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Abstract

Free words are elements of a free monoid, generated over an alphabet via the binary

operation of concatenation. Casually speaking, a free word is a finite string of letters.

Henceforth, we simply refer to them as words. Motivated by recent advances in

the combinatorial limit theory of graphs–notably those involving flag algebras, graph

homomorphisms, and graphons–we investigate the extremal and asymptotic theory

of pattern containment and avoidance in words.

Word V is a factor of word W provided V occurs as consecutive letters within W .

W is an instance of V provided there exists a nonerasing monoid homomorphsism φ

with φ(V ) = W . For example, using the homomorphism φ defined by φ(P ) = Ror,

φ(h) = a, and φ(D) = baugh, we see that Rorabaugh is an instance of PhD.

W avoids V if no factor of W is an instance of V . V is unavoidable provided, over

any finite alphabet, there are only finitely many words that avoid V . Unavoidable

words were classified by Bean, Ehrenfeucht, and McNulty (1979) and Zimin (1982).

We briefly address the following Ramsey-theoretic question: For unavoidable word V

and a fixed alphabet, what is the longest a word can be that avoids V ?

The density of V in W is the proportion of nonempty substrings of W that are

instances of V . Since there are 45 substrings in Rorabaugh and 28 of them are

instances of PhD, the density of PhD in Rorabaugh is 28/45. We establish a number

of asymptotic results for word densities, including the expected density of a word in

arbitrarily long, random words and the minimum density of an unavoidable word over

arbitrarily long words.

This is joint work with Joshua Cooper.
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Chapter 1

Background and Introduction

1.1 Discrete Structures and Combinatorics

Any mathematical structure that is enumerable or noncontinuous can be referred to

as discrete. Discrete mathematicians, therefore, usually study such things as sets,

integers, groups, graphs, logical statements, or geometric objects. However, even

uncountable or continuous objects such as topological spaces, contours, differential

equations, or dynamical systems can be discretized or otherwise studied by their

discrete properties.

Perhaps the structure most commonly identified with discrete mathematics is a

graph. A graph G consists of a set V (G) of points, called vertices or nodes, and a set

E(G) of unordered pairs of points, called edges. It is often represented visually, with

points or circles as vertices, and line segments that connect the points as edges.

Though the term “discrete mathematics” can technically encompass any study

of discrete objects, including much of algebra, number theory, logic, and theoretical

computer science, it is more commonly used as a synonym for combinatorics.

Combinatorialists are, generally speaking, interested in counting. Of the nature of

combinatorics, Cameron (1994) says: “Its tentacles stretch into virtually all corners

of mathematics.” Though some mathematical structures are inherently more discrete,

and thus more susceptible to combinatorial analysis, any structure can be the subject

of combinatorial investigation. Two particular combinatorial perspectives, Ramsey

theory and extremal theory, are especially important for the present work.
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1.1.1 Ramsey Theory

Ramsey (1929) proved that, for any fixed r, n, µ ∈ Z+, every sufficiently large set

Γ with its r-subsets partitioned into µ classes is guaranteed to have an n-element

subset ∆n ⊆ Γ such that all the r-subsets of ∆n are in the same class. This was

the advent of a major branch of combinatorics known as Ramsey theory. If a given

property holds for every sufficiently “large” structure within a class of structures,

then a combinatorialist might investigate how large a structure must be to guarantee

the property.

1.1.2 Extremal Theory

In combinatorial optimization, we look at structures subject to given constraints

and ask: “What are the optimal values obtained by such-and-such function within

these constraints?” or “Which structures satisfy the constraints and optimize the

function?” That is, we might try to find extremal values and a characterization of

the structures which obtain the extremal values. A foundational example of this

school of thought comes from Turán (1941), who classified graphs on n vertices with

the highest possible number of edges but with no set of k + 1 vertices for which all

possible edges are present.

1.2 Words

Our present interest is in words–not the linguistic units with lexical value, but rather

strings of symbols or letters. We are interested in words as abstract discrete struc-

tures. There are many different ways discrete mathematicians view words: as se-

quences, permutations, elements of a monoid, etc. Within each perspective there is a

distinct set of axioms for how words are built and how they interact. Consequently,

the theory and applications that arise for each perspective are drastically different.

One ubiquitous approach for studying discrete structures is to consider the substruc-

2



tures. In the case of sequences or permutations, the “subword” generally consists of

a subsequence of not-necessarily consecutive terms.

Some number theorists and combinatorialists study sequences of numbers
[
for

example: 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .
]
. A numeric list might be generated by a re-

cursive formula
[
f(1) = f(2) = 1, f(n + 2) = f(n + 1) + f(n)

]
, an explicit formula[

f(n) = 1
2n
√

5

((
1 +
√

5
)n
−
(
1−
√

5
)n) ]

, or enumeration of a particular class of

structures
[
f(n) is the number of way to tile a 2 × (n − 1) rectangle with 2 × 1

dominoes
]
. See the Online Encyclopedia of Integer Sequences (OEIS Foundation Inc.

2011) for many such sequences
[
including oeis.org/A000045, the Fibonacci sequence

]
.

There are natural questions one might ask about such a sequence: Is it periodic? Is

it bounded? Does it converge? What is the asymptotic rate of growth?

The elements of a sequence need not be numbers to be of mathematical interest.

In a sequence of colors, for example, one can identify the frequency with which yellow

appears, or the probability that red is followed by blue, or whether there exists a

subsequence of k black entries that are equally spaced in the original sequence. One

seminal result on nonnumeric sequences was by van der Waerden (1927), who showed

that, for any positive integers k and r, every sufficiently long sequence containing at

most r distinct colors contains a monochromatic k-term arithmetic progression (i.e.,

a length-k subsequence of a single color and equally spaced terms).

A large body of work exists for permutations, which are sequences of elements of

a linearly ordered set (generally with no element occurring twice). The substructures

for permutations are subsequences, which are usually only identified in terms of their

permutation pattern σ. For example, the permutation 1342 encounters the pattern

σ = 1 (via subsequences 1, 3, 4, and 2), σ = 12 (via 13, 14, 12, and 34), σ = 21 (32

and 42), σ = 123 (134), σ = 132 (132 and 142), σ = 231 (342), and σ = 1342 (1342).

Perhaps the first work on permutation patterns was that of MacMahon (1915), who

3



showed that 132-avoiding permutations are enumerated by the Catalan numbers (see

oeis.org/A000108). For more on permutation patterns, see Kitaev (2011).

For our present study of words, we consider only “subwords” that consist of con-

secutive letters. This is the perspective that holds for elements of a free monoid. A

monoid is an algebraic structure consisting of a set, an associative binary operation

on the set, and an identity element. A free monoid is defined over some generating

set of elements, which we view as an alphabet of letters. Its binary operation is

simply concatenation, its elements–called free words–are all finite strings of letters,

and its identity element is the empty word (generally denoted with ε or λ). Often,

the operation of a monoid is called multiplication, so it is fitting that a “subword”

of a free word is called a “factor.” For example, in the free monoid over alphabet

{a, b, c, d, r}, the word cadabra is a factor of abracadabra because abracadabra is the

product of abra and cadabra.

If there is an inverse element s−1 for every element s in the generating set, we are

dealing with a free group. Then any word with ss−1 or s−1s as a factor is equivalent to

the word obtained by removal of said factor. For example, tee−1hee−1e is equivalent

to reduced word the. Within what came to be known as combinatorial group theory,

Dehn (1911) first proposed the Word Problem for Groups: Given two words formed

from the set of generators of a group, determine whether the words represent the

same group element?

1.3 Combinatorial Limit Theory

In an era of massive technological and computational advances, we have large sys-

tems for transportation, communication, education, and commerce (to name a few

examples). We also possess massive quantities of information in every part of life.

Therefore, in many applications of discrete mathematics, the useful theory is that

which is relevant to arbitrarily large discrete structures. For example, graphs can be

4



used to model a computer network, with each vertex representing a device and each

edge a data connection between devices. The most well-known computer network,

the Internet, consists of billions of devices with constantly changing connections; one

cannot simply create a database of all billion-vertex graphs and their properties.

We use the term “combinatorial limit theory” in general reference to combina-

torial methods which help answer the following question: What happens to discrete

structures as they grow large? Many classical questions from combinatorics fall nat-

urally into this field of study. One incredibly productive approach to handling large

discrete structures is the probabilistic method, the origin of which is generally cred-

ited to Paul Erdős. See Alon and Spencer (2008) for standard probabilistic tools

used in combinatorics. Many asymptotic results from such methods, which may be

wildly inaccurate for small values, become increasingly more accurate as the relevant

structures grow.

In the combinatorial limit theory of graphs, major recent developments include the

flag algebras of Razborov (2007) and the graph limits of Borgs, Chayes, Freedman,

Lovász, Schrijver, Sós, Szegedy, Vesztergombi, etc. (see Lovász 2012). Given the

fundamental reliance of these methods on graph homomorphisms and graph densities,

we strive to apply the same ideas to words. We discuss graph limits in more detail

when describing future research directions in Section 6.2.

1.4 Combinatorics of Free Words

We are henceforth focused on free words, which we will simply call words. For a

summary of notation used throughout this text, see Appendix E.

Definition 1.1. For a fixed set Σ, called an alphabet, denote with Σ∗ the set of all

finite words formed by concatenation of elements of Σ, called letters. Words in Σ∗ are

called Σ-words. The set of length-n Σ-words is denoted with Σn. The empty word,

ε, consisting of zero letters, is a Σ-word for any alphabet Σ.

5



The set Σ∗, together with the associative binary operation of concatenation and

the identity element ε, forms a free monoid. We denote concatenation with juxtapo-

sition. Generally we use natural numbers or minuscule Roman letters as letters and

majuscule Roman letters (especially T, U, V,W,X, Y, and Z) to name words. Majus-

cule Greek letters (especially Γ and Σ) name alphabets, though for a standard q-letter

alphabet, we frequently use the set [q] = {1, 2, . . . , q}.

Example 1.2. Alphabet [3] consists of letters 1, 2, and 3. The set of [3]-words is

{1, 2, 3}∗ = {ε, 1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, 121, . . .}.

Definition 1.3. A word W is formed from the concatenation of finitely many letters.

If letter x is one of the letters concatenated to form W , we say x occurs in W , or

x ∈ W . For natural number n ∈ N, an n-fold concatenation of word W is denoted

W n. The length of word W , denoted |W |, is the number of letters in W , counting

multiplicity. L(W ), the alphabet generated by W , is the set of all letters that occur

in W . For q ∈ N, word W is q-ary provided |L(W )| ≤ q. We use ||W || to denote the

number of letter recurrences in W , so ||W || = |W | − |L(W )|.

Example 1.4. Let W = bananas. Then a, b ∈ W , but c 6∈ W . Also |W | = 7,

L(W ) = {a, b, n, s}, and ||W || = 3.

For the empty word, we have |ε| = 0, L(ε) = ∅, and ||ε|| = 0.

Definition 1.5. Word W has
(
|W |+1

2

)
(nonempty) substrings, each defined by an

integer pair (i, j) with 0 ≤ i < j ≤ |W |. Denote with W [i, j] the word in the (i, j)-

substring, consisting of j − i consecutive letters of W , beginning with the (i+ 1)-th.

V is a factor of W , denoted V ≤ W , provided V = W [i, j] for some integers i and

j with 0 ≤ i < j ≤ |W |; equivalently, W = SV T for some (possibly empty) words S

and T .

Example 1.6. nana ≤ nana ≤ bananas, with nana = nana[0, 4] = bananas[2, 6].

6



1.5 Word Avoidability

Definition 1.7. For alphabets Γ and Σ, every (monoid) homomorphism φ : Γ∗ → Σ∗

is uniquely defined by a function φ : Γ → Σ∗. We call a homomorphism nonerasing

provided it is defined by φ : Γ→ Σ∗ \ {ε}; that is, no letter maps to ε.

Example 1.8. Consider the homomorphism φ : {b, n, s, u}∗ → {m,n, o, p, r, v}∗ de-

fined by Table 1.1. Then φ(sun) = moon and φ(bus) = vroom.

Table 1.1 Example
nonerasing function.

x b n s u
φ(x) vr n m oo

Definition 1.9. U is an instance of V , or a V -instance, provided U = φ(V ) for some

nonerasing homomorphism φ; equivalently,

• V = x0x1 · · ·xm−1 where each xi is a letter;

• U = A0A1 · · ·Am−1 with each word Ai 6= ε and Ai = Aj whenever xi = xj.

W encounters V , denoted V � W , provided U ≤ W for some V -instance U . If W

fails to encounter V , we say W avoids V .

To help distinguish the encountered word and the encountering word, “pattern”

is elsewhere used to refer to V in the encounter relation V � W . Also, an instance

of a word is sometimes called a “substitution instance” and “witness” is sometimes

used in place of encounter.

1.5.1 r-th Power-Free Words

The earliest results in avoidability involved avoiding words of the form xr. When

specifically discussing xr-avoidance, the term r-th power-free is generally used (or

7



square-free for r = 2 and cube-free for r = 3). We see in Figure 1.1 that only finitely

many square-free words exist over a given two-letter alphabet. However, Thue (1906)

demonstrated the existence of arbitrarily long (even infinite), ternary, square-free

words.

ε

a b

aa ab ba bb

aba abb babbaa

abaa abab babbbaba

Figure 1.1 Binary words
that avoid xx.

In the 1970s, a number of important results were proved regarding square-free

words. For example: Ježek (1976) showed that there exists an infinite set of ternary

square-free words F such that, for each W ∈ F , every word in F \ {W} avoids

W ; Li (1976) characterized all maximal square-free words. Within their seminal

work on avoidability–the central result which we discuss later–Bean, Ehrenfeucht, and

McNulty (1979) defined two interesting homomorphisms that preserved the property

of being r-th power-free. In particular, h : N → [3] that preserves it for r ≥ 2 and

g : N→ [2] for r ≥ 3.

1.5.2 k-Avoidability

Definition 1.10. A word V is k-avoidable provided, over a fixed alphabet of size k,

there are infinitely many words that avoid V . Inversely, V is k-unavoidable provided

every sufficiently long word with at most k distinct letters encounters V .

8



We saw in Section 1.5.1 that the word xx is 3-avoidable but 2-unavoidable. A

word is doubled provided every letter in the word occurs at least twice. Every doubled

word is k-avoidable for some k > 1 (see Lothaire 2002).

Theorem 1.11 (Blanchet-Sadri andWoodhouse 2013, Theorem 2). “Let p be a [word]

of m distinct [letters].

1. If |p| ≥ 3(2m−1), then p is 2-avoidable.

2. If |p| ≥ 2m, then p is 3-avoidable.”

There remain a number of open problems regarding which words are k-avoidable

for particular k. See Lothaire (2002) and Currie (2005) for surveys on avoidability

results.

1.5.3 General Avoidability

Definition 1.12. A word V is unavoidable provided, for any finite alphabet, there

are only finitely many words that avoid V ; equivalently, V is k-unavoidable for all

k ≥ 2.

The first classification of unavoidable words (Theorem 1.14) was by Bean, Ehren-

feucht, and McNulty (1979), using the following definitions.

Definition 1.13. “Let W be a word. The letter x is free for W provided x occurs in

W and for no n ∈ ω is it possible to find letters e0, · · · , en and f0, · · · , fn such that

all of the following are [factors] of W :

xe0 f0e0 f0e1 f1e1 · · · fnen fnx.
′′

“If x is free for W , then W x is the word obtained from W by deleting all occur-

rences of x.”

9



“U is obtained from W by identification of letters whenever” for some letters “x

and y [...] occurring in W , U is the word obtained from W by substituting x for y.”

“W reduces to U provided there are words V0, V1, · · · , Vn−1 withW = V0, U = Vn−1

and [either] Vi+1 = V x
i for some letter x free in Vi or Vi+1 is obtained from Vi by

identification of letters, for all i with 0 ≤ i < n− 1.”

Theorem 1.14 (Bean, Ehrenfeucht, and McNulty 1979, Theorem 3.22). “The word

W is unavoidable if and only if W reduces to a word of length one.”

Three years later, Zimin published a fundamentally different classification of un-

avoidable words (Zimin 1982 in Russian, Zimin 1984 in English).

Definition 1.15. Define the n-th Zimin word recursively by Z0 := ε and, for n ∈ N,

Zn+1 = ZnxnZn. Using the English alphabet rather than indexed letters:

Z1 = a, Z2 = aba, Z3 = abacaba, Z4 = abacabadabacaba, . . . .

Equivalently, Zn can be defined over the natural numbers as the word of length

2n − 1 such that the i-th letter, 1 ≤ i < 2n, is the 2-adic order of i.

Theorem 1.16 (Zimin 1984). A word V with n distinct letters is unavoidable if and

only if Zn encounters V .

Zn-instances are precisely sesquipowers of order n. From Berstel et al. (2008),

“any nonempty word is a sesquipower of order 1; a word w over an alphabet A is a

sesquipower of order n > 1 if w = w0vw0 for some words w0, v ∈ A∗ with v 6= ε and

w0 a sesquipower of order n− 1.”

1.5.4 A Ramsey-Type Question

With Zimin’s concise characterization of unavoidable words, a natural combinatorial

question follows: How long must a q-ary word be to guarantee that it encounters a

10



given unavoidable word? By Definition 2.1, f(n, q) is the smallest integer M such

that every q-ary word of length M encounters Zn.

In 2014, three papers by different authors appeared, each independently proving

bounds for f(n, q). Cooper and Rorabaugh (2014) showed that (Theorems 2.2, 2.9)

q2(n−1)(1+o(1)) ≤ f(n, q) ≤ n−1(2q + 1),

where ba denotes an exponential tower with b copies of a. These results were presented

at the 45th Southeast International Conference on Combinatorics, Graph Theory, and

Computing in March 2014.

In June, Tao (2014+) introduced a more general function L(q, V ) for what he

calls the “Ramsey number” of any unavoidable word V . He also attained similar

lower and upper bounds for L(q, Zn) = f(n, q). Tao’s lower bound, which we restate

as Theorem 2.10, is even more general, applying to any unavoidable word.

In September, Rytter and Shur (2014+) also introduced the function f(n, q), to-

gether with the concept of “minimal words of Zimin type n”; that is, instances of

Zn which contain no Zn-instance as a proper factor. We call such words minimal

Zn-instances. Using minimal instances, and some computation, Rytter and Shur es-

tablish the best known upper bounds for f(3, q) and f(4, 2). We restate their results

in Section 2.3 for further use.

A factor-avoidance variant of this function has been considered at least as early

as the German work of Evdokimov (1983), some results of which were made more

readily available in English by Burstein and Kitaev (2006). For some fixed alphabet

A, a set of words S is called unavoidable provided there are only finitely many words

in A∗ that do not contain any word in S as a factor. Note that if the alphabet has at

least 2 letters, every nonempty word by itself is avoidable. In Kitaev’s work, Lw(n)

is the maximum length of a word in A∗ that avoids some unavoidable set S ⊆ An.
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Theorem 1.17 (Evdokimov 1983, Theorem 1; Burstein and Kitaev 2006, Theo-

rem 2.3).

Lw(n) = |A|n−1 + n− 2.

1.6 Word Densities

Given nonempty words V andW , the (instance) density of V in W , denoted δ(V,W ),

is the proportion of substrings of W that contain instances of V . For example, two

of the
(

6+1
2

)
substrings of banana contain xx-instances: anan and nana. Therefore,

δ(xx, banana) = 2/
(

7
2

)
.

Recall that a word V is doubled provided every letter in V occurs at least twice.

For a doubled word V with k ≥ 2 distinct letters and an alphabet Σ with |Σ| = q ≥ 4,

(k, q) 6= (2, 4), Bell and Goh (2007) showed that there are at least λ(k, q)n words in

Σn that avoid V , where they defined the function γ to be

λ(k, q) = m

(
1 + 1

(m− 2)k

)−1

.

This exponential lower bound on the number of words avoiding a doubled word hints

at the moral of Chapter 4: instances of doubled words are rare. For doubled word V

and an alphabet Σ with q ≥ 2 letters, the probability that a random word Wn ∈ Σn

encounters V is asymptotically 1. Indeed, the event that Wn[b|V |, (b + 1)|V |] is an

instance of V has nonzero probability and is independent for distinct b ∈ N. Never-

theless, the expected density δn(V, q) = E(δ(V,Wn)) (Definition 4.1) is asymptotically

negligible. Specifically, the central result of Chapter 4 is the following dichotomy.

Theorem (4.4). Let V be a word on any alphabet. Fix integer q ≥ 2. V is doubled

if and only if δ(V, q) = limn→∞ δn(V, q) = 0.

For doubled V , not only does δ(V, q) = 0, but we establish tight concentration of

δ(V,Wn) for random word Wn ∈ [q]n.
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Theorem (4.19, 4.20). Let V be a doubled word, q ≥ 2, and Wn ∈ [q]n chosen

uniformly at random.
1
n
� E(δ(V,Wn))� log n

n
;

Var(δ(V,Wn))� (log n)3

n3 � E(δ(V,Wn))2 (log n)3

n
.

For nondoubled V , we know from the dichotomy that, if δn(V, q) converges, its

limit is not 0. To get a handle on the nondoubled case, we consider instances of

specified length, a perspective used in the proof of Theorem 2.9. From Definition 2.4:

Let In(W,Σ) be the set of W -instances in Σn, and In(W, q) the probability that a

random length-n q-ary word is a W -instance; that is,

In(W, |Σ|) = | In(W,Σ)|
|Σ|n .

Example 1.18. I4(wow, [2]) = {1111, 1121, 1211, 1221, 2112, 2122, 2212, 2222} and

I4(wow, 2) = 8
24 = 1

2 .

Theorem (4.11, 4.12). Fix word V and positive integer q. The limits δ(V, q) and

I(V, q) = limn→∞ In(V, q) both exist, and δ(V, q) = I(V, q).

We also establish bounds for I(V, q) under various conditions.

1.7 Looking Forward

There are still many unexplored avenues within the combinatorial limit theory of

free words. The final part of this work, Chapter 6, summarizes a few directions for

further development. There we also pose a number of open questions that arise from

the present research.
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Chapter 2

Bounds on Zimin Word Avoidance

Recall that V is unavoidable provided, for any finite alphsabet, there are only finitely

many words that avoid (i.e., do not encounter) V . Moreover, we stated Zimin’s

classification (Theorem 1.16) that the unavoidable words are precisely the words

encountered by what are now known as Zimin words (Definition 1.15):

Z1 = a, Z2 = aba, Z3 = abacaba, Z4 = abacabadabacaba, . . .

Cooper and Rorabaugh (2014), Tao (2014+), and Rytter and Shur (2014+), inde-

pendently began investigating bounds on the length of words that avoid unavoidable

words.

2.1 Avoiding the Unavoidable

From Zimin’s explicit classification of unavoidable words, a natural question arises

in the Ramsey-theoretic paradigm: for a fixed unavoidable word V , how long can a

word be that avoids V ? Our approach to this question is to start with avoiding the

Zimin words, which gives upper bounds for all unavoidable words.

Definition 2.1. f(n, q) is the least integer M such that every q-ary word of length

M encounters Zn.

Let ba denote the towering exponential aa·
·a

with b occurrences of a. This tetration

is elsewhere denoted with Knuth’s up-arrow notation by a ↑↑ b. 0a is defined to be 1.
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Theorem 2.2 (Cooper and Rorabaugh 2014, Theorem 1.1). For n, q ∈ Z+,

f(n, q) ≤ n−1(2q + 1).

Proof. We proceed via induction on n. For the base case, set n = 1. Every nonempty

word is an instance of Z1, so f(1, q) = 1.

For the inductive hypothesis, assume the claim is true for some positive n and set

T = f(n, q). That is, every q-ary word of length T encounters Zn. Concatenate any

qT + 1 strings W0,W1, . . . ,WqT of length T with an arbitrary letter ai between Wi−1

and Wi for each positive i ≤ qT :

U = W0 a1 W1 a2 W2 a3 · · · WqT−1 aqT WqT .

By the pigeonhole principle, Wi = Wj for some i < j. That string, being length

T , encounters Zn. Therefore, we have some word W ≤ Wi that is an instance of Zn

and shows up twice, disjointly, in U . The extra letter ai+1 guarantee that the two

occurrences of W are not consecutive. This proves that an arbitrary word of length

(T + 1)(qT + 1)− 1 witnesses Zn+1, so

f(n+ 1, q) ≤ (T + 1)(qT + 1)− 1 ≤ (2q + 1)T = QT .

There is clearly a function Q(n, q) such that f(n+ 1, q) ≤ Q(n, q)f(n,q) and Q(n, q)

tends to q as n→∞. No effort has been made to optimize the choice of function, as

such does not decrease the tetration in the bound.

The technique used to prove Theorem 2.2 is first found in Lothaire’s proof of

unavoidability of Zn (Lothaire 2002, 3.1.3). Tao (2014+) uses the same technique

with different approximation to establish a similar upper bound.

Theorem 2.3 (Tao 2014+, Theorem 6). For integer n ≥ 2 and q ≥ 2,

f(n, q) < (2n−1)q.
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The technique used in the original proof by Zimin 1984 implicitly gives, for n ≥ 2,

f(n+ 1, q + 1) ≤ (f(n+ 1, q) + 2|Zn+1|) f(n, |Zn+1|2qf(n+1,q)).

This is an Ackermann-type function for an upper bound, which is much larger than

the primitive recursive bound from Theorems 2.2 and 2.3.

Table 2.1 shows known values of f(n, 2). Supporting word-lists and Sage code are

found in Appendix A.

Table 2.1 Values of f(n, 2).

n Zn f(n, 2)
0 ε 0
1 a 1
2 aba 5
3 abacaba 29
4 abacabadabacaba ≥ 10483

2.2 Finding a Lower Bound with the First Moment Method

Throughout this section, Σ is a fixed alphabet with |Σ| = q ≥ 2 letters.

Definition 2.4. Let In(W,Σ) be the set of W -instances in Σn, and In(W, q) the

probability that a random length-n q-ary word is a W -instance; that is,

In(W, |Σ|) = | In(W,Σ)|
|Σ|n .

Lemma 2.5 (Cooper and Rorabaugh 2014, Lemma 2.1). For all n,M ∈ Z+,

| I(M+1)(Zn,Σ)| ≥ q · | IM(Zn,Σ)|.

Proof. Take arbitrary W ∈ IM(Zn,Σ). By the recursive construction of Zn, we can

write W = W1W0W1 with W1 ∈ IN
(
Z(n−1),Σ

)
, where 2N < M . Choose the decom-

position of W to minimize |W1|. Then W1W0xiW1 ∈ I(M+1)(Zn,Σ) for each i < q.

The lemma follows, unless a Zn-instance of length M + 1 can be generated in

two ways – that is, if W1W0aW1 = V1V0bV1 for some V1V0V1 = V , where |V1| is also
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minimized. If |V1| < |W1|, then V1 is a prefix and suffix of W1, so |W1| was not

minimized. But if |V1| > |W1|, then W1 is a prefix and suffix of V1, so |V1| was not

minimized. Therefore, |V1| = |W1|, so V1 = W1, which implies a = b and V = W .

Corollary 2.6 (Cooper and Rorabaugh 2014, Corollary 2.2). For all n,M ∈ Z+,

I(M+1)(Zn, q) ≥ IM(Zn, q).

Lemma 2.7 (Cooper and Rorabaugh 2014, Lemma 2.3). For all n,M ∈ Z+,

| IM(Zn,Σ)| ≤
(

q

q − 1

)n−1

q(M−2n+n+1).

Proof. The proof proceeds by induction on n. For the base case, set n = 1. Every

nonempty word is an instance of Z1, so | IM(Z1,Σ)| = qM .

For the inductive hypothesis, assume the inequality is true for some n ∈ Z+. The

first inequality below comes from the following overcount of Zn+1-instances of length

M . Every such word can be written as UV U where U is a Zn-instance of length

j < M
2 . Since an instance of Zn can be no shorter than Zn, 2n− 1 ≤ j < M

2 . For each

possible j, there are | Ij(Zn,Σ)| ways to choose U and qM−2j ways to choose V . This

is an overcount, since a Zimin-instance may have multiple decompositions.
∣∣∣IM (

Z(n+1),Σ
)∣∣∣ ≤ b(M−1)/2c∑

j=2n−1
| Ij(Zn,Σ)|qM−2j

≤
b(M−1)/2c∑
j=2n−1

(
q

q − 1

)n−1

q(j−2n+n+1)qM−2j

=
(

q

q − 1

)n−1

q(M−2n+n+1)
b(M−1)/2c∑
j=2n−1

q−j

<

(
q

q − 1

)n−1

q(M−2n+n+1)
∞∑

j=2n−1
q−j

=
(

q

q − 1

)n−1

q(M−2n+n+1)
(
q−(2n−1)+1

q − 1

)

=
(

q

q − 1

)(n−1)+1

q(M−2n+1+(n+1)+1).
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Corollary 2.8 (Cooper and Rorabaugh 2014, Corollary 2.4). For all n,M ∈ Z+,

IM(Zn, q) ≤
(

q

q − 1

)n−1

q(−2n+n+1).

Theorem 2.9 (Cooper and Rorabaugh 2014, Theorem 2.5). As q →∞ or n→∞,

f(n, q) ≥
√√√√ 2q2n

q(n+1)e(
n−1
q−1 ) − 1 = q2(n−1)(1+o(1)).

Proof. Let wordW consist ofM uniform, independent random selections from Σ. De-

fine the random variable X to count the number of subwords of W that are instances

of Zn (including repetition if a single subword occurs multiple times in W ):

X =
∣∣∣{(i, j) | 0 ≤ i < j ≤M,W [i, j] ∈ I(j−i)(Zn,Σ)

}∣∣∣.
By monotonicity with respect to word length (Corollary 2.6):

E(X) =
∑

0≤i<j≤M
I(j−i)(Zn, q)

≤
∣∣∣{(i, j) | 0 ≤ i < j ≤M

}∣∣∣ · IM(Zn, q)

≤
(
M + 1

2

)(
q

q − 1

)n−1

q(−2n+n+1)

<
1
2(M + 1)2e(

n−1
q−1 )q(−2n+n+1).

There exists a word of length M that avoids Zn when E(X) < 1. It suffices to

show that:

(M + 1)2
(1

2e
(n−1

q−1 )q(−2n+n+1)
)
≤ 1. (2.1)

Solving (2.1) for M :

M ≤
(1

2e
(n−1

q−1 )q(−2n+n+1)
)−1/2

− 1

= q2(n−1)
(1

2e
(n−1

q−1 )q(n+1)
)−1/2

− 1

= q2(n−1)(1+o(1)).

18



Tao (2014+) uses the probabilistic method and generating functions and to prove

a more general result.

Theorem 2.10 (Tao 2014+, Corollary 1). Suppose word V has r distinct letters with

multiplicities 1 = k1 = · · · = ks < ks+1 ≤ · · · ≤ kr. If

n < (1 + o(1))
(s+ 1)!

r∏
j=s+1

(qkj−1 − 1)
 1

s+1

,

there is a length-n q-ary word that avoids V .

Applying Theorem 2.10 to Zimin words, Tao obtains

f(n, q) ≥ (1 + o(1))
√√√√2

n−1∏
j=1

(q2j−1 − 1).

As q →∞, √√√√2
n−1∏
j=1

(q2j−1 − 1) ∼
√√√√2

n−1∏
j=1

(q2j−1),

and as n→∞, √√√√2
n−1∏
j=1

(q2j−1) =
√

2
(
q

(∑n−1
j=1 (2j−1)

)) 1
2

∼
√

2
(
q(2n−(n−1))

) 1
2

= q2n−1(1+o(1)).

2.3 Using Minimal Zimin-Instances

Definition 2.11. For fixed n ∈ Z+, a Zn-instance is minimal provided it has no

Zn-instance as a proper factor.

Let m(n, q) be the number of minimal Zn-instances over a fixed q-letter alphabet.

The function m(n, q) was first introduces by Rytter and Shur (2014+). They used

this concept of minimal Zimin-instances to improve the upper bounds of f(3, q) and

f(4, 2).
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Lemma 2.12 (Rytter and Shur 2014+, Lemma 4.6). The following holds for any

integers n, q > 2:

f(n+ 1, q) ≤ (f(n, q) + 1) ·m(n, q) + f(n, q).

Lemma 2.13 (Rytter and Shur 2014+, Lemma 4.7).

m(2, q) = q! ·
q−1∑
i=1

2q−1−i

i! .

Theorem 2.14 (Rytter and Shur 2014+, Theorem 4.4).

• f(1, q) = 1;

• f(2, q) = 2q + 1;

• f(3, 2) = 29, f(3, q) =
√
e · 2q(q + 1)! + 2q + 1;

• f(4, 2) ≤ 236489.

Lemma 2.12 follows from the same method used in Theorem 2.2. The bound on

f(4, 2) was established using a computer search to find m(3, 2) = 7882.
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Chapter 3

Word Densities

Definition 3.1. The factor density of V in W , denoted d(V,W ), is the proportion

of length-|V | substrings of W that are copies of V ; that is

d(V,W ) =

∣∣∣{(i, j) : 0 ≤ i < j ≤ |W |,W [i, j] = V
}∣∣∣

|W |+ 1− |V | .

The (instance) density of V inW , denoted δ(V,W ), is the proportion of substrings

of W that are instances of V ; that is

δ(V,W ) =

∣∣∣{(i, j) : 0 ≤ i < j ≤ |W |,W [i, j] is a V -instance
}∣∣∣(

|W |+1
2

) .

The (q-)liminf density of V is,

δ(V, q) = lim inf
W∈[q]∗
|W |→∞

δ(V,W ).

The liminf density is defined in terms of alphabet [q] for convenience, but any

fixed q-letter alphabet would suffice. We need not define a limsup density or liminf

factor density, as these would always be trivially 1 or 0. A Σ-limsup factor density of

V might be of interest for alphabet Σ ⊇ L(V ), but we do not investigate this here.

Table 3.1 below gives a numeric summary of the best know bounds for δ(Zn, q).

The value of δ(Z2, q) for q ≥ 2 is from Theorem 3.9. For n = 3, the upper bound

comes from Section 3.2.1, and the lower bounds are stated in Corollary 3.13. There

we establish that δ(Z3, 2) ≥ 1
54 , but Section 3.3 gives reason to believe that the truth

is greater than 1/28. Lower bounds for δ(Z4, q) are found in Theorem 3.10, though

the best lower bound for q = 2 is in Corollary 3.13. Finally, the best upper bounds

for δ(Zn, q) when n ≥ 4 are from Section 4.14.
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Table 3.1 Best known bounds for the q-liminf density of Zn.

δ(Zn, q) q = 2 3 4 5 · · ·
n = 2 1/2 = .5 1/3 ≈ .333 1/4 = .25 1/5 = .2 · · ·

3 .119
1.85 · 10−2

1.84 · 10−2

8.33 · 10−4
5.19 · 10−3

5.31 · 10−5
2.00 · 10−3

3.22 · 10−7 · · ·

4 1.12 · 10−3

2.40 · 10−7
8.80 · 10−6

6.64 · 10−392943
3.23 · 10−7

9.42 · 10−233250395
2.58 · 10−8

− · · ·

5 3.43 · 10−8

−
6.13 · 10−13

−
3.01 · 10−16

−
8.46 · 10−19

− · · ·
...

...
...

...
...

. . .

3.1 Density Comparisons

For graphs F and G, t(F,G) is the homomorphism density of F in G:

t(F,G) = |{φ : V (F )→ V (G) | xy ∈ E(F )⇒ φ(x)φ(y) ∈ E(G)}|
|V (G)||V (F )| .

Kn is the complete graph on n vertices; that is, the graph
〈
[n],

(
[n]
2

)〉
with all

(
n
2

)
possi-

ble edges. In particular, K2 is often simply called the edge graph, and K3 the triangle

graph. For every graph G, we can plot an ordered pair (x, y) = (t(K2, G), t(K3, G)).

The closure of the set of all such points forms a connected region in [0, 1]2 (see

Section 2.1 of Lovász 2012), with which we can visualize the relationship between

edge-densities and triangle-densities in graphs. The tight upper bound for this region

is y ≤ x
3
2 , which is a case of the Kruskal-Katona Theorem (Kruskal 1963, Katona

1968). The lower bound of y ≥ x(2x − 1) is a result of Goodman (1959), but was

shown to be tight only for x = 1− 1
k
by Bollobás (1976).

We perform a similar comparison for word densities of some fundamental words.

In Section 3.1.1, we calculate the limit set, as |W | → ∞, of the closure of the

set of points of the form (d(ak,W ), d(a`,W )). Then Section 3.1.2 shows all points

(δ(Z2,W ), δ(Z3,W )) for all W of particular, small lengths, presenting them in the

context of bounds to be proved later.
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3.1.1 Factor Density of ak.

Lemma 3.2. For word W and integers 0 < k < `,

d(a`,W ) ≤ d(ak,W ),

with equality only when either d(a`,W ) = 1 (that is, W = am with m ≥ `) or

d(ak,W ) = 0.

Proof. Within any barc in W with a 6∈ {b, c} and r ≥ `, there are `− k more copies

of ak than of a`. Hence, unless d(a`,W ) = 0,

d(ak,W ) ≥ (|W |+ 1− `) d(a`,W ) + (`− k)
|W |+ 1− k ≥ d(a`,W ),

with equality on the right only when d(a`,W ) = 1.

Lemma 3.3. For integers 0 < k < ` and rational number dk ∈
[
0, `−k

`

]
∩ Q, there

exit arbitrarily large words W with d(ak,W ) = dk and d(a`,W ) = 0.

Proof. Let d = u
v
for positive integers 1 ≤ u < v. For u, v ∈ Z+, u

v
= d ≤ `−k

`
implies

v(` − k) − u` ≥ 0. Let Wr = (a`−1b)rubr(v(`−k)−u`)+k−1 for r ∈ Z+. The number of

length-k substrings in Wr is

|Wr|+ 1− k = (`− 1 + 1)(ru) + (r(v(`− k)− u`) + k − 1) + 1− k = rv(`− k).

Now a` 6≤ W , and the number of occurrences of ak in Wr is

((`− 1) + 1− k)(ur) = ru(`− k).

Therefore, d(a`,Wr) = 0 and

d(ak,Wr) = ru(`− k)
rv(`− k) = u

v
= d.
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Lemma 3.4. For integers 0 < k < `, and as |W | → ∞,

`(d(ak,W )− 1) . k(d(a`,W )− 1).

Proof. Let |W | = M . For given W , set dk = d(ak,W ). Also, let ck count the number

of maximal factors in W of the form ax for k ≤ x ≤ `−1 and Ak count the number of

ak-occurrences in the ck such strings, so Ak ≤ (`− k)ck. Similarly, set d` = d(a`,W )

and let c` count the number of maximal factors in W of the form ax for ` ≤ x and

A` count the number of a`-occurrences in the c` such strings. Hence, as M →∞,

dk = c`(`− k) + A` + Ak
M + 1− k

∼ c`(`− k) + A` + Ak
M + 1 ;

d` = A`
M + 1− `

∼ A`
M + 1;

M ≥ `c` + A` + kck + Ak − 1.

The desired asymptotic inequality is `(dk − 1) . k(d` − 1), which is equivalent to

`dk − kd` . `− k. Applying what we said about dk, d`, and M :

`dk − kd` ∼
`[c`(`− k) + A` + Ak]− k[A`]

M + 1

≤ `[c`(`− k) + A` + Ak]− k[A`]
`c` + A` + kck + Ak

.

Therefore, it suffices to show one of the following equivalent statements, the last of

which we already established.

`[c`(`− k) + A` + Ak]− k[A`]
`c` + A` + kck + Ak

≤ `− k;

`[`c` + A` + Ak]− k[`c` + A`] ≤ (`− k)[`c` + A` + kck + Ak];

k([`c` + A` + kck + Ak]− [`c` + A`]) ≤ `([`c` + A` + kck + Ak]− [`c` + A` + Ak]);

k(kck + Ak) ≤ `(kck);

kck + Ak ≤ `ck;
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Ak ≤ (`− k)ck.

Lemma 3.5. Let 0 < k < ` be integers and (dk, d`) ∈ Q2 be found on the triangle

defined by the following inequalities:

• 0 ≤ d` ≤ dk;

• k(d` − 1) ≥ `(dk − 1).

Then for all ε > 0, there exist arbitrarily long words W such that

∣∣∣ d(ak,W )− dk
∣∣∣ < ε and

∣∣∣ d(a`,W )− d`
∣∣∣ < ε.

Proof. Since k(d`− 1) = `(dk − 1) and d` = 0 intersect when dk = `−k
`
, We can break

the triangle into two cases:

(I) 0 ≤ d` ≤ dk ≤ `−k
`
.

(II) 0 ≤ d` ≤ dk, `−k` < dk, k(d` − 1) ≥ `(dk − 1).

Without loss of generality, let dk = uk

v
and d` = u`

v
for some integers u`, uk, v ∈ Z

satisfying 0 ≤ u` ≤ uk ≤ v 6= 0. For r ∈ Z+, define length vr-word Wr to be

Wr = aru`(ba`−1)b
ruk−ru`

`−k cbr′ ,

with r′ = rv − ru` − `
⌊
ruk−ru`

`−k

⌋
in order that |Wr| = vr. This word is constructed to

give necessary densities for all sufficiently large r:

d(a`,Wr) = ru` + 1− `
rv + 1− ` ∼

ru`
rv

= d`;

d(ak,Wr) =
(ru` + 1− k) + (`− k)

⌊
ruk−ru`

`−k

⌋
rv + 1− k ∼

ru` + (`− k) ruk−ru`

`−k
rv

= dk.

But for Wr to be well-defined, we need r′ ≥ 0. It suffices to show that

rv − ru` − `
(
ruk − ru`
`− k

)
≥ 0,
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which is equivalent to both of the following:

(v − u`)(`− k) ≥ `(uk − u`);
`− k
`
≥ uk − u`

v − u`
.

Case (I): Since uk ≤ v,

uk − u`
v − u`

≤ uk
v

= dk ≤
`− k
`

.

Case (II): Since k(d` − 1) ≥ `(dk − 1),

k

`
≤ 1− dk

1− d`
,

which implies

`− k
`

= 1− k

`
≥ 1− 1− dk

1− d`
= dk − d`

1− d`
= uk − u`

v − u`
.

Theorem 3.6. For integers 0 < k < ` and ordered pair (x, y) ∈ [0, 1]2, there exist

arbitrarily long words W with d(ak,W ) ∼ x and d(a`,W ) ∼ y if and only if (x, y)

falls in the triangular region shown in Figure 3.1, defined as follows:

• 0 ≤ y ≤ x; and

• k(y − 1) ≥ `(x− 1).

Proof. The upper and lower bounds are established in Lemmas 3.2 and 3.4, respec-

tively. The density of points in this triangle is established in Lemma 3.5.

3.1.2 Instance Density of Zimin Words

The same sort of comparison as we see in Theorem 3.6 can also be made for instance

densities. Figure 3.2 shows the relationship between the instance densities of Z2 and

Z3 in binary words of length 28. See Appendix B for plots corresponding to binary

words of lengths 13, 16, 19, 22, 25, and 28 and the code used to generate the points.

The graphs also give a preview of some asymptotic results that we will establish later.
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y
=

d(
a
` ,
W

)

x = d(ak,W )
0

0
1

1

k
(y
−

1)
≥
`(
x
−

1)

1− k
`

y
≤
x

Figure 3.1 Relation between d(ak,W ), d(a`,W )
for 0 < k < ` as |W | → ∞.

3.2 Minimum Density of Zimin Words

Recall that δ(Z,W ), the (instance) density of word Z, is the proportion of substring of

W that are Z-instances. Thus, δ(Z,W ) can always be written as a rational number

with denominator
(
|W |+1

2

)
, the number of substrings of W . Let us begin with the

following trivial facts.

Fact 3.7. δ(Z1,W ) = 1 for every nonempty word W 6= ε.

Fact 3.8. For any q ∈ Z+, if V has no recurring letter, δ(V, q) = 1.

Proof. The density of V is bounded above by 1. As |W | grows, the proportion of

substrings of length at least |V | goes to 1:

|W |∑
`=|V |

(|W |+ 1− `) ∼
(
|W |+ 1

2

)
.

Since no letter occurs twice in V , every word of length at least |V | is a V -instance.

The remainder of this chapter is primarily devoted to finding δ(Zn, q), the liminf

density of Zimin words.
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Figure 3.2 All (x, y) with x = δ(Z2,W ), y = δ(Z3,W ) for W ∈ [2]28.

Assuming binary W :
The line y = x is an absolute upper bound.
The vertical blue line is δ(Z2, 2) = 1

2 .
The horizonal blue line is a lower bound on δ(Z3, 2).
The point at ≈ (0.7322, 0.1194) shows expected densities in large random W .

Theorem 3.9.

δ(Z2, q) = 1
q
.

Proof. Fix alphabet {x0, . . . , xq−1}. Given word W , let ai be the number of occur-

rences of xi in W for each i < q. The number of Z2-instances of the form xiBxi is at

least (
ai
2

)
− (ai − 1),

where (ai−1) is subtracted to avoid counting consecutive occurrences of xi. Therefore,

using the Cauchy-Schwarz inequality,(
|W |+ 1

2

)
δ(Z2,W ) ≥

q−1∑
i=0

((
ai
2

)
− (ai − 1)

)

=
q−1∑
i=0

ai(ai − 1)
2

−
q−1∑
i=0

(ai − 1)
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= 1
2

q−1∑
i=0

a2
i

− 3
2

q−1∑
i=0

ai

+ q

≥ 1
2q

q−1∑
i=0

ai

2

− 3
2

q−1∑
i=0

ai

+ q

= |W |2

2q −
3|W |

2 + q.

δW (Z2) ≥
(
|W |2

2q −
3|W |

2 + q

)
1(

|W |+1
2

)
∼ 1

q
.

Consider words Wk = xk0x
k
1 · · ·xkq−1, so |Wk| = qk. Every Z2-instance in Wk is

with subword x`i for 3 ≤ ` ≤ k. Therefore

δ(Z2,Wk) =
∑q−1
i=0

((
k
2

)
− (k − 1)

)
(
qk+1

2

)
∼ qk2/2

(qk)2/2

= 1
q
.

Recall that the function f(n, q) from Chapter 2 gives the least M such that every

q-ary word of length M encounters Zn.

Theorem 3.10.

δ(Zn+1, q) ≥
1

(f(n, q)− 2n + 2)2qf(n,q)+1 .

Proof. On a fixed q-letter alphabet, there are fewer than qf(n,q)+1 words of length

at most f(n, q). In particular, there are fewer than qf(n,q)+1 Zn-instances of length

at most f(n, q). If given word W is spliced into substrings of length f(n, q), each

substring is guaranteed to contain a Zn-instance. In fact, since the shortest images

of Zn are length 2n − 1, we can allow the substrings to overlap by 2n − 2 letters and

still avoid counting the same encounter of Zn twice. Picking one Zn-instance from
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each substring, we form a set of b|W |/ f(n, q)c nonoverlapping Zn-occurrences in W .

Enumerate the Zn-instances of length at most f(n, q) by V0, V1, . . . , Vk−1 for some

k < qf(n,q)+1. Let ai be the number of occurrences of Vi in the set for each i < k.

Then
k−1∑
i=0

ai =
⌊

|W |
f(n, q)− (2n − 2)

⌋
.

Therefore, (
|W |+ 1

2

)
δ(Zn+1,W ) ≥

k−1∑
i=0

((
ai
2

)
− (ai − 1)

)

∼ 1
2

(
k−1∑
i=0

a2
i

)

≥ 1
2k

(
k−1∑
i=0

ai

)2

=

⌊
|W |

f(n,q)−(2n−2)

⌋2

2k

δ(Zn+1,W ) &

⌊
|W |

f(n,q)−(2n−2)

⌋2

2k
1(

|W |+1
2

)
∼ 1

(f(n, q)− 2n + 2)2k

>
1

(f(n, q)− 2n + 2)2qf(n,q)+1 .

We call a Zn-instance minimal provided it has no proper factor that is also a

Zn-instance (a concept introduced by Rytter and Shur 2014+). Recall that m(n.q) is

the number of minimal Zn-instances over a fixed q-letter alphabet. Any time a string

encounters Zn, it must contain a minimal Zn-instance. Therefore, we can replace

qf(n,q)+1 in Theorem 3.10 with m(n, q).

Corollary 3.11.

δ(Zn+1, q) ≥
1

(f(n, q)− 2n + 2)2 m(n, q) .
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Lemma 3.12 (Corollary of Lemma 2.13).

m(2, q) < q!2q.

Recall f(2, q) = 2q + 1, m(2, 2) = 6, f(3, 2) = 29 (Table 2.1), and m(3, 2) = 7882

(Rytter and Shur 2014+).

Corollary 3.13.

• δ(Z3, 2) ≥ 1
54 ;

• δ(Z3, q) ≥
1

(2q − 1)2q!2q ;

• δ(Z4, 2) ≥ 1
4169578 .

We have strong evidence in Section 3.3 that δ(Z3, 2) > 1
28 .

3.2.1 Limits of Probabilities

We denote with IM(V, q) the probability that a random q-ary word of lengthM is a V -

instance. We prove in Chapter 4 that the limit probability I(V, q) = limM→∞ IM(V, q)

always exists. Consequently,

δ(V, q) ≤ I(V, q).

In Chapter 5, we provide upper bounds for I(Zn, q) and a method to explicitly

calculate I(Z2, q) and I(Z3, q), thus establishing various upper bounds for δ(Zn, q).

3.3 The de Bruijn Graph

Definition 3.14. For a fixed alphabet Σ and positive integer k, the k-dimensional

de Bruijn graph is a directed graph with vertex set Σk and an edge from U to W

whenever U = aV and W = V b for some V ∈ Σk−1 and a, b ∈ Σ.
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Evdokimov (1983) construed words as walks on a de Bruijn graphs to prove bounds

for permutation pattern avoidance, and his work is delivered to us from German into

English by Burstein and Kitaev (2006). We now demonstrate how this perspective

can be utilized to find minimum word densities.

Definition 3.15. A bifix of W is a word that is both a proper initial string and

terminal string. W is bifix-free provided W has no bifix. W is V-bifix-free provided

W has no bifix that is a V -instance. W is a minimal V -instance provided there is no

proper factor of W that is a V -instance.

Every Z3-instance can be described by its shortest Z2-bifix (that is, its Z2-bifix

that is itself Z2-bifix-free). While building long words you can undercount the number

of Z3-instances by keeping track of the number of each Z2-bifix-free Z2-instance of

length at most k.

Lemma 3.16. Fix integers q, n ≥ 2. Let V be a finite set of Z(n−1)-bifix-free Z(n−1)-

instances in [q]∗. For V ∈ V, let cV be the count of V -occurrences in W . Then

δ(Zn,W ) ≥ 1(
|W |+1

2

) ∑
V ∈V

((
cV
2

)
− |V |cV

)
.

Proof. For any given V -occurrence, the next |V | occurrences might overlap or be

consecutive, not allowing for a Zn-instance. But that still leaves at least
(
cV

2

)
−|V |cV

words of the form V UV where |U | > 0.

Since Zimin words are unavoidable, if V contains all the minimal Zimin words,

then the subtracted |V |cV terms is asymptotically negligible, because

lim
|W |→∞

∑
V ∈V

cV =∞.

For demonstration, the set of minimal Z2-instance in {0, 1}∗, which are inherently

Z2-bifix-free, is V = {000, 010, 101, 111, 0110, 1001}. Let us look at word construction

as taking a walk on the 4-dimensional de Bruijn graph. Each of the 24 vertices is
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a nyble, which is a 4-bit string (half the length of a byte). In Figure 3.3, the solid

arrow indicates appending a 1 and a dashed line, a 0.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

000

X

010

X

X

101

0110

111

000

1001

010

X

X

101

X

111

Figure 3.3 Z2-instances on the 4-dimensional de Bruijn graph.

Left is the 4-dimensional de Bruijn graph; right is a graph indicating the minimal
Z2-instances encountered walking on the de Bruijn graph.

For a random walk of lengthM on the de Bruin graph–so the corresponding word

W has length (M + 3)–let Qn(M) be the number of times node n showed up, which

means ∑15
n=0 Qn(M) = M . We can count the number of occurrences, RV (M), of each

minimal Z2-instances, V , in W as follows. (To avoid any undercount, assume we do

not start on a node beginning with a length-3 minimal Z2-instance.)

R000(M) = Q0000(M) +Q1000(M); R111(M) = Q0111(M) +Q1111(M);

R010(M) = Q0010(M) +Q1010(M); R101(M) = Q0101(M) +Q1101(M);

R0110(M) = Q0110(M); R1001(M) = Q1001(M).
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As M →∞, the density of Z3-subwords is asymptotically at least∑
V ∈V

(
RV (M)

2

)
(
M
2

) ∼
∑
V ∈V R

2
V (M)

M2 .

One can assign probabilities to the outgoing edges of each nyble. Define prob-

ability tuple p = 〈pn : n ∈ {0, . . . , 15}〉 ∈ [0, 1]16 with pn being the probability that

node n is followed by a 1. Given an long random walk with fixed probabilities

p, define q = 〈qn : n ∈ {0, . . . , 15}〉 ∈ [0, 1]16 where qn is the proportion of node-n

encounters in the walk. This leads to the following system of 17 equations with

k ∈ {0, 1, 2, 3, 4, 5, 6, 7}:

q2k = qk(1− pk) + qk+8(1− pk+8);

q2k+1 = qkpk + qk+8pk+8;

1 =
15∑
i=0

qi.

Further, define rV as RV (W ) above, substituting qn for Qn(M).

r000 = q0 + q8; r010 = q2 + q10; r0110 = q6;

r111 = q7 + q15; r101 = q5 + q13; r1001 = q9.

Then the expected Z3-density is asymptotically at least d = ∑
V ∈V r

2
V . By solving

the above system of 17 equations for the qn in terms of the pn, rewrite d in terms of

the probabilities. Minimizing d over the 16-dimensional unit cube–each probability is

in [0, 1]–should give a lower bound for δ(Z3, 2). We need only to show that for every

limit density of δ(Z3, 2), or at least for the liminf-density, there exists an associated

set of probabilities for the de Bruijn graph.

Using the function sage.numerical.optimize.minimize_constrained() in Sage (Stein

et al. 2014), one can obtain probabilities producing a lower bound for Z3-density that

is slightly larger than 1/28. From these approximate results, we have identified the

following distinct probability edge-assignments which each give a density of exactly

1/28. For two of these, we also have associated families of words which exhibit the
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given probabilities as n grows. (‘–’ denotes that a node does not appear a positive

proportion of the time, so its probability is irrelevant).

p(1) = (−, 4/5, 0, 3/5, 2/5,−, 1/5, 0, 1, 4/5,−, 3/5, 2/5, 1, 1/5,−);

p(2) = (−, 1, 0, 3/4, 1,−, 1/2, 0, 1, 1/2,−, 0, 1/4, 1, 0,−),

W (2)
n = (0001110010011100011011000111)n;

p(3) = (−, 1,−, 3/5, 2/5,−, 1/5, 0, 1, 1, 0,−, 2/5, 0, 1/5,−),

W (3)
n = ((11010001)3(101001)2(110001)12(1001)8)n.

Conjecture 3.17. δ(Z3, 2) > 1
28 .

The conjecture is with a strict inequality, as we can presumably increase the lower

bound by using a larger set of Z2-instances. For example, the set of all Z2-bifix-free

Z2-instances of length at most 5 is

{000, 010, 101, 111, 0110, 1001, 01001, 01101, 10010, 10110}.

We would then view words as walks on the 5-dimensional de Bruijn graph and mini-

mize the associated expression in 25 = 32 variables.
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Chapter 4

Density Dichotomy in Random Words

Definition 2.4 is contained within Definition 4.1 below for completeness within this

chapter.

Definition 4.1. Fixed n and select Wn ∈ [q]n uniformly at random. The expected

density of V is

δn(V, q) = E(δ(V,Wn)).

The asympototic expected density of V is

δ(V, q) = lim
n→∞

δn(V, q).

The set of V -instances in Σn is In(V,Σ). The probability that a random length-n

q-ary word is a V -instance is

In(V, q) =

∣∣∣ In(V, [q])
∣∣∣

qn
.

The asymptotic instance probability of V is

I(V, q) = lim
n→∞

In(V, q).

Sometimes we will count homomorphisms to attain density upper bounds.

Definition 4.2. Fix alphabets Γ and Σ and assume V � W . An encounter of V , or

V -encounter, in W is an ordered triple (a, b, φ) where W [a, b] = φ(V ) for nonerasing

homomorphism φ : Γ∗ → Σ∗. When Γ = L(V ) and W ∈ Σ∗, denote with hom(V,W )

the number of V -encounters inW . (Note that the conditions on Γ and Σ are necessary
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for hom(V,W ) to not be trivially 0 or∞.) ForWn ∈ [q]n chosen uniformly at random,

the expected number of V -encounters is

homn(V, q) = E(hom(V,Wn)).

Example 4.3. hom(ab, cde) = 4 since cde[0, 2] is an instance of ab by one homo-

morphism {a, b}∗ → {c, d, e}∗, cde[1, 3] is an instances of ab by one homomorphism,

and cde[0, 3] is an instance of ab by two homomorphisms.

In fact, for q ∈ Z+, hom3(ab, q) = 4, since hom(ab,W ) = 4 for all W ∈ [q]3.

4.1 The Dichotomy

Theorem 4.4 (Cooper and Rorabaugh 2015+, Theorem 2.1). Let V be a word on

any alphabet. Fix integer q ≥ 2. The following are equivalent:

(i). V is doubled (that is, every letter in V appears at least twice);

(ii). δ(V, q) = 0.

Proof. First we prove (i) =⇒ (ii). Let Wn ∈ [q]n be chosen uniformly at random.

Note that in Wn, there are in expectation the same number of encounters of V as

there are of any anagram of V . Indeed, if V ′ is an anagram of V and φ is a nonerasing

homomorphism, then |φ(V ′)| = |φ(V )|.

Fact 4.5 (Cooper and Rorabaugh 2015+, Fact 2.2). If V ′ is an anagram of V , then

homn(V, q) = homn(V ′, q).

Assume V is doubled and let Γ = L(V ) and k = |Γ|. Given Fact 4.5, we consider

an anagram V ′ = XY of V , where |X| = k and Γ = L(X) = L(Y ). That is, X

comprises one copy of each letters in Γ and all the duplicate letters of V are in Y .

We obtain an upper bound for the average density of V by estimating homn(V ′, q).

To do so, sum over starting position i and length j of encounters of X in Wn that
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might extend to an encounter of V ′. There are
(
j+1
k+1

)
homomorphisms φ that map X

to W [i, i+ j] and the probability that Wn[i+ j, i+ j+ |φ(Y )|] = φ(Y ) is at most q−j.

Also, the series ∑∞j=k (j+1
k+1

)
q−j converges (try the ratio test) to some c not dependent

on n.

δn(V, q) ≤ 1(
n+1

2

) homn(V ′, q)

<
1(
n+1

2

) n−|V |∑
i=0

n−i∑
j=k

(
j + 1
k + 1

)
q−j

<
1(
n+1

2

) n−|V |∑
i=0

c

= c(n− |V |+ 1)(
n+1

2

)
= O(n−1),

We prove (ii) ⇐= (i) by contraposition. Assume there is a letter x that occurs

exactly once in V . Write V = TxU where L(V ) \ L(TU) = {x}. We obtain a lower

bound for δn(V, q) = E(δ(V,Wn)) by only counting encounters with |φ(TU)| = |TU |.

Note that each such encounter is unique to its instance, preventing double-counting.

For this undercount, we sum over encounters with Wn[i, i+ j] = φ(x).

δn(V, q) = δn(TxU, q)

≥ 1(
n+1

2

) n−|U |−1∑
i=|T |

i−|T |∑
j=1

q−||TU ||

= q−||TU ||
1(
n+1

2

) n−|U |−1∑
i=|T |

(i− |T |)

= q−||TU ||

(
n−|UT |

2

)
(
n+1

2

)
∼ q−||TU ||

> 0.

38



It behooves us now to develop more precise theory for these two classes of words:

doubled and nondoubled. Lemma 4.7 below both helps develop that theory and gives

insight into the detrimental effect that letter repetition has on encounter frequency.

Proposition 4.6 (Cooper and Rorabaugh 2015+, Proposition 2.3). For k ∈ Z+,

r = {r1, . . . , rk} ∈ (Z+)k, and d = gcdi∈[k](ri), there exists integer N = Nr such that

for every n > N there exist coefficients a1, · · · , ak ∈ Z+ such that dn = ∑k
i=1 airi and

ai ≤ N for i ≥ 2.

Proof. For each j ∈ [r1/d], find integer coefficients b(j)
i so that jd is a linear combi-

nation of the ri: jd = ∑k
i=1 b

(j)
i ri. Let m = 1 +

∣∣∣min
(
b

(j)
i

)∣∣∣, the minimum taken over

all i and j. Define a(j)
i = b

(j)
i +m > 0 and R = ∑k

i=1 ri. Now for each j,
k∑
i=1

a
(j)
i ri =

k∑
i=1

b
(j)
i ri +

k∑
i=1

mri = jd+mR.

Set N = r1 +mR. For n > N , identify jn ∈ [r1/d] such that

dn ≡ jnd+mR (mod r1).

Then ai = a
(jn)
i for i > 1 and a1 = 1

r1

(
dn−∑k

i=2 airi
)
.

Lemma 4.7 (Cooper and Rorabaugh 2015+, Lemma 2.4). For any word V , Let

Γ = L(V ) = {x1, . . . , xk} where xi has multiplicity ri for each i ∈ [k]. Let U be

V with all letters of multiplicity r = mini∈[k](ri) removed. Finally, let Σ be any

finite alphabet with |Σ| = q ≥ 2 letters. Then for a uniformly randomly chosen V -

instance W ∈ Σdn, where d = gcdi∈[k](ri), there is asymptotically almost surely a

homomorphism φ : Γ∗ → Σ∗ with φ(V ) = W and |φ(U)| <
√
dn.

Proof. Let an be the number of V -instances in Σn and bn be the number of homo-

morphisms φ : Γ∗ → Σ∗ such that |φ(V )| = n. Let b1
n be the number of these φ such

that φ(U) <
√
n and b2

n the number of all other φ so that bn = b1
n + b2

n. Similarly, let

a1
n be the number of V -instances in Σn for which there exists a φ counted by b1

n and

a2
n the number of instances with no such φ, so an = a1

n + a2
n. Observe that a2

n ≤ b2
n.
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Without loss of generality, assume r1 = r (rearrange the xi if not). We now utilize

N = Nr from Proposition 4.6. For sufficiently large n, we can undercount a1
dn by

counting homomorphisms φ with |φ(xi)| = ai for the ai attained from Proposition 4.6.

Indeed, distinct homomorphisms with the same image-length for every letter in V

produce distinct V -instances. Hence

a1
dn ≥ q

∑k

i=1 ai

≥ q(
dn−(k−1)N

r
+r(k−1))

= cq(
dn
r ),

where c = q(k−1)(r2−N)/r depends on V but not on n. To overcount b2
n (and a2

dn

by extension), we consider all
(
n+1
|V |+1

)
ways to partition an n-letter length and so

determine the lengths of the images of the letters in V . However, for letters with

multiplicity strictly greater than r, the sum of the lengths of their images must be at

least
√
n.

b2
n ≤

(
n+ 1
|V |+ 1

)
n∑

i=d√ne
q(

n−i
r

+ i
r+1)

=
(
n+ 1
|V |+ 1

)
n∑

i=d√ne
q(

n
r
− i

r(r+1))

< n|V |+2q

(
n
r
−
√

n
r(r+1)

)
= q

n
r o(1).

a2
dn ≤ b2

dn

= o(a1
dn).

That is, the proportion of V -instances of length dn that cannot be expressed with

|φ(U)| <
√
dn diminishes to 0 as n grows.

40



4.2 Density of Nondoubled Words

In Theorem 4.4, we show that the density of nondoubled V in long random words

(over a fixed alphabet with at least two letters) does not approach 0. The natural

follow-up question is: Does the density converge? To answer this question, we first

prove the following lemma. Fixing V = TxU where x is a nonrecurring letter in

V , the lemma tells us that all but a diminishing proportion of V -instances can be

obtained by some φ with |φ(TU)| negligible.

Lemma 4.8 (Cooper and Rorabaugh 2015+, Lemma 3.1). Let V = U0x1U1x2 · · ·xrUr

with r ≥ 1, where U = U0U1 · · ·Ur is doubled with k distinct letters (though any

particular Uj may be the empty word), the xi are distinct, and no xi occurs in U .

Further, let Γ be the (k+ r)-letter alphabet of V and let Σ be any finite alphabet with

q ≥ 2 letters. Then there exists a nondecreasing function g(n) = o(n) such that,

for a randomly chosen V -instance W ∈ Σn, there is asymptotically almost surely a

homomorphism φ : Γ∗ → Σ∗ with φ(V ) = W and |φ(xr)| > n− g(n).

Proof. Let Xi = x1x2 · · ·xi for 0 ≤ i ≤ r (so X0 = ε). For any word W , let ΦW be

the set of homomorphisms {φ : Γ∗ → Σ∗ | φ(V ) = W} that map V onto W . Define

Pi to be the following proposition for i ∈ [r]:

There exists a nondecreasing function fi(n) = o(n) such that, for a ran-

domly chosen V -instance W ∈ Σn, there is asymptotically almost surely

a homomorphism φ ∈ ΦW such that |φ(UXi−1)| ≤ fi(n).

The conclusion of this lemma is an immediate consequence of proposition Pr, with

g(n) = fr(n), which we will prove by induction. Lemma 4.7 provides the base case,

with r = 1 and f1(n) =
√
n.

Let us prove the inductive step: Pi implies Pi+1 for i ∈ [r − 1]. Roughly speak-

ing, this says: If most instances of V can be made with a homomorphism φ where
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|φ(UXi−1)| is negligible, then most instances of V can be made with a homomorphism

φ where |φ(UXi)| is negligible.

Assume Pi for some i ∈ [r − 1], and set f(n) = fi(n). Let An be the set of

V -instances in Σn such that |φ(UXi−1)| ≤ f(n) for some φ ∈ ΦW . Let Bn be the set

of all other V -instances in Σn. Pi implies |Bn| = o(|An|).

Case 1: Ui = ε, so xi and xi+1 are consecutive in V . When |φ(UXi−1)| ≤ f(n), we

can define ψ so that ψ(xixi+1) = φ(xixi+1) and |ψ(xi)| = 1; otherwise, let ψ(y) = φ(y)

for y ∈ Γ \ {xi, xi+1}. Then |φ(UXi)| ≤ f(n) + 1 and Pi+1 with fi+1(n) = fi(n) + 1.

Case 2: Ui 6= ε, so |Ui| > 0. Let g(n) be some nondecreasing function such that

f(n) = o(g(n)) and g(n) = o(n). (This will be the fi+1 for Pi+1.) Let Aαn consist

of W ∈ An such that |φ(UXi)| ≤ g(n) for some φ ∈ ΦW . Let Aβn = An \ Aαn. The

objective henceforth is to show that |Aβn| = o(|Aαn|).

For Y ∈ Aβn, let Φβ
Y be the set of homomorphisms {φ ∈ ΦY : |φ(UXi−1)| ≤ f(n)}

that disqualify Y from being in Bn. Hence Y ∈ An implies Φβ
Y 6= ∅. Since Y 6∈ Aαn,

φ ∈ Φβ
Y implies |φ(UXi)| > g(n), so |φ(xi)| > g(n)− f(n). Pick φY ∈ Φβ

Y as follows:

• Primarily, minimize |φ(U0x1U1x2 · · ·Ui−1xi)|;

• Secondarily, minimize |φ(Ui)|;

• Tertiarily, minimize |φ(U0x1U1x2 · · ·Ui−1)|.

Roughly speaking, we have chosen φY to move the image of Ui as far left as

possible in Y . But since Y 6∈ Aαn, we want it further left!

To suppress the details we no longer need, let Y = Y1φY (xi)φY (Ui)φY (xi+1)Y2,

where Y1 = φY (U0x1U1x2 · · ·Ui−1) and Y2 = φY (Ui+1xi+2 · · ·Ur).

Consider a word Z ∈ Γn of the form Y1Z1φY (Ui)Z2φY (Ui)φY (xi+1)Y2, where Z1 is

an initial string of φY (xi) with 2f(n) ≤ |Z1| < g(n) − 2f(n) and Z2 is a final string

of φY (xi). (See Figure 4.1.) In a sense, the image of xi was too long, so we replace

a leftward substring with a copy of the image of Ui. Let CY be the set of all such Z
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with |Z1| a multiple of f(n). For every Z ∈ CY we can see that Z ∈ Aαn, by defining

ψ ∈ ΦZ as follows:

ψ(y) =


Z1 if y = xi;

Z2φY (Ui)φY (xi+1) if y = xi+1;

φY (y) otherwise.

Y =
Z =

Y1
Y1

φY (xi)
Z1
ψ(xi)

φY (Ui) Z2

φY (Ui)
φY (Ui)

φY (xi+1)
φY (xi+1)

ψ(xi+1)

Y2
Y2

Figure 4.1 Replacing a section of φY (xi) in Y to create Z.

Claim 1: lim inf
|Y |=n→∞

|CY | =∞.

Since we want 2f(n) ≤ |Z1| < g(n)−2f(n), and g(n)−2f(n) < |φY (xi)|−|φY (Ui)|,

there are g(n)−4f(n) places to put the copy of φY (Ui). To avoid any double-counting

that might occur when some Z and Z ′ have their new copies of φY (Ui) in overlapping

locations, we further required that f(n) divide |Z1|. This produces the following lower

bound:

|CY | ≥
⌊
g(n)− 4f(n)

f(n)

⌋
→∞.

Claim 2: For distinct Y, Y ′ ∈ Aβn, CY ∩ CY ′ = ∅.

To prove Claim 2, take Y, Y ′ ∈ Aβn with Z ∈ CY ∩ CY ′ . Define Y1, Y2, Y ′1 , and Y ′2

as above:

Y1 = φY (U0x1U1x2 · · ·Ui−1), Y2 = φY (Ui+1xi+2 · · ·Ur);

Y ′1 = φY ′(U0x1U1x2 · · ·Ui−1), Y ′2 = φY ′(Ui+1xi+2 · · ·Ur).

Now for some Z1, Z
′
1, Z2, Z

′
2,

Y1Z1φY (Ui)Z2φY (Ui)φY (xi+1)Y2 = Z = Y ′1Z
′
1φY ′(Ui)Z ′2φY ′(Ui)φY ′(xi+1)Y ′2 ,

with the following constraints:
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(i) |Y1φY (Ui)| ≤ |φY (UXi)| ≤ f(n);

(ii) |Y ′1φY ′(Ui)| ≤ |φY ′(UXi)| ≤ f(n);

(iii) 2f(n) ≤ |Z1| < g(n)− 2f(n);

(iv) 2f(n) ≤ |Z ′1| < g(n)− 2f(n);

(v) |Z1φY (Ui)Z2| = |φY (xi)| > g(n)− f(n);

(vi) |Z ′1φY ′(Ui)Z ′2| = |φY ′(xi)| > g(n)− f(n).

As a consequence:

• |Y1Z1φY (Ui)| < g(n)− f(n) < |Z ′1φY ′(Ui)Z ′2|, by (i), (iii), and (vi);

• |Y1Z1| ≥ |Z1| > 2f(n) > |Y ′1 |, by (iii) and (ii).

Therefore, the copy of φY (Ui) added to Z is properly within the noted occurrence

of Z ′1φY ′(Ui)Z ′2 in Z ′, which is in the place of φY ′(xi) in Y ′. In particular, the added

copy of φY (Ui) in Z interferes with neither Y ′1 nor the original copy of φY ′(Ui). Thus Y ′1

is an initial substring of Y and φY ′(Ui)φY ′(xi+1)Y ′2 is a final substring of Y . Likewise,

Y1 is an initial substring of Y ′ and φY (Ui)φY (xi+1)Y2 is a final substring of Y ′. By

the selection process of φY and φY ′ , we know that Y1 = Y ′1 and

φY (Ui)φY (xi+1)Y2 = φY ′(Ui)φY ′(xi+1)Y ′2 .

Finally, since f(n) divides Z1 and Z ′1, we deduce that Z1 = Z ′1. Otherwise, the

added copies of φY (Ui) in Z and of φY ′(Ui) in Z ′ would not overlap, resulting in a

contradiction to the selection of φY and φY ′ . Therefore, Y = Y ′, concluding the proof

of Claim 2.

Now CY ⊂ Aαn for Y ∈ Aβn. Claims 1 and 2 together imply that |Aβn| = o(|Aαn|).
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Observe that the choice of
√
n in Lemma 4.7 was arbitrary. The proof works for

any function f(n) = o(n) with f(n) → ∞. Therefore, where Lemma 4.8 claims the

existence of some g(n)→∞, the statement is in fact true for all g(n)→∞.

Let In(V, q) be defined as

In(V, q) = |{W ∈ [q]n | φ(V ) = W for some homomorphism φ : L(V )∗ → [q]∗}|
qn

.

Note that In(V, q) is equivalently defined as the probability that a uniformly randomly

selected length-n word over a fixed q-letter alphabet is an instance of V . Indeed, by

the nature of the instance relation, only the cardinality of the alphabet matters.

Definition 4.9. δsur(V,W ) (with sur for surjection) is the number of factors of W

that are instances of V via a function φ with φ(V ) = W , divided by the total possible

such factors (1). More directly, δsur(V,W ) is the characteristic function for the event

that W is an instance of V .

Fact 4.10 (Cooper and Rorabaugh 2015+, Fact 3.2). For any V and q and for

Wn ∈ [q]n chosen uniformly at random,(
n+ 1

2

)
E(δ(V,Wn)) =

n∑
m=1

(n+ 1−m)E(δsur(V,Wm))

=
n∑

m=1
(n+ 1−m)Im(V, q).

Set I(V, q) = limn→∞ In(V, q). When does this limit exist?

Theorem 4.11 (Cooper and Rorabaugh 2015+, Theorem 3.3). For nondoubled V

and integer q ∈ Z+, I(V, q) exists. Moreover, I(V, q) ≥ q−||V || > 0.

Proof. If q = 1, then In(V, q) = 1 for n ≥ |V |.

Assume q ≥ 2. Let V = TxU where x is the right-most nonrecurring letter in V .

Let Γ = L(V ) be the alphabet of letters in V . By Lemma 4.8, there is a nondecreasing

function g(n) = o(n) such that, for a randomly chosen V -instance W ∈ [q]n, there
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is asymptotically almost surely a homomorphism φ : Γ∗ → [q]∗ with φ(V ) = W and

|φ(xr)| > n− g(n).

Let an be the number of W ∈ [q]n such that there exists φ : Γ∗ → [q]∗ with

φ(V ) = W and |φ(xr)| > n− g(n). Lemma 4.8 tells us that an

qn ∼ In(V, q). Note that
an

qn is bounded. It suffices to show that an+1 ≥ qan for sufficiently large n. Pick n so

that g(n) < n
3 .

For length-n V -instance W counted by an, let φW be a homomorphism that max-

imizing |φW (xr)| and, of such, minimizes |φW (T )|. For each φW and each a ∈ [q],

let φaW be the function such that, if φW (xr) = AB with |A| = b|φW (xr)|/2c, then

φaW (x) = AaB; φaW (y) = φW (y) for each y ∈ Γ\{x} Roughly speaking, we are sticking

a into the middle of the image of x.

Suppose we are double-counting, so φaW (V ) = φbY (V ). As

|φW (xr)|/2 > (n− g(n))/2 > n/3 > g(n) ≥ |φY (TU)|

and vice-versa, the inserted a (resp., b) of one map does not appear in the image of

TU under the other map. So φW (T ) is an initial string and φW (U) a final string of

φY (V ), and vice-versa. By the selection criteria of φW and φY , |φW (T )| = |φY (T )|

and |φW (U)| = |φY (U)|. Therefore the location of the added a in φaW (V ) and the

added b in φbW (V ) are the same. Hence, a = b and W = Y .

Moreover I(V, q) ≥ q−||V || > 0.

Having established that I(V, q) exists for all V and q, we explore the limit value

in Chapter 5.

Corollary 4.12 (Cooper and Rorabaugh 2015+, Corollary 3.6). Let V be a non-

doubled word on any alphabet. Fix an integer q > 0, and let Wn ∈ [q]n be chosen

uniformly at random. Then

lim
n→∞

E(δ(V,Wn)) = I(V, q).
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Proof. Let I = I(V, q) and ε > 0. Pick N = Nε sufficiently large so |I− In(V, q)| < ε
2

when n > N . Applying Fact 4.10 for n > max(N, 4N/ε),

|I− E(δ(V,Wn))| =

∣∣∣∣∣∣I 1(
n+1

2

) n∑
m=1

(n+ 1−m)− 1(
n+1

2

) n∑
m=1

(n+ 1−m)Im(V, q)

∣∣∣∣∣∣
≤ 1(

n+1
2

) n∑
m=1

(n+ 1−m)|I− Im(V, q)|

= 1(
n+1

2

)
 N∑
m=1

+
n∑

m=N+1

 (n+ 1−m)|I− Im(V, q)|

<
1(
n+1

2

)
bεn/4c∑
m=1

(n+ 1−m)1 +
n∑

m=N+1
(n+ 1−m) ε2


<

1(
n+1

2

) [εn
4 n+

(
n+ 1

2

)
ε

2

]
< ε.

If there are multiple nonrecurring letters in V , then most long V -instances are

liable to have numerous homomorphisms. However, if there is exactly one recurring

letter in V , Theorem 4.14 below provides an upper bound for I(V, q) that, as q →∞,

approaches the lower bound from Theorem 4.11 above.

Lemma 4.13. Let V be a word with L(V ) = {x0, x1, · · · , xn}, |L(V )| = n+ 1, where

x0 occurs r0 = 1 time in V and xk occurs rk > 1 times in V for each k ∈ [n]. For

q,M ∈ Z+, and WM ∈ [q]M chosen uniformly at random,

E(hom(V,WM)) =
∑

〈i0,...,in〉∈[M ]n+1:
M≥
∑n

k=0 ikrk

(
M + 1−

n∑
k=0

ikrk

)
q(−

∑n

k=1 ik(rk−1)).

Proof. For a given W , every encounter of V in W can be defined by the starting

location j of the substring and the lengths 〈ik = |φ(xk)|〉nk=0 of the letter-images under

the homomorphism φ.
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To compute E(hom(V,WM)) over random selection of WM ∈ [q]M , we sum over

all possible j and 〈ik〉nk=0 the probability that, for every k ≤ n, the rk substrings of

length ik (which are to be the instances of xk) are identical.

Our outside (n + 1)-fold summation is over the possible lengths ik, which are

positive integers with |φ(V )| = ∑n
k=0 ikrk ≤ M . This leaves M + 1− |φ(V )| possible

values for r, the starting location of the instance.

For each k, only one of the rk instances of xk can consists of arbitrary letters and

then the rest, with their ik(rk − 1) letters, are determined. Thus, the probability of

an encounters for given r and 〈ik〉nk=0 is

q(−
∑n

k=0 ik(rk−1)) = q(−
∑n

k=1 ik(rk−1)).

Theorem 4.14. Let V be a word with L(V ) = {x0, x1, · · · , xn}, |L(V )| = n + 1,

where x0 occurs once in V and xk occurs rk > 1 times in V for each k ∈ [n]. Then

for q ≥ 2,

δ(V, q) ≤ I(V, q) ≤
n∏
k=1

1
q(rk−1) − 1 .

Proof. For 〈i1, . . . , in〉 ∈ (Z+)n, let M` = M −∑k>` ikrk for −1 ≤ ` ≤ n, so Mn = M

and M`−1 = M` − i`r`. Then Lemma 4.13 says

E(hom(V,WM)) =
∑

〈i0,...,in〉∈[M ]n+1:
M≥
∑n

k=0 ikrk

(M−1 + 1) q(−
∑n

k=1 ik(rk−1)).

Since M0(M0 + 1) is always nonnegative,

E(hom(V,WM)) =
∑

〈i0,...,in〉∈[M ]n+1:
M≥
∑n

k=0 ikrk

(M−1 + 1) q(−
∑n

k=1 ik(rk−1))

=
∑

〈i1,...,in〉∈[M ]n:
M>
∑n

k=0 ikrk

M0∑
i0=1

(M0 − i0 + 1) q(−
∑n

k=1 ik(rk−1))
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=
∑

〈i1,...,in〉∈[M ]n:
M>
∑n

k=1 ikrk

1
2M0(M0 + 1)q(−

∑n

k=1 ik(rk−1))

≤
∑

〈i1,...,in〉∈(Z+)n

1
2M0(M0 + 1)q(−

∑n

k=1 ik(rk−1)).

Claim: For 0 ≤ ` ≤ n,

∑
〈i1,...,in〉∈(Z+)n

1
2M0(M0 + 1)q(−

∑n

k=1 ik(rk−1))

=
∑

〈i`+1,...,in〉∈(Z+)n−`

1
2R`(q,M`)q(−

∑n

k=`+1 ik(rk−1)),

where R`(q, x) ∈ R[x] is a quadratic polynomial with coefficients depending on q and

[x2] (R`(q, x)) = 1
q(r`−1) − 1 · [x

2] (R`−1(q, x)) =
∏̀
k=1

1
q(rk−1) − 1 .

We already know the claim to be true for ` = 0 with R0(q, x) = x2 + x. We

proceed in proving the full claim by induction on `. Assume the claim holds for `− 1

with R`−1(q, x) = ax2 + bx+ c.

∑
〈i`,...,in〉∈(Z+)n−`+1

1
2R`−1(q,M`−1)q(−

∑n

k=`
ik(rk−1))

=
∑

〈i`+1,...,in〉∈(Z+)n−`

∞∑
i`=1

1
2R`−1(q,M` − i`r`)q(−

∑n

k=`
ik(rk−1))

=
∑

〈i`+1,...,in〉∈(Z+)n−`

∞∑
i`=1

1
2
[
a(M` − i`r`)2 + b(M` − i`r`) + c

]
q(−

∑n

k=`
ik(rk−1))

=
∑

〈i`+1,...,in〉∈(Z+)n−`

1
2q

(−∑n

k=`+1 ik(rk−1)) ∞∑
i=1

[
a′ + b′i+ c′i2

] (
q(1−r`)

)i
,

where a′ = aM2
` + bM` + c, b′ = −2aM`r` − br`, and c′ = ar2

` . Since q(1−r`) ∈ (0, 1),

we have for some d1 and d2 dependent on q and r`:

∞∑
i=1

(
q(1−r`)

)i
= 1

q(r`−1) − 1;

∞∑
i=1

i
(
q(1−r`)

)i
= d1;

∞∑
i=1

i2
(
q(1−r`)

)i
= d2.
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We complete the proof of the claim with

R`(q,M`) = a′
1

q(r`−1) − 1 + b′d1 + c′d2

= (aM2
` + bM` + c) 1

q(r`−1) − 1 + (−2aM`r` − br`)d1 + (ar2
` )d2

=
[
a

1
q(r`−1) − 1

]
M2

` +
[
b

1
q(r`−1) − 1 − 2ar`d1

]
M`

+
[
c

1
q(r`−1) − 1 − br`d1 + ar2

`d2

]
.

To complete the proof of the theorem, apply the claim to ` = n and let M →∞.

E(hom(V,WM)) =
∑

〈i1,...,in〉∈(Z+)n

1
2M0(M0 + 1)q(−

∑n

k=1 ik(rk−1))

≤ 1
2Rn(q,Mn)q(−

∑
k∈∅ ik(rk−1))

= 1
2Rn(q,M)q(−0)

∼ 1
2M

2
n∏
k=1

1
q(rk−1) − 1 .

Therefore,

I(V, q) = lim
M→∞

E(δ(V,WM))

≤ lim
M→∞

1(
M+1

2

)E(hom(V,WM))

=
n∏
k=1

1
q(rk−1) − 1 .

4.3 Density of Doubled Words

Our main dichotomy says that the average density of a doubled word in large random

words (over a fixed alphabet with at least two letters) goes to 0. Thus the expected

number of instances in a random word of length n is o(n2). Perhaps we can find

lower-order asymptotics for the expected number of instances of a doubled word.
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Hencefore, if
(
x
y

)
is used with nonintegral x, we mean(

x

y

)
=
∏y−1
i=0 (x− i)

y! .

Proposition 4.15 (Cooper and Rorabaugh 2015+, Proposition 4.1). For k ∈ Z+ and

r = (r1, . . . , rk) ∈ (Z+)k, let an(r) be the number of k-tuples a = (a1, · · · , ak) ∈ (Z+)k

so that ∑k
i=1 airi = n. Then an(r) ≤

(
n/d+k+1
k+1

)
, where d = gcdi∈[k](ri).

Proof. If d 6 | n, then an(r) = 0. Otherwise, for each a counted by an(r), there is

a unique corresponding b ∈ (Z+)k such that 1 ≤ b1 < b2 < · · · < bk = n/d and

bj = 1
d

∑j
i=1 airi. The number of strictly increasing k-tuples of positive integers with

largest value n/d is
(
n/d+k+1
k+1

)
.

Fix integer q > 0. The number of instances of V in [q]n is qnIn(V, q). Assume V is

doubled. Let Γ = L(V ) = {x1, . . . , xk} and ri be the multiplicity of xi in V for each

i ∈ [k]. Let d = gcdi∈[k](ri) and r = mini∈[k](ri). Note that In(V, q) = 0 when d 6 | n.

But perhaps

lim
n→∞
d|n

qn

f(n)In(V, q)

exists for some function f that only depends on q and V . For inspiration, note that

qnIn(Um, q) = qn/mIn/m(U,Σ) when m | n. Furthermore, using Proposition 4.15,

qnIn(V, q) ≤ E(hom(V,Wn)) <
(
n/d+ k + 1

k + 1

)
qn/r. (4.1)

Now select some letter x of multiplicity r and let U be V with all copies of x

removed. When r|(n− |U |), we can get a lower bound on the number of instances by

counting homomorphism φ with |φ(U)| = |U | = |V | − r:

qnIn(V, q) ≥ q(n−|U |)/r+(k−1) = (qk−|V |/r)qn/r. (4.2)

Conjecture 4.16 (Cooper and Rorabaugh 2015+, Conjecture 4.2). For q ∈ Z+, the

following limit exists:

lim
n→∞
d|n

qn(1−1/r)In(V, q).
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By (4.2), the limit (if it exists) cannot be 0. Theorem 4.11 is a special case of this

conjecture, with d = r = 1.

4.4 Concentration

For doubled V and q ≥ 2, we established that the expectation of the density δ(V,Wn)

converges to zero. What is the concentration of the distribution of this density? By

(4.1), we can bound the probability that randomly chosen Wn ∈ [q]n is a V -instance:

P(δsur(V,Wn) = 1) = In(V, q) ≤
(
n/d+ k + 1

k + 1

)
qn(1−r)/r.

From this observation we get the following probabilistic result (which is only inter-

esting for q, r > 1).

Lemma 4.17 (Cooper and Rorabaugh 2015+, Lemma 5.1). Let V be a word with

k distinct letters, each occurring at least r ∈ Z+ times. Let Wn ∈ [q]n be chosen

uniformly at random. Recall that
(
n+1

2

)
δ(V,Wn) is the number substrings of Wn that

are V -instances. Then for any nondecreasing function f(n) > 0,

P
((

n+ 1
2

)
δ(V,Wn) > n · f(n)

)
< nk+3qf(n)(1−r)/r.

Proof. Since δsur(V,W ) ∈ {0, 1},
bf(n)c∑
m=1

n−m∑
`=0

δsur(V,Wn[`, `+m]) < n · f(n).

Therefore,

P
((

n+ 1
2

)
δ(V,Wn) > n · f(n)

)
= P

(
n∑

m=1

n−m∑
`=0

δsur(V,Wn[`, `+m]) > n · f(n)
)

< P

 n∑
m=df(n)e

n−m∑
`=0

δsur(V,Wn[`, `+m]) > 0


<
n∑

m=df(n)e

n−m∑
`=0

P (δsur(V,Wn[`, `+m]) > 0)

=
n∑

m=df(n)e
(n−m+ 1)P (δsur(V,Wm) = 1)
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≤
n∑

m=df(n)e
(n−m+ 1)

(
m/d+ k + 1

k + 1

)
qm(1−r)/r

< n2
(
n/d+ k + 1

k + 1

)
qf(n)(1−r)/r

< nk+3qf(n)(1−r)/r.

Theorem 4.18 (Cooper and Rorabaugh 2015+, Theorem 5.2). Let V be a doubled

word, q ≥ 2, and Wn ∈ [q]n chosen uniformly at random. Then for p ∈ Z+, the p-th

raw moment and the p-th central moment of δ(V,Wn) are both O ((log(n)/n)p).

Proof. Let us use Lemma 4.17 to first bound the p-th raw moments for δ(V,Wn),

assuming r ≥ 2. To minimize our bound, we define the following function on n,

which acts as a threshold for “short” substrings of a random length-n word:

sp(n) = r

1− r logq(n−(k+5+p)) = tp logq n,

where tp = r(k+5+p)
r−1 > 0.

E(δ(V,Wn)p) =
(n+1

2 )∑
i=0

P

δ(V,Wn) = i(
n+1

2

)
 i(

n+1
2

)
p

<
bn·sp(n)c∑
i=0

P

δ(V,Wn) = i(
n+1

2

)
 i(

n+1
2

)
p

+
(n+1

2 )∑
i=dn·sp(n)e

nk+3qsp(n)(1−r)/r

 i(
n+1

2

)
p

<

n · sp(n)(
n+1

2

)
p + nk+5qsp(n)(1−r)/r(1)p

=
ntp logq n(

n+1
2

)
p + nk+5qlogq(n−(k+5+p))

= Op

((
log n
n

)p)
.
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Setting p = 1, En = E(δ(V,Wn)) < (c log n)/n for some large c. We use this upper

bound on the expectation (1st raw moment) to bound the central moments.

E(|δ(V,Wn)− En|p) =
(n+1

2 )∑
i=0

P

δ(V,Wn) = i(
n+1

2

)
 ∣∣∣∣∣∣ i(

n+1
2

) − En

∣∣∣∣∣∣
p

<
bn·sp(n)c∑
i=0

P

δ(V,Wn) = i(
n+1

2

)
(c log n

n

)p

+
(n+1

2 )∑
i=dnsp(n)e

P

δ(V,Wn) = i(
n+1

2

)
 (1)p

<

(
c log n
n

)p
+ nk+5qsp(n)(1−r)/r

= Op

((
log n
n

)p)
.

Corollary 4.19 (Cooper and Rorabaugh 2015+, Corollary 5.3). Let V be a doubled

word, q ≥ 2, and Wn ∈ [q]n chosen uniformly at random. Then

1
n
� E(δ(V,Wn))� log n

n
.

Proof. The upper bound was stated explicitly in the proof of Theorem 4.18. The lower

bound follows from an observation in Section 1.6: “the event thatWn[b|V |, (b+1)|V |]

is an instance of V has nonzero probability and is independent for distinct b ∈ N.”

Hence

E(δ(V,Wn)) ≥ 1(
n+1

2

) ⌊ n

|V |

⌋
I|V |(V, q) = Ω(n−1).

The bound that Theorem 4.18 gives on the variance (2nd central moment) is not

very interesting. However, we obtain nontrivial concentration using covariance and

the fact that most “short” substrings in a word do not overlap.
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Theorem 4.20 (Cooper and Rorabaugh 2015+, Theorem 5.4). Let V be a doubled

word, q ≥ 2, and Wn ∈ [q]n chosen uniformly at random.

Var(δ(V,Wn)) = O

(
E(δ(V,Wn))2 (log n)3

n

)
.

Proof. Let Xn =
(
n+1

2

)
δ(V,Wn) be the random variable counting the number of

substrings of Wn that are V -instances. For fixed n, let Xa,b be the indicator variable

for the event that Wn[a, b] is a V -instance, so Xn = ∑n−1
a=0

∑n
b=a+1 Xa,b. We use

(a, b) ∼ (c, d) to denote that [a, b] and [c, d] overlap. Note that

Cov(Xa,b, Xc,d) ≤ E(Xa,bXc,d)

≤ min(E(Xa,b),E(Xc,d))

= min(I(b−a)(V, q), I(d−c)(V, q)),

and for i ∈ {b− a, d− c},

min(I(b−a)(V, q), I(d−c)(V, q)) ≤
(
i/d+ k + 1
k + 1

)
qi(1−r)/r.

For i < n/3, the number of intervals in Wn of length at most i that overlap a fixed

interval of length i is less than
(

3i
2

)
. Let s(n) = s0(n) = t0 logq n as defined in

Theorem 4.18. For sufficiently large n,

Var(Xn) =
∑

0≤a<b≤n
0≤c<d≤n

Cov(Xa,b, Xc,d)

≤
∑

(a,b)∼(c,d)
min(I(b−a)(V, q), I(b−a)(V, q))

=

 ∑
(a,b)∼(c,d)

b−a,d−c≤s(n)

+
∑

(a,b)∼(c,d)
else

min(I(b−a)(V, q), I(b−a)(V, q))

< 2
bs(n)c∑
i=1

(n+ 1− i)
(

3i
2

)
· 1

+
n∑

i=ds(n)e
(n+ 1− i)

(
n+ 1

2

)
·
(
i/d+ k + 1
k + 1

)
qi(1−r)/r
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< 2s(n)n(3s(n))2 + nnn2nk+1qs(n)(1−r)/r

= 18(t0 logq n)3n+ n5+kqlogq(n−(k+5))

= O(n(log n)3).

Since E(δ(V,Wn)) = Ω(n−1) by Corollary 4.19,

Var(δ(V,Wn)) = Var
 Xn(

n+1
2

)


= Var(Xn)(
n+1

2

)2

= O

(
(log n)3

n3

)

= O

(
E(δ(V,Wn))2 (log n)3

n

)
.

Question 4.21 (Cooper and Rorabaugh 2015+, Question 5.5). For nondoubled word

V , what is the concentration of the density distribution of V in random words?
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Chapter 5

Asymptotic Probability of Being Zimin

In Chapter 2, we investigated bounds on the length of words that avoid Zimin words.

In subsequent chapters, we proceeded to develop the theory of word densities, some

of which applies to Zimin words.

We proved in Chapter 4 that the asymptotic instance probability of V in q-ary

words, I(V, q) = limn→∞ In(V, q), exists for any word V , and is equal to the asymptotic

expected density of V in random words. We also proved the following dichotomy for

q ≥ 2 (Theorem 4.4): I(V, q) = 0 if and only if V is doubled (that is, every letter in V

occurs at least twice). Trivially, if V is composed of k distinct, nonrecurring letters,

then In(V, [q]) = 1 for n ≥ k, so I(V, q) = 1. But if V contains at least one recurring

letter, it becomes a nontrivial task to compute I(V, q).

Corollary 5.1. For n, q ∈ Z+,

q−2n+n+1 ≤ I(Zn, q) ≤
n−1∏
j=1

1
q(2j−1) − 1 .

Proof. For the lower bound, note that ||Zn|| = |Zn| − |L(Zn)| = (2n − 1) − (n).

Theorem 4.11 tells us that for all q ∈ Z+ and nondoubled V , I(V, q) ≥ q−||V ||.

For the upper bound, observe that the n letters occurring in Zn have multiplicities

〈rj = 2j : 0 ≤ j < n〉. Since there is exactly one nonrecurring letter in Zn, r0 = 20 = 1,

Theorem 4.14 provides an upper bound of ∏n−1
j=1

1
q(rj−1)−1

.

A nice property of these bounds is that they are asymptotically equivalent as

q → ∞. For some specific V , we can do better. In this chapter, we provide infinite

series for computing the asymptotic instance probability I(V, q) for two Zimin words,
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V = Z2 = aba (Section 5.1) and V = Z3 = abacaba (Section 5.2). Table 5.1 below

gives numerical approximations for 2 ≤ q ≤ 6. Our method also provides bounds on

I(Zn, q) for general n (Section 5.3).

Table 5.1 Approximate values of I(Z2, q) and I(Z3, q) for 2 ≤ q ≤ 6.

q 2 3 4 5 6 · · ·
I(Z2, q) 0.7322132 0.4430202 0.3122520 0.2399355 0.1944229 · · ·
I(Z3, q) 0.1194437 0.0183514 0.0051925 0.0019974 0.0009253 · · ·

5.1 Calculating I(Z2, q)

Let a` = a
(q)
` be the number of bifix-free q-ary strings of length `. For q = 2, this

is sequence oeis.org/A003000; for q = 3, oeis.org/A019308 (OEIS Foundation Inc.

2011).

Lemma 5.2. If word W has a bifix, then it has a bifix of length at most b|W |/2c.

Proof. Let W be a word with minimal-length bifix of length k, b|W |/2c < k < |W |.

Then we can write W = W1W2W3 where W1W2 = W2W3 and |W1W2| = k = |W2W3|.

But then W has bifix W2 with |W2| < k, which contradicts our selection of the

shortest bifix of W .

Lemma 5.3. a` = a
(q)
` has the following recursive definition:

a0 = 0;

a1 = q;

a2k = qa2k−1 − ak;

a2k+1 = qa2k.

Proof. Fix a q-letter alphabet. Let W = UV be a bifix-free word with |U | =
⌈
|W |

2

⌉
and |V | =

⌊
|W |

2

⌋
. Suppose UaV has a bifix for some letter a. Then by the lemma,
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UaV has a bifix is of length at most |UaV |/2. But W is bifix free, so the only

possibility is U = aV .

Therefore, for every bifix-free word of length 2k there are q bifix-free words of

length 2k + 1. For every bifix-free word of length 2k − 1, there are q bifix-free words

of length 2k, with exception of the the length-2k words that are the square of a

bifix-free word of length k.

Theorem 5.4. For q ≥ 2,

I(Z2, q) =
∞∑
j=0

(−1)jq(1−2j+1)∏j
k=0

(
1− q(1−2k+1)

) .

Proof. Since a` = a
(q)
` counts bifix-free words, the number of q-ary words of length

M that are Z2-instances is (without double-count)

dM/2e−1∑
`=0

a`q
M−2`,

so the proportion of q-ary words of length M that are Z2-instances is

1
qM

dM/2e−1∑
`=0

a`q
M−2` =

dM/2e−1∑
`=0

a`
q2` .

Therefore I(Z2, q) = f(1/q2), where f(x) = f (q)(x) is the generating function for

{a`}∞`=0:

f(x) =
∞∑
`=0

a`x
`.

From the recursive definition of a`, we obtain the functional equation

f(x) = qx+ qxf(x)− f(x2). (5.1)

Solving (5.1) for f(x) gives

f(x) = qx− f(x2)
1− qx = · · · =

∞∑
j=0

(−1)jqx2j∏j
k=0(1− qx2k)

.
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Corollary 5.5. For q ≥ 2:

1
q
< I(Z2, q) <

1
q − 1 .

Moreover, as q →∞,

I(Z2, q) = 1
q − 1 −

1 + o(1)
q3 .

Proof. The lower bound follows from the fact that a word of length M > 2 is a

Z2-instance when the first and last character are the same. This occurrence has

probability 1/q. Note that f (q)(q−2) is an alternating series. Moreover, the terms in

absolute value are monotonically approaching 0; the routine proof of monotonicity can

be found in the appendices (Lemma C.1). Hence, the partial sums provide successively

better upper and lower bounds:

f (q)
(

1
q2

)
=

∞∑
j=0

(−1)j
(
q1−2j+1

)
∏j
k=0

(
1−

(
q1−2k+1

)) ;

f (q)
(

1
q2

)
>

1∑
j=0

(−1)j
(
q1−2j+1

)
∏j
k=0

(
1−

(
q1−2k+1

))
= 1/q

1− 1/q −
1/q3

(1− 1/q)(1− 1/q3)

= 1
q − 1 −

1 + o(1)
q3 ;

f (q)
(

1
q2

)
<

2∑
j=0

(−1)jq
(

1
q2

)2j

∏j
k=0

(
1− q

(
1
q2

)2k
)

= 1
q − 1 −

1 + o(1)
q3 + 1/q5

(1− 1/q)(1− 1/q3)(1− 1/q5)

= 1
q − 1 −

1 + o(1)
q3 + O(1)

q5 .
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Table 5.2 Approximate values of I(Z2, q) for 2 ≤ q ≤ 8.

q 2 3 4 5 6 7 8
q−1 0.50000 .33333 .25000 .20000 .16667 .14286 .12500

I(Z2, q) 0.73221 .44302 .31225 .23994 .19442 .16326 .14062
(q − 1)−1 − q−3 0.87500 .46296 .31771 .24200 .19537 .16375 .14090

(q − 1)−1 1.00000 .50000 .33333 .25000 .20000 .16667 .14286

5.2 Calculating I(Z3, q)

Will use similar methods to compute I(Z3, q). To avoid unnecessary subscripts and

superscripts, assume throughout this section that we are using a fixed alphabet with

q > 1 letters, unless explicitly stated otherwise. Since Z2 has more interesting struc-

ture than Z1, there are more cases to consider in developing the necessary recursion.

Lemma 5.6. Fix bifix-free word L. Let W = LAL be a Z2-instance with a Z2-bifix.

Then LAL can be written in exactly one of the following ways:

〈i〉 LAL = LBLCLBL with LBL the shortest Z2-bifix of W and |C| > 0;

〈ii〉 LAL = LBLLBL with LBL the shortest Z2-bifix of W ;

〈iii〉 LAL = LBLBL with LBL the shortest Z2-bifix of W ;

〈iv〉 LAL = LLFLLFLL with LLFLL the shortest Z2-bifix of W ;

〈v〉 LAL = LLLL.

Proof. With some thought, the reader should recognize that the five listed cases are

in fact mutually exclusive. The proof that these are the only possibilities follows.

Given that W has a Z2-bifix and L is bifix-free, it follows that W has a Z2-bifix

LBL for some nonempty B. Let LBL be chosen of minimal length. We break this

proof into nine cases depending on the lengths of L and LBL (Figure 5.1). Set

m = |W |, ` = |L|, and k = |LBL|.
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W

Case (1) → 〈i〉
2k < m

BL L

BL L
W

Case (2) → 〈ii〉
2k = m

BL L

BL L
W

Case (3) →⇒⇐
m < 2k < m+ `

BL L

BL L

W

Case (4) → 〈iii〉
2k = m+ `

BL L

BL L
W

Case (5) →⇒⇐
m+ ` < 2k < m+ 2`

BL L

BL L
W

Case (6) → 〈iv〉 /⇒⇐
m+ 2` = 2k < 2(m− `)

BL L

BL L

W

Case (7) →⇒⇐
m+ 2` < 2k < 2(m− `)

BL L

BL L
W

Case (8) → 〈v〉 /⇒⇐
k = m− `

BL L

BL L
W

Case (9) →⇒⇐
m− ` < k < m

BL L

BL L

Figure 5.1 All possible ways the minimal Z2-bifix of W can overlap, with
m = |W |, ` = |L|, and k = |LBL|

Case (1): 2k < m. This is 〈i〉.

Case (2): 2k = m. This is 〈ii〉.

Case (3): m < 2k < m+ `. In LAL, the first and last occurrences of LBL overlap by

a length strictly between 0 and `. This is impossible, since L is bifix-free.

Case (4): 2k = m+ `. This is 〈iii〉

Case (5): m+ ` < 2k < m+ 2`. The first and last occurrences of LBL overlap by a

length strictly between ` and 2`. This is impossible, since L is bifix-free.

Case (6): m + 2` = 2k < 2(m − `). LAL = L(DL)(LE)L where DL = B = LE.

Thus L is a bifix of B, so LAL = LLFLLFLL where B = LFL. If |F | > 0,

this is 〈iv〉. If |F | = 0, then LAL = LLLLLL. But this contradicts the

minimality of LBL, since LLLLLL has Z2-bifix LLL, which is shorter than

LBL = LLLL.
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Case (7): m + 2` < 2k < 2(m− `). LAL = LDLELD′L where DLE = B = ELD′.

Since EL is a prefix of B, LEL is a prefix of LAL. Likewise, since LE is a

suffix of B, LEL is a suffix of LAL. Therefore, LEL is a bifix of LAL and

|LEL| < |LDLEL| = |LBL|, contradicting the minimality of LBL.

Case (8): k = m − `. LAL = LLCLL where LC = B = CL. If |C| = 0, this is 〈v〉.

Otherwise, LCL is a bifix of LAL, contradicting the minimality of LBL.

Case (9): m− ` < k < m. The first and last occurrences of LBL overlap by a length

strictly between k − ` and k. This is impossible, since L is bifix-free.

For fixed bifix-free word L of length `, define b`m to count the number of Z2 words

with bifix L that are Z2-bifix-free q-ary words of length m. Then

I(Z3, q) =
∞∑
`=1

(
a`

∞∑
m=1

b`mq
−2m

)
. (5.2)

In order to form a recursive definition of bn as we did for an, we now describe two

new terms. Let AB be a word of length W with |A| = dW/2e and |B| = bW/2c.

Then AB has q length-(n+1) children of the form AxB, each having AB as its parent.

In this way every nonempty word has exactly q children and exactly 1 parent, which

establishes the 1:q ratio of words of length n to words of length n + 1. The set of a

word’s children together with successive generations of progeny we refer to as that

word’s descendants.

Theorem 5.7. b`n = c`n + d`n where cn = c`n and dn = d`n are defined recursively as

follows:

For even ` :

c1 = · · · = c2` = 0,

c2`+1 = q,
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c4` = qc4`−1 − (c5`/2 + 1),

c5` = qc5`−1 − (c5`/2 + c3` − 1),

c5`+1 = q(c5` + c3` − 1),

c6` = qc6`−1 − (c3` − 1 + c5`/2);

c2k = qc2k−1 − (ck + ck+`/2) for k > `, k 6∈ {2`, 5`/2, 3`},

c2k+1 = q(c2k + ck+`/2) for k > `, k 6= 5`/2,

d1 = · · · = d4` = 0,

d4`+1 = q,

d5` = qd5`−1 − 1,

d5`+1 = q(d5` + 1),

d6` = qd6`−1 − 1,

d2k = qd2k−1 − (dk + dk+` + dk+`/2) for k > 2`, k 6∈ {5`/2, 3`},

d2k+1 = q(d2k + dk+` + dk+`/2) for k ≥ 2`, k 6= 5`/2.

For odd ` > 1 :

c1 = · · · = c2` = 0,

c2`+1 = q,

c4` = q
(
c4`−1 + cb 5`

2 c
)
− (c2` + 1),

c5` = qc5`−1 − (c3` − 1),

c5`+1 = q(c5` + c3` − 1)− cd 5`
2 e,

c6` = q
(
c6`−1 + cb 7`

2 c
)
− (c3` − 1),

c2k = q
(
c2k−1 + ck+b `

2c
)
− ck; k > `, k 6∈

{
2`,

⌈
`

2

⌉
, 3`

}
,

c2k+1 = qc2k − ck+d `
2e; k > `, k 6=

⌊
5`
2

⌋
;

d1 = · · · = d4` = 0,

d4`+1 = q,
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d5` = qd5`−1 − 1,

d5`+1 = q(d5` + 1),

d6` = qd6`−1 − 1,

d2k = q
(
d2k−1 + dk+b `

2c
)
− (dk + dk+`); k > 2`, k 6∈

{⌈
5`
2

⌉
, 3`

}
,

d2k+1 = q (d2k + dk+`)− dk+d `
2e; k > 2`, k 6=

⌊
5`
2

⌋
.

For ` = 1 :

c1 = c1 = c2 = 0,

c3 = q,

c4 = qc3 − 1,

c5 = qc4 − (c3 − 1),

c6 = q(c5 + c3 − 1)− (c3 − 1),

c2k = q(c2k−1 + ck)− ck; k > 3,

c2k+1 = qc2k − ck+1; k > 2;

d1 = d2 = d3 = d4 = 0,

d5 = q − 1,

d6 = q(d5 + 1)− 1,

d2k = q(d2k−1 + dk)− (dk + dk+1); k > 3,

d2k+1 = q(d2k + dk+1)− dk+1; k > 2.

Proof. Fix a bifix-free word L of length `. The full recursion is too messy to prove all

at once, so we build up to it in stages. Within each stage, ≈ indicates an incomplete

definition. Example word trees with small q and short L are found in Appendix D.

Stage I

Since L is bifix free, any Z2-instance with L as a bifix has to be of greater length
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than 2`. Thus, b1 = · · · = b2` = 0. The only such words of length 2` + 1 are of the

form LxL for some letter x, therefore, b2`+1 = q.

Every word of length n > 2` + 1 has L as a bifix if and only if its parent has L

as a bifix. This is why, for k > `, the definition of b2k includes the term qb2k−1, and

the definition of b2k+1 includes the term qb2k. If bn were counting Z2-instances with

bifix L, we would be done. However, we do not want bn to count words that have a

Z2-bifix. Thus, we must deal with each of the 5 cases listed in Lemma 5.6.

First, let us deal with case 〈ii〉: LAL = LBLLBL with LBL the shortest Z2-bifix

of LAL. The number of these of length 2k (k > `) is bk. Therefore, in the definition

of b2k, we subtract bk. Conveniently, the descendants of case-〈ii〉 words are precisely

words of case 〈i〉. Therefore, we have accounted for two cases at once.

Next, let us look at case 〈iii〉: LAL = LBLBL with LBL the shortest Z2-bifix of

LAL. For the moment, assume |L| = ` is even. Then |LBLBL| is even. The number

of such words of length 2k (k > `) is bk+`/2. We want to exclude words of this form,

but we do not necessarily want to exclude their children. Therefore, in the definition

of b2k we subtract bk+`/2, but then we add qbk+`/2 in the definition of b2k+1.

Now we look at when |L| is odd, so |LBLBL| is odd. The number of such

words of length 2k + 1 (k > `) is bk+d`/2e. Therefore, in the definition of b2k+1

we subtract bk+d`/2e, but then we add qb(k−1)+d`/2e = qbk+b`/2c in the definition of

b(2(k−1)+1)+1 = b2k.

Our work so far renders the following tentative definition of bn.

For even ` :

b1 = · · · = b2` = 0,

b2`+1 = q,

b2k ≈ qb2k−1 − (bk + bk+`/2) for k > `,

b2k+1 ≈ q(b2k + bk+`/2) for k > `.
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For odd ` :

b1 = · · · = b2` = 0,

b2`+1 = q,

b2k ≈ q(b2k−1 + bk+b`/2c)− bk for k > `,

b2k+1 ≈ qb2k − bk+d`/2e for k > `.

We continue with case 〈iv〉: LAL = LLFLLFLL with LLFLL the shortest Z2-

bifix of LAL. Note that |LLFLLFLL| is even. It would apear that the number

of such words of length 2k would be bk−` (counting words of the form LFL), which

we could deal with in the same fashion as we did for case 〈iii〉. However, when

counting words of the form LFL, we do not want words of the form LLGLL, because

LLFLLFLL = LLLGLLLLGLLL is already accounted for in case 〈i〉.

Stage II

To address this issue, we will define two different recursions. Let dn count the Z2-

instances of the form LLALL that are Z2-bifix free. Let cn count all other Z2-instances

of the form LAL that are Z2-bifix free. Therefore, bn = cn + dn by definition.

As with bn, we quickly see that cn = 0 for n ≤ 2` and c2`+1 = q. Now the shortest

words counted by dn are of the form LLxLL for some letter x, so dn = 0 for n ≤ 4`

and d4`+1 = q.

To deal with cases 〈i〉 and 〈ii〉, we can do the same things as before, but recognizing

that LL is a bifix of LBLLBL if and only if LL is a bifix of LBL. Therefore, subtract

ck in the definition of c2k and subtract dk in the definition of d2k (both for k > `).

We also deal with case 〈iii〉 as before, recognizing that LL is a bifix of LBLBL if

and only if LL is a bifix of LBL. For even `: subtract ck+`/2 in the definition of c2k

and add qck+`/2 in the definition of c2k+1; subtract dk+`/2 in the definition of d2k and

add qdk+`/2 in the definition of d2k+1. For odd `: subtract ck+d`/2e in the definition of
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c2k+1 and add qck+b`/2c in the definition of c2k; subtract dk+d`/2e in the definition of

d2k+1 and add qdk+b`/2c in the definition of d2k.

Having split bn into cn and dn, we can address case 〈iv〉: LAL = LLFLLFLL

with LLFLL the shortest Z2-bifix of LAL. These words are counted by dn, not by

cn, and there are dk+` such words of length 2k. Therefore, we subtract dk+` in the

definition of d2k and add qdk+` in the definition of d2k+1.

This brings us to the following tentative definitions of cn and dn.

For even ` :

c1 = · · · = c2` = 0,

c2`+1 = q,

c2k ≈ qc2k−1 − (ck + ck+`/2),

c2k+1 ≈ q(c2k + ck+`/2);

d1 = · · · = d4` = 0,

d4`+1 = q,

d2k ≈ qd2k−1 − (dk + dk+` + dk+`/2),

d2k+1 ≈ q(d2k + dk+` + dk+`/2).

For odd ` :

c1 = · · · = c2` = 0,

c2`+1 = q,

c2k ≈ q(c2k−1 + ck+b`/2c)− ck,

c2k+1 ≈ qc2k − ck+d`/2e;

d1 = · · · = d4` = 0,

d4`+1 ≈ q,

d2k ≈ q(d2k−1 + dk+b`/2c)− (dk + dk+`),

d2k+1 ≈ q(d2k + dk+`)− dk+d`/2e.
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Stage III

Next, let us deal with case 〈v〉: LLLL. We merely need to subtract 1 in the definition

of c4`. Since all of the words counted by dn are descendants of LLLL, this is what

prevents overlap of the words counted by cn and dn.

There was a small omission in the previous stage. When dealing with cases 〈i〉

and 〈ii〉, we pointed out that LL is a bifix of LBLLBL if and only if LL is a bifix of

LBL, this was a true and important observation. The one problem is that LLL has

LL as a bifix but is not of the form LLALL. Therefore, LLLLLL was “removed” in

the definition of c6` when it should have been “removed” from d6`. We must account

for this by adding 1 in the definition of c6` and subtracting 1 in the definition of d6`.

Similarly, in dealing with case 〈iii〉, we “removed” LLLLL in the definition of c5`

and “replaced” its children in the definition of c5`+1. These should have happened to

dn. Therefore, we add 1 and subtract q in the definitions of c5` and c5`+1, respectively,

then subtract 1 and add q in the definitions of d5` and d5`+1, respectively.

Since LLL does not cause any trouble with case 〈iv〉, we are done building the

recursive definition for even ` as found in the theorem statement.

Stage IV

The recursion for odd ` has the additional caveat that ` 6= 1. When ` = 1, there exist

conflicts in the recursive definitions: 4`+ 1 = 5` and 5`+ 1 = 6`. After consolidating

the“adjustments” for these cases, we get the definition for ` = 1 as appears in the

theorem statement.

With our recursively defined sequences an and bn, the latter in terms of cn and

dn, we are now able to formulate Theorem 5.4 for Z3.

Theorem 5.8. For integers q ≥ 2,

I(Z3, q) =
∞∑
`=1

a`

( ∞∑
i=0

(G(i) +H(i))
)
.

69



where

G(i) = G
(q)
` (i) =

(−1)ir
(
q−2i+1

)∏i−1
j=0 s

(
q−2j+1

)
∏i
k=0

(
1− q1−2k+1

) ;

r(x) = r
(q)
` (x) = qx2`+1 − x4` + x5` − qx5`+1 + x6`;

s(x) = s
(q)
` (x) = 1− qx1−` + x−`;

H(i) = H
(q)
` (i) =

(−1)iu
(
q−2i+1

)∏i−1
j=0 v

(
q−2j+1

)
∏i
k=0

(
1− q1−2k+1

) ;

u(x) = u
(q)
` (x) = qx4`+1 − x5` + qx5`+1 − x6`;

v(x) = v
(q)
` (x) = 1− qx1−` + x−` − qx1−2` + x−2`.

Proof. Recalling Equation (5.2),

I(Z3, q) =
∞∑
`=1

(
a`

∞∑
m=1

b`mq
−2m

)

=
∞∑
`=1

(
a`

∞∑
m=1

(
c`m + d`m

)
q−2m

)
.

Similar to our proof for I(Z2, q), let us define generating functions for the sequences

cn = c`n and dn = d`n:

g(x) = g
(q)
` (x) =

∞∑
i=1

cnx
n and h(x) = h

(q)
` (x) =

∞∑
i=1

dnx
n.

Despite having to write the recursive relations three different ways, depending on

`, the underlying recursion is fundamentally the same and results in the following

functional equations:

g(x) = q
(
xg(x) + x1−`g(x2) + x2`+1 − x5`+1

)
(5.3)

−
(
g(x2) + x−`g(x2) + x4` − x5` − x6`

)
;

h(x) = q
(
xh(x) + x1−2`h(x2) + x1−`h(x2) + x4`+1 + x5`+1

)
(5.4)

−
(
h(x2) + x−2`h(x2) + x−`h(x2) + x5` + x6`

)
.

Solving (5.3) for g(x), we get

g(x) = r(x)− s(x)g(x2)
1− qx , (5.5)

70



with r(x) and s(x) as defined in the theorem statement. Expanding (5.5) gives

g(x) = r(x)− s(x)g(x2)
1− qx

= r(x)
1− qx

(
1− s(x)

r(x)g(x2)
)

= r(x)
1− qx

(
1− s(x)

r(x)
r(x2)− s(x2)g(x4)

1− qx2

)

= r(x)
1− qx

(
1− s(x)

r(x)
r(x2)

1− qx2

(
1− s(x2)

r(x2)g(x4)
))

...

=
∞∑
i=0

(−1)ir
(
x2i
)∏i−1

j=0 s
(
x2j
)

∏i
k=0

(
1− qx2k

) . (5.6)

Likewise, solving (5.4) for h(x), we get

h(x) = u(x)− v(x)h(x2)
1− qx (5.7)

=
∞∑
i=0

(−1)iu
(
x2i
)∏i−1

j=0 v
(
x2j
)

∏i
k=0

(
1− qx2k

) , (5.8)

with u(x) and v(x) as defined in the theorem statement.

Corollary 5.9. For integers N ≥ 0 and M ≥ 0,

N∑
`=1

a`

(2M+1∑
i=0

(G(i) +H(i))
)
≤ I(Z3, q);

I(Z3, q) ≤ q−N +
N∑
`=1

a`

(2M∑
i=0

(G(i) +H(i))
)
,

with G(i) = G
(q)
` (i) and H(i) = H

(q)
` (i) as defined in Theorem 5.8.

Proof. For fixed integers q ≥ 2 and ` ≥ 1, ∑∞i=0(G(i) +H(i)) is an alternating series.

We need to show that the sequence |G(i) +H(i)| is decreasing. Since (−1)iG(i) > 0

and (−1)iH(i) > 0 for each i, |G(i)+H(i)| = |G(i)|+ |H(i)|. Thus it suffices to show

that {|G(i)|}∞i=1 and {|H(i)|}∞i=1 are both decreasing sequences, the routine proof of

which can be found in the appendices (Lemma C.2).
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Now for any integer M ≥ 0:

2M+1∑
i=0

G`(i) +H`(i) <
∞∑
m=0

b`mq
−2m <

2M∑
i=0

G`(i) +H`(i).

Moreover, since the a` are nonnegative, the lower bound for the theorem is evident.

For a bifix-free word L of length `, ∑∞m=0 b
`
mq
−2m is the limit, as M → ∞, of the

probability that a word of length M is a Z3-instance of the form LALBLAL. A

necessary condition for such a word is that it starts and ends with L, which (for

M ≥ 2`) has probability q−2`. Also a` counts the number of bifix-free words of length

`, so a` ≤ q`. Hence for any integer N ≥ 0:

I(Z3, q) <
N∑
`=1

a`
∞∑
m=0

b`mq
−2m +

∞∑
`=N+1

q`
(
q−2`

)

=
N∑
`=1

a`
∞∑
m=0

b`mq
−2m +

∞∑
`=N+1

q−`

≤
N∑
`=1

a`
∞∑
m=0

b`mq
−2m + q−N .

Table 5.3 Approximate values of I(Z3, q) for 2 ≤ q ≤ 6.

q 2 3 4 5 6
I(Z3, q) 0.11944370 0.01835140 0.00519251 0.00199739 0.00092532

The values in Table 5.3 were generated by the Sage code found in Appendix C.2,

which was derived directly from Corollary 5.9 and can be used to compute I(Z3, q)

to arbitrary precision for any q ≥ 2.

5.3 Bounding I(Zn, q) for Arbitrary n

This programme is not practical for n in general. The number of cases for a gen-

eralization of Lemma 3.1 is likely to grow with n. Even if that stabilizes somehow,

the expression for calculating I(Zn, q) requires n nested infinite series. Nevertheless,
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ignoring some of the more subtle details, we proceed with this method to obtain a

not-overly-messy way to calculate bounds for I(Zn, q) in general.

Fix a Zn−1-instance L of length ` ≥ 1, let b̂`m be the number of words of length m

of the form LAL for A 6= ε but not of the form LBLBL. That is, b̂ is an overcount

for the number of Zn-instances of the form LAL. Then b̂m = b̂`m is recursively defined

as follows:

For even ` :

b̂0 = · · · = b̂2` = 0,

b̂2k = qb̂2k−1 − (b̂k + b̂k+`/2) for k > `,

b̂2k+1 = q(b̂2k + b̂k+`/2) for k > `.

For odd ` :

b̂0 = · · · = b̂2` = 0,

b̂2k = q(b̂2k−1 + b̂k+b`/2c)− b̂k for k > `,

b̂2k+1 = qb̂2k − b̂k+d`/2e for k > `.

The the associated generating function f̂(x) := f̂ q` (x) = ∑∞
m=1 b̂

`
mx

m satisfies

f̂(x) = q(x2`+1 + xf̂(x) + x1−`f̂(x2))− (f̂(x2) + x−`f̂(x2)).

Therefore, setting t(x) = t
(q)
` (x) = 1− qx1−` + x−`,

f̂(x) = qx2`+1 − t(x)f̂(x2)
1− qx

= q ·
∞∑
i=0

(−1)ix(2i)(2`+1)∏i−1
j=0 t

(
x2j
)

∏i
k=0

(
1− qx2k

) .

Now f̂(q−2) gives an upper bound for the limit (as word-length approaches infinity)

of the probability that a word is a Zn-instance of the form LAL. We can write the

following expressions as upper bounds for I(Zn, q):

I(Zn, q) ≤
∞∑
`0=1
· · ·

∞∑
`n=1

∞∑
m=1

a`1 b̂
`1
`2 · · · b̂

`n−1
`n

b̂`nm q
−2`n ;
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I(Zn, q) ≤
N1∑
`0=1
· · ·

Nn∑
`n=1

∞∑
m=1

a`1 b̂
`1
`2 · · · b̂

`n−1
`n

b̂`nm q
−2`n

+ n
∞∑

`=N1+1
q−`.

A more precise recursion can be attained by extensive case-work, but the improve-

ment gained is likely not worth the effort.
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Chapter 6

Future Directions

6.1 Word Densities

6.1.1 Limit Factor Densities

We saw in our density comparison of Section 3.1.1 that the limsup factor density of

ak is 1 for any q, k ∈ Z+. However, this is not the case for words with at least two

distinct letters. Generating functions or the de Bruijn graph may provide great tools

for answering the following question.

Question 6.1. For q ≥ 2 and V with at least two distinct letters, what is

lim sup
W∈[q]n
|W |→∞

d(V,W )?

6.1.2 Density Comparisons

The plots of possible Z2- and Z3-densities in short binary words (Figure 3.2) suggests

a nonlinear asymptotic lower bound for δ(Z3,W ) in terms of δ(Z2,W ). Moreover,

it is surprising to observe that the minimum Z3-density does not coincide with the

minimum Z2-density. Considering the words (aibj)n with n → ∞, we see that the

absolute upper bound of y = x is asymptotically tight, at least for x = i2+j2

(i+j)2 .

Question 6.2. Over a fixed alphabet, what is the asymptotic lower bound for δ(Z3,W )

in terms of δ(Z2,W )?
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6.1.3 Encounter Enumeration

Given a V -instance W , there might be multiple homomorphisms on L(V )∗ that pro-

duce W . For this reason, the number of encounters, hom(V,W ), was only used to

find an upper bound for δ(V,W ). However, the quantity hom(V,W )
(|W |+1

2 ) is not generally

expected to be less than 1. The worst-case scenario is with factors of the form ak, for

which every one of the
(
k+1
|V |+1

)
partitions into |V | nonempty substrings gives a unique

encounter. However, when V has exactly 1 nonrecurring letter, the lower and upper

bounds on I(V, q) (Theorems 4.11, 4.14) are asympototic in q. So for such V and

large random W , E(hom(V,W )) is a good estimate for E
((
|W |+1

2

)
δ(V,W )

)
. Yet we

see from the proof of Lemma 4.8, that if V has multiple nonrecurring letters, we can

expect numerous homomorphisms for a given instance.

Question 6.3. Fixed q ≥ 2. Assuming a uniformly random selection of Wn ∈ [q]n, let

homn,sur(V, q) be the expected number of nonerasing homomorphisms φ : L(V )∗ → [q]∗

such that that φ(V ) = Wn. If V has exactly k nonrecurring letters, what is the

asymptotic growth of
homn,sur(V, q)

In(V, q)

in terms of n, k, and q?

6.1.4 Abelian Encounters

In Problem (II.2) of a list of unsolved problems, Erdős (1961) suggested that ‘perhaps

an infinite sequence of four symbols can be formed without consecutive “identical”

[factors]’ where two word are “identical” provided ‘each symbol occurs the same

number of times in both of them (i.e., we disregard order).’ For a summary of the

history of this problem by Erdős, through its positive answer by Dekking (1979), see

Section 5.3 of Berstel et al. (2008). This appears to be the first consideration of what

are now called Abelian encounters.
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Definition 6.4. Word W is an Abelian V -instance for word V = a1a2 · · · an provided

W = A1A2 · · ·An for nonempty words Ai such that Ai and Aj are anagrams whenever

ai = aj. W encounters V in an Abelian sense provided some factor ofW is an Abelian

V -instance.

Currie (2005) restates and introduces a number of open problems regarding avoid-

ability in the Abelian sense. It was in response to Currie’s paper that Tao (2014+)

proved the Abelian variant of Theorem 2.10, with which he established a lower bound

for Zimin-avoidance. It is perhaps worth reproducing the present density results in

the Abelian sense.

6.2 Word Limits

6.2.1 Convergence

A driving force of the Graph Limits programme (see Lovász 2012) is found in the

various forms of convergence, especially for dense graphs. For example, a sequence

of graphs {Gn}∞n=1 with |V (G)| → ∞ is left-convergent provided the graph densi-

ties t(F,Gn) converge for every finite graph F . There is also a concept of right-

convergence, convergences via a cut metric δ�, convergence of ground state energy

(from statistical physics), and more. The remarkable fact is that many of these forms

of convergence are equivalent.

Now there are multiple ways to define convergence of a sequence of words {Wn}∞n=1

with length |Wn| → ∞. One might define convergence in terms of factors:

• Wn is an initial factor of Wn+1 for all n;

• Wn ≤ Wn+1 for all n;

• d(V,Wn) converges for every finite words V ;

• P(V is followed by x in Wn) converges for every word-letter pair (V, x).
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Alternatively, convergence could be defined in terms of instances:

• Wn+1 is an instance of Wn for all n;

• Wn � Wn+1 for all n;

• δ(V,Wn) converges for every finite words V .

These are clearly not all equivalent, but which ones are? More importantly, which

ones are productive for a combinatorial limit theory.

6.2.2 Lexons

The rigorous theory of convergent graph sequences is crowned by the concept of

a graphon, the limit object for dense graphs. A graphon is a symmetric function

w : [0, 1]2 → [0, 1], and is determined (up to a measure 0 set and application of a

measure preserving function on [0, 1]) by the set of homomorphism densities of graphs

into it. For example, the triangle-density of w is

t(K3, w) =
∫

[0,1]3
w(x, y)w(y, z)w(z, x) dx dy dz.

Since graphons lie in a compact space, various analytic tools can be used to develop

continuous theory that then applies to associated large graphs.

Question 6.5. Do there exists limit objects for free words that lie in some compact

space. Further, can we define metrics on words that extends productively to the limit

object?

For example, if we define convergence to be that “Wn is an initial factor of Wn+1

for all n,” then the obvious limit object is a right-infinite word. For convergence

defined as “Wn ≤ Wn+1 for all n,” the limit object should be a bi-infinite word.

However, these particular forms of convergence do not appear sufficiently strong to

guarantee any form of homomorphism density in the limit object.
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6.2.3 Randomness

A foundational result in graph theory is the Szemeredi Regularity Lemma, which

roughly states that the vertex set of every sufficiently large graph can be partitioned

so that the edges between parts are “random-like.” Generally quasirandomness is used

to characterize a sequence of “random-like” graphs. Several of the many equivalent

definitions of quasirandomness are in terms of the homomorphism densities of graphs.

Question 6.6. Does there exists a productive definition of quasirandomness for free

words?

Perhaps this would be in terms of factor or instance densities, or perhaps in terms

of transition probabilities as used in the de Bruijn graph (Section 3.3).
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Appendix A

Computations for Zimin Word Avoidance

A.1 All Binary Words that Avoid Z2

The following 13 words are the only words over the alphabet {0, 1} that avoid the

second Zimin word, Z2 = aba.

Table A.1 Binary words
that avoid Z2.

ε, 0, 00, 001, 0011,
01, 011,

1, 10, 100,
11, 110, 1100.
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A.2 Maximum-Length Binary Words that Avoid Z3

The 48 words in Table A.2 are all the words of length f(3, 2)−1 = 28 over the alphabet

{0, 1} that avoid Z3 = abacaba. All binary words of length at least f(3, 2) = 29

encounter Z3. This result is easily computationally verified by constructing the binary

tree of words on {0, 1}, eliminating branches as you find words that encounter Z3.

Table A.2 Maximum-length binary words that avoid Z3.

0010010011011011111100000011, 1100000010010011011011111100,
0010010011111100000011011011, 1100000010010011111101101100,
0010010011111101101100000011, 1100000010101100110011111100,
0010101100110011111100000011, 1100000010101111110011001100,
0010101111110000001100110011, 1100000011001100101011111100,
0010101111110011001100000011, 1100000011001100111111010100,
0011001100101011111100000011, 1100000011011010010011111100,
0011001100111111000000101011, 1100000011011011111100100100,
0011001100111111010100000011, 1100000011111100100101101100,
0011011010010011111100000011, 1100000011111100110011010100,
0011011011111100000010010011, 1100000011111101010011001100,
0011011011111100100100000011, 1100000011111101101100100100,
0011111100000010010011011011, 1100100100000011011011111100,
0011111100000010101100110011, 1100100100000011111101101100,
0011111100000011001100101011, 1100100101101100000011111100,
0011111100000011011010010011, 1100110011000000101011111100,
0011111100100100000011011011, 1100110011000000111111010100,
0011111100100101101100000011, 1100110011010100000011111100,
0011111100110011000000101011, 1101010000001100110011111100,
0011111100110011010100000011, 1101010000001111110011001100,
0011111101010000001100110011, 1101010011001100000011111100,
0011111101010011001100000011, 1101101100000010010011111100,
0011111101101100000010010011, 1101101100000011111100100100,
0011111101101100100100000011, 1101101100100100000011111100.
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A.3 A Long Binary Word that Avoids Z4

Figure A.1 shows a binary word of length 10482 that avoids Z4 = abacabadabacaba.

This implies that f(4, 2) ≥ 10483. The word is presented here as an image with

each row, consisting of 90 squares, read left to right. Each square, black or white,

represents a bit. For example, the longest string of black in the first row is 14 bits

long. We cannot have the same bit repeated 15 = |Z4| times consecutively, as that

would be a Z4-instance. A string of 14 white bits is found in the 46th row.

Figure A.1 A binary word of length 10482 that
avoids Z4 = abacabadabacaba.
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A.4 Verifying Zn-Avoidance

The code to generate a Z4-avoiding word of length 10482 is messy. The following,

easy-to-validate, inefficient, brute-force, Sage (Stein et al. 2014) code was used for

verification of the word above. It took roughly 12 hours of computation on an In-

tel®Core™ i5-2450M CPU @ 2.50GHz × 4.

# Recurs ive func t i on to t e s t i f V i s an in s t ance o f Z_n .

de f i n s t (V, n ) :

i f l en (V)==0:

re turn Fal se

i f n==1:

re turn True

f o r i in range (2^(n − 1) − 1 , c e i l ( l en (V) / 2 ) ) :

i f V [ : i ]==V[− i : ] :

i f i n s t (V [ : i ] , n − 1 ) :

r e turn True

re turn Fal se

W = # Paste word here as a s t r i n g .

(L , n) = ( l en (W) , 4)

# Check every subword V o f l ength at l e a s t 2^n − 1 .

f o r b in range (L + 1 ) :

f o r a in range (b − (2^n − 1 ) ) :

i f i n s t (W[ a : b ] , n ) :

p r i n t a , b , W[ a : b ]
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Appendix B

Computational Comparison: δ(Z2,W ) vs. δ(Z3,W )

Figure B.1 below shows plots of all (x, y)-pairs with x = δ(Z2,W ) and y = δ(Z3,W )

for binary wordsW ∈ [2]k, where k ∈ {13, 16, 19, 22, 25, 28}. More discussion of these

plots is found in Section 3.1.2. The following Sage (Stein et al. 2014) code was used

to compute all (x, y)-pairs in the plots.

de f is_Zn (W, n ) : # Checks i f nonempty W i s a Zn−i n s t ance .

i f n==1:

re turn True

f o r i in range (1 , c e i l ( l en (W) / 2 ) ) :

i f W[ : i ]==W[− i : ] and is_Zn (W[ : i ] , n − 1 ) :

r e turn True

re turn Fal se

de f z2z3 (W) : # Counts Z2− and Z3−i n s t ance sub s t r i n g s .

(M, z2 , z3 ) = ( l en (W) , 0 , 0)

f o r i in range (M − 2 ) :

f o r j in range ( i + 3 , M + 1 ) :

V = W[ i : j ]

i f is_Zn (V, 2 ) :

z2 += 1

i f is_Zn (V, 3 ) :

z3 += 1

return [ z2 , z3 ]

88



L = 10 # Change to de s i r ed word−l ength .

(D2 , D3) = ( [ 1 ] , [ ] ) # Create l i s t s to s t o r e dens i ty va lue s .

f o r n in xrange (2^L ) : # Check every binary word o f l ength L .

word = s t r ( bin (n ) ) [ 2 : ]

word = ’0 ’∗ (L − l en (word ) ) + word

p = z2z3 (word )

d2 = p [ 0 ] / binomial (L + 1 , 2)

d3 = p [ 1 ] / binomial (L + 1 , 2)

i = 0

whi le d2>D2 [ i ] :

i += 1

i f d2<D2 [ i ] :

D2 . i n s e r t ( i , d2 )

D3 . i n s e r t ( i , s e t ( [ ] ) )

D3 [ i ] . add ( d3 )

D2 . pop(−1) # Remove the unnecessary 1 .
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Figure B.1 (δ(Z2,W ), δ(Z3,W )) for binary W of length {13,16,19,22,25,28}.
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Appendix C

Proofs and Computations for Chapter 5

C.1 Proofs of Monotonicity

Lemma C.1. For fixed q ≥ 2, {|F (i)|}∞i=0 is a decreasing sequence, where

F (i) = F q(i) = (−1)jq1−2i∏i
k=0(1− q1−2k)

.

Proof. For i > 0:

|F (i)|
|F (i− 1)| = q1−2i

q1−2(i−1)
(
1− q1−2i

)
= q−2(i−1)

1− q1−2i ·
1 + q1−2i

1 + q1−2i

=
q−2(i−1)

(
1 + q1−2i

)
1 + q2−2i+1

<
(2)−2((1)−1)

(
1 + (2)1−2(1)

)
1 + (0)

= 2−1
(
1 + 21−2

)
< 1.

Lemma C.2. For fixed ` ≥ 1 and q ≥ 2, {|G(i)|}∞i=1 and {|H(i)|}∞i=1 are both de-

creasing sequences, where

G(i) = Gq
`(i) =

(−1)ir
(
q−2i+1

)∏i−1
j=0 s

(
q−2j+1

)
∏i
k=0

(
1− q1−2k+1

) ;

r(x) = rq` (x) = qx2`+1 − x4` + x5` − qx5`+1 + x6`;

s(x) = sq`(x) = 1− qx1−` + x−`;
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H(i) = Hq
` (i) =

(−1)iu
(
q−2i+1

)∏i−1
j=0 v

(
q−2j+1

)
∏i
k=0

(
1− q1−2k+1

) ;

u(x) = uq`(x) = qx4`+1 − x5` + qx5`+1 − x6`;

v(x) = vq` (x) = 1− qx1−` + x−` − qx1−2` + x−2`.

Proof. For i > 0:

|G(i)|
|G(i− 1)| =

r
(
q−2i+1

)
r
(
q−2i

) · s
(
q−2i

)
1− q1−2i+1

= q1−2i(4`+2) − q−2i(8`) + q−2i(10`) − q1−2i(10`+2) + q−2i(12`)

q1−2i(2`+1) − q−2i(4`) + q−2i(5`) − q1−2i(5`+1) + q−2i(6`)

·1− q
1+2i(`−1) + q2i`

1− q1−2i(2)

<
q1−2i(4`+2)

q1−2i(2`+1) − q−2i(4`) ·
q2i`

1− q1−2i(2)

= q1−2i(3`+2)

q1−2i(2`+1) − q−2i(4`) − q2−2i(2`+3) + q1−2i(4`+2) ·
q−1+2i(2`+1)

q−1+2i(2`+1)

= q−2i(`+1)

1− q−1−2i(2`−1) − q1−2i(2) + q2i(2`+1)

<
(2)−21((1)+1)

1− (2)−1−21(2(1)−1) − (2)1−21(2) + 0

= 2−4

1− 2−3 − 2−3

< 1;

|H(i)|
|H(i− 1)| =

u
(
q−2i+1

)
u
(
q−2i

) · v
(
q−2i

)
1− q1−2i+1

= q1−2i(8`+2) − q−2i(10`) + q1−2i(10`+2) − q−2i(12`)

q1−2i(4`+1) − q−2i(5`) + q1−2i(5`+1) − q−2i(6`)

·1− q
1+2i(`−1) + q2i` − q1+2i(2`−1) + q2i(2`)

1− q1−2i(2)

<
q1−2i(8`+2)

q1−2i(4`+1) − q−2i(5`) ·
q2i(2`)

1− q1−2i(2)

= q1−2i(6`+2)

q1−2i(4`+1) − q−2i(5`) − q2−2i(4`+3) + q1−2i(5`+2) ·
q−1+2i(4`+1)

q−1+2i(4`+1)

= q−2i(2`+1)

1− q−1−2i(`−1) − q1−2i(2) + q2i(`+1)
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<
(2)−21(2(1)+1)

1− (2)−1−21((1)−1) − (2)1−21(2) + 0

= 2−6

1− 2−1 − 2−3

< 1.

C.2 Sage Code for Table 5.3 of I(Z3, q)-Values

The following code to generate Table 5.3 was run with Sage 6.1.1 (Stein et al. 2014).

# Ca lcu la te G( i ) , term i o f expanded g (q^(−2)).

de f r (L , q , x ) :

X = x^L

return q∗x∗X^2 − X^4 + X^5 − q∗x∗X^5 + X^6

de f s (L , q , x ) :

r e turn 1 − q∗x^(1−L) + x^(−L)

de f G(L , q , i ) :

num = prod ( [ s (L , q , q^(−2^( j +1))) f o r j in range ( i ) ] )

den = prod ( [ 1 − q^(1−2^(k+1)) f o r k in range ( i +1) ])

r e turn (−1)^ i ∗ r (L , q , q^(−2^( i +1))) ∗ num / den

# Calcu la te H( i ) , term i o f expanded h(q^(−2)).

de f u(L , q , x ) :

r e turn q∗x^(4∗L+1) − x^(5∗L) + q∗x^(5∗L+1) − x^(6∗L)

de f v (L , q , x ) :

r e turn 1 − q∗x^(1−L) + x^(−L) − q∗x^(1−2∗L) + x^(−2∗L)

de f H(L , q , i ) :

num = prod ( [ v (L , q , q^(−2^( j +1))) f o r j in range ( i ) ] )

den = prod ( [ 1 − q^(1−2^(k+1)) f o r k in range ( i +1) ])

r e turn (−1)^ i ∗ u(L , q , q^(−2^( i +1))) ∗ num / den
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# Generate the f i r s t N terms o f {a_n} .

de f a (q ,N) :

A = [ 0 , q ]

f o r n in range (2 , N+1):

A. append (q∗A[−1] − ( ( n+1)%2)∗A[ f l o o r (n / 2 ) ] )

r e turn A

# Calcu la te the p a r t i a l sum of I (Z_3 , q ) .

de f I (q , N, M) :

A = a (q , N)

p a r t i a l = 0

f o r L in range (1 , N+1):

terms = [G(L , q , n) + H(L , q , n) f o r n in range (M+1)]

p a r t i a l += A[L ]∗ sum( terms )

re turn p a r t i a l

# Output bounds on I (Z_3 , q ) f o r smal l va lue s o f q .

prec = 15 # Level o f p r e c i s i o n .

N = 2∗ prec

f o r q in range (2 , 7 ) :

p r i n t ’ q = %d : ’ %q

pr in t ’ Lower bound with N = %d and M = 4 : ’ %N,

p r i n t round ( I (q , N, 4) , prec )

p r i n t ’Upper bound with N = %d and M = 5 : ’ %N,

p r i n t round ( I (q , N, 5) + 2^(−N) , prec )
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Appendix D

Word Trees Illustrating Theorem 5.7

From Section 5.2: “For fixed bifix-free word L length `, define b`m to count the number

of Z2 words with bifix L that are Z2-bifix-free q-ary words of length m.”

In each of the following images, word is struck through if it in not counted by bm

but its descendants are. It is hashed through if its descendants are also eliminated.
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b1
3 = 2 b1

4 = 3 b1
5 = 6 b1

6=14 b1
7=25 b1

8 = 52 b1
9 = 100

000

0010

00110

001110
0011110

00111110 001111110
001101110

00110110 001110110
001100110

0010110
00101110 001011110

001001110
00100110 001010110

001000110

001010
0011010

00111010 001111010
001101010

00110010 001110010
001100010

0010010
00101010 001011010

001001010
///////////00100010

00010

000110
0001110

00011110 000111110
000101110

00010110 000110110
000100110

0000110
00001110 000011110

000001110
00000110 000010110

000000110

000010
0001010

00011010 000111010
000101010

00010010 000110010
000100010

0000010
00001010 000011010

000001010
00000010 000010010

000000010

0000

00100

001100
0011100

00111100 001111100
001101100

00110100 001110100
001100100

0010100
00101100 001011100

001001100
00100100 001010100

001000100

001000
0011000

00111000 001111000
001101000

00110000 001110000
001100000

0010000
00101000 001011000

001001000
00100000 001010000

001000000

00000

000100
0001100

00011100 000111100
000101100

00010100 000110100
000100100

0000100
00001100 000011100

000001100
00000100 000010100

000000100
/////////000000

d1
n

Figure D.1 The ‘000’ half of an example word tree for Theorem 5.7 with
q = 2, L = ‘0’, ` = |L| = 1. The tree from LLLL counted by dn is boxed.
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b2
5 = 2 b2

5 = 4 b2
7 = 8 b2

8=13 b2
9=32 b2

10=58

01001

010101

0101101
01011101

010111101 0101111101
0101101101

010101101 0101011101
0101001101

01010101
010110101 0101110101

0101100101
010100101 0101010101

0101000101

0100101
01001101

010011101 0100111101
0100101101

010001101 0100011101
0100001101

01000101
010010101 0100110101

0100100101
010000101 0100010101

0100000101

010001

0101001
01011001

010111001 0101111001
0101101001

010101001 0101011001
0101001001

01010001
010110001 0101110001

0101100001
010100001 0101010001

0101000001

0100001
01001001

010011001 0100111001
//////////////0100101001

010001001 0100011001
0100001001

01000001
010010001 0100110001

0100100001
010000001 0100010001

0100000001

d2
n

01101

011101

0111101
01111101

011111101 0111111101
0111101101

011101101 0111011101
0111001101

01110101
011110101 0111110101

0111100101
011100101 0111010101

0111000101

0110101
01101101

011011101 0110111101
//////////////0110101101

011001101 0110011101
0110001101

01100101
011010101 0110110101

0110100101
011000101 0110010101

0110000101

011001

0111001
01111001

011111001 0111111001
0111101001

011101001 0111011001
0111001001

01110001
011110001 0111110001

0111100001
011100001 0111010001

0111000001

0110001
01101001

011011001 0110111001
0110101001

011001001 0110011001
0110001001

01100001
011010001 0110110001

0110100001
011000001 0110010001

0110000001

Figure D.2 Example word tree for Theorem 5.7 with q = 2, L = ‘01’,
` = |L| = 2. The tree from LLLL counted by dn is boxed.
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b3
7 = 2 b3

8 = 4 b3
9 = 8 b3

10 = 16 b3
11 = 30 b3

12 = 63

1000100

10001100

100011100

1000111100
10001111100 100011111100

100011011100
10001011100 100010111100

100010011100

1000101100
10001101100 100011101100

100011001100
10001001100 100010101100

100010001100

100001100

1000011100
10000111100 100001111100

100001011100
10000011100 100000111100

100000011100

1000001100
10000101100 100001101100

100001001100
10000001100 100000101100

100000001100

10000100

100010100

1000110100
10001110100 100011110100

100011010100
10001010100 100010110100

100010010100

1000100100
10001100100 100011100100

100011000100
10001000100 100010100100

100010000100

100000100

1000010100
10000110100 100001110100

100001010100
10000010100 100000110100

100000010100

1000000100
10000100100 100001100100

100001000100
10000000100 100000100100

100000000100

1001100

10011100

100111100

1001111100
10011111100 100111111100

100111011100
10011011100 100110111100

100110011100

1001101100
10011101100 100111101100

100111001100
10011001100 100110101100

100110001100

100101100

1001011100
10010111100 100101111100

100101011100
10010011100 100100111100

100100011100

1001001100
10010101100 100101101100

100101001100
10010001100 100100101100

100100001100

10010100

100110100

1001110100
10011110100 100111110100

100111010100
10011010100 100110110100

100110010100

1001100100
10011100100 100111100100

100111000100
10001000100 100110100100

100110000100

100100100

1001010100
10010110100 100101110100

100101010100
10010010100 100100110100

100100010100

1001000100
10010100100 100101100100

100101000100
10010000100 100100100100

100100000100
d3
n

Figure D.3 Example word tree for Theorem 5.7 with q = 2, L = ‘100’,
` = |L| = 3. The tree from LLLL counted by dn is boxed.
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b1
3 = 3 b1

4 = 8 b1
5 = 24 b1

6 = 78

000

0020

00220
002220
002120
002020

00120
001220
001120
001020

00020
000220
000120
000020

0010

00210
002210
002110
002010

00110
001210
001110
001010

00010
000210
000110
000010

0000

00200
002200
002100
002000

00100
001200
001100
001000

00000
000200
000100
/////////000000

d1
n

010

0120

01220
012220
012120
012020

01120
011220
011120
011020

01020
010220
010120
010020

0110

01210
012210
012110
012010

01110
011210
011110
011010

01010
010210
010110
/////////010010

0100

01200
012200
012100
012000

01100
011200
011100
011000

01000
010200
010100
010000

020

0220

02220
022220
022120
022020

02120
021220
021120
021020

02020
020220
020120
/////////020020

0210

02210
022210
022110
022010

02110
021210
021110
021010

02010
020210
020110
020010

0200

02200
022200
022100
022000

02100
021200
021100
021000

02000
020200
020100
020000

Figure D.4 Example word tree for Theorem 5.7 with q = 3, L = ‘0’,
` = |L| = 1. The tree from LLLL counted by dn is boxed.
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Appendix E

Notation Index

Generally, majuscule Greek letters are used for alphabets (especially Γ,Σ). Minus-

cule Greek ε (“var-epsilon”) represents the empty word, whereas ε is used in proofs

for arbitrarily-small positive real values; other minuscule Greek letters are used for

monoid homomorphisms (especially φ, ψ).

Frequently, minuscule Roman letters are used for letters in words (especially a, b,

c, d, t, u, v, w, x, y, and z), variables (especially a, b, c, d, i, j, k, `, m, n, p, q, r,

t, u, and v), or functions (especially f and g); majuscule Roman letters are used for

words (especially S, T , U , V , W , X, Y , and Z), variables (especially M and N), or

functions (especially F , G, and H). Natural numbers are also used for letters.

For notation established within a numbered definition in the text, the definition

number is given in Table E.1 below.
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Table E.1 Notation used.

Notation Meaning Defined
Z The set of integers: {. . . ,−2,−1, 0, 1, . . .}.
Z+ The set of positive integers: {1, 2, 3, . . .}.
N The set of natural numbers: {0, 1, 2, 3, . . .}.
f(n) ∼ g(n) limn→∞

f(n)
g(n) = 1.

f(n) = O(g(n)) There exists c > 0 so that f(n) ≤ cg(n).
f(n)� g(n) f(n) = O(g(n)).
f(n) = o(g(n)) limn→∞

f(n)
g(n) = 0.

Σ∗ The set of finite Σ-words. 1.1
Σn The set of length-n Σ-words. 1.1
ε The empty word. 1.1
[n] The set {1, 2, . . . , n}.
w ∈ W Letter w occurs in word W . 1.3
wn The word formed from n copies of the letter w. 1.3
|W | The length of word W . 1.3
L(W ) The set of letters that occur in word W . 1.3
||W || The number of letter recurrences in word W . 1.3
W [i : j] The factor of W stretching from letter i+ 1 to j. 1.5
V ≤ W Word V is a factor of word W . 1.5
V � W W encounters V . 1.9
Zn The n-th Zimin word. 1.15
f(n, q) Least M such that every word in [q]M encounters Zn. 2.1
ba Towering exponential a··

a

with b occurrences of a.
In(V,Σ) The set of W -instances in Σn. 2.4
In(V, q) The proportion of words in Σn that are V -instances 2.4
E(·) The expected value of a given random variable.
P(·) The probability of a given event.
m(n, q) The number of minimal Zn-instances in [q]∗. 2.11
d(V,W ) The factor density of word V in word W . 3.1
δ(V,W ) The (instance) density of word V in word W . 3.1
δ(V, q) The liminf density of word V over [q]. 3.1
δn(V, q) The expected density of word V in W ∈ [q]n. 4.1
δ(V, q) limn→∞ δn(V, q). 4.1
I(V, q) limn→∞ In(V, q). 4.1
hom(V,W ) The number of V -encounters in W . 4.2
homn(V, q) The expected number of V -encounters in W ∈ [q]n. 4.2
δsur(V,W ) 1 if W is a V -instance; 0 otherwise. 4.9
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