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Abstract

In this paper, we introduce fiboquadratic sequences as a consequence
of an extension to infinity of the board of rithmomachia. Fiboquadratic
sequences approach the golden ratio and provide extensions of Cassini’s
Identity.

1 Introduction

Pythagoreanism was a philosophical tradition, that left a deep influence over
the Greek mathematical thought. Its path can be traced until the Middle Ages,
and even to present. Among medieval scholars, which expanded the practice
of the pythagoreanism, we find Anicius Manlius Severinus Boethius (480-524
A.D.) whom by a free translation of De Institutione Arithmetica by Nicomachus
of Gerasa, preserved the pythagorean teaching inside the first universities. In
fact, Boethius’ book became the guide of study for excellence during quadriv-
ium teaching, almost for 1000 years. The learning of arithmetic during the
quadrivium, made necessary the practice of calculation and handling of basic
mathematical operations. Surely, with the mixing of leisure with this exercise,
Boethius’ followers thought up a strategy game in which, besides the training of
mind calculation, it was used to preserve pythagorean traditions coming from
the Greeks and medieval philosophers. Maybe this was the origin of the philoso-
phers’ game or rithmomachia. Rithmomachia (RM, henceforward) became the
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number game by excellence that picked up all pythagorean spirit; through its
major victories, players can be trained in calculation of arithmetic, geometric
and harmonic proportions, and its frequent practice would be concomitant to
quadrivium study (arithmetic, geometry, music and astronomy). Etymologi-
cally rithmomachia is a word composed by arithmos (αριϑµoς, number ; maybe
also rithmos, rhythm as an apocope), and machia (µαχη, battle); this leads to
the meaning harmonic battle of numbers, which perfectly synchronizes all the
pythagorean essence of proportions theory.

Our main aim in this paper, is to prove that rithmomachia pieces are the
first six terms of eight sequences, that we will call fiboquadratic sequences, built
up with the terms of extended Fibonacci sequence, and they hold properties
of Fibonacci sequence related with the golden ratio. Also, we will prove that
fiboquadratic sequences lead to extensions of Cassini’s identity. We would like
to think that pythagorean tradition of RM makers, arranged on the board these
fiboquadratic sequences on both numbers armies with the purpose of provide a
harmonic and golden battle even though properties of a fiboquadratic sequences,
should not be known by the game makers.

In another work [7] Guardia, Jiménez and González present a set of new
rules for RM, which have been tested and they have reached stability and show
a complete explanation of the pieces movement, the different kinds of captures,
illustrated with examples. Additionally the authors corrected the progression
tables that have come to our days from several sources (medieval and modern).
This work can be a starting point if someday rithmomachia get birth again and
the purpose could give the first steps towards a standardization.

We have structured this work as follows: first, we describe briefly the main
features of RM, starting from the pieces, how they move, the several kinds of
captures and the two styles of victories. Second, we show how according to
Boethian number classification, the pieces of rithmomachia are disposed on the
board such that, they are the first terms of a family of fiboquadratic sequences.
We will see how fiboquadratic sequences constitute a general form of some se-
quences, which have been studied by several authors along the last ten years.
And finally, in the third part of the paper, we will show how the fiboquadratic
sequences lead to natural extensions of Cassini’s identity. We finish the work
with a possible new proof of one well known identity.

2 Rithmomachia

Rithmomachia is a strategy board game created during the 11th century, with
the purpose of supporting the study of the free translation made by Boethius
of De Institutione Arithmetica by Nicomachus of Gerasa, during the quadriv-
ium course in the first universities and monastic schools. In [16], Smith and
Eaton quoted that the game was popularized in some social elite and had no
attraction to the common people. We also see in this work how the game was
based on Greek number theory and the authors refer some manuscripts from
eleventh, twelfth and thirteenth centuries. Some scholars attributed the game
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to Pythagoras, but we have no records tracing of RM until the Ancient Ages.
So, doubtless RM is a board strategy medieval game (See, Moyer [12], page 2).

The pieces are rounds, triangles and squares. There is an special piece, a
pyramid, made of pieces of above shapes, in decreasing sizes. The pieces shapes
agree with pythagoreans conceptions about numbers. With the exception of
pyramids, each piece has two faces with the same number and different color. As
we shall see in the next sections, the numerical distribution of the pieces seems
to be arbitrary, but, they are really the first terms of a family of sequences, that
in this paper, we introduce as fiboquadratic sequences.

For a detailed explanations of the rules, the moving of the pieces, illustrated
with examples and complete descriptions of minors and majors victories, we
refer the reader to [7]. As we have said, the aim of this work is to show how
fiboquadratic sequences naturally arise in the context of RM, as we shall show
in the next sections. On figure 1, we have the classical diagram of de Boissière
(coming up from Renaissance) that shows the initial positions of the pieces at
the game start. The Venezuelan Club of Rithmomachia, an extension group of
the Faculty of Science of the Central University of Venezuela, has been working
in the promotion, diffusion and recovering of the healthy practice of RM, with
the certainty that RM is a powerful tool to improve the mathematical learning
of small calculations. The Club have tested the rules presented in [7] in the
last two years and has verified their stability. Today, the first steps have been
giving to set up the Gonzaga Rithmomachia Club, as an Academic Club of the
Gonzaga University, which will have the main goal to spread the practice and
the academic-scientific study of rithmomachia in the United States of America.
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Figure 1: Claude de Boissière’s diagram from 1556.

3 Fiboquadratic sequences on rithmomachia

3.1 Nicomachus and Boethius

Anicius Manlius Severinus Boëthius (or Boethius) (480-524 A.D.) is considered
the last philosopher of the antiquity and the first philosopher of the Middle Ages.
As pythagorean, he is well known by his work De consolatione philosophiae,
composed during the last years of his life, being in prison. It is a treatise written
in verse and prose, the book is a confession of his anguish by the captivity.
Another work of Boethius –more important to our subject– was a free translation
of De Institutione Arithmetica by Nicomachus of Gerasa. In this book, we find
the current classification of numbers into even and odd numbers, according
to the form of their factors and according to the sum of their divisors, each
definition admits an opposite one.

3.2 Rithmomachia pieces according to Boethius

Mathematically speaking, an interesting fact of this research, is that we find
inside De Institutione Arithmetica inequalities between integers numbers that
RM creators used for the numerical distribution of the pieces. In the next
definition we give such number classifications (For more details, we refer the
reader to [1]). Let (Fn)n≥0 the Fibonacci numbers, that is: F0 = 0, F1 = 1
and Fn = Fn−1 + Fn−2 if n ≥ 2. The extended Fibonacci numbers are F−n =
(−1)n+1Fn if n ≥ 1.

Definition 3.1 (Nicomachus and Boethius). A number n (positive integer) is
a multiple of m, if n = km for some k ∈ N. A number p (positive integer)
is a superparticular of m if p = m(1 + 1

n ), where n is a proper divisor of m.

We say that p is a superpartient of m if p = m(1 + k
n ), where n is a proper

divisor of m and k = 2, · · · , n − 1. A number p is multiple superparticular of
m if p = m(r + 1

n ), where n is a proper divisor of m and r > 1 and it is

multiple superpartient if p = m(r + k
n ) where n is a proper divisor of m and

k = 2, · · · , n− 1.

Remark 3.2. These definitions were given by Boethius in the context of natu-
rals numbers, but we can extend them to integers numbers, as usual. The reader
may find a more detailed explanation in Heath [8], chapter III, pages 101-104.

The numerical distribution of the pieces in RM follows the Boethian classi-
fication of numbers. Table 1 shows the values of the pieces of the white army
on the left and the black army on the right.

The first row consists of the four first even and odd numbers respectively.
The second row is a multiple of the first row, in fact it is the square. The third
row is a superparticular of the form (1 + 1

n ) of the second row. The fourth row
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White army Black army

p = n 2 4 6 8 3 5 7 9

q = np 4 16 36 64 9 25 49 81

r = (1 + 1
n )q 6 20 42 72 12 30 56 90

s = (1 + 1
n )r 9 25 49 81 16 36 64 100

t = (1 + n
n+1 )s 15 45 91 153 28 66 120 190

u = (1 + n
n+1 )t 25 81 169 289 49 121 225 361

Table 1: Numerical distribution of RM according to definition (3.1).

is a superparticular (1 + 1
n ) of the third row. The fifth row is a superpartient of

the form (1 + n
n+1 ) of the fourth row and the sixth is a superpartient (1 + n

n+1 )
of the fifth row.

A simple calculation shows that if p = n then q = np = n2, r = (1 +
1
n )q = (1 + 1

n )n2 = n(n + 1), s = (1 + 1
n )r = (1 + 1

n )n(n + 1) = (n + 1)2,
t = (1 + n

n+1 )s = (1 + n
n+1 )(n + 1)2 = (n + 1)(2n + 1) and u = (1 + n

n+1 )t =

(1 + n
n+1 )(n+ 1)(2n+ 1) = (2n+ 1)2. So, table 1 corresponds to the polynomial

pattern shown in table 2.

White army Black army

p = n 2 4 6 8 3 5 7 9

q = n2 4 16 36 64 9 25 49 81

r = n(n+ 1) 6 20 42 72 12 30 56 90

s = (n+ 1)2 9 25 49 81 16 36 64 100

t = (n+ 1)(2n+ 1) 15 45 91 153 28 66 120 190

u = (2n+ 1)2 25 81 169 289 49 121 225 361

Table 2: Polynomial distribution of RM.

3.3 Rithmomachia number extension to infinity

A careful view of table 2 shows an algebraic arrangement that distributes pairs
of rows, such that the first row is of the form k(n)l(n) and the second is of the

form (l(n))
2
, where k(n) and l(n) are affine maps with integers coefficients. (In

the first line: k(n) = 0 · n+ 1 and l(n) = 1 · n+ 0.) As we stated before, in the
construction of table 2 the second row is a multiple of the first row of the form
k(n)l(n)n. The third row is a superparticular of the second row of the form
l(n)2(1 + 1

n ), and the fourth row is a superparticular of the third row of the
form k(n)l(n)(1 + 1

n ). The fifth row is a superpartient of the fourth row of the
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form l(n)2(1 + n
1+n ) and the sixth row is a superpartient of the fifth row of the

form k(n)l(n)(1 + n
1+n ). If we want to continue this procedure, it is necessary

to define a sequence that inductively generates pairs of rows of an extension
to infinity of table 2. Now, how could we choose the coefficients of k and l, if
we would like to extend to infinity the rows of table 2 keeping this same initial
disposition? An incidental view helps to decide: the coefficients of the terms on
n that we have until now are the first terms of Fibonacci sequence: 0, 1, 1, 2.
This motivate us to define (bmn)m≥0 as the next sequence:

bmn = 1 +
Fm−1n+ Fm−2
Fmn+ Fm−1

(1)

where Fm (for m ≥ 0) are Fibonacci numbers. Then, we define an infinite
extension of table 2 as:

a0n = 1, amn =

{
am−1,nbm−1

2 ,n, if m is odd

am−1,nbm
2 −1,n, if m is even

(2)

We have to check that the first terms of (2) are exactly the rows of table 2.
In fact, if m ≥ 1 then: a1n = a0nb0n = 1 · n = n, a2n = a1nb0n = n · n = n2,
a3n = a2nb1n = n2(1+ 1

n ) = n(n+1), a4n = a3nb1n = n(n+1)(1+ 1
n ) = (n+1)2,

a5n = a4nb2n = (n+1)2(1+ n
n+1 ) = (n+1)(2n+1), a6n = a5nb2n = (n+1)(2n+

1)(1 + n
n+1 ) = (2n+ 1)2.

If we continue this procedure to infinity, we obtain an infinite extension of
table 2. An explicit form of (2) is given in the next theorem.

Theorem 3.3. Let (bmn)m≥0 be the sequence defined in (1). Then the sequence
(amn)m≥0 defined in (2) is:

amn =

{(
Fm−1

2
n+ Fm−1

2 −1

)(
Fm−1

2 +1n+ Fm−1
2

)
, if m is odd(

Fm
2
n+ Fm

2 −1
)2
, if m is even

(3)

where Fk for each k ∈ Z is an extended Fibonacci number.

Proof: If m = 0, 1, then a0n = (F0n + F−1)2 = 1 and a1n = (F0n +
F−1)(F1n+F0) = n. So, (3) holds. Suppose that (3) holds until m. If m is odd
then m+1 is even, Therefore, by the properties of Fibonacci numbers, we have:

a(m+1),n = amnbm+1
2 −1,n

= amnbm−1
2 ,n

=
(
Fm−1

2
n+ Fm−1

2 −1

)(
Fm−1

2 +1n+ Fm−1
2

)(
1 +

Fm−1
2 −1

n+ Fm−1
2 −2

Fm−1
2
n+ Fm−1

2 −1

)

=
(
Fm+1

2
n+ Fm+1

2 −1

)2
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Otherwise, if m is even then m+ 1 is odd and again:

a(m+1),n = amnbm
2 ,n

=
(
Fm

2
n+ Fm

2 −1
)2(

1 +
Fm

2 −1n+ Fm
2 −2

Fm
2
n+ Fm

2 −1

)
=
(
Fm

2
n+ Fm

2 −1
) (
Fm

2 +1n+ Fm
2

)
By induction we have that (3) holds for every m ≥ 0 and the theorem is proved.

The equation (3) is an infinite extension of table 2, as it is shown in table 3,
which it is increasingly ordered with respect to the columns.

amn am2 am3 am4 am5 am6 am7 am8 am9

1 1 1 1 1 1 1 1 1
n 2 3 4 5 6 7 8 9
n2 4 9 16 25 36 49 64 81
n(n+ 1) 6 12 20 30 42 56 72 90
(n+ 1)2 9 16 25 36 49 64 81 100
(n+ 1)(2n+ 1) 15 28 45 66 91 120 153 190
(2n+ 1)2 25 49 81 121 169 225 289 361
(2n+ 1)(3n+ 2) 40 77 126 187 260 345 442 551
(3n+ 2)2 64 121 196 289 400 529 676 841
(3n+ 2)(5n+ 3) 104 198 322 476 660 874 1118 1392
(5n+ 3)2 169 324 529 784 1089 1444 1849 2304
(5n+ 3)(8n+ 5) 273 522 851 1260 1749 2318 2967 3696
(8n+ 5)2 441 841 1369 2025 2809 3721 4761 5929
(8n+ 5)(13n+ 8) 714 1363 2220 3285 4558 6039 7728 9625
(13n+ 8)2 1156 2209 3600 5329 7396 9801 12544 15625
...

...
...

...
...

...
...

...
...

Table 3: An infinite extension of RM.

Following rithmomachia we use for the columns the natural numbers from 2
until 9, but we can extend this feature until desired, so table 3 may be extended
to infinity by the columns.

Notice that on RM, we do not only get the numerical equality, but the
geometrical equality. Since the superposition of two triangles is a parallelogram
and since a row of squares is preceded by two rows of triangles, we observe that
the creators of RM respected this spirit in adding two triangles to obtain one
square. We realized this is a recursive definition which motivated us to extend
the board to infinity and find some interesting relations among numbers that
we shall explain on the next section.
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Figure 2: The geometrical sum of two triangles is an square.

If we can imagine an extension ad infinitum of the board we will find two
armies of sequences ready to start the harmonic battle of numbers. Doubtlessly,
the philosophers’ game, was at its time, a complete expression of the main
elements of pythagoreanism, that idealized an aesthetic universe, leaded by the
supreme fundamentals laws of beauty.

3.4 Fiboquadratic sequences

The construction of an infinite board of RM made on the previous section, re-
sulted in a family of sequences, this lead us to introduce the following definition.

Definition 3.4. For any n ∈ N, the fiboquadratic sequence generated by n is
the sequence (amn)m∈N defined as

amn =

{ (
Fm−1

2
n+ Fm−1

2 −1

)(
Fm−1

2 +1n+ Fm−1
2

)
, if m is odd(

Fm
2
n+ Fm

2 −1
)2
, if m is even

where Fn for each n ∈ N is a term of the extended Fibonacci sequence.

Remark 3.5. This definition could be extended to the most general case where
we use a real variable t instead of the index n, that is:

am(t) =

{ (
Fm−1

2
t+ Fm−1

2 −1

)(
Fm−1

2 +1n+ Fm−1
2

)
, if m is odd(

Fm
2
t+ Fm

2 −1
)2
, if m is even,

but we do not use this variation in this paper.

Remark 3.6. Every fiboquadratic sequence (amn)m∈N can be extended to neg-
ative indexes as usual; that is, switching the index from natural to integer.
In this case, we say that, (akn)k∈Z is the extended fiboquadratic sequence of
(amn)m∈N.

Remark 3.7. If we let n = 1, 3, then the sequences (am1)m∈N and (am3)m∈N on
definition (3.4) are respectively the sequences A006498 and A006499 recorded
in The On–Line Encyclopedia of Integer Sequences (See for instance, [14] and
[15]). If n = 2, the sequence (am2)m∈N is the truncated version of (am1)m∈N (see,
[14]). The reader can check that the remaining six sequences (amn)m∈N with
n = 4, 5, 6, 7, 8, 9 are not recorded in this encyclopedia. Hence, fiboquadratic
sequences defined in (3.4) are natural generalizations of sequences A006498 and
A006499.
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As fiboquadratic sequences are defined in terms of Fibonacci numbers, we
hope these sequences are related to the golden number α and β = −1/α. We
formally address this fact in the next theorem.

Theorem 3.8. The sequence of quotients of successive terms of any fiboquadratic
sequence converges to the golden ratio, i. e.

lim
m→∞

am+1,n

amn
= α, ∀n ∈ N. (4)

Proof: A carefully examination of table 5 and definition 4.4 show us that
after a change of variable, the rows of the matrix follow the ternary scheme

A(m) = (Fmn+ Fm−1)2

B(m) = (Fmn+ Fm−1)(Fm+1n+ Fm)

C(m) = (Fm+1n+ Fm)2.

Then
B(m)

A(m)
=
C(m)

B(m)
=
Fm+1n+ Fm
Fmn+ Fm−1

=

Fm+1

Fm
n+ 1

n+ Fm−1

Fm

but we know that Fm+1

Fm
→ α as m→∞, therefore

lim
m→∞

B(m)

A(m)
= lim
m→∞

C(m)

B(m)
= lim
m→∞

Fm+1

Fm
n+ 1

n+ Fm−1

Fm

=
αn+ 1

n+ 1
α

= α.

Remark 3.9. It is not difficult to show that

lim
m→−∞

am+1,n

amn
= β, ∀n ∈ N.

The matrix shown in table 3 is actually a family of eight fiboquadratic se-
quences ordered by columns. But these facts can be seen in a more general
view, introducing the generalized Fibonacci sequences that can be expressed in
an even more general view, as in the next definition.

Definition 3.10. If a, b ∈ Z,–not both of them equal 0– the sequence

G1 = a, G2 = b, Gm+1 = Gm +Gm−1, m ≥ 2

is called a generalized Fibonacci sequence.

In the context of generalized Fibonacci sequence there is a very important
number, the so called characteristic of the sequence, that is:

µ = det

(
G3 G2

G2 G1

)
= a2 + ab− b2. (5)
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Then we can put our eyes in the factors of the fiboquadratic sequences
because

Gm = Fm−1n+ Fm−2, m ≥ 1 (6)

defines a particular case of generalized Fibonacci sequence. This can be ex-
pressed as a theorem.

Theorem 3.11. If (Gm) is defined as in equation (6) then

G1 = 1, G2 = n, Gm+1 = Gm +Gm−1, m ≥ 2

Proof: G1 = F0n+ F−1 = 1, G2 = F1n+ F0 = n and

Gm +Gm−1 = (Fm−1n+ Fm−2) + (Fm−2n+ Fm−3)

= (Fm−1 + Fm−2)n+ (Fm−2 + Fm−3)

= Fmn+ Fm−1

= Gm+1,

as we expected.

4 Cassini’s identities

4.1 Introduction

In Dunlap [4], Grimaldi [6], Koshy [10] and Vajda [19] we can see that there are
a lot of properties of Fibonacci numbers. One of them –that will be very impor-
tant for us– was discovered in 1860 by the Italian-born French astronomer and
mathematician Giovanni Domenico Cassini (1625-1712) and this result was also
discovered independently in 1753 by the Scottish mathematician and landscape
artist Robert Simson (1687-1768); it can be formulated as

Fm−1Fm+1 − F 2
m = (−1)m, ∀m ∈ N. (7)

Cassini’s identity involves any three consecutive members of the Fibonacci
sequence, but it can be extended to strings of any size of consecutive terms of
the sequence; there is a relation between the product of the extreme terms of
the string and the middle terms, but this relation depends upon the parity of
the size of the string. If n, k ∈ N, such that 0 < k < n, the following equations
explain this idea:

Odd size strings (Catalan’s theorem)

Fm+kFm−k − F 2
m = (−1)m+k+1F 2

k (8)

(Cassini’s identity is the particular case k = 1.)
Even size strings (Vajda’s Formula)

Fm+k+1Fm−k − FmFm+1 = (−1)m+k+1FkFk+1 (9)
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A proof of equation (8) can be found in Koshy ([10], page 83). In addition,
equation (9) is found in Vajda ([19], page 28) and it can be proved similarly. If
we have a generalized Fibonacci sequence as that of definition 3.10 the above
equations take these forms:

Odd size strings (Tagiuri, 1901)

Gm+kGm−k −G2
m = (−1)m+k+1µF 2

k (10)

Even size strings (Tagiuri, 1901)

Gm+k+1Gm−k −GmGm+1 = (−1)m+k+1µFkFk+1 (11)

In the next section, we will show that fiboquadratic sequences bring within
them a natural extension of the Cassini’s Identity.

4.2 Cassini’s identities on fiboquadratic sequences

If one look forward to table 3, it should be noticed that the sum of any two
consecutive rows follow a double pattern: (a) an even row added to the next
odd row gives the following even row, (b) odd row with the next even row is,
up to a fixed constant that depends on the column, the next odd row. Let us
see this last case, column by column, showing with the first three of them:

1 + 2 = 4− 1, 4 + 6 = 9 + 1, 9 + 15 = 25− 1, . . .
1 + 3 = 9− 5, 9 + 12 = 16 + 5, 16 + 28 = 49− 5, . . .

1 + 4 = 16− 11, 16 + 20 = 25 + 11, 25 + 45 = 81− 11, . . .
1 + 5 = 25− 19, 25 + 30 = 36 + 19, 36 + 66 = 121− 19, . . .

The next table shows the fixed constants for the eight fiboquadratic se-
quences founded on the infinite extension of RM

Column Number Fixed Constant
2 1
3 5
4 11
5 19
6 29
7 41
8 55
9 71

Table 4: The fixed constants arising from the sum of two next rows of table 3.

The reader can check that on the others columns, the sum of the correspond-
ing rows differs up the fixed constants shown on the table 4.
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As an example, the behavior described above over the first column of table
3 leads us to conjecture the next equation.

(2Fm+Fm−1)2 +(2Fm+Fm−1)(2Fm+1 +Fm) = (2Fm+1 +Fm)2−(−1)m. (12)

The definition of the Fibonacci sequence allows us to rewrite (12) as

Fm+2Fm+4 = F 2
m+3 − (−1)m. (13)

After a change of variable, we note that, in fact (13) is Cassini’s identity, as
show in (7)

Fm−1Fm+1 − F 2
m = (−1)m

So, reversing the steps, it is clear that equation (12) holds.
A closed examination of table 4 let us to conjecture

c0 = −1, cn = cn−1 + 2(n− 1), n ≥ 1

as a formula for the fixed constants of the table; this is a non–homogeneous
recurrence relation equivalent to

cn = n2 − n− 1, n ≥ 1 (14)

as can be seen easily by induction. The right side of equation (14) is the well
known Fibonacci’s polynomial. But

cn = −det

(
n+ 1 n
n 1

)
= −µ

is the negative of the characteristic of the generalized Fibonacci sequences de-
fined in equation (6). These heuristic reasonings let us to think that if (amn) is
a fiboquadratic sequence then

amn + am+1,n = am+2,n, if m is even

amn + am+1,n = am+2,n + (−1)
m+1

2 (n2 − n− 1), if m is odd
(15)

but again we can put the problem in a more general view.
For this purpose we can define a general fiboquadratic sequence upon any

generalized Fibonacci sequence (Gm), in the following way:

(am) = (G2
1, G1G2, G

2
2, G2G3, G

2
3, . . .), (16)

so we can state our general and central theorem:

Theorem 4.1. If (am) is any fiboquadratic sequence then

am + am+1 = am+2, if m is even

am + am+1 = am+2 + (−1)
m+1

2 µ, if m is odd

12



Proof: In the definition of (am) we can define two important subsequences:

(om) = (a2m−1) = (G2
1, G

2
2, G

2
3, . . .)

of the elements of (am) with odd indexes, and

(em) = (a2m) = (G1G2, G2G3, G3G4, . . .)

of the elements of (am) with even indexes.
Then, the left side of the first equation can be rewritten as

em−1 + om = Gm−1Gm +G2
m

= Gm(Gm−1 +Gm)

= GmGm+1

= em,

and the left side of the second, as

om + em = G2
m +GmGm+1

= Gm(Gm +Gm+1)

= GmGm+2

= G2
m+1 + (−1)m+1µ (By Eq. (10))

= om+1 + (−1)m+1µ.

but both results are the contents of the theorem.
So, equations (15) are the particular case of this theorem for the fibo-

quadratic sequences defined over generalized Fibonacci sequences of theorem
3.11. We want remark, that besides the convergence to the golden ratio, the
general Cassini’s identity naturally appear in the context of fiboquadratic se-
quences. In fact, after a change of variable, the general Cassini’s identity
Gm+1Gm−1 = G2

m + (−1)m(n2 − n− 1) is the second equation in (15).

4.3 One last formula

The following formula -concerning the usual Fibonacci sequence- is well known:

F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1, (17)

but we want to show a little variation of this, derived from the considerations
over theorem 4.1.

Equation em−1 + om = em in the proof of theorem 4.1 can be written as
em = em−1 +G2

m and reversing the recursive property, we can reach

em = e1 +G2
2 + · · ·+G2

m (18)

Substituting equation (18) in om + em = om+1 + (−1)m+1µ from the same
theorem and after application of definitions we arrive to:

G2
m +G1G2 +G2

2 + · · ·+G2
m = G2

m+1 + (−1)m+1µ,

13



which –by G1 = a, G2 = b– can be rewritten as

ab+G2
2 + · · ·+G2

m = G2
m+1 −G2

m + (−1)m+1µ,

or

(ab− a2) +G2
1 +G2

2 + · · ·+G2
m = (Gm+1 −Gm)(Gm+1 +Gm) + (−1)m+1µ,

therefore

G2
1 +G2

2 + · · ·+G2
m = a(a− b) +Gm−1Gm+2 + (−1)m+1µ,

that –after application of (11)– becomes

G2
1 +G2

2 + · · ·+G2
m = a(a− b) +GmGm+1 + (−1)mµ+ (−1)m+1µ,

and, finally,
G2

1 +G2
2 + · · ·+G2

m = a(a− b) +GmGm+1, (19)

a generalization of equation (17) proved in a possible new way derived from the
study of a medieval game.

5 Conclusions

The pythagoreans conceived the universe within an order and harmony ruled
by numbers. We have shown that we can find this order and harmony inside
rithmomachia. Rithmomachia was used during the Middle Ages for the exercise
of arithmetics, geometry and music. In fact, the excellentissima victory given
by the quartet (4, 6, 8, 12) has into their irreducible fractions, harmonics of the
pentatonic pythagorean music scale (see [16], page 79.). So, in order to rescue
the healthy practice of RM as a discipline for the learning could be interest-
ing as a pedagogical aim. Since 2013, the Venezuelan Rithmomachia Club has
dedicated to promote the study and practice of RM with highly grateful and sat-
isfactory results. Now, is in progress the Gonzaga Rithmomachia Club and this
Academic Organization will be main promoter and diffuser of rithmomachia in
the United States of America. With this research we have evidenced that rith-
momachia makers fully understood the pythagoreans principles of numbers and
gave –probably unknowing it– the first steps in finding an approximation of the
golden ratio.

We have introduced fiboquadratic sequences, as an heuristic construction of
an infinite extension of the board of RM. As a consequence, we have shown
these fiboquadratic sequences have a close behavior to the Fibonacci sequence –
because, successive quotients of a fiboquadratic sequence approach to the golden
ratio and they provide a generalization of Cassini’s identity– also, fiboquadratic
sequences are generalizations of sequences A006498 and A006499 of the On Line
Encyclopedia of Integer Sequences. In fact, they are sequences (am2)m∈N and
(am3)m∈N defined in table 3. Several authors have found the generating func-
tions, the recurrence relation and some combinatorial interpretations of both

14



sequences. For example, A006498 counts the number of compositions of n with
1’s 3’s and 4’s and A006499 is the number of restricted circular combinations
(for more details, we refer the reader to [14] and [15]). We think that with this
work we open a research line to find new properties of a general fiboquadratic
sequence.
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