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For the past twenty years, Matrix Product States (MPS) have been widely used in solid state
physics to approximate the ground state of one-dimensional spin chains. In this paper, exploiting a
connection with the theory of matrix algebras, we derive two structural properties of MPS, namely:
a) there exist local operators which annihilate all MPS of a given bond dimension; and b) there
exist local operators which, when applied over any MPS of a given bond dimension, decouple (cut)
the particles where they act from the spin chain while at the same time join (glue) the two loose
ends back again into an MPS. Armed with these tools, we show how to systematically derive ‘bond
dimension witnesses’, or 2-local operators whose expectation value allows us to lower bound the
bond dimension of the underlying quantum state. We extend some of these results to the ansatz of
Projected Entangled Pairs States (PEPS). As a bonus, we use our insight on the structure of MPS
to: a) derive some limitations on the use of MPS and PEPS for ground state energy computations;
b) show how to decrease the complexity and boost the speed of convergence of the semidefinite
programming hierarchies described in [Phys. Rev. Lett. 115, 020501 (2015)] for the characterization
of finite-dimensional quantum correlations.

I. INTRODUCTION

The study of condensed matter phases depends cru-
cially on our ability to determine the properties of the
ground state of local Hamiltonians defined over a lattice.
Not only this problem has been shown to be QMA-hard
for general Hamiltonians [1, 2], but already for meso-
scopic systems (of n ∼ 40 particles), even storing the
description of a general quantum state in a normal com-
puter becomes an impossible task. This forces condensed
matter physicists to resort to quantum state ansatzs in
order to understand and study the properties of matter
in the low temperature regime.

One ansatz that has proven very useful in this respect
is the family of Tensor Network States (TNS) [3], a class
of many-body wavefunctions of complexity fixed by a pa-
rameter known as bond dimension. In the last few years,
TNS have been successfully used to approximate the low
energy sector of local Hamiltonians of spin lattices of dif-
ferent dimensions [4–6]. The ability to approximately
compute expectation values in an efficient manner, to-
gether with the possibility to conduct optimizations in
the thermodynamical limit [7–10] makes TNS one of the
very few avenues to understand the physics of strongly
correlated systems.

Because of all the above and further theoretical consid-
erations, in the last years, almost every talk about TNS
starts with the speaker reminding the audience that ‘TNS
of low bond dimension are the only physical states of con-
densed matter systems’, or, equivalently, that ‘all other
rays of the Hilbert space of a many body system are not
physically realizable’.

Suppose that we take this last claim at face value. That
is, we postulate that the laws of Nature are such that
the states of condensed matter systems at low tempera-
ture are representable via convex combinations TNS of
low bond dimension. This is in effect a physical the-

ory; as such, its limits must be explored to determine
to which degree the theory is falsifiable, and thus sci-
entific. Given that all one can hope to estimate in the
lab are the expectation values of certain k-local observ-
ables, what makes TNS special, when compared to any
other quantum state? How do they transform under lo-
cal operations? Given experimental data, can we prove
that the underlying quantum state cannot possibly have
a low bond dimension, i.e., can we falsify a TNS model?

We lack tools to answer these questions. Note that
the naive scheme of lower bounding the bond dimen-
sion by estimating the rank of reduced density matri-
ces only works with pure TNS and not convex combi-
nations thereof. Moreover, the physical scenarios which
we consider here just allow the experimentalist to esti-
mate averages of two-body reduced density matrices. In
addition, the variational methods so commonly used in
condensed matter physics to optimize over TNS of fixed
bond dimension are useless to refute a TNS model: such
a task would require relaxation, rather than variational
techniques.

In this paper, we will address these problems for Ma-
trix Product States (MPS) [11], a class of TNS used to
model non-critical one-dimensional spin chains.

We start by deriving two surprising features of MPS:
first, for any D we identify local operators which anni-
hilate all MPS of bond dimension smaller than or equal
to D. Second, for any D we prove the existence of local
operators which, when applied over any MPS of bond di-
mension D, decouple (cut) the particles where they act
from the spin chain while at the same time join (glue)
the two loose ends back again into a MPS.

Armed with these notions, we will define a family of
k-local operators with negative eigenvalues whose expec-
tation values are nonetheless positive for all MPS of a
given bond dimension D. Each such operator can be
used to certify that the quantum state of a non-critical
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spin chain does not admit an MPS representation of bond
dimension D. Moreover, this partial characterization of
the dual cone of MPS allows us to devise general feasi-
bility tests, or automated criteria to falsify MPS models
given limited data about the underlying quantum state,
such as a number of experimentally available expectation
values.

In addition, we will construct instances of local Hamil-
tonians of arbitrarily many qubits for which a blind ap-
plication of MPS-based optimization methods would fail
to estimate the ground state energy. This construction
can be generalized to other TNS for optimizations over
spin lattices of higher spatial dimensions. We will also
exploit the low dimensionality of the space spanned by
MPS and the notion of cut-and-glue operators to de-
crease the complexity and boost the speed of convergence
of the semidefinite programming (SDP) [12] hierarchies
described in [13, 14] for the characterization of finite-
dimensional quantum correlations.

The structure of this paper is as follows: first, we will
introduce local Hamiltonians and MPS, and also a couple
of notions from the theory of Matrix Algebras. Then we
will reveal a connection between MPS and polynomials of
non-commuting variables, which will allow us to derive
non-trivial structural properties of MPS. Next, we will
use these properties to explore the limits of MPS models
and improve the SDP relaxations proposed in [13, 14].
Finally, we will discuss how some of our results generalize
to Projected Entangled Pairs States (PEPS) [5].

Before we proceed, though, a disclaimer is in order:
long after the completion of this work, we were made
aware that the connection between matrix algebras and
MPS had already been pointed out by R. Werner in 2006
[15]. In this encyclopaedia article, Werner also observes
that the dimensionality of the space spanned by MPS of
a fixed bond dimension is polynomial on the system size.

II. MATRIX PRODUCT STATES AND THE
THEORY OF MATRIX ALGEBRAS

Consider a quantum system composed of n distinguish-
able particles, each of which has local dimension d. A
general pure state |ψ〉 of this ensemble hence lives in
(Cd)⊗n, and so we require dn complex parameters to de-
scribe it.

An n-site Matrix Product State (MPS) is a state of the
form

|ψ(ω,A, n)〉 =

d∑
i1,...,in=1

tr(ωAi1Ai2 ...Ain)|i1, ..., in〉, (1)

where ω,A1, ..., Ad are D × D matrices. To be precise,
in general MPS the matrices {Ai}di=1 are taken to be
site-dependent [11]. In the following, though, whenever
we refer to MPS, we will have in mind eq. (1). The
matrix ω is a boundary condition, while the parameter D

is known as the bond dimension of the state. In order to
distinguish it from d, the latter is also called the physical
dimension.

It can be proven that, for D high enough, all states can
be expressed as in eq. (1). However, we will be interested
in systems where the value of D does not grow much
with the system size n. Note that an MPS of whatever
size can be described with O(dD2) complex parameters.
Hence, as long as D is not very big, it pays to use this
approximation. Finally, notice that, taking ω = ID, the
state becomes invariant with respect to the permutation
1 → 2 → ... → n → 1. Such states are called finite
translational invariant MPS.

For low values of D, computing expectation values of
product operators in an MPS can be carried out in an
efficient way. Thus MPS are regularly used to approx-
imate the ground state of k-local Hamiltonians of one-
dimensional systems, i.e., Hamiltonians of the form:

H =

n∑
j=1

hj , (2)

where hj acts non-trivially on the space of the particles
j, j + 1, ..., j + k − 1. Given H, we will denote by 〈H〉D
the minimum average value of H achievable with MPS
of bond dimension D.

Note that we can always choose {Ai} satisfying∑d
i=1AiA

†
i = ID [11]. This allows us to perform calcula-

tions in the thermodynamic limit, i.e., n → ∞. Indeed,
in such a case, the m-site reduced density matrix ρm of
the state under consideration is equal to

ρm =
∑
~i,~j

tr(A†jm ...A
†
j1
σAi1 ...Aim)|i1, ..., im〉〈j1, ...jm|,

(3)

where σ ≥ 0 satisfies tr(σ) = 1 and
∑
iA
†
iσAi = σ, and

the sum runs over all vectors ~i,~j ∈ {1, ..., d}m. With the
latter condition, the above is a Translational Invariant
(TI) MPS or an infinite MPS (iMPS).

If the state of a finite spin chain can be expressed as
a convex combination of MPS of bond dimension D, we
will say that it admits an MPS model of bond dimension
D. Furthermore, if the TI state of an infinite spin chain
can be expressed as a convex combination of iMPS of
bond dimension D, we will say that it admits an iMPS
model. Unless otherwise specified, whenever we refer to
MPS in this paper we will mean states of the form (1)
(not necessarily TI).

We now digress momentarily from the topic of MPS
to the theory of matrix algebras. A matrix polynomial
identity (MPI) F (X) for dimension D is a polynomial of
noncommuting variables X1, ..., Xd that vanishes when
evaluated with matrices of dimension D or lower. For
example, any commutator [Xi, Xj ] is a MPI for D = 1.
A more elaborate example is [[X1, X2]2, X3]; this polyno-
mial vanishes when evaluated with 2× 2 matrices.
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Let us see why: being a commutator, the trace of
Z ≡ [X1, X2] must be zero, and so Z =

∑3
i=1 ciσi, for

some complex numbers c1, c2, c3 (here σ1, σ2, σ3 denote

the Pauli matrices). Squaring Z we get Z2 = (
∑3
i=1 c

2
i )·I,

and thus [Z2, X3] = 0 for all X3 ∈ B(C2).
MPIs do not only exist for dimensions 1 and 2. In

general, it can be proven that any 2D-tuple of D × D
matrices X1, ..., X2D must satisfy the standard identity
F2D(X) = 0 [16], where

FN (X) ≡
∑
π∈SN

sgn(π)Xπ(1)...Xπ(N). (4)

Here SN denotes the set of all permutations π of N el-
ements. It can also be shown that MPIs for matrices of
dimension D must necessarily have degree 2D or higher
[16].

A concept related to MPIs is that of central matrix
polynomials, or polynomials P (X) of noncommuting vari-
ables which are proportional to the identity when eval-
uated with D × D matrices. E.g.: in D = 1, any poly-
nomial can be interpreted as a central polynomial. In
D = 2 we already saw an example, namely the poly-
nomial [X1, X2]2. As with MPIs, it can be proven that
non-trivial central polynomials (i.e., central polynomials
which are not MPIs) exist for all dimensions D [16].

III. THE PHYSICS OF MPS

We will next establish a relation between matrix poly-
nomials and many-body quantum states. From this
link, non-trivial structural properties of MPS will fol-
low almost straightforwardly. Let X ≡ (X1, ..., Xd)
be any tuple of d noncommuting variables, and let
P (X) be a homogeneous polynomial P (X1, ..., Xd) =∑
i1,...im

pi1,...,imXi1 ...Xim of degree m. By |P (X)〉
we will denote the m-particle vector |P (X)〉 =∑
i1,...im

p∗i1,...,im |i1, ..., im〉.
It is immediate that, for any n-site MPS |ψ〉 of the

form (1), applying 〈P (X)| over particles s + 1, ..., s + m
leads to

〈P (X)|ψ〉 =

=
∑

i1,...,is,is+m+1,...,in

tr(ωAi1 ...AisP (A)Ais+m+1 ...Ain)×

× |i1, ..., is, is+m+1, ..., in〉. (5)

That is, we obtain a state similar to an (n − m)-site
MPS, but with an ‘impurity’ in the middle, namely the
matrix polynomial P (A). This notion of interacting with
physical sites in order to engineer operators at the virtual
level is actually the main idea behind measurement-based
quantum computing on MPS [17].

Now, let P (X) be a homogeneous MPI for dimension
D of degree m. Then, according to (5), 〈P (X)|ψ〉 = 0,
i.e., the local operator 〈P (X)| will have the property of

annihilating any MPS with bond dimension D or smaller.
Conversely, let |P (X)〉 be an m-particle vector with the
property of annihilating all MPS of bond dimension D or
smaller. Due to our freedom in choosing the boundary
condition ω, it is easy to see that P (X) must necessarily
be a MPI. We have just established that the local space
spanned by MPS is the orthogonal complement of the
space of homogeneous MPIs for dimension D.

The next question to answer is how big these two
spaces are. Denote by HMPS

D,m the m-local space spanned
by MPS of bond dimension D of whatever size n ≥ m,
and call HMPI

D,m the orthogonal complement of HMPS
D,m .

Since MPIs of degree smaller than 2D do not exist, we
have that, for m < 2D, HMPI

D,m = {0}. Now, it is easy

to see that HMPS
D,m corresponds to span{|ψ(ω,A,m)〉 :

ω,A1, ..., Ad ∈ B(CD)}. Calling ~a the entries of the ma-
trices A, we thus have that

|ψ(ω,A,m)〉 =
∑
w

w(~a, ωij ,m)|φw〉, (6)

where the sum runs over all monomials w of degree m in ~a
and degree 1 on the entries of ω, and the vectors {|φw〉}w
do not depend on the particular values of A,ω (e.g.:
the vector corresponding to the monomial ω11(A1)m11 is
|1〉⊗m). The above decomposition allows us to bound the
dimensionality of HMPS

D,m simply by counting the number
of such monomials. The result is

dim(HMPS
D,m ) ≤ D2

(
m+ dD2 − 1
dD2 − 1

)
, (7)

where the D2 factor stems from the number of entries of
the boundary condition ω. Relation (7) implies that the
dimension of HMPS

D,m increases polynomially with the sys-
tem size m, contrarily to the total local space dimension,
which increases as dm. In the limit of high m, the space
of MPIs is therefore exponentially bigger than HMPS

D,m .

Both the identification of HMPS
D,m with the orthogo-

nal complement of HMPI
D,m and the polynomial bound

on dim(HMPS
D,m ) appear in Werner’s encyclopaedic arti-

cle [15].
In Appendix A we describe two efficient algorithmic

procedures to generate an orthonormal basis for HMPS
D,m .

This allows us to ascertain the exact dimensionality of
the spaces HMPS

D,m , for whatever values of D, d,m. Some
results are presented in Table I.

Let h ∈ B(HMPI
D,m ) be a self-adjoint operator acting on

the space of MPIs of dimension D, and suppose that we
integrate it in an n-body k-local Hamiltonian H, with
k ≥ m. That is, suppose that the Hamiltonian of the
system is H ′ = H + h, with H given by eq. (2).

The above discussion implies that MPS of bond di-
mension D or lower ‘will not see’ such a term, i.e.,
H ′|ψ〉 = H|ψ〉 for all MPS |ψ〉 = |ψ(ω,A, n)〉, with
ω,A ⊂ B(CD), n ≥ m. Elaborating on this, we find
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m 5 6 7 8 9 10 11 12 13 14 15

D = 2 30 53 88 139 210 306 432 594 798 1051 1360

D = 3 32 64 128 256 506 976 1820 3278 5700 9597 ×
D = 4 32 64 128 256 512 1024 2048 3278 8192 × ×
D =∞ 32 64 128 256 512 1024 2048 4096 8192 16384 32768

TABLE I. Dimension of the m-qubit subspace HMPS
D,m for dif-

ferent values of the bond dimension D.

a limitation common to all MPS-based variational meth-
ods for Hamiltonian minimization:

Proposition 1. Let D > D′ > 1 be natural numbers.
Then, for any N , there exists an O(D2)-local TI n-qubit
Hamiltonian H, with n > N , satisfying

〈H〉D′−1 > 〈H〉D′ = 〈H〉D′+1 = ...

... = 〈H〉D−1 = 〈H〉D > 〈H〉D+1. (8)

The result also holds when we restrict the Hamiltonian
minimization to finite TI MPS (with ω = ID). More-
over, it can be extended to iMPS and TI Hamiltonians
in the infinite spin chain. The Hamiltonian can also be
taken O(D)-local at the cost of increasing the physical
dimension of the particles.

See Appendix B for a proof.
A blind application of the proverbial method of min-

imizing a Hamiltonian via MPS of increasing bond di-
mension until the sequence of energy values appears to
converge hence risks getting stuck at a suboptimal point.
Admittedly, the limitations implied by the Proposition
do not pose a practical threat for usual studies of one-
dimensional non-critical chains, since current MPS-based
algorithms allow reaching bond dimensions of order 100
in a normal computer (way beyond the locality of Hamil-
tonians of physical interest). This is no longer the case,
though, for some other classes of TNS, for which we lack
good optimization schemes and Proposition 1 also ex-
tends, see below.

Suppose now that we choose P (X) in eq. (5) to be
a central polynomial for dimension D. Then P (A) =
p(A)I, where p(A) is a scalar. The state |ψ〉 will hence
get projected into the state p(A)|ψ′〉, with

|ψ′〉 =
∑

i1, ..., is,

is+m+1, ..., in

tr(ωAi1 ...AisAis+m+1
...Ain)×

× |i1, ..., is, is+m+1, ..., in〉. (9)

This is again a MPS with the same boundary condition
ω and matrices A1, ..., Ad, but where m particles are just
missing.

Now, divide the space of m-degree homogeneous cen-
tral polynomials into classes [P ] = P + MPI, i.e., two

FIG. 1. Action of a cut-and-glue operator C over a MPS.

m 3 4 5 6 7 8 9 10 11 12 13 14 15

D = 2 0 1 2 6 10 20 30 50 70 105 140 196 252

D = 3 0 0 0 0 0 0 4 16 50 129 274 542 ×

TABLE II. Dimensions of the m-qubit quotient spaces QD,m

for different values of m and bond dimensions D = 2, 3.

central polynomials P1, P2 belong to the same class if
and only if P1 − P2 is an MPI. These classes form a
vector space QD,m, the quotient space of m-degree ho-
mogeneous central polynomials by MPIs. Let {Pi(X)}i
be a basis for QD,m and define the m-local operator
C ≡

∑
i |ϕi〉〈Pi(X)|, where {|ϕi〉}i is any orthonormal

set of m-particle states. The effect of C over any MPS of
bond dimension D or smaller is to project the m parti-
cles where it acts into the pure state |ϕ〉 ≡

∑
i pi(A)|ϕi〉,

while the remaining particles end up in the state (9). It
hence ‘cuts’ particles s + 1, ..., s + m off the chain and
‘glues’ the two ends back, see Figure 1.

This sort of operators will be called cut-and-glue op-
erators. Note that, after tracing out the particles cut, a
cut-and-glue operator acting over a TI MPS leaves the
spin chain in the same quantum state (modulo normal-
ization).

In Appendix C we sketch efficient procedures to gen-
erate a basis for QD,m. Table II gives an idea of how the
dimensionality of QD,m scales with the system size and
the bond dimension in qubit ensembles. Surprisingly, it
turns out that the dimensionality of Q2,m in Table II
follows the sequence of coefficients in the power series
expansion of the Poincaré series P (C2,2; t), which is se-
quence A096338 in the On-Line Encyclopedia of Integer
Sequences [18]. We conjecture that the above observa-
tion holds true for entries beyond m = 15 in Table II as
well.

Both annihilation and cut-and-glue operators are im-
portant structural features of MPS. Unfortunately, even
for D = 2 their implementation in the lab would re-
quire the ability to switch on non-trivial four-interaction
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terms. This is experimentally challenging, given that in
many experimental setups only 2-local operators are ac-
cessible. Fortunately, there is a cleverer way to exploit
our findings.

The notions of anihilation and cut-and-glue operators
allow us to define a family of local operators h whose
average value is non-negative when computed with n-
site MPS of bond dimension D or smaller. Call P the
projector onto the space HMPS

D,n , and consider all m-local
operators h which satisfy:

PhP = f +

n−1∑
j=1

PCjgjC
†
jP, (10)

where f ≥ 0, Cj is a cut-and-glue operator acting non-
trivially over particles 1, ..., j and gj is an entanglement
witness [19] with respect to the partition 1, ..., j|j+1, ..., n
(namely, 〈gj〉 ≥ 0 for all quantum states separable with
respect to the said partition). Clearly, 〈h〉D ≥ 0.

Given an arbitrary (k-local) operator H, consider the
problem of maximizing µ ∈ R such that H − µ admits a
decomposition of the form (10). Then, for any feasible µ,
〈H〉D ≥ µ. If the minimum eigenvalue of H happens to
be smaller than µ, then H −µ can be regarded as a bond
dimension witness: an expectation value for H below µ
would prove that the underlying quantum state of the
system does not admit a MPS model of bond dimension
D.

Regretfully, the optimization proposed above requires
an implicit characterization of entanglement witnesses,
a problem known to be NP-hard [20]. A way out is to
simply demand gj to belong to a class of entanglement
witnesses which are easy to describe. An obvious choice is
the set of all operators which are Positive (semidefinite)
under Partial Transposition (PPT) [21]. With this re-
striction on gj , the maximization of µ can be formulated
as a semidefinite program (SDP), a class of convex opti-
mization problems which can be solved efficiently [12].

The dual of this program would be an optimization
over all quantum states ρ ∈ B(HMPS

D,m ) such that, for

all j, CjρC
†
j is PPT for the partition 1, ..., j|j + 1, ..., n.

Since HMPS
D,m grows polynomially with m, for small D a

normal computer can reach large values of m. Moreover,
playing with the displacement operator, it is easy to de-
rive a hierarchy of SDPs for the characterization of iMPS
models.

Rather than describing these tools in detail [the reader
can find a full description of the SDP programs in Ap-
pendix D], we will illustrate how these methods work
with a practical example. Consider an N -site spin 1/2
chain, and suppose that, via neutron interferometry, we
estimate the expectation value of the XXX Heisenberg
Hamiltonian

HN =

N−1∑
i=1

1

4
~σi · ~σi+1. (11)

We wonder whether our experiment can be explained
with an iMPS model of low bond dimension.

Take the number of particles in the chain to be small,
say N = 7. We are interested in determining whether
our system admits an MPS model of low bond dimen-
sion. For low N , the minimum eigenvalue of HN can be
computed exactly, and so we find that the minimum av-
erage energy per interaction term is E ≡ min 1

6 〈H7〉 ≈
−0.4727. On the other hand, an SDP optimization over
7-site normalized density matrices ρ ∈ B(HMPS

2,7 ) satis-

fying CjρC
†
j , PPT for j = 5, 6 returns the greater value

E2 ≡ 1
6 〈H7〉2 ≥ −0.4065. This optimization, and all

subsequent ones, was carried out with the SDP solver
MOSEK [22]. The XXX Heisenberg Hamiltonian can
thus be interpreted as a displaced bond dimension wit-
ness: an expectation value smaller than -0.4065, within
reach given the lower value of E, would signify that the
state of the spin chain cannot have a MPS model of bond
dimension D = 2.

Refuting D = 3 MPS models for N = 7 is impossible
with the tools developed so far, since HMPS

3,N = (C2)⊗N

and Q3,N = {0}, for N = 1, ..., 8, see Tables I and II. To
make matters worse, SDP optimizations for N ≥ 9 are
too memory-demanding for a normal computer. How-
ever, if we drop the PPT condition, the resulting SDP
can be seen equivalent to projecting 1

N−1HN on the sub-

space HMPS
3,N and finding the minimum eigenvalue of the

resulting operator. This simplified method allows us to
reach greater values of N , at the price of losing robust-
ness in our bounds. With this trick, for N = 13 we obtain
a bound E3 ≡ 1

12 〈H13〉3 ≥ −0.44958, slightly bigger than
the minimum energy density E = −0.46044 achievable.

For N � 1, we can take the system to be approxi-
mately translational invariant, so this time we want to
refute iMPS models of low bond dimension for our sys-
tem. For D = d = 2 iMPS models, it can be shown that
spin chains are symmetric under parity, and hence satisfy
non-trivial linear constraints. However, if our experimen-
tal setup does not allow us to estimate quantities of the

sort
∑N−1
i=1 〈σsi σti+1〉, with t 6= s, we must again rely on

inequalities, in which case the XXX Heisenberg Hamil-
tonian can also serve as a witness. It is a standard re-
sult (see, e.g., [23]) that the ground state energy density
E = limN→∞

1
N−1 〈HN 〉 of the infinite XXX Heisenberg

model is given by E = 1/4− ln(2) ≈ −0.4431.

Now, how to derive bounds for iMPS models? A pos-
sibility would be to compute the minimum expectation
value of 1

N−1 〈HN 〉 for high N via the MPS SDP re-
laxation used above. Intuitively, increasing values of N
should give better and better approximations to the opti-
mal iMPS value for the energy density. We chose, though,
to use the slightly better approximation of optimizing the
value of 1

4~σ1 ·~σ2 over reduced density matrices subject to
the constraints above and the extra condition ρ ∈ SD,N ,
where SD,N denotes the span of the N -site reduced den-
sity matrices of iMPS of bond dimension D. This space
can be characterized using similar techniques as the ones
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we applied to compute HMPS
D,m .

Optimizing over 8-site normalized reduced density

matrices ρ ∈ B(HMPS
2,8 ) satisfying CjρC

†
j , PPT for

j = 5, 6, 7 and ρ ∈ S2,8 we find that E2 ≡
limN→∞

1
N−1 〈HN 〉2 ≥ −0.3378. An average energy

lower than the last value will hence refute all iMPS mod-
els of bond dimension D = 2.

This example is very illuminating in that it allows to
appreciate the relevance of cut-and-glue operators for this
class of optimizations. For, if we drop the PPT conditions
above, the lower bound on E2 output by the computer
decreases to−0.4246. This is still bigger than E, and so it
also defines a bond dimension witness. However, it is one
order of magnitude less robust than the previous one, and
so its violation is more challenging from an experimental
point of view.

As a final example, we consider the Majumdar-Ghosh
Hamiltonian [24]:

HMG =

N−2∑
i=1

1

8
(2~σi~σi+1 + ~σi~σi+2). (12)

The expectation value of this operator can also be esti-
mated experimentally via neutron difusion. In the ther-
modynamical limit N →∞, the minimum energy density
of HMG is E = − 3

8 = −0.375, achievable with an iMPS

of bond dimension D = 3 [11]. In contrast, an 8th-order
SDP relaxation over iMPS of bond dimension D = 2
gives E2 ≥ −0.2593. We have just derived a bond di-
mension witness with a large gap between iMPS models
with D = 2 and D = 3. On the negative side, though,
our lower bound for E2 is significantly lower than the best
upper bound E2 ≤ −0.125 we found using the Amoeba
variational method [25].

Note that the former SDP methods can be easily
turned into feasibility tests. Indeed, determining the ex-
istence of a state with the properties above compatible
with some partial information we may hold about the
quantum state of the spin chain (such as, e.g., the aver-
age value of a number of 2-local observables) can also be
cast as an SDP. This procedure can help an experimen-
talist to refute the existence of an MPS or iMPS model
for the state he/she prepared in the lab, without the need
of guessing the ‘right’ bond dimension witness to do the
job.

An immediate question is whether the SDP hierarchy
of relaxations for iMPS models sketched above is com-
plete, in the sense that it allows us to detect any state
lacking an iMPS model by taking N sufficiently large
(the SDP relaxation for general MPS is clearly not com-
plete). In this regard, notice that HMPS

1,N corresponds to

the symmetric space of N particles, and Q1,N = HMPS
1,N .

Hence for D = 1 the hierarchy reduces to just imposing
that the overall state is symmetric and PPT with respect
to any bipartition. This is actually the Doherty-Parrilo-
Spedalieri (DPS) method for entanglement detection [26],
and convergence follows from the quantum de Finetti

theorem [27]. Similarly, HMPS
∞,N = CdN , Q∞,N = {0}

and S∞,N is the span of all TI states. For D = ∞ the
hierarchy is therefore computing the minimum expecta-
tion value of a Hamiltonian term over N -site states whose
N−1-site reduced density matrices coincide whenever we
remove the first or the last site. This is essentially a refor-
mulation of Anderson’s approximation [28], where con-
vergence is also known to hold. One would be tempted
to claim that our SDP hierarchy should converge as well
for all intermediate values of D, but we leave this matter
open.

IV. APPLICATIONS FOR OPTIMIZATIONS
OVER FINITE DIMENSIONAL QUANTUM

CORRELATIONS

In [13, 14], a hierarchy of SDP relaxations is pre-
sented to characterize the statistics of finite-dimensional
quantum systems. This hierarchy relies on the notion
of moment matrices. Given a quantum system in state
σ ∈ B(CD), with (self-adjoint) operators X1, ..., Xd−1 ⊂
B(CD), its nth order moment matrix M is a matrix
whose rows and columns are labeled by monomials u of
X1, ..., Xd−1 of degree smaller than or equal to n, with
entries given by Mu,v = tr(u†(X)σv(X)). In [13, 14],
it is proposed to relax the requirement of M admitting
a quantum representation by demanding M ≥ 0 and
M ∈ MD, where MD denotes the space spanned by
moment matrices with quantum representations of di-
mension D.

A disadvantage of this method is that, for fixed d,D,
the complexity of implementing the hierarchy increases
exponentially with the index n of the relaxation. In the
following, we show that every nth-order moment matrix
with a quantum representation of dimension D can be in-
terpreted as a conic combination of n-site MPS with bond
dimension D. This will allow us to devise an MPS-based
algorithm that carries out an improved version of the nth-
order relaxation described in [13, 14] in time polynomial
in n.

Define Xd ≡ ID, and consider vectors of d indices
with values in {1, ..., d}. Then, for any index vector
~i ∈ {1, ..., d}k, we can associate the monomial u(X)~i ≡
Xi1 ...Xin . This procedure gives an over-representation
of the set of monomials of degree smaller than or equal
to n.

Now suppose that, by repeating rows and columns, we
enlarge the nth-order moment matrix M of the system
to an dk × dk matrix M̄ such that 〈~i|M̄ |~j〉 = Mu~i,v~j

,

with |~i〉 = |i1〉...|in〉 and similarly for |~j〉. The ‘enhanced’
moment matrix M̄ can then be written as

M̄k =
∑
~i,~j

tr(X†in ...X
†
i1
σXj1 ...Xjn)|~i〉〈~j|. (13)

This is just the transpose of a conic combination of MPS
of bond dimension D; much like eq. (3), but without
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the condition
∑
iA
†
iσAi = σ. As such, its support is

contained in HMPS
D,n ; more precisely, in the analog set for

MPS with Xd = I plus any other extra restriction in the
variables X. Hence M̄ can be fully specified by a number
of parameters polynomial in n.

Most interestingly, one can compute special cut-and-
glue operators C for this kind of MPS. The conver-
gence of the scheme can therefore be boosted by de-
manding extra positive semidefinite constraints such as

(CjM̄C†j )Tj ≥ 0. ‘Localizing matrices’ of the form

Mq
u,v =

∑
~i,~j tr(X†~i σX~jq(X))|~i〉〈~j|, defined in [14] to

model semi-algebraic conditions of the sort q(X) ≥ 0,
can be treated in a similar way.

V. EXTENSION TO PROJECTED ENTANGLED
PAIRS STATES

MPS can be understood as elements of a larger class of
TNS called Projected Entangled Pairs States (PEPS) [5].
Such states are used to approximate the low energy sector
of local Hamiltonians describing particles sited in square
lattices of arbitrary spatial dimensions. While MPS are
defined via tensors with one physical index (i = 1, ..., d)
and two bond indices (the column and row indices of
the matrices A1, ..., Ad), N -dimensional PEPS are de-
fined via contractions of tensors with 1 physical index
and 2N bond indices. MPS can therefore be regarded
as one-dimensional PEPS. For illustration, in Figure 2
the tensors of a two-dimensional PEPS are represented
by circles, while physical [bond] indices are denoted by
red [orange] lines. It is natural to ask whether some of
the structural features we derived for MPS also extend
to PEPS of higher spatial dimension.

Consider the space spanned by PEPS of bond dimen-
sion D and physical dimension d in a given region R of
the lattice, with boundary ∂R, see Figure 2. As with
MPS, we can express any PEPS in R as in (6), where
each monomial w has degree 1 on the boundary condi-
tion and degree |R| on the tensor A generating the PEPS.
The local space spanned by PEPS is hence bounded by
D|∂R|poly(|R|). This bound must be compared with the
total dimensionality of the physical space in R, namely,
d|R|. Provided that d|R| > poly(|R|)D|∂R|, we will find
non-trivial operators in R which will annihilate all PEPS
with bond dimension D or smaller. If the spatial di-
mension of the lattice is N , taking R to be a hyper-
cube of size L, with volume |R| = LN and surface area
|∂R| = 2NLN−1, this will happen for high enough L.

We have just proven the existence of tensor polyno-
mial identities, i.e., local vectors |φ〉 which annihilate all
PEPS of bond dimension D. Given that generic PEPS
are the ground state of a unique parent Hamiltonian, it
is easy to prove a weaker version of Proposition 1 for
PEPS of arbitrary spatial dimension. Namely, that the
chain of identities will break at some point beyond 〈H〉D
(not necessarily at D + 1). Let us remark that, con-
trarily to MPS variational algorithms, current tools for

FIG. 2. The regionR in the two-dimensional lattice is marked
in purple. Its boundary ∂R (dashed line) corresponds to all
broken links of the repeated tensor.

optimizations over PEPS do not allow the user to reach
high bond dimensions. Hence, even if the Hamiltonian
is k-local, it may be that we can just compute the val-
ues {〈H〉D : D � k}. In such a predicament we may be
eager to believe that the last estimation is a good approx-
imation to the ground state energy, if the corresponding
optimizations over lower bond dimensions returned sim-
ilar results... and we could be wrong, as the arguments
above show.

VI. CONCLUSION

In this work, we have presented two highly non-trivial
structural properties of MPS, namely, the existence of
annihilation and cut-and-glue operators. We used these
notions to prove several results concerning the limitations
of the MPS approximation. Along the way, we raised a
number of important open questions.

First, it would be desirable to find closed formulas for
the dimensionalities of HMPS

D,m and QD,m. Even though
we have efficient methods to calculate these exactly, large
values of m require a considerable amount of computa-
tional time (hence the missing entries in Tables I, II). Per-
haps the connection with the Poincaré series P (C2,2; t)
can be exploited in this regard.

Another interesting problem is whether our SDP hier-
archy of relaxations to refute iMPS models is complete
or can be further improved.

Regarding completeness, for D = 1 the proof of con-
vergence follows from the quantum de Finetti theorem
[27]. For D =∞, the hierarchy is just a reformulation of
Anderson’s approximation [28], whose convergence was
established long ago. A convergence proof for all other
values of D would not only provide us with an alterna-
tive definition of iMPS, but most likely would involve an
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intermediate result of depth comparable to the quantum
de Finetti theorem.

As for improvement, a promising avenue to boost the
speed of convergence of the hierarchy is to incorporate
to our codes entropic constraints of the form S(ρ1,...,k) ≥
S(ρ1,...,k−1) for 2 ≤ k ≤ n, as in [29]. These hold for
any TI state; and, in particular, for iMPS. Although
not reducible to SDPs, the corresponding problems can
nonetheless be attacked with the tools of convex opti-
mization theory. Considering the space spanned by sev-
eral copies of a MPS should also help.

Admittedly, it is difficult to believe that these ideas
can ever lead to non-trivial restrictions for MPS models
with D > 4. Devising new tools for the characteriza-
tion of MPS models of high bond dimension is hence an
important matter.

Finally, it is intriguing whether the analogs of cut-and-
glue operators for MPS also exist for PEPS of higher
dimension. The action of such local operators over an
arbitrary PEPS would be to project the region where
they act into a pure state and interconnect the links
of the particles in the boundary. Appropriately tamed,
such operators would allow transforming tensor network
states of different type into each other by means of fixed
(i.e., state-independent) local operations, very much like
graph states transform into each other [30]. In this case,
however, computational explorations face the exponen-
tial complexity of characterizing the space spanned by
PEPS of dimensions two and higher.
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Determining the exact dimensionality of HMPS
D,m and

deriving an orthonormal basis for this subspace can be
done via two different procedures. First, given an arbi-
trary weight w(ω,A) > 0, we will call polynomial MPS
any m-site states of the form

|fMPS〉 ≡
∫
dωdAw(ω,A)f(ω,A)∗|ψ(ω,A,m)〉, (A1)

where f(ω,A) is a homogeneous polynomial of the com-
ponents of ω (with degree 1) and A (with degree m). A
comfortable possibility is to take ω,A real and the triv-
ial weight w(ω,A) = 1. Defining t ≡ dim(HMPS

D,m ), our

task is to find a set of polynomials {fi}ti=1 such that
〈fMPS
i |fMPS

j 〉 = δij and span{|fMPS
i 〉} = HMPS

D,m . This
can be seen equivalent to diagonalizing the kernel

K(A,ω,A′, ω′) ≡ 〈ψ(ω′, A′)|ψ(ω,A)〉w(ω,A)w(ω′, A′) =

= tr


(

d∑
i=1

Ā′i ⊗Ai

)N (
σ̄′ ⊗ σ

)w(ω,A)w(ω′, A′),

(A2)

and taking the eigenvectors (polynomials) with non-zero
eigenvalue.

Alternatively, we can simply sequentially generate real
random D×D matrices ωj , Aj1, ..., A

j
d and use them to de-

fine the sequence of random MPS (|ψ(ωj , Aj ,m)〉)j . Ex-
ploiting the fact that the overlap between two MPS can
be computed efficiently, one can apply a Gram-Schmidt
process to the previous sequence of MPS, thus obtain-
ing an orthonormal basis for HMPS

D,m , whose elements are
finite linear combinations of MPS.

Appendix B: Proof of Proposition 1

The goal of this section is to prove Proposition 1 in the
main text, which reads:

Proposition 2. Let D > D′ > 1 be natural numbers.
Then, for any N , there exists an O(D2)-local TI n-qubit
Hamiltonian H, with n > N , satisfying

〈H〉D′−1 > 〈H〉D′ = 〈H〉D′+1 = ...

... = 〈H〉D−1 = 〈H〉D > 〈H〉D+1. (B1)

For the proof we need two intermediate results,
namely:

1. There exist TI O(D)-local Hamiltonians of arbi-
trarily many particles whose unique ground state
is a MPS of bond dimension D. This is proven in
Section B 1.

2. For any D > 1, there exists a bivariate noncom-
mutative homogeneous polynomial F (X1, X2) of
degree O(D2) that is a MPI for matrices of size
D− 1×D− 1, but not for matrices of size D×D.
This will be proven in Section B 2.

These two results will be combined to demonstrate the
Proposition in Section B 3.

1. Parent Hamiltonians and MPIs

A set of matrices A1, ..., Ad ∈ B(CD) satisfies the in-
jectivity condition if there exists k such that the products
{Ai1 ...Aik} span all of B(CD). From [11], we know that
any (TI) n-site MPS whose matrices satisfy the injectiv-
ity condition for some order k can be seen as the unique
ground state of a (TI) 2k-local Hamiltonian (provided
that n ≥ 2k).

We will next prove that, for any D, there exist matrices
B1, B2 ∈ B(CD) which satisfy the injectivity condition
for k = O(D). With the above, this will imply that, for
any bond and physical dimensions D, d and any system
size n, there exists an n-site TI MPS which arises as the
unique ground state of a O(D)-local TI Hamiltonian.

Let d = 2, and consider the matrices

B1 =

D∑
j=1

j|j〉〈j|, B2 =
1

D

D∑
i,j=1

|i〉〈j| (B2)

Note that we can express the projectors {|i〉〈i|}Di=1 as lin-
ear combinations of {Bp1 : p = 1, ..., D}. Since Bs2 = B2

for any s ≥ 1, this implies that linear combinations of the

(degree 2D+ 1) products Bp1B
2D−p−q+1
2 Bq1 can generate

the matrices |i〉〈i|B2|j〉〈j| = 1
D |i〉〈j|, which span B(CD).

2. MPIs for dimension D − 1 which cease to be
identities in dimension D

In this section we will prove that, for any D, there
exists a polynomial F (X1, X2) of degree O(D2) which is
a MPI for dimension D − 1, but not for dimension D.

Choose B1, B2 ∈ B(CD) as in (B2). As proven
in Appendix B 1, there exist homogeneous polynomi-
als {Pj(X)}j of degree O(D) such that P1(B) =
|1〉〈1|, P2(B) = |1〉〈2|, ..., P2D−3(B) = |D − 1〉〈D −
1|, P2D−2(B) = |D − 1〉〈D|. Note that the ma-
trices {Pj(B)}j have the peculiarity that the only
permutation of them which does not vanish is
P1(B)P2(B)...P2(D−1)(B). Hence, by construction,
the standard polynomial [eq. (5) in the main text]
with N = 2(D − 1), applied to the tuple Y =
(P1(B), P2(B), ...), results in a non-zero value. That is,
the O(D2)-degree homogeneous polynomial P (X1, X2) ≡
F2D(P1(X), ..., P2(D−1)(X)), while being an MPI for D−
1×D − 1 matrices, is not an MPI for dimension D.
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3. Putting all together

Now we are ready to prove Proposition 1.

Proof. Take a TI n-qubit MPS |ψ〉 with bond dimension
D′, and build its TI parent Hamiltonian H [11]. Such is
a k-local operator with the properties H ≥ 0, H|ψ〉 = 0
and |ψ〉 being the only ground state of H. From Section
B 1 we know that |ψ〉 can be chosen injective and such
that H has interaction strength k = O(D′). Since |ψ〉
is injective, it cannot be expressed as an MPS of bond
dimension D′ − 1 (because, e.g., |ψ〉 has Schmidt rank
greater than D′−1). It follows that 〈H〉D′−1 > 〈H〉D′ =
0.

Now, for m high enough, choose h ∈ B(HMPI
D,m ),

h > 0, with h 6∈ B(HMPI
D+1,m). From Section B 2 we

know that, no matter the value of the physical dimen-
sion, there exists such an operator with m = O(D2).
Given h, define the family of O(D2)-local TI Hamiltoni-
ans Hλ = H − λ

∑n
i=1 τ

i(h), where τ is the translation
operator. By construction, Hλ|ψ〉 = H|ψ〉 for all MPS of
bond dimension smaller than or equal to D, and so the
equalities in eq. (8) are satisfied. On the other hand, for
λ high enough, 〈Hλ〉D+1 < 0.

Note that, if we are entitled to play with the physical
dimension of the system, we do not need to invoke Section
B 2 at all. Indeed, it suffices to set d = 2D and take h to
be the standard identity for dimension D (which, having
degree 2D, cannot be an MPI for dimension D+ 1). The
corresponding family of Hamiltonians Hλ would then be
O(D)-local, rather than O(D2)-local.

Appendix C: Characterizing QD,m

Viewed as a subspace of (Cd)⊗m, the space of central
polynomials HCPD,m corresponds to the orthogonal com-
plement of

HMPS,[,]
D,m = span{

∑
i1,...,im

tr(ω[B,Ai1 , ..., Aim ])|i1, ..., im〉} =

= span{
∑

i1,...,in

tr([ω,B]Ai1 , ..., Aim)|i1, ..., im〉} =

= span{|ψ(σ,A,m)〉 : tr(σ) = 0}, (C1)

where the last equality follows from the equivalence be-
tween traceless matrices and commutators. Now, the
quotient space QD,m corresponds to HCPD,m∩ (HMPI

D,m )⊥ =

HCPD,m∩HMPS
D,m . A basis for QD,m, orthonormal as a sub-

space of (Cd)⊗m can thus be obtained via the following
procedure: first, we sequentially generate real random
matrices σj , Aj1, ..., A

j
d, with tr(σj) = 0, which we use to

construct a random basis {|φ[,]i 〉}i for HMPS,[,]
D,m (just as

we built a basis for HMPS
D,m in Appendix A). Next, we

find its orthogonal complement with respect to HMPS
D,m ,

the space of MPS. This can be done, e.g., by determining

the kernel of the matrix Aij ≡ 〈φ[,]i |φj〉, where {|φj〉}j is
a basis for HMPS

D,m .
As before, instead of using a randomized algorithm,

we can find an orthonormal basis for HMPS,[,]
D,m via poly-

nomial MPS {|fi〉}i and use it to construct the matrix

Ãij = 〈fi|gj〉, where {|gj〉}j denotes an orthonormal ba-

sis of polynomials for HMPS
D,m . The kernel of Ã will give

us a polynomial basis for QD,m.
In either case, the dimensionality of all these spaces

grows polynomially with the system size m, so for small
D we can find an orthonormal basis for HCPD,m for very
high values of m.

Appendix D: An SDP relaxation for linear
optimizations over MPS

Given an m-site Hamiltonian H, consider the problem

min tr(Hρ),

s.t. ρ ∈ B(HMPS
D,m ), ρ ≥ 0, tr(ρ) = 1,

(CjρC
†
j )Tj ≥ 0, j = 1, ...,m− 1 (D1)

where Cj is a cut-and-glue operator acting non-trivially
over particles 1, ..., j and BTj denotes the partial trans-
position of B with respect to the same particle set [21].

Note that we have relaxed the condition of CjρC
†
j be-

ing separable to the simpler constraint of being positive
under partial transposition. Clearly, the solution of the
SDP (D1) will provide a lower bound for 〈H〉D. Let us
remark that an implementation of (D1) requires explicit
bases for HMPS

D,m and {QD,j : j = 1, ...,m − 1}. These
can be obtained efficiently with the non-deterministic al-
gorithms described in Sections A and C.

Suppose now that we are interested in optimizing over
TI MPS given by eq. (3) in the main text. In that case,
one can define the following hierarchy of SDPs:

hn ≡min
1

n−m
tr{

n−m∑
i=1

τi(H)ρ},

s.t. ρ ∈ B(HMPS
D,n ), ρ ≥ 0, tr(ρ) = 1,

(CjρC
†
j )Tj ≥ 0, j = 1, ..., n− 1. (D2)

Here τ denotes the translation operator, and is used to
enforce TI on the relaxation. Another way to enforce TI
is to determine (via., e.g., randomization) the span SD,n
of the n-site density matrices of all TI MPS and then
demand ρ ∈ SD,n. In either case, hm ≤ hm+1 ≤ ... ≤
h?, where h? is the minimum average value of H over
extendible MPS with bond dimension D.

For D = 1, the space HMPS
D,n reduces to the symmetric

space of n d-dimensional particles, and Cj = I (since all
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polynomials are central in D = 1). The method hence
reduces to the Doherty-Parrilo-Spedalieri (DPS) method
for entanglement detection [26]. The DPS method ap-
proximates the set of states of the form

∫
dφp(φ)|φ〉〈φ|⊗m,

with p(φ) ≥ 0 by partial traces of the set of n-symmetric
states positive under partial transposition. It can be

shown to converge by virtue of the quantum de-Finetti
theorem [27]. For D =∞, program (D2) is equivalent to
computing the (n−m)th Anderson bound for the Hamil-
tonian H [28], and convergence can be proven easily. It is
an open question whether the hierarchy (D2) converges
for other values of D.
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