomial.



Lemma 9. The elements x; appears not more than j times in an nTL-
monomaal.

Proof. The element z; can only appear in a run which ends at a valley that is

not exceeding i. The lemma follows from the fact that valleys are increasing.
O

We also want to provide some connections between the shapes of the Dyck
paths and the corresponding nTL-monomials.

Lemma 10. If a Dyck path touches the baseline y = 0 at x = k, then the
element w2 is missing from the corresponding nTL-monomial.

Proof. Suppose that the path hits the baseline. Then, we can split our path
into two separate paths and find the nTL-monomial for each path, where we
shift the set of letters for the second nTL-monomial. O

If our path does not hit the baseline, then we can move the baseline up
by one step and find the nTL-monomial corresponding to this new, shorter
path. With this nTL-monomial, we extend each peak by adding one letter
to the left of the nTL-monomial corresponding to the apex.

There is also a method to find the number of times each element appears
in an nTL-monomial/Dyck path. First, we extend all hills so they hit the
baseline on both sides. With this modified picture, we can find the number
of times each element x;, appears in the nTL-monomial.

Lemma 11. The number of times the element x;. appears in the nTL-monomial
1s the number of intersections that are not on the baseline between the left
sides of the extended hills, which do not include the peaks, and the line
x+y=2k.
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