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Abstract. Let [Kn, f, π] be the (global) SDS map of a sequential dynamical system (SDS) defined
over the complete graph Kn using the update order π ∈ Sn in which all vertex functions are equal
to the same function f : Fn2 → Fn2 . Let ηn denote the maximum number of periodic orbits of period
2 that an SDS map of the form [Kn, f, π] can have. We show that ηn is equal to the maximum
number of codewords in a binary code of length n − 1 with minimum distance at least 3. This
result is significant because it represents the first interpretation of this fascinating coding-theoretic
sequence other than its original definition.
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1. Introduction

Suppose we wish to model a finite system in which objects have various states and update their
states in discrete time steps. Moreover, assume that the state to which an object updates depends
only on the current state of that object along with the states of other nearby or connected objects.
We can capture such a system’s behavior with a graph dynamical system. A graph dynamical
system contains a graph representing the connections between objects, a set of states that the
objects can adopt, a collection of functions that model how each individual object updates its state
in reaction to its neighbor’s states, and a rule determining the scheme by which the objects update
their states.

In a series of papers published between 1999 and 2001, Barrett, Mortveit, and Reidys introduced
the notion of a sequential dynamical system (SDS), a graph dynamical system in which vertices
update their states sequentially [9, 6, 7]. Subsequently, several researchers have worked to develop
a general theory of SDS (see, for example, [3, 4, 5, 10, 11, 12, 13, 19]). The article [10] is interesting
because it shows how SDS, originally proposed as models of computer simulation, are now being
studied in relation with Hecke-Kiselman monoids in algebraic combinatorics. We draw most of our
terminology and background information concerning SDS from [16], a valuable reference for anyone
interested in exploring this field.

In the theory of SDS, the primary focus of many research articles is to count or otherwise
characterize periodic orbits in the phase spaces of sequential dynamical systems [1, 2, 4, 8, 21, 22, 23].
For example, the recent paper [1] studies which periodic orbits can coexist in certain SDS and
when certain SDS must necessarily have unique fixed points. In particular, that article shows that
analogues of Sharkovsky’s theorem from continuous dynamics completely fail to hold for many
families of SDS. It is common to analyze the dynamics of sequential dynamical systems defined
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using classical Boolean functions such and OR, AND, NOR, and NAND (see, for example, [?, ?]).
The article [23] focuses more generally on SDS defined using so-called “bi-theshold” functions.
By contrast, we will consider SDS defined using a completely arbitrary update function f . As we
describe later, this function will be the vertex function for every vertex in the graph (this is possible
because we will only consider base graphs that are complete). We now proceed to clarify some of
these remarks by establishing some notation and definitions.

If v is a vertex of a graph Y , we let d(v) denote the degree of v. We often work in the finite field
F2 = {0, 1}. In doing so, we let x = 1 + x for any x ∈ F2. For any vector ~x = (x1, x2, . . . , xk) ∈ Fk2,
let inv(~x) = (x1, x2, . . . , xk). Furthermore, id will denote the identity permutation 123 · · ·n (the
length n of the permutation id will always be clear from context).

An SDS is built from the following parts:

• An undirected simple graph Y with vertices v1, v2, . . . , vn.
• A set of states A. We will typically use the set of states A = F2 = {0, 1}.
• A collection of vertex functions {fvi}ni=1. Each vertex vi of Y is endowed with its own vertex

function fvi : A
d(vi)+1 → A.

• A permutation π ∈ Sn. The permutation π is known as the update order.

Let q(v) denote the state of a vertex v. Suppose a vertex vi has neighbors vj1 , vj2 , . . . , vjd(vi) , where

j1 < j2 < · · · < js < i < js+1 < js+2 < · · · < jd(vi). We let

X(vi) = (q(vj1), q(vj2), . . . , q(vjs), q(vi), q(vjs+1), q(vjs+2), . . . , q(vjd(vi))).

For example, if the vertex v3 has neighbors v1, v4, and v6, we let X(v3) = (q(v1), q(v3), q(v4), q(v6)).
The vector (q(v1), q(v2), . . . , q(vn)), which lists all of the states of the vertices of Y in the order
corresponding to the order of the vertex indices, is known as the system state of the SDS. Note
that if Y is a complete graph and vi is any vertex of Y , then X(vi) is equal to the system state of
the SDS.

From each vertex function fvi , define the local update function Lvi : A
n → An by

Lvi(x1, x2, . . . , xn) = (x1, x2, . . . , xi−1, fvi(X(vi)), xi+1, . . . , xn).

Combining these local update functions with the update order π = π(1)π(2) · · ·π(n) (we have
written the permutation π as a word), we obtain the SDS map F : An → An given by

F = Lvπ(n) ◦ Lvπ(n−1)
◦ · · · ◦ Lvπ(1) .

We will find it useful to introduce an “intermediate” SDS map Gi : A
n → An for each i ∈

{1, 2, . . . , n}, which we define by

Gi = Lvπ(i) ◦ Lvπ(i−1)
◦ · · · ◦ Lvπ(1) .

Thus, F = Gn. We use the convention that G0 denotes the identity map from An to An. The
vector Gi(~x) represents the system state of the SDS obtained by starting with a system state ~x and
updating only the first i vertices in the update order π. Once the system updates all n vertices
(known as a system update), the new system state is F (~x).

Given any SDS on a graph Y with vertex functions {fvi}ni=1 and update order π, we denote its
SDS map F by the triple [Y, {fvi}ni=1, π]. If all of the vertex functions fvi are equal to the same
function f , we will simply write [Y, f, π] for the corresponding SDS map (this situation can only
occur if the base graph is regular).
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Figure 1. A system update of the SDS of Example 1.1. Block A shows the inital state of the
SDS. Blocks B, C, and D show the intermediate steps of the system update. Block E shows the
system state obtained after completing the system update.

Example 1.1. Consider the graph Y shown in block A of Figure 1. We define an SDS over Y
using the update order π = 2413 and the vertex functions fvi given by

fv1(x1, x2, x3, x4) = x1x3 + x2 + x4,

fv2(x1, x2) = x1x2 + 1,

fv3(x1, x2, x3) = x1 + x2 + x3,

and

fv4(x1, x2, x3) = x1x2 + x3.

The initial system state of this SDS is (0, 0, 0, 1), as shown by the blue labels in block A of Figure
1. Because π(1) = 2, we first update the vertex v2 using the vertex function fv2 . We have

fv2(X(v2)) = fv2(q(v1), q(v2)) = fv2(0, 0) = 1,

so the vertex v2 updates to the new state 1. This intermediate update is shown in block B of Figure
1. Another way to understand the transition from block A to block B in the figure is to see that
we have changed the system state of the SDS by applying the local update function Lv2 . Indeed,
Lv2(0, 0, 0, 1) = (0, 1, 0, 1). In a similar fashion, we next update vertices v4, v1, and v3. Letting
F = [Y, {fvi}4i=1, π], we find that F (0, 0, 0, 1) = (0, 1, 1, 1), as shown in block E of the figure. In
other words, through a sequence of local updates, the system update transformed the system state
(0, 0, 0, 1) into the new system state (0, 1, 1, 1).

The SDS map F tells us how the states of the vertices of the graph Y change when we update
the graph in a sequential manner. A useful tool for visualizing how F acts on the system’s states
is the phase space of the SDS. The phase space, denoted Γ(F ), is the directed graph with vertex
set V (Γ(F )) = An and edge set

E(Γ(F )) = {(~x, ~y) ∈ An ×An : ~y = F (~x)}.
In other words, we draw a directed edge from ~x to F (~x) for each ~x ∈ An. As an example, the phase
space of the SDS given in Example 1.1 is shown in Figure 2. Notice that the phase space shown in
Figure 2 has a single 2-cycle (formed from the vertices 0111 and 0101). In general, a phase space of
an SDS can have many cycles of various lengths. This leads us to some interesting questions. For
example, when is it possible to have a phase space composed entirely of 2-cycles? Can we find an
upper bound on the number of 2-cycles that can appear in the phase spaces of certain SDS? If we
can show, for instance, that certain SDS defined over a graph with n vertices cannot have phase
spaces consisting entirely of 2-cycles, then it will follow that the very natural function inv : Fn2 → Fn2
cannot be the SDS map of any of those SDS.

In this paper, we study the number of 2-cycles that can appear in the phase spaces of SDS
defined over a complete graph Kn in which all vertex functions are the same. More formally, we
give the following definition.
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Figure 2. The phase space of the SDS described in Example 1.1. Note that we have omitted
parentheses and commas from the vectors in order to improve the aesthetics of the image. For
example, the vector (1, 0, 1, 1) is written as 1011.

Definition 1.1. For a positive integer n, let (F2)
Fn2 be the set of all functions g : Fn2 → F2. For each

g ∈ (F2)
Fn2 and π ∈ Sn, let η(g, π) denote the number of 2-cycles in the phase space Γ([Kn, g, π]).

Define

ηn = max
g∈(F2)

Fn2
η(g, id).

Remark 1.1. Our decision to use the identity update order id in the definition of ηn in Definition
1.1 stems from a desire for convenience, but we lose no generality in making such a decision because
we are working over complete graphs. In other words,

ηn = max
g∈(F2)

Fn2
η(g, id) = max

g∈(F2)
Fn2

π∈Sn

η(g, π).

In the next section, we reformulate the problem of determining ηn in terms of finding the clique
number of a certain graph. We then show that ηn+1 = A(n, 3), where A(n, 3) denotes the maximum
number of codewords in a binary code of length n with minimum distance at least 3. The sequence
A(n, 3), which is sequence A005864 in Sloane’s Online Encyclopedia of Integer Sequences [17], has
been a fascinating and mysterious subject of inquiry in coding theory [14, 15, 18, 20]. Our result
is noteworthy because, to the best of our knowledge, it provides the only known interpretation of
this sequence other than its original definition.

2. Searching for ηn

If X is a set and F : X → X is a function, we say an element ~x of X is a periodic point of period
2 of F if F 2(~x) = ~x and F (~x) 6= ~x. Typically, we use the field F2 as our set of states. However, in
the following lemma, we may use any set of states A so long as |A| ≥ 2.

Lemma 2.1. Let n ≥ 2 be an integer. Let f : An → A be a function, and let π = π(1)π(2) · · ·π(n) ∈
Sn be a permutation. Suppose ~x = (x1, x2, . . . , xn) is a periodic point of period 2 of the SDS map
F = [Kn, f, π]. Write F (~x) = ~z = (z1, z2, . . . , zn).

For each k ∈ {1, 2, . . . , n}, we have xk 6= zk. In particular, if A = F2, then F (~x) = inv(~x).
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Proof. For any j ∈ {1, 2, . . . , n}, recall that Gj−1(~x) is the system state that results from starting
with the initial system state ~x and then updating the vertices vπ(1), vπ(2), . . . , vπ(j−1) (in this or-
der). When we update the state of the vertex vπ(j), the state to which vπ(j) updates is given by
f(Gj−1(~x)). On the other hand, the state to which vπ(j) updates must be zπ(j), the state of vπ(j)
in the system state ~z. It follows that f(Gj−1(~x)) = zπ(j). Note that

f(Gn(~x)) = f(F (~x)) = f(~z) = f(G0(~z)) = xπ(1).

These same arguments show that f(Gj−1(~z)) = xπ(j) for any j ∈ {1, 2, . . . , n} and that f(Gn(~z)) =
zπ(1).

If i ∈ {1, 2, . . . , n− 1}, then the preceding paragraph tells us that

f(Gi−1(~x)) = zπ(i), f(Gi−1(~z)) = xπ(i),

(1) f(Gi(~x)) = zπ(i+1), f(Gi(~z)) = xπ(i+1).

We also have

f(Gn−1(~x)) = zπ(n), f(Gn−1(~z)) = xπ(n),

(2) f(Gn(~x)) = x1, f(Gn(~z)) = z1.

Notice that if xπ(i) = zπ(i), then updating the vertex vπ(i) doesn’t “change” anything; that is,
Gi−1(~x) = Gi(~x) and Gi−1(~z) = Gi(~z). With the help of the equations in (1) and (2), this shows that
if xπ(i) = zπ(i) for some i ∈ {1, 2, . . . , n}, then xπ(i+1 (mod n)) = zπ(i+1 (mod n)). As a consequence,
we see that if xπ(i) = zπ(i) for some i ∈ {1, 2, . . . , n}, then ~x = ~z = F (~x). However, we are assuming
that ~x is a periodic point of F of period 2, so F (~x) 6= ~x by definition. Thus, xπ(i) 6= zπ(i) for all
i ∈ {1, 2, . . . , n}, which proves the lemma. �

Let w = w1w2 . . . wk be a finite word over the alphabet F2. We say that a vector (x1, x2, . . . , xn) ∈
Fn2 contains the subsequence w if there exist i1, i2, . . . , ik ∈ {1, 2, . . . , n} such that i1 < i2 < · · · < ik
and xij = wj for all j ∈ {1, 2, . . . , k} (this is sometimes expressed by saying that w is a “scattered
subword” of (x1, x2, . . . , xn)). For example, the vector (x1, x2, x3, x4, x5) = (1, 0, 1, 1, 0) contains
the subsequence 100 because x1 = 1, x2 = 0, and x5 = 0. However, the vector (1, 0, 1, 1, 0) does
not contain the subsequence 001. This leads us to the following definition.

Definition 2.1. Let w be a finite word over the alphabet F2. Define Dn(w) to be the set of vectors
~x ∈ Fn2 such that ~x contains the subsequence w.

Definition 2.2. Let n ≥ 2 be an integer. Let

F̂n2 = {(x1, x2, . . . , xn) ∈ Fn2 : x1 = 0}.

Define Ĥn to be the undirected simple graph with vertex set

V (Ĥn) = F̂n2
and edge set

E(Ĥn) = {{~x, ~y} ⊆ F̂n2 : ~x+ ~y ∈ Dn(101)}.

The following two lemmas link the graphs Ĥn to our study of 2-cycles in the phase spaces of
SDS defined over complete graphs.

Lemma 2.2. Let n ≥ 2 be an integer, and let C = {~x1, ~x2, . . . , ~xk} be a clique of order k of Ĥn.
There exists a map f : Fn2 → F2 such that each ~xi ∈ C is in a 2-cycle of Γ([Kn, f, id]). Moreover,
no two distinct ~xi, ~xj are contained in the same 2-cycle of Γ([Kn, f, id]).
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Proof. For each i ∈ {1, 2, . . . , k}, let ~xi = (ai1, ai2, . . . , ain), where ai1 = 0 by the definition of Ĥn.
Define the map f : Fn2 → F2 as follows:

• If there are some i, ` such that

~α = (ai1, ai2, . . . , ai`, ai(`+1), ai(`+2), . . . , ain),

then let f(~α) = ai(`+1).
• If there are some i, ` such that

~α = (ai1, ai2, . . . , ai`, ai(`+1), ai(`+2), . . . , ain),

then let f(~α) = ai(`+1).
• Otherwise, let f(~α) = 0.

We first need to show that f is well-defined. To do so, we show that for any i, j ∈ {1, 2, . . . , k}
and any `,m ∈ {0, 1, . . . , n− 1} with i 6= j or ` 6= m, we have

(3) (ai1, . . . , ai`, ai(`+1), . . . , ain) 6= (aj1, . . . , ajm, aj(m+1), . . . , ajn),

(4) (ai1, . . . , ai`, ai(`+1), . . . , ain) 6= (aj1, . . . , ajm, aj(m+1), . . . , ajn),

and

(5) (ai`, . . . , ai`, ai(`+1), . . . , ain) 6= (aj1, . . . , ajm, aj(m+1), . . . , ajn).

This will show that we have not accidentally defined f(~α) = 0 and f(~α) = 1 for the same vector
~α. Applying the function inv to each side of (5) yields (3), and applying inv to each side of (3)
yields (5) (we are using the injectivity of inv). This shows that (3) and (5) are equivalent, so we
only need to prove (3) and (4) to show that f is well-defined.

Choose such i, j, `,m, and assume without loss of generality that ` ≤ m. First, suppose i = j.
Because we are assuming either i 6= j or ` 6= m, this implies that ` < m. The two vectors in (3)
cannot be the same because their mth coordinates are different. Similarly, the two vectors in (4)
cannot be the same because their `th coordinates are different. This proves (3) and (4) in the case
in which i = j.

We now assume i 6= j. Because ~xi and ~xj are adjacent in Ĥn, the vector ~xi + ~xj contains the
subsequence 101. This implies that there exist r1, r2, r3 ∈ {2, 3, . . . , n} such that r1 < r2 < r3,
air1 6= ajr1 , air2 = ajr2 , and air3 6= ajr3 . If r1 ≤ `, then the two vectors in (3) differ in their rth1
coordinates. If r3 ≥ m + 1, then the two vectors in (3) differ in their rth3 coordinates. If ` < r1
and r3 ≤ m, then ` + 1 ≤ r2 ≤ m, so the two vectors in (3) differ in their rth2 coordinates. This
proves (3) in all cases. We next prove (4). Note that ai1 = aj1 = 0. Since m > ` ≥ 0, the first
coordinate of the vector on the right-hand side of (4) is 0. If ` ≥ 1, then the first coordinate of
the vector on the left-hand side of (4) is 1. This shows that (4) holds whenever ` ≥ 1, so assume
` = 0. If r2 ≥ m+ 1, then the two vectors in (4) differ in their rth2 coordinates. Hence, we may also
assume r2 ≤ m. Since ` = 0, the rth1 coordinate of the vector on the left-hand side of (4) is air1 .
Since r1 < r2 ≤ m, the rth1 coordinate of the vector on the right-hand side of (4) is ajr1 . Because

air1 6= ajr1 , the two vectors in (4) differ in their rth1 coordinates. This proves (4), showing that f is
indeed well-defined.

Let F = [Kn, f, id]. We now show that for each i ∈ {1, 2, . . . , k}, the vector ~xi is in a 2-cycle of
Γ(F ). Choose some i ∈ {1, 2, . . . , k}. It follows from the definition of f that for each ` ∈ {1, 2, . . . , n}

G`(~xi) = (ai1, . . . , ai`, ai(`+1), . . . , ain)
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and

G`(inv(~xi)) = G`(ai1, ai2, . . . , ain) = (ai1, . . . , ai`, ai(`+1), . . . , ain).

In particular, F (~xi) = inv(~xi) 6= ~xi and F 2(~xi) = F (inv(~xi)) = ~xi. In other words, ~xi is in a 2-cycle
of Γ(F ).

Finally, choose some distinct i, j ∈ {1, 2, . . . , k}. It is easy to see that the vectors ~xi and ~xj are
in distinct 2-cycles of Γ(F ). Since ~xi 6= ~xj , the only way the vectors ~xi and ~xj could be in the same
2-cycle of Γ(F ) is if F (~xi) = ~xj . We have just shown that F (~xi) = inv(~xi), so ~xi could only be in
the same 2-cycle as ~xj if ~xj = inv(~xi). However, this is impossible because ~xi and ~xj have the same
first coordinate (namely, 0). �

Lemma 2.3. Let n ≥ 2 be an integer, and let ~x and ~y be distinct nonadjacent vertices of Ĥn. Let
f : Fn2 → F2 be a function. If ~x is in a 2-cycle of the phase space Γ([Kn, f, id]), then ~y is not in a
2-cycle of Γ([Kn, f, id]).

Proof. Suppose, by way of contradiction, that ~x and ~y are both in 2-cycles of Γ([Kn, f, id]). Let
F = [Kn, f, id]. Let ~x = (a1, a2, . . . , an) and ~y = (b1, b2, . . . , bn). Because ~x 6= ~y, we may let r be
the smallest element of {1, . . . , n} such that ar 6= br. Similarly, we may let s be the largest element
of {1, . . . , n} such that as 6= bs. Note that r ≥ 2 because a1 = b1 = 0. Because ~x and ~y are not

adjacent in Ĥn, the vector ~x + ~y = (a1 + b1, . . . , an + bn) does not contain the subsequence 101.
This implies that

ai + bi =

{
1, if r ≤ i ≤ s;
0, otherwise.

In other words, ~y = (a1, . . . , ar−1, ar, . . . , as, as+1, . . . , an). For the sake of convenience, let an+1 =
a1.

Because we are assuming that each of the vectors ~x and ~y is in a 2-cycle of Γ(F ), we know from
Lemma 2.1 that F (~x) = inv(~x) and F (~y) = inv(~y). Hence, for each ` ∈ {1, . . . , n},

G`(~x) = (a1, . . . , a`, a`+1, . . . , an)

and

G`(~y) = (b1, . . . , b`, b`+1, . . . , bn).

It follows that

f(a1, . . . , as, as+1 . . . , an) = f(Gs(~x)) = as+1,

but also

f(a1, . . . , as, as+1 . . . , an) = f(b1, . . . , br−1, br, . . . , bn) = f(Gr−1(~y)) = br = ar.

Therefore, ar = as+1. Similarly, we have

f(a1, . . . , ar−1, ar . . . , an) = f(Gr−1(~x)) = ar

and

f(a1, . . . , ar−1, ar . . . , an) = f(b1, . . . , bs, bs+1, . . . , bn) = f(Gs(~y)) = bs+1 = as+1.

This implies that ar = as+1 = ar, which is a contradiction. �

We are now in a position to prove one of our crucial theorems. Let ω(G) denote the clique
number of a graph G. That is, G contains a clique of order ω(G) but does not contains a clique of
order ω(G) + 1.
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Theorem 2.1. For any integer n ≥ 2, we have

ηn = ω(Ĥn).

Proof. Choose an integer n ≥ 2, and let k = ω(Ĥn). Let C = {~x1, ~x2, . . . , ~xk} be a clique of order

k of Ĥn. By Lemma 2.2, there exists a map f : Fn2 → F2 such that any distinct vectors ~xi, ~xj ∈ C
are in distinct 2-cycles of Γ([Kn, f, id]). In particular, Γ([Kn, f, id]) contains at least k 2-cycles. In
the notation of Definition 1.1, f ∈ (F2)

Fn2 , and η(f, id) ≥ k. Thus,

ηn = max
g∈(F2)

Fn2
η(g, id) ≥ η(f, id) ≥ k.

We now show that ηn ≤ k. By Definition 1.1, there exists a function g ∈ (F2)
Fn2 such that

η(g, id) = ηn. In other words, there are ηn 2-cycles in the phase space Γ([Kn, g, id]). It follows from
Lemma 2.1 that each 2-cycle of Γ([Kn, g, id]) contains exactly one vector whose first coordinate is
0. In the notation of Definition 2.2, each of the ηn 2-cycles of Γ([Kn, g, id]) contains exactly one

vector that is a vertex of Ĥn. Let ~x1, ~x2, . . . , ~xηn be these vertices of Ĥn. Choose some distinct
i, j ∈ {1, 2, . . . , ηn}. Because each of the vectors ~xi, ~xj is in a 2-cycle of Γ([Kn, g, id]), it follows

from Lemma 2.3 that ~xi and ~xj must be adjacent in Ĥn. Because i and j were arbitrary, this shows

that {~x1, ~x2, . . . , ~xηn} is a clique of Ĥn. Consequently, ηn ≤ k. �

Given an integer n ≥ 2, we may define a map θn : F̂n2 → Fn−12 by

θn(x1, x2, . . . , xn) = (x2, x3, . . . , xn).

Because the first coordinate of each vector in F̂n2 is 0, it should be clear that θn is a vector space

isomorphism. Furthermore, if ~x, ~y ∈ F̂n2 , then ~x + ~y ∈ Dn(101) if and only if θn(~x) + θn(~y) ∈
Dn−1(101). This motivates the following definition.

Definition 2.3. Given an integer m ≥ 2, define Hm to be the undirected simple graph with vertex
set

V (Hm) = Fm2
and edge set

E(Hm) = {{~x, ~y} ⊆ Fm2 : ~x+ ~y ∈ Dm(101)}.

It follows from the preceding paragraph that θn+1 is a graph isomorphism from the graph Ĥn+1

to the graph Hn. Therefore, ηn+1 = ω(Ĥn+1) = ω(Hn). In the following section, we relate the
graphs Hn to error-correcting binary codes.

3. Binary Codes

In coding theory, a binary code of length n is a subset of Fn2 . The elements of a code are
known as codewords. The Hamming distance between two codewords ~x = (x1, x2, . . . , xn) and
~y = (y1, y2, . . . , yn), which we shall denote by δ(~x, ~y), is simply the number of positions in which
the vectors ~x and ~y have different coordinates. That is,

δ(~x, ~y) = |{i ∈ {1, 2, . . . , n} : xi 6= yi}|.
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If C is a nonempty binary code of length n, then the minimum distance of C, denoted ∆(C), is
the quantity

∆(C) = min
~x,~y∈C
~x6=~y

δ(~x, ~y).

If a code C consists of a single codeword, we convene to let ∆(C) =∞.

Of particular interest in coding theory are binary codes with minimum distance at least 3. Such
codes are known as one-bit error-correcting codes because any error formed by flipping a single bit
(that is, changing a single coordinate) in a codeword can be detected and corrected (this is not
the case for binary codes with minimum distance less than 3). Let A(n, 3) denote the maximum
number of codewords that can appear in a binary code of length n that has minimum distance at
least 3. An important problem in coding theory is the determination of the values of A(n, 3). It

is known that A(n, 3) = 2n−log2(n+1) if n + 1 is a power of 2, but most values of A(n, 3) are not
known.

Given an integer m ≥ 2, define Jm to be the undirected simple graph with vertex set

V (Jm) = Fm2
and edge set

E(Jm) = {{~x, ~y} ⊆ Fm2 : ~x+ ~y ∈ Dm(111)}.
Observe that two vectors ~x, ~y ∈ Fm2 are adjacent in Jm if and only if the Hamming distance δ(~x, ~y)
between ~x and ~y is at least 3. Therefore, A(n, 3) is equal to the clique number ω(Jn) of the graph
Jn. From this, we obtain the following theorem.

Theorem 3.1. For any positive integer n,

ηn+1 = A(n, 3).

Proof. We saw at the end of the preceding section that ηn+1 = ω(Hn). Therefore, in light of the
preceding paragraph, we see that it suffices to show that ω(Hn) = ω(Jn). Consider the linear
transformation T : Fn2 → Fn2 given by

T (x1, x2, . . . , xn) = (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn).

The linear tranformation T is an endomorphism with a trivial kernel, so it is an isomorphism. Fur-
thermore, a vector ~z ∈ Fn2 contains the subsequence 111 if and only if T (~z) contains the subsequence
101. This shows that T is in fact a graph isomorphism from Jn to Hn, so ω(Hn) = ω(Jn). �

As mentioned in the introduction, Theorem 3.1 provides the first known interpretation of the
numbers A(n, 3) outside of coding theory.

4. Concluding Remarks

We have defined ηn to be the maximum number of 2-cycles that can appear in a phase space
of the form Γ([Kn, f, id]). One could easily generalize these numbers by defining ηn(m) to be the
maximum number of m-cycles that can appear in such a phase space. One may show that ηn(1) = 2
for all positive integers n (the only possible fixed points of an SDS map [Kn, f, id] are the all-0’s
and all-1’s vectors of length n). Is it possible to obtain general bounds for the numbers ηn(m)?
Could we perhaps relate the numbers ηn(m) to codes as we have done for the numbers ηn(2)?
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There are, of course, many other natural ways to generalize the problems considered here. One
might wish to replace complete graphs with graphs that are, in some sense, “almost” complete
(such as complements of cycle graphs). We could also choose to ask similar questions about SDS
maps of the form [Kn, f, id] defined using a set of states A with |A| ≥ 3.

5. Acknowledgments

This work was supported by National Science Foundation grant DMS-1358884.

The author would like to thank Padraic Bartlett for introducing the author to sequential dy-
namical systems and giving excellent suggestions for the improvement of this paper. The author
would also like to thank the anonymous DMTCS referees for several helpful suggestions.

References

[1] J. A. Aledo, L. G. Diaz, S. Martinez, and J. C. Valverde. On periods and equilibria of computational sequential
systems. Information Sciences, Volumes 409–410 (2017), 27–34.

[2] C. L. Barrett, W. Y. C. Chen, and M. J. Zheng. Discrete dynamical systems on graphs and Boolean functions.
Math. Comput. Simul., 66 (2004) 487-497.

[3] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. Reachability
problems for sequential dynamical systems with threshold functions. Theoret. Comput. Sci., 295 (2003), 41–64.

[4] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, and P. T. Tosic.
Gardens of Eden and fixed points in sequential dynamical systems. DM–CCG, (2001), 95–110.

[5] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E. Stearns. On some special
classes of sequential dynamical systems. Ann. Comb., 7 (2003), 381–408.

[6] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of computer simulation II: sequential
dynamical systems. Appl. Math. Comput., 107 (2000), 121–136.

[7] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of computer simulation III: equivalence of
SDS. Appl. Math. Comput., 122 (2001), 325–340.

[8] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of computer simulation IV: sequential
dynamical systems: fixed points, invertibility and equivalence. Appl. Math. Comput., 134 (2003), 153-171.

[9] C. L. Barrett and C. M. Reidys. Elements of a theory of computer simulation I: Sequential CA over random
graphs. Appl. Math. Comput., 98 (1999), 241–259.

[10] E. Collina and A. D’Andrea. A graph-dynamical interpretation of Kiselman’s semigroups. J. Algebraic Combin.,
41 (2015), 1115–1132.

[11] L. D. Garcia, A. S. Jarrah, and R. Laubenbacher. Sequential dynamical systems over words. Appl. Math. Comput.,
174 (2006), 500–510.

[12] M. Macauley, J. McCammond, and H. S. Mortveit. Dynamics groups of asynchronous cellular automata. J.
Algebraic Combin., 33 (2011), 11–35.

[13] M. Macauley and H. S. Mortveit. Cycle Equivalence of Graph Dynamical Systems. Nonlinearity, 22 (2009),
421-436.

[14] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. Elsevier-North Holland, 1978, p.
674.

[15] M. Milshtein, A new binary code of length 16 and minimum distance 3, Information Processing Letters, 115.12
(2015), 975–976.

[16] H. S. Mortveit and C. M. Reidys. An introduction to sequential dynamical systems. Springer Science & Business
Media, 2007.

[17] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.
[18] P. R. J. Ostergard , T. Baicheva, and E. Kolev, Optimal binary one-error-correcting codes of length 10 have 72

codewords, IEEE Trans. Inform. Theory, 45 (1999), 1229–1231.
[19] C. M. Reidys. On acyclic orientations and sequential dynamical systems. Adv. Appl. Math., 27 (2001), 790–804.
[20] A. M. Romanov. New binary codes of minimal distance 3, Problemy Peredachi Informatsii, 19 (1983), 101–102.
[21] P. T. Tosic and G.U. Agha. On computational complexity of counting fixed points in symmetric Boolean graph

automata. Lect. Notes Comput. Sci. 3699 (2005) 191–205.



BINARY CODES AND PERIOD-2 ORBITS OF SEQUENTIAL DYNAMICAL SYSTEMS 11

[22] A. Veliz-Cuba and R. Laubenbacher. On computation of fixed points in Boolean networks, J. Appl. Math.
Comput. 39 (2012) 145–153.

[23] S. Wu, A. Adig, and H.S. Mortveit. Limit cycle structure for dynamic bi-threshold systems. Theor. Comput. Sci.
559 (2014) 34–41.

University of Florida

Current Address: Princeton University, Department of Mathematics

E-mail address: cdefant@ufl.edu, cdefant@princeton.edu


	1. Introduction
	2. Searching for n
	3. Binary Codes
	4. Concluding Remarks
	5. Acknowledgments
	References

