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Abstract

The Stern diatomic sequence is closely linked to continued fractions via the Gauss
map on the unit interval, which in turn can be understood via systematic subdivi-
sions of the unit interval. Higher dimensional analogues of continued fractions, called
multidimensional continued fractions, can be produced through various subdivisions
of a triangle. We define triangle partition-Stern sequences (TRIP-Stern sequences for
short) from certain triangle divisions developed earlier by the authors. These sequences
are higher-dimensional generalizations of the Stern diatomic sequence. We then prove
several combinatorial results about TRIP-Stern sequences, many of which give rise to
well-known sequences. We finish by generalizing TRIP-Stern sequences and presenting
analogous results for these generalizations.

1 Introduction

Stern’s diatomic sequence (defined in Section 2.2) stems from the study of continued fractions
and has a number of remarkable combinatorial properties, as seen in Northshield [45]. There
are many different multidimensional continued fraction algorithms, and they serve a num-
ber of different purposes ranging from simultaneous Diophantine approximation problems
(see Lagarias [37]) to attempts to understand algebraic numbers via periodicity conditions
(see the third author’s [22]) to automata theory (see Fogg [19]). This paper concerns a
generalization of Stern’s diatomic sequence defined using triangle partition maps, a family
of multidimensional continued fractions that includes most of the well-known multidimen-
sional continued fractions presented in Schweiger [49]. For background on multidimensional
continued fractions, see Schweiger [49] and Karpenkov [29].

For background on the properties of Stern’s diatomic sequence, see Lehmer [38]. For back-
ground on Stern’s diatomic sequence in the context of continued fractions, see Northshield
[45]. Knauf found connections between Stern’s diatomic sequence and statistical mechanics
[32, 33, 34, 35, 36], though Knauf called the sequences Pascal with memory, which is a more
apt description. The connection between Stern’s sequence and statistical mechanics was fur-
ther developed in Contucci and Knauf [8], Esposti, Isola and Knauf [15], Fiala and Kleban
[17], Fiala, Kleban and Ozluk [18], Garrity [20], Guerra and Knauf [24], Kallies, Ozluk, Peter
and Syder[28], Kleban and Ozluk [31], Mayer [41], Mendès France and Tenenbaum [42, 43],
Prellberg, Fiala and Kleban [47], and Prellberg and Slawny [48]. Other important earlier
work was done by Allouche and Shallit [2, 3], who showed that Stern’s sequence is 2-regular.

There seems to have been little work on extending Stern’s diatomic sequence to mul-
tidimensional continued fraction algorithms. The first generalization of Stern’s diatomic
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sequence was for a type of multidimensional continued fraction called the Farey map, in
Garrity [21]. The Farey map is not one of the multidimensional continued fractions that we
will be considering. Another generalization used the Mönkemeyer map, in Goldberg [23].

This paper uses the family of multidimensional continued fractions called triangle par-
tition maps (TRIP maps for short) [10] to construct analogous sequences. As mentioned,
many, if not most, known multidimensional continued fraction algorithms can be put into
the language of triangle partition maps; thus, the collection of TRIP maps is a rich family.
In Section 2, we give a quick overview of continued fractions, Stern’s diatomic sequence and
how the two are related. Section 3 reviews triangle partition maps and triangle partition
sequences. Section 4 introduces the construction of TRIP-Stern sequences. In Section 5, we
give a more pictorial description of TRIP-Stern sequences. Section 6 contains results about
the maximum terms and locations thereof for each level of the TRIP-Stern tree. Section 7
discusses minimum terms and locations thereof. Section 8 examines sums of levels of the
sequence. Section 9 determines which lattice points appear in the TRIP-Stern sequence for
the triangle map, a multidimensional fraction algorithm discussed below. Section 10 intro-
duces a generalization of the original TRIP-Stern sequence. Finally, we close in Section 11
with some of the many questions that remain.

2 Continued fractions and Stern’s diatomic sequence

Nothing in this section is new. In the first subsection, we review continued fractions in
order to motivate, in part, the definition of triangle partition maps given in Section 3. In
the second subsection, we review the classical Stern’s diatomic sequence and show how it is
linked to continued fractions. This link is what this paper generalizes.

2.1 Continued fractions and subdivisions of the unit interval

All of the content in this subsection is well-known.
Let α be a real number in the unit interval I = (0, 1]. The Gauss map is the function

G : (0, 1] → [0, 1) defined by

G(α) =
1

α
−
⌊

1

α

⌋

,

where ⌊x⌋ denotes the floor function, meaning the greatest integer less than or equal to x.
Subdivide the unit interval into subintervals

Ik =

(

1

k + 1
,
1

k

]

for k a positive integer. If α ∈ Ik, then the Gauss map is simply G(α) = 1−kα
α

. The continued
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fraction expansion of α is

α =
1

a0 +
1

a1+
1

a2+
1

...

where α ∈ Ia0 , G(α) ∈ Ia1 , G(G(α)) ∈ Ia2 , . . .. (If α, under the iterations of G, is ever zero,
then the algorithm stops.)

We now want to translate the definition of the Gauss map into the language of two-by-two
matrices, which can be more easily generalized. Set

v1 =

(

0
1

)

and v2 =

(

1
1

)

.

We have the standard identification of a vector in R2 to a real number via
(

x
y

)

→ x

y
,

provided of course that y 6= 0. Then we think of the two-by-two matrix

V = (v1, v2) =

(

0 1
1 1

)

as being identified to the unit interval I. Set

F0 =

(

0 1
1 1

)

and F1 =

(

1 1
0 1

)

.

Then, by a calculation, we have

V F k−1
1 F0 =

(

1 1
k k + 1

)

,

which can be identified to the subinterval Ik. Further, by a calculation, we have that

V (V F k−1
1 F0)

−1

(

α
1

)

=

(

−k 1
1 0

)(

α
1

)

=

(

−kα + 1
α

)

→ 1− kα

α
,

and thus captures the Gauss map.
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Using the matrices F0 and F1, we can also interpret the Gauss map as a method of
systematically subdividing the unit interval. This interpretation leads to the classical Stern
diatomic sequence. Note that

V F0 = (v1, v2)F0

= (v1, v2)

(

0 1
1 1

)

.

= (v2, v1 + v2)

=

(

1 1
1 2

)

and

V F1 = (v1, v2)F1

= (v1, v2)

(

1 1
0 1

)

.

= (v1, v1 + v2)

=

(

0 1
1 2

)

We can interpret V F0 as the half interval (1/2, 1) and V F1 as the half interval (0, 1/2). If
we iterate multiplying by F0 and F1, then we get the following at the next step:

V F1F1 =

(

0 1
1 3

)

, V F1F0 =

(

1 1
2 3

)

, V F0F1 =

(

1 2
1 3

)

and V F0F0 =

(

1 2
2 3

)

Each real number α ∈ I can be described by a sequence (i0, i1, i2, . . .) of zeros and ones,
where, for all n, the number α lies in the subinterval coming from V Fi0Fi1Fi2 · · ·Fin . (We
are being somewhat sloppy with issues of α being on the boundaries of these subintervals.
Such issues do not affect what is going on.) We can link the sequence (i0, i1, i2, . . .) with
α’s continued fraction expansion as follows. Let 1k denote a sequence of k ones. Then our
sequence (i0, i1, i2, . . .) can be written as

(i0, i1, i2, . . .) = (1k0, 0, 1k1, 0, 1k2, 0, . . . ),

with each kj a non-negative integer. (It is important that we allow a kj to be zero.) Then
we have

α =
1

k0 + 1 + 1
k1+1+ 1

k2+1+ 1

...

.
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For example, the sequence (1, 1, 0, 0, 1, 1, 1, 0, . . .) can be written as (12, 0, 10, 0, 13, 0, . . .),
and we have

α =
1

3 + 1
1+ 1

4+ 1

...

.

Thus, continued fractions can be interpreted as a systematic method for subdividing an
interval using two-by-two matrices. Multi-dimensional continued fractions, as we will see,
are systematic subdivisions of triangles determined by three-by-three matrices.

2.2 Stern’s diatomic sequence

In this section, we will briefly review Stern’s diatomic sequence (number A002487 in Sloane’s
Online Encyclopedia of Integer Sequences). In particular, we highlight the link between
Stern’s diatomic sequence and continued fractions. The classical Stern’s diatomic sequence
a1, a2, a3, . . . is the sequence defined by a1 = 1 and, for n ≥ 1,

a2n = an

a2n+1 = an + an+1.

Stern’s diatomic sequence is linked to the Stern-Brocot array, which is an array of frac-
tions in lowest terms that contains all rationals in the interval [0, 1]. Starting with the
fractions 0

1
and 1

1
on the 0th level, we construct the nth level by rewriting the (n− 1)st level

with the addition of the mediant between consecutive pairs of fractions from the (n − 1)st

level. Here, the mediant of two fractions a
b
and c

d
refers to the fraction a+c

b+d
. In the Stern-

Brocot array, the mediant of consecutive fractions is always in lowest terms. Below are levels
0 through 3 of the Stern-Brocot array:

0
1
, 1

1

0
1
, 1

2
, 1

1

0
1
, 1

3
, 1

2
, 2

3
, 1

1

0
1
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 1

1

The denominators of the Stern-Brocot array form Stern’s diatomic sequence. Many of
the combinatorial properties of this sequence are presented in Northshield [45].

The first row of the array can be thought of as either the unit interval, or, as above, the

two-by-two matrix V =

(

0 1
1 1

)

. The second row can be thought of as the two subintervals,

(0, 1/2) and (1/2, 1), or, as the two matrices V F0 and V F1. Similarly, the third row gives
us four subintervals, each corresponding to one of the matrices V F0F0, V F0F1, V F1F0 and
V F1F1. The pattern continues.
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To be more precise, let sn,k denote the kth fraction in the nth level of the Stern-Brocot
tree. One can use the Stern-Brocot array to express the continued fraction expansion of a
real number in [0, 1] as follows: let α ∈ [0, 1]. The 1st level of the Stern-Brocot tree divides
the unit interval in two as the subintervals [0, 1

2
) and [1

2
, 0]. Label the first interval 0 and the

second interval 1. The 2nd level divides the unit interval into four subintervals: [0, 1
3
), [1

3
, 1
2
),

[1
2
, 2
3
), and [2

3
, 1
1
]. Label these intervals 00, 01, 10, and 11 respectively. The nth level divides

the unit interval into [0, sn,1), . . . , [sn,2n, 1]. We label the interval [sn,k, sn,k+1) with a sequence
of 0’s and 1’s, where the first n−1 digits mark the label of the interval containing [sn,k, sn,k+1)
on the (n− 1)st level, and where the last digit is 0 or 1 depending on whether [sn,k, sn,k+1) is
in the left or right half of that interval, respectively. Recording the infinite sequence of 0’s
and 1’s that corresponds to any number α in [0, 1] yields a sequence encoding the continued
fraction expansion of α, as in described in Northshield [45]. Thus, Stern’s sequence is linked
to subdivisions of the unit interval. Our generalizations of Stern’s sequence will be linked to
subdivisions of a triangle.

3 Review of triangle partition maps

TRIP-Stern sequences can be interpreted geometrically in terms of subdivisions of a triangle.
(This section closely follows Sections 2 and 3 from Dasaratha et al. [10].) In this section, we
describe the triangle division and triangle function, as defined in Garrity [22] and further
developed in Chen et al. [7] and Messaoudi et al. [44]. We then discuss how “permutations”
of this triangle division generate a family of multidimensional continued fractions called
triangle partition maps (TRIP maps for short) – which were introduced in Dasaratha et al.
[10, 11] – and studied in Jensen [27] and in Amburg [4]. This will give us the needed notation
to define TRIP-Stern sequences in the next section.

3.1 The triangle division

The triangle division generalizes the method for computing continued fractions via the above
systematic subdivision of the unit interval from the previous section. Instead of dividing the
unit interval, we now use a 2-simplex, i.e., a triangle. As discussed in earlier papers, this
triangle division is just one of many generalizations of the continued fraction algorithm.
Define

△∗ = {(b0, b1, b2) : b0 ≥ b1 ≥ b2 > 0}.
The set △∗ can be thought of as a “triangle” in R3, using the projection map π : R3 → R2

defined by

π(b0, b1, b2) =

(

b1
b0
,
b2
b0

)

.

The image of △∗ under π,

△ = {(1, x, y) : 1 ≥ x ≥ y > 0},
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is a triangle in R2 with vertices (0, 0), (1, 0), and (1, 1). Thus π maps the vectors

v1 =





1
0
0



 , v2 =





1
1
0



 , v3 =





1
1
1





to the vertices of △. The change of basis matrix from triangle coordinates to the standard
basis is

(v1 v2 v3) =





1 1 1
0 1 1
0 0 1



 .

Now consider the matrices

A0 =





0 0 1
1 0 0
0 1 1



 and A1 =





1 0 1
0 1 0
0 0 1



 .

Applying A0 and A1 to (v1 v2 v3) yields

(v1 v2 v3)A0 = (v2 v3 v1 + v3) and (v1 v2 v3)A1 = (v1 v2 v1 + v3).

This gives a disjoint bipartition of △ under the map π, as seen in the diagram below.

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��

(0,0) (1,0)

(1,1)

❅
❅

❅
❅

❅
❅

❅
❅❅

This is the first step of the triangle division algorithm. Now consider the result of applying
A1 to the original vertices of the triangle k times followed by applying A0 once. The vertices
of the original triangle △ are thus mapped as follows:

△k = {(1, x, y) ∈ △ : 1− x− ky ≥ 0 > 1− x− (k + 1)y}.

We let T : △k → △ denote a collection of maps, where each is the following bijection
between the subtriangle △k and △: For any point (x, y) ∈ △k under the standard basis,

9



first change the basis to triangle coordinates by multiplying the coordinates by (v1 v2 v3),
apply the inverse of A0 and the inverse of Ak

1, and then finally change the basis back to the
standard basis. That is,

T (x, y) = π((1 x y)
(

(v1 v2 v3)(A0)
−1(A1)

−k(v1 v2 v3)
−1
)T

). (1)

Rewriting yields the following:

T (x, y) :=

(

y

x
,
1− x− ky

x

)

where k = ⌊1−x
y
⌋.

This triangle map is analogous to the Gauss map for continued fractions. Using T , define
the triangle sequence, (tk)k≥0, for an element (α, β) ∈ △ by setting tn to be the non-negative
integer satisfying T (n)(α, β) ∈ △tn . Thus,

(α, β) ∈ △t0, T (α, β) ∈ △t1, T (T (α, β)) ∈ △t2 , . . .

3.2 Incorporating permutations

The previously described triangle division partitions the triangle with vertices v1, v2, and v3
into triangles with vertices v2, v3, and v1 + v3 and v1, v2, and v1 + v3. This process assigns
a particular ordering of vertices to the vertices of the original triangle and the vertices of
the two triangles produced. By considering all possible permutations we generate a family
of 216 maps, each corresponding to a partition of △.

Specifically, we allow a permutation of the vertices of the initial triangle as well as a
permutation of the vertices of the triangles obtained after applying A0 and A1. First, we
permute the vertices by σ ∈ S3 before applying either A0 or A1. Once we apply either A0 or
A1, we then permute by either τ0 ∈ S3 or τ1 ∈ S3, respectively. This leads to the following
definition:

Definition 1. For every (σ, τ0, τ1) ∈ S3
3 , define

F0 = σA0τ0 and F1 = σA1τ1

by thinking of σ, τ0, and τ1 as column permutation matrices.

In particular, we define the permutation matrices as follows: e =





1 0 0
0 1 0
0 0 1



 , (12) =





0 1 0
1 0 0
0 0 1



 , (13) =





0 0 1
0 1 0
1 0 0



 , (23) =





1 0 0
0 0 1
0 1 0



 , (123) =





0 1 0
0 0 1
1 0 0



 , and

(132) =





0 0 1
1 0 0
0 1 0



.
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Note that applying F0 and F1 partitions any triangle into two subtriangles. Thus, for
any (σ, τ0, τ1) ∈ S3

3 , we can partition △ using the matrices F0 and F1 instead of A0 and A1.
This produces a map that is similar to, but not identical to, the triangle map from section
3.1. We call each of these maps a triangle partition map, or TRIP map for short. Because
|S3|3 = 216, the family of triangle partition maps has 216 elements.

One of the main goals of Dasaratha et al. [10] is showing that this class of triangle partition
maps includes well-studied algorithms such as the Mönkemeyer map, and in combination,
these triangle partition maps can be used to produce many other known algorithms, such as
the Brun, Parry-Daniels, Güting, and fully subtractive algorithms.

3.3 TRIP sequences

We use the triangle division for a particular set of permutations to produce the corresponding
triangle sequence. Recall the “subtriangle △k” from the original triangle map. We generalize
the definition of △k as follows: for any (σ, τ0, τ1), let △k be the image of the triangle △ under
F k
1 F0. We now define functions T : △ → △ mapping each subtriangle △k bijectively to △.
First, let us formalize our subtriangles.

Definition 2. Let F0 and F1 be generated from some triplet of permutations. We define
△n to be the triangle with vertices given by the columns of (v1 v2 v3)F1

nF0.

We are now ready to define triangle partition maps.

Definition 3. We define the triangle partition map Tσ,τ0,τ1 by

Tσ,τ0,τ1(x, y) = π((1, x, y)((v1 v2 v3)F
−1
0 F−k

1 (v1 v2 v3)
−1)T )

when (x, y) ∈ △k.

We take the transpose of the matrix (v1 v2 v3)F
−1
0 F−k

1 (v1 v2 v3)
−1 because our matrices

have vertices as columns but they are multiplied by the row vector (1, x, y).
This definition facilitates the following:

Definition 4. For any an (α, β) ∈ △, define tn to be the non-negative integer such that
[

Tσ,τ0,τ1
]n
(α, β) is in △tn . The TRIP sequence of (α, β) with respect to (σ, τ0, τ1) is (tk)k≥0.

4 TRIP-Stern sequences

4.1 Construction of TRIP-Stern sequences

Definition 5. For any permutations (σ, τ0, τ1) in S3, the triangle partition-Stern sequence
(TRIP-Stern sequence for short) of (σ, τ0, τ1) is the unique sequence such that a1 = (1, 1, 1)
and, for n ≥ 1,
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{

a2n = an · F0;

a2n+1 = an · F1.

The nth level of the TRIP-Stern sequence is the set of am with 2n−1 ≤ m < 2n.

Each choice of (σ, τ0, τ1) produces some TRIP-Stern sequence. The nth level terms of the
TRIP-Stern sequence give the first coordinate of the vertices of the subtriangles of △ after
n divisions. These terms are the denominators of the convergents of the triangle partition
map defined by (σ, τ0, τ1). Thus, TRIP-Stern sequences can be used to test when a sequence
of triangle subdivisions converges to a unique point. This involves a simple definition and
restatement of Theorem 7.2 in Dasaratha et al. [10].

Definition 6. For each n-tuple v = (i1, . . . , in) of 0’s and 1’s, define

△(v) = (1, 1, 1)Fi1Fi2 · · ·Fin .

For a TRIP-Stern term an, the length of the binary representation v such that △(v) = an
gives the level of an. If there are multiple binary representations of an, then choose the
representation that gives the nth term of the sequence.

4.2 Examples

We start by examining the TRIP-Stern sequence for the triangle map, which is given by the
identity permutations (σ, τ0, τ1) = (e, e, e). The first few terms of the sequence (an)n≥1 are

(1, 1, 1), (1, 1, 2), (1, 1, 2), (1, 2, 3), (1, 1, 3), (1, 2, 3), (1, 1, 3), . . .

We arrange these as follows:
a1 = (1, 1, 1)

�
�

��✠

❅
❅
❅❅❘

a2 = (1, 1, 2) a3 = (1, 1, 2)
✟✟✟✟✟✟✟✙

a4 = (1, 2, 3)

❆
❆
❆❆❯

a5 = (1, 1, 3)

✁
✁
✁✁☛

a6 = (1, 2, 3)

❆
❆
❆❆❯

a7 = (1, 1, 3)

A0 A1

A0 A1 A0 A1

or as △
�

�
��✠

❅
❅
❅❅❘

△(0) △(1)
✟✟✟✟✟✟✟✙

△(00)

❆
❆
❆❆❯

△(01)

✁
✁
✁✁☛

△(10)

❆
❆
❆❆❯

△(11)

A0 A1

A0 A1 A0 A1
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Note that because the two triples on level 1 are the same, the left and right subtrees are
symmetric. To see the connection to the triangle division, recall the matrix

(v1 v2 v3) =





1 1 1
0 1 1
0 0 1



 ,

whose columns are the three vertices of △. Applying A0 and A1 to (v1 v2 v3) yields

(v1 v2 v3)A0 =





1 1 2
1 1 1
0 1 1



 and (v1 v2 v3)A1 =





1 1 2
0 1 1
0 0 1



 .

Repeating this process yields matrices at each step n whose columns give the vertices of
the subtriangles at the nth division of △. The figure below shows this subdivision. Addition-
ally, the top row of each of these nth step matrices gives a term in the nth-level TRIP-Stern
sequence for (e, e, e).

For another example, consider the permutations (σ, τ0, τ1) =
(

13, 132, 132
)

. Recall here
that we divide the triangle using the matrices F0 = 13A0132 and F1 = 13A1132.

Applying F0 and F1 to (v1 v2 v3) yields

(v1 v2 v3)F0 = (v1 v2 v3)





1 1 0
0 0 1
0 1 0



 =





1 2 1
0 1 1
0 1 0





and

(v1 v2 v3)F1 = (v1 v2 v3)





0 1 0
1 0 0
0 1 1



 =





1 2 1
1 1 1
0 1 1



 .
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These permutations give the well-studied Mönkemeyer map, as described in Dasaratha
et al. [10]. Here, the first few terms are

(1, 1, 1), (1, 2, 1), (1, 2, 1), (1, 2, 2), (2, 2, 1), (1, 2, 2), (2, 2, 1), . . .

Similarly, these terms now give the first coordinate of the vertices of the subtriangles of
△ according to the Mönkemeyer algorithm. The following figure shows this division.

We will examine TRIP-Stern sequences generated by each of the 216 maps. As we will
see in Lemma 9, many properties of each of these TRIP-Stern sequences can be captured by
only examining the 36 sequences associated with permutation triplets of the form (e, τ0, τ1)
for τ0, τ1 ∈ S3. The following table, which illustrates the behavior of F0 and F1 for maps
of the form (e, τ0, τ1) on the initial seed (a, b, c) (which equals (1,1,1) in the case of regular
TRIP-Stern sequences), will come in handy throughout the paper.
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(e, τ0, τ1) (a, b, c)F0 (a, b, c)F1

(e, e, e) (b, c, a+ c) (a, b, a+ c)
(e, e, 12) (b, c, a+ c) (b, a, a+ c)
(e, e, 13) (b, c, a+ c) (a+ c, b, a)
(e, e, 23) (b, c, a+ c) (a, a+ c, b)
(e, e, 123) (b, c, a+ c) (a+ c, a, b)
(e, e, 132) (b, c, a+ c) (b, a+ c, a)
(e, 12, e) (c, b, a+ c) (a, b, a+ c)
(e, 12, 12) (c, b, a+ c) (b, a, a+ c)
(e, 12, 13) (c, b, a+ c) (a+ c, b, a)
(e, 12, 23) (c, b, a+ c) (a, a+ c, b)
(e, 12, 123) (c, b, a+ c) (a+ c, a, b)
(e, 12, 132) (c, b, a+ c) (b, a+ c, a)
(e, 13, e) (a+ c, c, b) (a, b, a+ c)
(e, 13, 12) (a+ c, c, b) (b, a, a+ c)
(e, 13, 13) (a+ c, c, b) (a+ c, b, a)
(e, 13, 23) (a+ c, c, b) (a, a+ c, b)
(e, 13, 123) (a+ c, c, b) (a+ c, a, b)
(e, 13, 132) (a+ c, c, b) (b, a+ c, a)
(e, 23, e) (b, a+ c, c) (a, b, a+ c)
(e, 23, 12) (b, a+ c, c) (b, a, a+ c)
(e, 23, 13) (b, a+ c, c) (a+ c, b, a)
(e, 23, 23) (b, a+ c, c) (a, a+ c, b)
(e, 23, 123) (b, a+ c, c) (a+ c, a, b)
(e, 23, 132) (b, a+ c, c) (b, a+ c, a)
(e, 123, e) (a+ c, b, c) (a, b, a+ c)
(e, 123, 12) (a+ c, b, c) (b, a, a+ c)
(e, 123, 13) (a+ c, b, c) (a+ c, b, a)
(e, 123, 23) (a+ c, b, c) (a, a+ c, b)
(e, 123, 123) (a+ c, b, c) (a+ c, a, b)
(e, 123, 132) (a+ c, b, c) (b, a+ c, a)
(e, 132, e) (c, a+ c, b) (a, b, a+ c)
(e, 132, 12) (c, a+ c, b) (b, a, a+ c)
(e, 132, 13) (c, a+ c, b) (a+ c, b, a)
(e, 132, 23) (c, a+ c, b) (a, a+ c, b)
(e, 132, 123) (c, a+ c, b) (a+ c, a, b)
(e, 132, 132) (c, a+ c, b) (b, a+ c, a)

Table 1: Behavior of F0 and F1
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4.3 Alternative definitions

An alternative way to define the TRIP-Stern sequences is in terms of matrix generating
functions. The advantage of this method is that it allows us to connect terms in a TRIP-
Stern sequence with the product of Fi matrices that produced the given sequence and to
define the sequence non-recursively.

Let
P (x) = F0 + F1x,

where x commutes with F0 and F1. Now it is clear that any integer can be uniquely expressed
as a sum of the form 2n + k, where 0 ≤ k < 2n.

Definition 7. We define the TRIP-Stern sequence for (σ, τ0, τ1) to be the unique sequence
defined by

a2n+k = (1, 1, 1) · B,
where B is the coefficient of xk in the product P (x)P (x2) · · ·P (xn). Then a2n+k is the kth

term of the nth level of the TRIP-Stern sequence.

For instance, take (σ, τ0, τ1) = (e, e, e). Then

P (x)P (x2) = (A0 + A1x)(A0 + A1x
2) = A2

0 + A1A0x+ A0A1x
2 + A2

1x
3

and so the terms of the 2nd level are given by

(1, 1, 1)A2
0, (1, 1, 1)A1A0, (1, 1, 1)A0A1, and (1, 1, 1)A2

1.

5 A more pictorial approach

We need the technical definitions from the last section for the proofs given in the rest of the
paper and in order to use Mathematica to discover many of our formulas. But there is a
more intuitive approach to generate particular TRIP-Stern sequences via subdivisions of a
triangle.

Let us first examine the classical Stern diatomic sequence analog. Start with an interval
I whose endpoints are a and b. For Stern’s diatomic sequence, we set a = b = 1. As before,
we set I = (a, b).

I

a b

I

1 1

We then subdivide the interval and add together the weights of the endpoints, getting two
new intervals, which by an abuse of notation we write as I(0) = (a, a+b) and I(1) = (a+b, b).
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I(0) I(1)

a a+ b b

I(0) I(1)

1 2 1

We can continue, getting four new subintervals:

I(00)
❄

I(01)
✻

I(10)
✻

I(11)
❄

a

2a+ b

a+ b

a+ 2b

b

I(00)
❄

I(01)
✻

I(10)
✻

I(11)
❄

1

3

2

3

1

The classical Stern diatomic sequence corresponds to I, I(0), I(1), I(00), I(01), I(10), I(11), . . .
We now see how to get the analogous geometric picture for TRIP maps. We will concen-

trate on the TRIP-Stern sequence for the triple (e, e, e). Similar pictures, though, will work
for any (σ, τ0, τ1) ∈ S3

3 .
For (e, e, e) we have F0 = A0, F1 = A1. For any vector (a, b, c), we know that

(a, b, c)A0 = (b, c, a+ c) and (a, b, c)A1 = (a, b, a+ c).

We will think of (a, b, c) as vertices of a triangle △. By a slight abuse of notation, we will
write △ = (a, b, c). In the diagrams for this section, the ones on the left side are for the
general case of any a, b, and c, while the right side is in the special case when a = b = c = 1.
We have

�
�
�
�
�
�
�
��

a b

c

△ ✲

�
�
�
�
�
�
�
��

1 1

1

△ ✲

We let △(0) be the triangle with vertices (a, b, c)A0 = (b, c, a+c) and△(1) be the triangle
with vertices (a, b, c)A1 = (a, b, a+ c). Pictorially, we have

�
�
�
�
�
�
�
��

a b

c

a+ c

❅
❅

❅
❅❅

△(0)❍❍❍❍❥

△(1) ✲

�
�
�
�
�
�
�
��

1 1

1

2

❅
❅

❅
❅❅

△(1) ✲

△(0)❍❍❍❍❥
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We let △(00) be the triangle with vertices (a, b, c)A0A0 = (c, a+ c, a + b+ c), △(01) be
the triangle with vertices (a, b, c)A0A1 = (b, c, a+ b+ c), △(10) be the triangle with vertices
(a, b, c)A1A0 = (b, a + c, 2a + c) and △(11) be the triangle with vertices (a, b, c)A1A1 =
(a, b, 2a+ c)

Pictorially, we have

�
�
�
�
�
�
�
��

a b

c

a+ c

❅
❅

❅
❅❅

△(00)❍❍❍❍❥

△(11) ✲
❍❍❍❍❍❍

☞
☞
☞
☞
☞
☞☞ a+ b+ c✛2a+ c

△(01)✛

△(10)

✻

�
�
�
�
�
�
�
��

1 1

1

2

❅
❅

❅
❅❅

△(00)❍❍❍❍❥

△(11) ✲
❍❍❍❍❍❍

☞
☞
☞
☞
☞
☞☞ 3✛3

△(01)✛

△(10)

✻

The TRIP-Stern sequence for (e, e, e) is simply △, △(0), △(1), △(00), △(01), △(10),
△(11), . . .

We just add the appropriate vertices to generate new subdivisions. This is in direct
analog to the classical Stern diatomic sequence.

As another example, let us look at the triangle partition Stern sequence for (12, e, e). We
first need the matrices F0 and F1:

F0 = (12)A0 =





0 1 0
1 0 0
0 0 1









0 0 1
1 0 0
0 1 1



 =





1 0 0
0 0 1
0 1 1





and

F1 = (12)A1 =





0 1 0
1 0 0
0 0 1









1 0 1
0 1 0
0 0 1



 =





0 1 0
1 0 1
0 0 1





Now for any vector (a, b, c), we have

(a, b, c)F0 = (a, c, b+ c) and (a, b, c)F1 = (b, a, b+ c).

We still let △ have vertices a, b, and c, but now the subtriangle △(0) will have vertices a, c,
and b+ c and the subtriangle △(1) will have vertices a, b, and b+ c. Pictorially, we have

�
�
�
�
�
�
�
��

a b

c

b+ c

✟✟✟✟✟✟✟✟✟

△(0)❍❍❍❍❥

△(1) ✲

�
�
�
�
�
�
�
��

1 1

1

2

✟✟✟✟✟✟✟✟✟

△(1) ✲

△(0)❍❍❍❍❥

18



Let us do one more iteration. We have that △(0, 0) will have vertices (a, b + c, b + 2c),
△(0, 1) will have vertices (c, a, b+2c), △(1, 0) will have vertices (b, b+c, a+b+c) and △(1, 1)
will have vertices (a, b, a+ b+ c) since

(a, b, c)F0F0 = (a, c, b+ c)F0

= (a, b+ c, b+ 2c),

(a, b, c)F0F1 = (a, c, b+ c)F1

= (c, a, b+ 2c),

(a, b, c)F1F0 = (b, a, b+ c)F0

= (b, b+ c, a+ b+ c),

and

(a, b, c)F1F1 = (b, a, b+ c)F1

= (a, b, a+ b+ c).

By continuing these subdivisions, we get the TRIP-Stern sequence for (12, e, e). Pictori-
ally, we now have

�
�
�
�
�
�
�
��

a b

c

b+ c

✟✟✟✟✟✟✟✟✟

✚
✚
✚
✚
✚
✚
✚
✚✚

b+ 2c

a+ b+ c

✻

❅
❅

❅

△(01)❍❍❍❍❥△(00) ✲

△(10) ✲
△(11) ✲

�
�
�
�
�
�
�
��

1 1

1

2

✟✟✟✟✟✟✟✟✟
2

✟✟✟✟✟✟✟✟✟

✚
✚
✚
✚
✚
✚
✚
✚✚

3

3

✻

△(01)❍❍❍❍❥△(00) ✲

△(10) ✲
△(11) ✲

❅
❅

❅

6 Maximum terms and positions thereof

This section examines the maximum terms in every level of a TRIP-Stern sequence, as
well as the positions of those maximum terms within the level. Recall for an n-tuple v =
(i1, . . . , in) of 0’s and 1’s that △(v) = (1, 1, 1)Fi1Fi2 · · ·Fin , which can be written as △(v) =
(b1(v), b2(v), b3(v)). Let |v| denote the number of entries in v.

Definition 8. The maximum entry on level n of a TRIP-Stern sequence is

mn = max
|v|=n

max
i∈{1,2,3}

bi(v).

Thus, for example, the sequence (mn)n≥0 for the TRIP-Stern sequence for (e, e, e) begins

(1, 2, 3, 4, 6, 9, 13, 19, 28, . . .).
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We can easily extend this kind of analysis to all 216 TRIP-Stern sequences. Numerically,
it appears that there are only eight possible row maxima sequences for all 216 TRIP-Stern
sequences. The following lemma will be needed before presenting our results on maximum
row sequences.

Lemma 9. Let (σ, τ0, τ1) ∈ S3
3 have row maxima sequence (mn)n≥0 and suppose κ ∈ S3.

Then (κσ, τ0κ
−1, τ1κ

−1) also has row maxima sequence (mn)n≥0.

Proof. This follows by direct calculation, since for any v = (i1, . . . , in),

△(κσ,τ0κ−1,τ1κ−1)(v) = (1, 1, 1) · κσAi1τi1κ
−1 · κσAi2τi2κ

−1 · · ·κσAinτinκ
−1

= (1, 1, 1) · σAi1τi1 · σAi2τi2 · · ·σAinτinκ
−1

= △(σ,τ0,τ1)(v)κ
−1.

Since κ−1 is just a permutation, it follows that the maximal component of △(κσ,τ0κ−1,τ1κ−1)(v)
is the same as that of △(σ,τ0,τ1)(v).

Recall from Section 4 that the (n+1)st level of a TRIP-Stern sequence is generated from
the nth by applying F0 or F1 to the sequence at the mth term at level n. Denote by nm the
position of this term. In other words, a TRIP-Stern sequence is a binary tree with exactly 2
children at each node nm, with the first (left) child generated by applying F0 to the triplet
at nm and the second generated by applying F1. We will show that there exist three distinct
paths through the trees containing all the maximal terms. We will then present recurrence
relations for select row maxima sequences.

First, we show that there exist three distinct paths through the trees generated by triangle
partition maps of the form (e, τ0, τ1) containing the maximal terms. For each of the three
classes of path, we will write out an explicit proof for one map generating such path; proofs
for the rest of the maps are similar simple calculations and will be omitted.

Theorem 10. There exists a path through each of the trees generated by 26 triangle partition
maps of the form (e, τ0, τ1) that contains the maximal terms. Namely, these paths are as
follows:

1. For the eleven TRIP-Stern sequences (e, e, 13),(e, 13, 13),(e, 13, 123), (e, 23, 13), (e, 23, 123),
(e, 23, 132), (e, 123, 13), (e, 123, 123), (e, 132, 13), (e, 132, 123) and (e, 132, 132), always
select the right edge.

2. For the twelve TRIP-Stern sequences (e, e, e), (e, e, 12), (e, e, 23), (e, e, 123), (e, e, 132),
(e, 12, e), (e, 12, 12), (e, 12, 13), (e, 12, 23), (e, 12, 123), (e, 12, 132) and (e, 132, 23), al-
ways select the left edge.

3. For the three TRIP sequences (e, 13, 12), (e, 23, 23) and (e, 123, e), alternate between
first selecting the left edge and then the right edge.
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Proof. 1. Always select the right edge.

Consider (e, 13, 123). Then (x1, x2, x3)F0 = (x1 + x3, x3, x2) and (x1, x2, x3)F1 = (x1 +
x3, x1, x2). Since at the zeroth step we start with (x1, x2, x3) = (1, 1, 1), it is clear that
the rightmost triplet will contain the maximal term at each level n since this will lead
to the greatest rates of growth for each of x1n , x2n and x3n as n increases.

Similar arguments can be made for (e, e, 13), (e, 13, 13), (e, 23, 13), (e, 23, 123), (e, 23, 132),
(e, 123, 13), (e, 123, 123), (e, 132, 13), (e, 132, 123), and (e, 132, 132).

2. Always select the left edge.

Consider (e, e, e). Then (x1, x2, x3)F0 = (x2, x3, x1+x3) and (x1, x2, x3)F1 = (x1, x2, x1+
x3). Since at the zeroth step we start with (x1, x2, x3) = (1, 1, 1), it is clear that the
leftmost triplet will contain the maximal term at each level n since this will lead to
the greatest rates of growth for each of x1n , x2n and x3n as n increases.

Similar arguments can be made for (e, e, 12), (e, e, 23), (e, e, 123), (e, e, 132), (e, 12, e),
(e, 12, 12), (e, 12, 13), (e, 12, 23), (e, 12, 123), (e, 12, 132), and (e, 132, 23).

3. Alternate between first selecting the left edge and then the right edge.

Consider (e, 13, 12). Then (x1, x2, x3)F0 = (x1+x3, x3, x2) and (x1, x2, x3)F1 = (x2, x1, x1+
x3). Since at the zeroth step we start with (x1, x2, x3) = (1, 1, 1), it is clear that the
triplet containing the maximal term at each level will lie on the nodes of the path
generated by alternating between first selecting the left edge and then the right edge.

Similar arguments can be made for (e, 23, 23), and (e, 123, e).

In the above theorem, we have shown that the maximal TRIP-Stern sequence lies on one
of three possible paths for 26 TRIP-Stern sequences generated by 26 triangle partition maps.
Using Lemma 9 brings this total up to 26 · 6 = 156 maps.

Question 11. What are the paths for finding maximal terms for the remaining 60 TRIP-
Stern sequences?

6.1 Explicit formulas and recurrence relations for sequences of

maximal terms

In the above subsection we addressed the positions of maximal terms. Here we present
formulas and recurrence relations that may be used to find the actual values of the maximal
terms for 120 TRIP-Stern sequences.

Theorem 12. The nth maximal term mn in the TRIP-Stern sequences corresponding to the
permutation triplets (e, e, 13), (e, 12, e), (e, 12, 12), (e, 12, 13), (e, 12, 23), (e, 12, 123), (e, 12, 132),
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(e, 13, 13), (e, 23, 13), (e, 123, 13), and (e, 132, 13) is given by the formula

mn =
2−n−1

(

(√
5− 3

) (

1−
√
5
)n

+
(

3 +
√
5
) (

1 +
√
5
)n
)

√
5

,

which corresponds to the Fibonacci recurrence relation mn = mn−1 +mn−2 (A000045).

Proof. By Theorem 10, we know that the third term in each of the triplets given by following
the left-most path in the tree generated by select permutation triplets is a maximal term;
similarly, the first term in each of the triplets given by following the right-most path in
the tree generated by select permutation triplets is a maximal term. Hence, for sequences
of maxima found by following the left-most path, all that remains to find mn is to find the
third term in the triplet (1, 1, 1)F n

0 ; for each of the permutation triplets listed in the theorem
that are generated by choosing the left-most path, this third term corresponds to the desired
explicit formula. Similarly, for sequences of maxima found by following the right-most path,
all that remains to find mn is to find the first term in the triplet (1, 1, 1)F n

1 ; for each of
the permutation triplets listed in the theorem that are generated by choosing the right-most
path, this first term corresponds to the desired explicit formula. It is easy to check using
standard methods, as in Matthews [40], that mn = mn−1 +mn−2.

As an example, let us consider (e, e, 13), for which

F1 =





1 0 1
0 1 0
1 0 0



 .

Then

F n
1 =

















2−n−1
(

−(1−
√
5)

n+1
+(1+

√
5)

n+1
)

√
5

0
2−n(−(1−

√
5)

n

+(1+
√
5)

n

)√
5

0 1 0

2−n(−(1−
√
5)

n

+(1+
√
5)

n

)√
5

0
2−n−1((1−

√
5)

n

(1+
√
5)+(−1+

√
5)(1+

√
5)

n

)√
5

















,

so that

(1, 1, 1)F n
1 =

(

2−n−1((
√
5−3)(1−

√
5)

n

+(3+
√
5)(1+

√
5)

n

)√
5

, 1,
2−n−1

(

(1+
√
5)

n+1−(1−
√
5)

n+1
)

√
5

)

.

Hence, we can see that

mn =
2−n−1

(

(√
5− 3

) (

1−
√
5
)n

+
(

3 +
√
5
) (

1 +
√
5
)n
)

√
5

.

Lastly, it is clear that mn = mn−1 +mn−2 since

mn−1 +mn−2 =
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2−1−(n−1)
(

(1−
√
5)

n−1
(−3+

√
5)+(1+

√
5)

n−1
(3+

√
5)

)

√
5

+
2−1−(n−2)

(

(1−
√
5)

n−2
(−3+

√
5)+(1+

√
5)

n−2
(3+

√
5)

)

√
5

=

2−n−1
(

(√
5− 3

) (

1−
√
5
)n

+
(

3 +
√
5
) (

1 +
√
5
)n
)

√
5

= mn.

Theorem 13. The nth maximal term mn in the TRIP-Stern sequences corresponding to the
permutation triplets (e, e, e), (e, e, 12), (e, e, 23), (e, e, 123), (e, e, 132), (e, 13, 123), (e, 23, 123),
(e, 123, 123), and (e, 132, 123) is given by the formula

mn = α1β
n
1 + α2β

n
3 + α3β

n
2 ,

where the αi’s are roots of 31x
3−31x2−12x−1 = 0 while the βi’s are the roots of x

3−x2−1 =
0. This corresponds to the well-known recurrence relation mn = mn−1 +mn−3 (A000930).

Proof. The proof, except for some technical details, is identical to the previous proof. By
Theorem 10, we know that the third term in each of the triplets given by following the left-
most path in the tree generated by select permutation triplets is a maximal term; similarly,
the first term in each of the triplets given by following the right-most path in the tree
generated by select permutation triplets is a maximal term. Hence, for sequences of maxima
found by following the left-most path, all that remains to find mn is to find the third term
in the triplet (1, 1, 1)F n

0 ; for each of the permutation triplets listed in the theorem that
are generated by choosing the left-most path, this third term corresponds to the desired
explicit formula. Similarly, for sequences of maxima found by following the right-most path,
all that remains to find mn is to find the first term in the triplet (1, 1, 1)F n

1 ; for each of
the permutation triplets listed in the theorem that are generated by choosing the right-most
path, this first term corresponds to the desired explicit formula. Using standard methods (as
in Matthews [40]) identical to those used in the example found in the proof of the previous
theorem, it is easy to see that mn = mn−1 +mn−3.

In the above two theorems, we have presented explicit formulas and recurrence relations
for the maximal terms of TRIP-Stern sequences generated by 20 maps. Using Lemma 9
brings this total up to 20 · 6 = 120 maps.

Question 14. What are the recurrence relations for the other 96 TRIP-Stern sequences?

Conjecture 15. The following table presents some numerical results and conjectured re-
currence relations for TRIP-Stern maximal terms corresponding to the above-mentioned 96
maps.
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First 11 maximal terms Conjectured recurrence relation mn = (e, τ0, τ1) A-number

1, 2, 3, 5, 7, 11, 16, 25, 36, 56, 81 unknown (e, 13, e), (e, 123, 12) A271485
1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60 mn−1 +mn−3 (e, 13, 12) A000930
1, 2, 3, 4, 6, 8, 11, 16, 22, 30, 43 unknown (e, 13, 23), (e, 23, 12) A271486
1, 2, 3, 4, 6, 8, 11, 17, 23, 32, 48 unknown (e, 13, 132), (e, 132, 12) A271487
1, 2, 3, 4, 6, 8, 11, 15, 21, 30, 41 unknown (e, 23, e), (e, 123, 23) A271488

1, 2, 3, 4, 5, 7, 9, 12, 16, 21 mn−2 +mn−3
(e, 23, 23), (e, 23, 132)
(e, 132, 23), (e, 132, 132)

A000931

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 mn−1 +mn−2 (e, 123, e) A000045
1, 2, 3, 4, 5, 7, 10, 13, 18, 25, 34 unknown (e, 123, 132), (e, 132, e) A271489

Table 2: Conjectured recurrence relations for maximal terms

Note that in the above table we only included maps of the form (e, τ0, τ1); as before,
Lemma 9 brings the total up to 16 · 6 = 96 maps.

7 Minimal terms and positions thereof

We now investigate the positions of the minimal terms in each level for various TRIP-Stern
sequences. This is a bit easier than the analogous investigation for the maximal terms.

Theorem 16. The minimal terms bn in the TRIP-Stern sequences corresponding to the
permutation triplets (e, 12, 12), (e, 12, 123), (e, 12, 132), (e, 13, 123), (e, 13, 132), (e, 23, 12),
(e, 23, 123), (e, 23, 132), (e, 123, 12), (e, 123, 123), and (e, 123, 132) lie on the left-most path
in the corresponding TRIP-Stern tree.

Proof. For the permutation triplets (e, 13, 123) and (e, 13, 132), the transformation

(x1, x2, x3) 7→ (x1, x2, x3)F0

flips the positions of x2 and x3 in the triplet. Recall that application of F0 corresponds to
following the left-most child at each node in the TRIP-Stern tree corresponding to some
permutation triplet. Therefore, as we start with (x1, x2, x3) = (1, 1, 1), it is clear that the
minimal terms of the TRIP-Stern sequences corresponding to these permutation triplets lie
on the left-most path in the corresponding TRIP-Stern tree.

For the rest of the above permutation triplets, the transformation

(x1, x2, x3) 7→ (x1, x2, x3)F0

leaves either x1, x2, or x3 fixed. As in the first part of this proof, since we start with
(x1, x2, x3) = (1, 1, 1), it is clear that the minimal terms of the TRIP-Stern sequences cor-
responding to the above permutation triplets lie on the left-most path in the corresponding
TRIP-Stern tree.
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Theorem 17. The minimal terms bn in the TRIP-Stern sequences corresponding to the
permutation triplets (e, e, e), (e, e, 12), (e, e, 13), (e, e, 23), (e, 13, e), (e, 13, 13), (e, 13, 23),
(e, 132, e), (e, 132, 12), (e, 132, 13), and (e, 132, 23) lie on the right-most path in the corre-
sponding TRIP-Stern tree.

Proof. For the permutation triplets (e, e, 12) and (e, 132, 12), the transformation

(x1, x2, x3) 7→ (x1, x2, x3)F1

flips the positions of x1 and x2 in the triplet. Recall that application of F1 corresponds to
following the right-most child at each node in the TRIP-Stern tree corresponding to some
permutation triplet. Therefore, as we start with (x1, x2, x3) = (1, 1, 1), it is clear that the
minimal terms of the TRIP-Stern sequences corresponding to the above permutation triplets
lie on the right-most path in the corresponding TRIP-Stern tree.

For the rest of the above permutation triplets, the transformation

(x1, x2, x3) 7→ (x1, x2, x3)F1

leaves either x1, x2, or x3 fixed. As in the first part of this proof, since we start with
(x1, x2, x3) = (1, 1, 1), it is clear that the minimal terms of the TRIP-Stern sequences corre-
sponding to the above permutation triplets lie on the right-most path in the corresponding
TRIP-Stern tree.

Theorem 18. The minimal terms bn in the TRIP-Stern sequences corresponding to the per-
mutation triplets (e, 12, e), (e, 12, 13), (e, 12, 23), (e, 13, 12), (e, 23, e), (e, 23, 13), (e, 23, 23),
(e, 123, e), (e, 123, 13), and (e, 123, 23) lie on both the right-most and left-most paths in the
corresponding TRIP-Stern tree.

Proof. For the permutation triplet (e, 13, 12), the transformation (x1, x2, x3) 7→ (x1, x2, x3)F0

flips the positions of x2 and x3 in the triplet and the transformation (x1, x2, x3) 7→ (x1, x2, x3)F1

flips the positions of x1 and x2. As we start with (x1, x2, x3) = (1, 1, 1), it is clear that the
minimal terms of the TRIP-Stern sequences corresponding to the above permutation triplets
lie on both the left- and right-most paths in the corresponding TRIP-Stern tree.

For the rest of the above permutation triplets, both the transformations (x1, x2, x3) 7→
(x1, x2, x3)F0 and (x1, x2, x3) 7→ (x1, x2, x3)F1 leave either x1, x2, or x3 fixed. Since we start
with (x1, x2, x3) = (1, 1, 1), it is clear that the minimal terms of the TRIP-Stern sequences
corresponding to the above permutation triplets lie on the right-most and left-most paths in
the corresponding TRIP-Stern tree.

Corollary 19. The minimal terms bn in the TRIP-Stern sequences corresponding to the
permutation triplets mentioned in Theorems 16, 17, and 18 all have value 1.

Proof. This follows immediately since in each case we start with (x1, x2, x3) = (1, 1, 1), and
at least one of the components of this triplet gets carried over to at least one triplet in the
next level of the corresponding TRIP-Stern sequence by the action of F0 or F1, as outlined
in the proofs of the theorems mentioned in the corollary.
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In the above theorems, we have found the values and positions of the minimal terms of
TRIP-Stern sequences generated by 32 maps. The results of Lemma 9 bring this total up to
32 · 6 = 192 maps.

Question 20. What are the values and positions of the minimal terms of TRIP-Stern se-
quences generated by the remaining 24 maps?

8 Level sums

The following section examines the sums of the entries in each level of a TRIP-Stern sequence,
in direct analogue to the level sums found by Stern for his diatomic sequence (Lehmer [38]
presents this as Property 2). As the level n grows large, the ratio between the sums of the
entries in successive entries approaches an algebraic number of degree at most 3. The ratios
between the first, second, and third coordinates of a given level approach ratios in the same
number field. This section provides a closed form for the sums of the entries in each level.

Definition 21. Consider the TRIP-Stern sequence for arbitrary (σ, τ0, τ1). Let S1(n) be the
sum of the first entries of the triples in the nth level, let S2(n) be the sum of the second
entries, and let S3(n) be the sum of the third entries. The sum of all entries in a given level
is S(n) = S1(n) + S2(n) + S3(n).

Proposition 22. For each n,
(

S1(n), S2(n), S3(n)
)

=
(

S1(n− 1), S2(n− 1), S3(n− 1)
)

(F0 + F1).

Proof. The base case follows by definition. Say that we are at the nth level. In order to
generate the next level of triplets, we apply F0 and F1 to each triplet in the nth level. It is
clear that S1(n + 1) is obtained by taking the sum of the first components of amF0 + amF1

over all triplets am in the nth level; similarly for S2(n + 1) and S3(n + 1). As a result, it is
clear that

(

S1(n), S2(n), S3(n)
)

=
(

S1(n− 1), S2(n− 1), S3(n− 1)
)

(F0 + F1).

8.1 Level sums for (e, e, e)

Proposition 23. Let α be the real zero of x3 − 4x2 + 5x− 4. Then

lim
n→∞

Si(n)

Si(n− 1)
= α

for 1 ≤ i ≤ 3 and

lim
n→∞

S(n)

S(n− 1)
= α.
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Proof. The characteristic polynomial of A0 + A1 is x3 − 4x2 + 5x− 4. This polynomial has
real zero α ≈ 2.69562, and two complex zeros of smaller absolute value. Thus, as n → ∞,
the vector

(

S1(n), S2(n), S3(n)
)

= (1, 1, 1)(A0 + A1)
n

approaches the eigenvector ᾱ corresponding to the eigenvalue α. So as n approaches infinity,
the vector (1, 1, 1)(A0 + A1)

n approaches the subspace generated by ᾱ. Hence,

lim
n→∞

Si(n)

Si(n− 1)
= α

for 1 ≤ i ≤ 3 and

lim
n→∞

S(n)

S(n− 1)
= α,

as claimed.

Proposition 24. We have

lim
n→∞

S2(n)

S1(n)
= α− 1 and lim

n→∞

S3(n)

S2(n)
= α− 1.

Proof. The actions of A0 and A1 yield the recurrence relation S1(n + 1) = S1(n) + S2(n).
Dividing by S1(n) gives

S1(n + 1)

S1(n)
= 1 +

S2(n)

S1(n)

Taking the limit as n→ ∞ and applying Proposition 23 yields

lim
n→∞

S2(n)

S1(n)
= α− 1.

Similarly, using the recurrence relation S2(n + 1) = S2(n) + S3(n) yields

lim
n→∞

S3(n)

S2(n)
= α− 1.

8.2 Level sums for arbitrary (σ, τ0, τ1)

The properties of level sums for an arbitrary TRIP-Stern sequence are similar to those of the
TRIP-Stern sequence for (e, e, e). For any (σ, τ0, τ1), it can be shown by computation that
F0 + F1 has an eigenvalue of largest absolute value. In fact, this eigenvalue is an element of
the interval [2, 3].
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Proposition 25. For any TRIP-Stern sequence, we have

lim
n→∞

Si(n)

Si(n− 1)
= α

for 1 ≤ i ≤ 3 and

lim
n→∞

S(n)

S(n− 1)
= α,

where α is the eigenvalue of F0+F1 of largest absolute value. Furthermore, α is an algebraic
number of degree at most three, and α ∈ [2, 3].

Analogous recurrence relations give relations between the limits of S1(n), S2(n), and
S3(n). These are not always as clean as in the case of the TRIP-Stern sequence for (e, e, e),
but the ratios between these limits are contained in the number field Q(α).

We next examine the closed forms for S(n).

Theorem 26. The family of triangle partition maps leads to 11 distinct sequences of sums
(S(n))n≥1 with recurrence relations and explicit forms as shown in the tables below.

Proof. The proof follows by direct calculation. For each triangle partition map Tσ,τ0,τ1 ,
compute a modified TRIP-stern sequence given by setting a1 = (a, b, c) instead of setting
a1 = (1, 1, 1) as we had done in Section 4, partitioning the sequence into levels as before.
Sum the terms of each level n to yield a sequence of row sums (S(n))n≥1.

If we can prove that the first m terms of (S(n))n≥1 satisfy an (m − 1)-term recurrence
relation, it follows that the sequence must be generated by that recurrence relation. We
have carried out this procedure for all 216 permutation triplets (σ, τ0, τ1) to find recurrence
relations for the associated row sums, from which the explicit form for the nth term in the
sequence (S(n))n≥1 was easily calculated. The results are presented in the tables below –
indeed, the family of triangle partition maps generates only 11 distinct row sums. The first
column lists the recurrence relation, the second lists the explicit form of that recurrence
relation, and the third lists the permutation triplets whose TRIP-Stern level sums follow
this relation. Note that Greek letters represent zeros of certain polynomials; see the key
below. For example, Root [29x3 − 87x2 − 5x− 1, 1] → α1 means “let α1 be the first root of
29x3 − 87x2 − 5x− 1 = 0.”
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Recurrence relation for S(n) Explicit form for S(n) (e, τ0, τ1)

4S(n− 3)− 5S(n− 2) + 4S(n− 1) α1β
n
1 + α2β

n
2 + α3β

n
3

(e, e, e),
(e, 123, 123)

2S(n− 2) + 2S(n− 1)
1
6
(
(

9− 5
√
3
) (

1−
√
3
)n

+
(

1 +
√
3
)n (

9 + 5
√
3
)

)

(e, e, 12),
(e, e, 123),
(e, 13, 12),
(e, 13, 123)

S(n− 3)− S(n− 2) + 3S(n− 1) γ1δ
n
1 + γ3δ

n
2 + γ2δ

n
3

(e, e, 13),
(e, 12, 123)

−S(n− 3) + 2S(n− 2) + 2S(n− 1)
2−n(−2(3−

√
5)

n

(−2+
√
5)+(3+

√
5)

n

(11+5
√
5))

5+
√
5

(e, e, 23),
(e, 12, 23),
(e, 12, 132),
(e, 23, e),
(e, 23, 13),
(e, 23, 123),
(e, 123, 23),
(e, 123, 132),
(e, 132, e),
(e, 132, 13)

6S(n− 3) + 2S(n− 2) + S(n− 1) ǫ1ζ
n
1 + ǫ2ζ

n
2 + ǫ3ζ

n
3

(e, e, 132),
(e, 132, 123)

5S(n− 1)− 6S(n− 2) 2n + 2 3n

(e, 12, e),
(e, 12, 13),
(e, 123, e),
(e, 123, 13),

−4S(n− 3) + S(n− 2) + 3S(n− 1) η1θ
n
1 + η2θ

n
2 + η3θ

n
3

(e, 12, 12),
(e, 13, 13)

−S(n− 3)− 3S(n− 2) + 4S(n− 1) ι1κ
n
1 + ι2κ

n
2 + ι3κ

n
3

(e, 13, e)
(e, 123, 12)

−6S(n− 3) + 4S(n− 2) + 2S(n− 1) λ1µ
n
1 + λ2µ

n
2 + λ3µ

n
3

(e, 13, 23),
(e, 23, 12)

S(n− 3) + 4S(n− 2) + S(n− 1) ν1ξ
n
1 + ν2ξ

n
2 + ν3ξ

n
3

(e, 13, 132),
(e, 132, 12)

4S(n− 2) + S(n− 1)
1
34
(
(

51− 13
√
17
) (

1
2

(

1−
√
17
))n

+
(

1
2

(

1 +
√
17
))n (

51 + 13
√
17
)

)

(e, 23, 23),
(e, 23, 132),
(e, 132, 23),
(e, 132, 132)

Table 3: Level sums
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Root [29x3 − 87x2 − 5x− 1, 1] → α1 Root [29x3 − 87x2 − 5x− 1, 2] → α2

Root [29x3 − 87x2 − 5x− 1, 3] → α3 Root [x3 − 4x2 + 5x− 4, 1] → β1
Root [x3 − 4x2 + 5x− 4, 2] → β2 Root [x3 − 4x2 + 5x− 4, 3] → β3
Root [76x3 − 228x2 + 28x− 1, 1] → γ1 Root [76x3 − 228x2 + 28x− 1, 2] → γ2
Root [76x3 − 228x2 + 28x− 1, 3] → γ3 Root [x3 − 3x2 + x− 1, 1] → δ1
Root [x3 − 3x2 + x− 1, 2] → δ2 Root [x3 − 3x2 + x− 1, 3] → δ3
Root [1176x3 − 3528x2 − 119x− 1, 1] → ǫ1 Root [1176x3 − 3528x2 − 119x− 1, 2] → ǫ2
Root [1176x3 − 3528x2 − 119x− 1, 3] → ǫ3 Root [x3 − x2 − 2x− 6, 1] → ζ1
Root [x3 − x2 − 2x− 6, 2] → ζ2 Root [x3 − x2 − 2x− 6, 3] → ζ3
Root [229x3 − 687x2 + 230x+ 4, 1] → η1 Root [229x3 − 687x2 + 230x+ 4, 2] → η2
Root [229x3 − 687x2 + 230x+ 4, 3] → η3 Root [x3 − 3x2 − x+ 4, 1] → θ1
Root [x3 − 3x2 − x+ 4, 2] → θ2 Root [x3 − 3x2 − x+ 4, 3] → θ3
Root [49x3 − 147x2 + 35x− 1, 1] → ι1 Root [49x3 − 147x2 + 35x− 1, 2] → ι2
Root [49x3 − 147x2 + 35x− 1, 3] → ι3 Root [x3 − 4x2 + 3x+ 1, 1] → κ1
Root [x3 − 4x2 + 3x+ 1, 2] → κ2 Root [x3 − 4x2 + 3x+ 1, 3] → κ3
Root [404x3 − 1212x2 + 24x+ 1, 1] → λ1 Root [404x3 − 1212x2 + 24x+ 1, 2] → λ2
Root [404x3 − 1212x2 + 24x+ 1, 3] → λ3 Root [x3 − 2x2 − 4x+ 6, 1] → µ1

Root [x3 − 2x2 − 4x+ 6, 2] → µ2 Root [x3 − 2x2 − 4x+ 6, 3] → µ3

Root [169x3 − 507x2 + 1, 1] → ν1 Root [169x3 − 507x2 + 1, 2] → ν2
Root [169x3 − 507x2 + 1, 3] → ν3 Root [x3 − x2 − 4x− 1, 1] → ξ1
Root [x3 − x2 − 4x− 1, 2] → ξ2 Root [x3 − x2 − 4x− 1, 3] → ξ3

Table 4: Key to level sums table

Note that in the above table we only included maps of the form (e, τ0, τ1); as before,
Lemma 9 brings the total up to 36 ∗ 6 = 216 maps.

8.2.1 Six row sum recurrence relations already well-known

It turns out that 6 of the 11 unique row sum recurrence relations or sequences – either
with the same initial terms or with different ones – had already been placed on Sloane’s
encyclopedia; in particular, these recurrence relations and corresponding Sloane sequence
numbers are as follows:

S(n) = 2S(n− 1) + 2S(n− 2) (A080040, A155020)

S(n) = 3S(n− 1)− S(n− 2) + S(n− 3) (A200752)

S(n) = 2S(n− 1) + 2S(n− 2)− S(n− 3) (A061646)

S(n) = 5S(n− 1)− 6S(n− 2) (A007689)

S(n) = 4S(n− 1)− 3S(n− 2)− S(n− 3) (A215404)

S(n) = S(n− 1) + 4S(n− 2) (A006131)
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The new sequences1 are generated by the following recurrence relations:

S(n) = 4S(n− 1)− 5S(n− 2) + 4S(n− 3) (A278612)

S(n) = S(n− 1) + 2S(n− 2) + 6S(n− 3) (A278613)

S(n) = 3S(n− 1) + S(n− 2)− 4S(n− 3) (A278614)

S(n) = 2S(n− 1) + 4S(n− 2)− 6S(n− 3) (A278615)

S(n) = S(n− 1) + 4S(n− 2) + S(n− 3) (A278616)

9 Forbidden triples for (e, e, e)

This section explores which points in Z3 appear as terms in the TRIP-Stern sequence for
(e, e, e) and which points do not. We call these latter points forbidden triples.

Definition 27. Let S denote the set of points given by the TRIP-Stern sequence for (e, e, e),
let P = {(x, y, z) ∈ Z3|0 < x ≤ y < z} ∪ (1, 1, 1) denote the set of potential entries in S and
let F = P \ S denote the set of forbidden triples.

Proposition 28. We have that S ⊆ P .

Proof. Suppose (a, b, c) ∈ S. We proceed by induction on the level of (a, b, c). If (a, b, c)
is in the second level, then (a, b, c) = (1, 1, 2), so it satisfies 0 < a ≤ b < c. Suppose
that 0 < a ≤ b < c for all elements (a, b, c) of the nth level. If (a, b, c) is in level n + 1,
then (a, b, c) = (d, e, f)Ain with in ∈ {0, 1} for some (d, e, f) satisfying 0 < d ≤ e < f . If
in = 0, then (a, b, c) = (e, f, d + f). We know that 0 < e ≤ f, and f < d + f because d is
positive. If in = 1, then (a, b, c) = (d, e, d+ f). By the inductive hypothesis, 0 < d ≤ e and
e < f < d+ f .

By Proposition 28, elements of F are precisely the potential entries that are not in the
TRIP-Stern sequence for (e, e, e).

Definition 29. We define the inverse map G of a triple (a, b, c) to be

G =

{

(a, b, c− a), if a+ b < c;

(c− b, a, b), if a+ b ≥ c and a < b, or a = 1 = c− b.

The map G is A−1
1 if a+ b < c and is A−1

0 if a+ b ≥ c is A−1
0 . However, G is not defined

on all points of P . We will show that, for any point (a, b, c) in P that is not (1, 1, 2), at most
one of (a, b, c)A−1

1 or (a, b, c)A−1
0 can lie in the TRIP-Stern sequence for (e, e, e).

Proposition 30. If (a, b, c) ∈ P, and (a, b, c) 6= (1, 1, 2), then either (a, b, c)A−1
0 or (a, b, c)A−1

1

is not in P .

1We have placed these sequences on Sloane’s encyclopedia.

31

http://oeis.org/A278612
http://oeis.org/A278613
http://oeis.org/A278614
http://oeis.org/A278615
http://oeis.org/A278616


Proof. First assume (a, b, c) has a+ b ≥ c. Then

(a, b, c)A−1
1 = (a, b, c− a)

However, we have that b ≥ c− a. Then (a, b, c)A−1
1 is not in P , unless (a, b, c− a) = (1, 1, 1),

which occurs if and only if a = b = 1, c = 2. Now suppose (a, b, c) has a+ b < c. Then

(a, b, c)A−1
0 = (c− b, a, b).

In order for this to lie in P we need c − b ≤ a < b. In particular, c ≤ b + a, contradicting
the assumption. Thus, either (a, b, c) = (1, 1, 2) or at most one of (a, b, c)A−1

1 or (a, b, c)A−1
0

lies in P .

Corollary 31. For every X ∈ S except (1, 1, 1), the point X appears exactly twice in the
TRIP-Stern sequence for (e, e, e). Furthermore, G maps X to the unique Y ∈ S such that
either Y A0 = X or Y A1 = X.

Proof. If a point (a, b, c) 6= (1, 1, 1) lies in S, then by definition either (a, b, c)A−1
1 or (a, b, c)A−1

0

must lie in S. Proposition 30 implies that only one of these can be in P . Thus, exactly one
of these points is in S. This takes care of the second statement.

Because the left and right subtrees of the TRIP-Stern sequence for (e, e, e) are symmetric,
we need only show that each X ∈ S appears exactly once in the set of points generated by
the action of A1 and A0 on (1, 1, 2). Now suppose that up to level n each entry in the
TRIP-Stern sequence appears only once. Then, in level n + 1, each element X corresponds
to either XA−1

1 or XA−1
0 in level n. By Proposition 30, exactly one of XA−1

1 or XA−1
0 will

lie in level n, and this is the only element that goes to X under one of A0 or A1. This is
the unique preimage in S, under A0 and A1, that goes to X . Then each entry in level n+ 1
appears for the first time, and in the level n + 1 there are no repeated entries, completing
the induction.

Definition 32. We define a germ to be any element (a, a, b) ∈ P with b < 2a. We call
the set of all elements generated by action of A0 and A1 on (a, a, b) the tree generated by
(a, a, b).

Observe that the tree generated by (1, 1, 1) is precisely the TRIP-Stern Sequence for
(e, e, e). The only points for which G is not defined in P are germs. Moreover, each applica-
tion of G to X ∈ P decreases (strictly) the sum of the entries of X . Since G is well-defined on
all of P , excluding germs, after some number of applications of G to an element X , we find
a germ that generates X . The following lemma, whose proof is straightforward, is needed to
strengthen the result.

Lemma 33. For all X ∈ P , we have G((X)A1) = X and G((X)A0) = X.

This lemma shows that there is a unique germ generating X for each X ∈ P .
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Definition 34. Let the germ of X be the value Gn(X) such that n is the largest integer
for which Gn(X) is defined. As noted above, this Gn(X) will be a germ.

Theorem 35. Every element of P lies in exactly one tree generated by a germ. Furthermore,
an element X ∈ P lies in the tree generated by X0 if and only if the germ of X is X0. In
particular, one can determine the germ of any given triple (a, b, c) in a finite number of steps.

Proof. If the germ of X is X0, then since G acts as A−1
1 or A−1

0 at each step, we have that
X can be written as (X0)Ai1Ai2 · · ·Ain for some ij ∈ {0, 1}. Conversely, if X is in the tree
generated by X0, then we can write X as (X0)Ai1Ai2 · · ·Ain for some ij ∈ {0, 1}. But then
by Lemma 33, we have that Gn(X) = X0, so the germ of X is X0.

Corollary 36. No germ except (1, 1, 1) lies in the TRIP-Stern sequence for (e, e, e). All
elements that do not lie in the TRIP-Stern Sequence are given by the action of A0 and A1

on a germ other than (1, 1, 1).

Proof. Both A−1
1 and A−1

0 take elements of the form (a, a, b) with b < 2a outside of P . Then
(a, a, b) cannot be reached by the action of A1 or A0 on an element of P .

No doubt a similar analysis can be done for any TRIP-Stern sequence, though we do not
know how clean the analogues would be.

10 Generalized TRIP-Stern sequences

In the original definition of a TRIP-Stern sequence from Section 4.1, we set the first triple
in the sequence to be a1 = (1, 1, 1). However, there is nothing canonical about this choice,
which leads us to construct generalized TRIP-Stern sequences, where we set the initial triple
to be a1 = (a, b, c), for some a, b, c ∈ R.

10.1 Construction of generalized TRIP-Stern sequences

Definition 37. For any permutation triplet (σ, τ0, τ1) in S3
3 , the generalized TRIP-Stern

sequence of (σ, τ0, τ1) is the unique sequence such that, for some a, b, c ∈ R, a1 = (a, b, c)
and, for n ≥ 1,

{

a2n = an · F0

a2n+1 = an · F1

The nth level of the generalized TRIP-Stern sequence is the set of am with 2n−1 ≤ m < 2n.

As for the standard TRIP-Stern sequence, each choice of (σ, τ0, τ1) also produces some
generalized TRIP-Stern sequence.

Definition 38. Let (a, b, c) be any triple of real numbers and let (σ, τ0, τ1) ∈ S3 × S3 × S3.
Let T (σ, τ0, τ1)(a,b,c) denote the tree generated from (σ, τ0, τ1) using (a, b, c) as a seed.
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10.2 Maximum terms and positions thereof for generalized TRIP-

Stern sequences

This section examines maximum terms in any given level of a generalized TRIP-Stern se-
quence, as well as the positions of those maximum terms within the given level. For a given
seed (a, b, c) and for an n-tuple v of zeros and ones, define

△(v) = (a, b, c)Fi1Fi2 · · ·Fin ,

which can be written as △(v) = (b1, b2, b3). As before, let |v| denote the number of entries
in v.

Definition 39. The maximum entry on level n of a generalized TRIP-Stern sequence is
mn = max|v|=n maxi∈{1,2,3} bi(v).

Lemma 40. Suppose (σ, τ0, τ1) ∈ S3
3 , κ ∈ S3, and let v = (i1, . . . , in). Then

△(κσ,τ0κ−1,τ1κ−1)(v) = (a, b, c) · κσAi1τi1 · σAi2τi2 · · ·σAinτinκ
−1.

Proof. The proof uses the same technique as in Lemma 9.

We will now examine the sequences of generalized TRIP-Stern maximal terms induced
by select triangle partition maps.

We find two broad classes of generalized TRIP-Stern sequences for paths through the
corresponding trees that will locate the maximal terms at each level. These depend to some
extent on the initial seeds. As the proofs are straightforward and similar to the earlier ones,
we will omit them.

Theorem 41. We have

1. For any seed (a, b, c), if a ≥ b ≥ c > 0, the sequence of maximal terms for TRIP-
Stern sequences induced by the nine maps (e, 13, 123), (e, e, 13), (e, 13, 13), (e, 23, 13),
(e, 23, 123), (e, 123, 13), (e, 123, 123), (e, 132, 13), and (e, 132, 123) lies on the con-
nected path of the tree T (e, τ0, τ1)(a,b,c) made by always selecting the right edge of
T (e, τ0, τ1)(a,b,c).

2. For any seed (a, b, c), if 0 < a ≤ b ≤ c, the sequence of maximal terms for TRIP-Stern
sequences induced by the eleven maps (e, e, e), (e, e, 12), (e, e, 23), (e, e, 123), (e, e, 132),
(e, 12, e), (e, 12, 12), (e, 12, 13), (e, 12, 23), (e, 12, 123) and (e, 12, 132) lies on the con-
nected path through the tree T (e, τ0, τ1)(a,b,c) made by always selecting the left edge of
T (e, τ0, τ1)(a,b,c).

In the above theorem, under select conditions, we have accounted for sequences of gen-
eralized TRIP-Stern sequence maximal terms generated by 20 maps. Lemma 40 brings this
total up to 20 · 6 = 120 maps, as long as the conditions – which simply guarantee that the
components of the initial seed will have the right magnitudes to satisfy the conditions of
Theorem 41 after being acted upon by the first κ in Lemma 40 – listed in the theorem below
are satisfied:
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Theorem 42. 1. Let (σ, τ0, τ1) ∈ S3
3 be one of the 9 permutation triplets listed in Theorem

41.1. For any a seed (a, b, c), the sequence of maximal terms for TRIP-Stern sequences
induced by maps of the form (κσ, τ0κ

−1, τ1κ
−1) lies on the connected path through the

tree T (κσ, τ0κ
−1, τ1κ

−1)(a,b,c) made by selecting the right edge of T (κσ, τ0κ
−1, τ1κ

−1)(a,b,c),
as long as the following conditions are satisfied:

(a) For κ = 12, require b ≥ a ≥ c > 0,

(b) for κ = 13, require c ≥ b ≥ a > 0,

(c) for κ = 23, require a ≥ c ≥ b > 0,

(d) for κ = 123, require c ≥ a ≥ b > 0, and

(e) for κ = 132, require b ≥ c ≥ a > 0.

2. Let (σ, τ0, τ1) ∈ S3
3 be one of the 11 permutation triplets listed in Theorem 41.2. For

any seed (a, b, c), the sequence of maximal terms for TRIP-Stern sequences induced
by maps of the form (κσ, τ0κ

−1, τ1κ
−1) lies on the connected path through the tree

T (κσ, τ0κ
−1, τ1κ

−1)(a,b,c) made by selecting the left edge of T (κσ, τ0κ
−1, τ1κ

−1)(a,b,c), as
long as the following conditions are satisfied:

(a) For κ = 12, require 0 < b ≤ a ≤ c,

(b) for κ = 13, require 0 < c ≤ b ≤ a,

(c) for κ = 23, require 0 < a ≤ c ≤ b,

(d) for κ = 123, require 0 < c ≤ a ≤ b, and

(e) for κ = 132, require 0 < b ≤ c ≤ a.

Proof. This follows immediately by the results of Theorem 41 and remembering that κ is
simply a permutation.

For any node (r, s, t) in the tree T (σ, τ0, τ1)(a,b,c), it is natural to consider the positions
of maximal terms within the tree that would be generated using that (r, s, t), and not the
original (a, b, c) as its seed. Clearly, the problem of characterizing these terms is equivalent
to characterizing the maximal terms on the nodes below and connected with (r, s, t); in this
sense, the problem is one of finding a sequence of local maximal terms. It is straightforward
to prove the analogous theorems.

10.3 Minimal terms and positions thereof

We also have analogs for finding minimal terms for a number of generalized TRIP-Stern
sequences. As the proofs are similar to the earlier ones, we omit them.

Theorem 43. For any seed (a, b, c), the minimal terms bn in the TRIP-Stern sequences
corresponding to the permutation triplets listed below lie on the left-most path in the corre-
sponding TRIP-Stern tree:
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1. For the maps (e, 12, e), (e, 12, 12), (e, 12, 13), (e, 12, 23), (e, 12, 123), (e, 12, 132) under
the condition that b < a and b < c – the minimal term will have value b at every
level.

2. For the maps (e, 123, e), (e, 123, 12), (e, 123, 13), (e, 123, 23), (e, 123, 123), (e, 123, 132)
under the condition that b < a and b < c or c < a and c < b; correspondingly, the
minimal term will have value b or c at every level.

3. For the maps (e, 23, e), (e, 23, 12), (e, 23, 13), (e, 23, 23), (e, 23, 123), (e, 23, 132), under
the condition that c < a and c < b – the minimal term will have value c at every level.

Theorem 44. For any seed (a, b, c), the minimal terms bn in the TRIP-Stern sequences
corresponding to the permutation triplets listed below lie on the right-most path in the corre-
sponding TRIP-Stern tree:

1. For the maps (e, e, 23), (e, 12, 23), (e, 13, 23), (e, 23, 23), (e, 123, 23), (e, 132, 23), under
the condition that a < b and a < c – the minimal term will have value a at every level.

2. For the maps (e, e, 13), (e, 12, 13), (e, 13, 13), (e, 23, 13), (e, 123, 13), (e, 132, 13), under
the condition that b < a and b < c – the minimal term will have value b at every level.

3. For the maps (e, e, e), (e, 12, e), (e, 13, e), (e, 23, e), (e, 123, e), (e, 132, e), under the con-
dition that a < b and a < c XOR b < a and b < c; correspondingly, the minimal term
will have value a or b at every level.

In the above two theorems, we have found the positions and values of the minimal terms
of generalized TRIP-Stern sequences generated by 27 maps under certain conditions on the
initial seed. Note that certain maps appear in both the “left” and “right” lists. Using the
results of Lemma 40 and imposing conditions analogous to those used in Theorem 42 for
maximal terms – which simply guarantee that the components of the initial seed will have
the right magnitudes to satisfy the conditions of the above two theorems after being acted
upon by the first κ in Lemma 40 – brings this total up to 27 · 6 = 162 maps.

10.4 Level sums for generalized TRIP-Stern sequences

It is natural, as was done with standard TRIP-Stern sequences, to consider level sums for
generalized TRIP Stern sequences. We take an identical approach to that for standard
TRIP-Stern sequences, though the explicit forms are more complex, as one would expect.

Theorem 45. The family of triangle partition maps leads to 11 distinct sequences of sums
(S(n))n≥1 with recurrence relations and explicit forms as shown in the tables below.
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Proof. The proof follows by direct calculation. For each triangle partition map Tσ,τ0,τ1 ,
compute a generalized TRIP-stern sequence given by setting a1 = (a, b, c) instead of setting
a1 = (1, 1, 1) as we had done in Section 4, partitioning the sequence into levels as before.
Sum the terms of each level n to yield a sequence of row sums (S(n))n≥1.

If we can prove that the first m terms of (S(n))n≥1 satisfy an (m − 1)-term recurrence
relation, it follows that the sequence must be generated by that recurrence relation. We
have carried out this procedure for all 216 permutation triplets (σ, τ0, τ1) to find recurrence
relations for the associated row sums, from which the explicit form for the nth term in the
sequence (S(n))n≥1 was easily calculated.

The results are presented in the tables below – indeed, the family of triangle partition
maps generates only 11 distinct row sums. The first column lists the recurrence relation, the
second lists the explicit form of that recurrence relation and the third lists the permutation
triplets whose TRIP-Stern level sums follow this relation. Note that Greek letters represent
zeros of certain polynomials; see the key below. For example, Root [x3 − 4x2 + 5x− 4, 1] →
α1 means “let α1 be the first root of x3 − 4x2 + 5x− 4 = 0.”
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Recurrence relation for S(n) Explicit form for S(n) (e, τ0, τ1)

4S(n− 3)− 5S(n− 2) + 4S(n− 1)
(cζ1 + bη1)α

n
1 + a (β1α

n
1 + αn

2β2 + αn
3β3)

+αn
3 (bγ3 + cδ2) ǫ2 + αn

2 (cζ3 + bη2)
(e, e, e),

(e, 123, 123)

2S(n− 2) + 2S(n− 1)

1
6
(
(

1−
√
3
)n

(
(

3− 2
√
3
)

a

−
(

−3 +
√
3
)

b+
(

3− 2
√
3
)

c)

+
(

1 +
√
3
)n

(
(

3 + 2
√
3
)

a

+
(

3 +
√
3
)

b+
(

3 + 2
√
3
)

c))

(e, e, 12),
(e, e, 123),
(e, 13, 12),
(e, 13, 123)

S(n− 3)− S(n− 2) + 3S(n− 1)
aι1θ

n
1 + bκ1θ

n
1 + cµ1θ

n
1 + aθn2 ι2

+bθn2κ3 + θn3 (aι3 + bκ2 + cµ2) + cθn2µ3

(e, e, 13),
(e, 12, 123)

−S(n− 3) + 2S(n− 2) + 2S(n− 1)

2−n

5(5+
√
5)
((−2)n

(

5 +
√
5
)

(b− c)

+
(

3−
√
5
)n

(−5
(

−1 +
√
5
)

a

+
(

5− 3
√
5
)

b− 2
(

−5 +
√
5
)

c)

+
(

3 +
√
5
)n

(10
(

2 +
√
5
)

a

+
(

15 + 7
√
5
)

b+ 4
(

5 + 2
√
5
)

c))

(e, e, 23),
(e, 12, 23),
(e, 12, 132),
(e, 23, e),
(e, 23, 13),
(e, 23, 123),
(e, 123, 23),
(e, 123, 132),
(e, 132, e),
(e, 132, 13)

6S(n− 3) + 2S(n− 2) + S(n− 1)
cξ1ν

n
1 + bo1ν

n
1 + aρ1ν

n
1 + cνn3 ξ2 + bνn3 o3+

νn2 (cξ3 + bo2 + aρ2) + aνn3 ρ3

(e, e, 132),
(e, 132, 123)

5S(n− 1)− 6S(n− 2) 2nb+ 3n(a+ c)

(e, 12, e),
(e, 12, 13),
(e, 123, e),
(e, 123, 13)

−4S(n− 3) + S(n− 2) + 3S(n− 1)
cτ2σ

n
1 + aυ1σ

n
1 + bφ1σ

n
1 + cσn

2 τ1 + aσn
2υ2+

bσn
2φ2 + σn

3 (cτ3 + aυ3 + bφ3)
(e, 12, 12),
(e, 13, 13)

−S(n− 3)− 3S(n− 2) + 4S(n− 1)
cψ1χ

n
1 + aω2χ

n
1 + b̥1χ

n
1 + cχn

2ψ2 + aχn
2ω1

+bχn
2̥2 + χn

3 (cψ3 + aω3 + b̥3)
(e, 13, e),
(e, 123, 12)

−6S(n− 3) + 4S(n− 2) + 2S(n− 1)
aε2Π

n
1 + cϑ1Π

n
1 + bς1Π

n
1 + aε1Π

n
2 + cϑ2Π

n
2

+bς2Π
n
2 + (aε3 + cϑ3 + bς3)Π

n
3

(e, 13, 23),
(e, 23, 12)

S(n− 3) + 4S(n− 2) + S(n− 1)
a̟2κ

n
1 + c̺1κ

n
1 + bϕ2κ

n
1 + aκn

2̟1 + cκn
2 ̺2

+bκn
2ϕ1 + κn

3 (a̟3 + c̺3 + bϕ3)
(e, 13, 132),
(e, 132, 12)

4S(n− 2) + S(n− 1)

1
34
(
(

1
2

(

1−
√
17
))n

(
(

17− 5
√
17
)

a

+
(

17− 3
√
17
)

b+
(

17− 5
√
17
)

c)

+
(

1
2

(

1 +
√
17
))n

(
(

17 + 5
√
17
)

a

+
(

17 + 3
√
17
)

b+
(

17 + 5
√
17
)

c))

(e, 23, 23),
(e, 23, 132),
(e, 132, 23),
(e, 132, 132)

Table 5: Level sums
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Root [x3 − 4x2 + 5x− 4, 1] → α1 Root [x3 − 4x2 + 5x− 4, 2] → α2

Root [x3 − 4x2 + 5x− 4, 3] → α3 Root [58x3 − 58x2 − 17x− 2, 1] → β1
Root [58x3 − 58x2 − 17x− 2, 2] → β2 Root [58x3 − 58x2 − 17x− 2, 3] → β3
Root [x3 + 4x2 + x+ 2, 3] → γ3 Root [x3 + 5x2 − 3x+ 1, 2] → δ2
Root [116x3 + x+ 1, 2] → ǫ2 Root [116x3 − 116x2 − 7x− 1, 1] → ζ1
Root [116x3 − 116x2 − 7x− 1, 3] → ζ3 Root [116x3 − 116x2 + 25x− 2, 1] → η1
Root [116x3 − 116x2 + 25x− 2, 2] → η2 Root [x3 − 3x2 + x− 1, 1] → θ1
Root [x3 − 3x2 + x− 1, 2] → θ2 Root [x3 − 3x2 + x− 1, 3] → θ3
Root [19x3 − 19x2 − 3x− 1, 1] → ι1 Root [19x3 − 19x2 − 3x− 1, 2] → ι2
Root [19x3 − 19x2 − 3x− 1, 3] → ι3 Root [38x3 − 38x2 + 10x− 1, 1] → κ1
Root [38x3 − 38x2 + 10x− 1, 2] → κ2 Root [38x3 − 38x2 + 10x− 1, 3] → κ3
Root [x3 − 3x2 + x− 1, 1] → λ1 Root [x3 − 3x2 + x− 1, 2] → λ2
Root [x3 − 3x2 + x− 1, 3] → λ3 Root [76x3 − 76x2 − 2x− 1, 1] → µ1

Root [76x3 − 76x2 − 2x− 1, 2] → µ2 Root [76x3 − 76x2 − 2x− 1, 3] → µ3

Root [x3 − x2 − 2x− 6, 1] → ν1 Root [x3 − x2 − 2x− 6, 2] → ν2
Root [x3 − x2 − 2x− 6, 3] → ν3 Root [147x3 − 147x2 − 7x− 1, 1] → ξ1
Root [147x3 − 147x2 − 7x− 1, 2] → ξ2 Root [147x3 − 147x2 − 7x− 1, 3] → ξ3
Root [588x3 − 588x2 + 77x− 4, 1] → o1 Root [588x3 − 588x2 + 77x− 4, 2] → o2
Root [588x3 − 588x2 + 77x− 4, 3] → o3 Root [1176x3 − 1176x2 − 161x− 6, 1] → ρ1
Root [1176x3 − 1176x2 − 161x− 6, 2] → ρ2 Root [1176x3 − 1176x2 − 161x− 6, 3] → ρ3
Root [x3 − 3x2 − x+ 4, 1] → σ1 Root [x3 − 3x2 − x+ 4, 2] → σ2
Root [x3 − 3x2 − x+ 4, 3] → σ3 Root [229x3 − 229x2 − 33x+ 1, 1] → τ1
Root [229x3 − 229x2 − 33x+ 1, 2] → τ2 Root [229x3 − 229x2 − 33x+ 1, 3] → τ3
Root [229x3 − 229x2 + 5x+ 2, 1] → υ1 Root [229x3 − 229x2 + 5x+ 2, 2] → υ2
Root [229x3 − 229x2 + 5x+ 2, 3] → υ3 Root [229x3 − 229x2 + 61x− 2, 1] → φ1

Root [229x3 − 229x2 + 61x− 2, 2] → φ2 Root [229x3 − 229x2 + 61x− 2, 3] → φ3

Root [x3 − 4x2 + 3x+ 1, 1] → χ1 Root [x3 − 4x2 + 3x+ 1, 2] → χ2

Root [x3 − 4x2 + 3x+ 1, 3] → χ3 Root [49x3 − 49x2 + 1, 1] → ψ1

Root [49x3 − 49x2 + 1, 2] → ψ2 Root [49x3 − 49x2 + 1, 3] → ψ3

Root [49x3 − 49x2 − 14x+ 1, 1] → ω1 Root [49x3 − 49x2 − 14x+ 1, 2] → ω2

Root [49x3 − 49x2 − 14x+ 1, 3] → ω3 Root [49x3 − 49x2 + 14x− 1, 1] → ̥1

Root [49x3 − 49x2 + 14x− 1, 2] → ̥2 Root [49x3 − 49x2 + 14x− 1, 3] → ̥3

Root [x3 − 2x2 − 4x+ 6, 1] → Π1 Root [x3 − 2x2 − 4x+ 6, 2] → Π2

Root [x3 − 2x2 − 4x+ 6, 3] → Π3 Root [101x3 − 101x2 + 19x− 1, 1] → ς1
Root [101x3 − 101x2 + 19x− 1, 2] → ς2 Root [101x3 − 101x2 + 19x− 1, 3] → ς3
Root [202x3 − 202x2 − 42x− 1, 1] → ε1 Root [202x3 − 202x2 − 42x− 1, 2] → ε2
Root [202x3 − 202x2 − 42x− 1, 3] → ε3 Root [404x3 − 404x2 − 14x+ 3, 1] → ϑ1
Root [404x3 − 404x2 − 14x+ 3, 2] → ϑ2 Root [404x3 − 404x2 − 14x+ 3, 3] → ϑ3
Root [x3 − x2 − 4x− 1, 1] → κ1 Root [x3 − x2 − 4x− 1, 2] → κ2

Root [x3 − x2 − 4x− 1, 3] → κ3 Root [169x3 − 169x2 − 26x+ 1, 1] → ̟1

Root [169x3 − 169x2 − 26x+ 1, 2] → ̟2 Root [169x3 − 169x2 − 26x+ 1, 3] → ̟3

Root [169x3 − 169x2 − 13x+ 5, 1] → ̺1 Root [169x3 − 169x2 − 13x+ 5, 2] → ̺2
Root [169x3 − 169x2 − 13x+ 5, 3] → ̺3 Root [169x3 − 169x2 + 26x− 1, 1] → ϕ1

Root [169x3 − 169x2 + 26x− 1, 2] → ϕ2 Root [169x3 − 169x2 + 26x− 1, 3] → ϕ3

Table 6: Key to level sums table
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11 Conclusion

This paper has used a collection of multidimensional continued fractions to construct a fam-
ily of sequences called TRIP-Stern sequences. These sequences reflect the properties of the
multidimensional continued fractions from which they are generated. We have studied the
sequences of maximal and minimal terms – and positions thereof. We have also character-
ized the sums of levels and examined restrictions on terms appearing in a given TRIP-Stern
sequence. We found that several of the level sum sequences or corresponding recurrence re-
lations are well-known. Lastly, we introduced generalized TRIP-Stern sequences and proved
several analogous results.

We will conclude with a few unanswered questions: Do recurrence relations for row max-
ima and their locations exist in general? We ask this because such relations could not always
be found. What are the forbidden triples corresponding to (σ, τ0, τ1) ∈ S3

3 other than (e, e, e)?
Do the distributions of terms in the TRIP-Stern sequences have any interesting properties?
The terms of the TRIP-Stern sequences are the denominators of the convergents of the
corresponding multidimensional continued fractions. Can these sequences reveal anything
about approximation properties of multidimensional continued fractions? As discussed in
Dasaratha et al. [10], many known multidimensional continued fractions are combinations of
our family of 216 maps; as a result, it may be of interest to construct analogous sequences
using select combination maps.

There are polynomial analogs of Stern’s diatomic sequence (as in the work of Dilcher and
Stolarsky [13, 14], of Coons [9], of Dilcher and Ericksen [12], of Klavžar, Milutinović and
Petr [30], of Ulas [50, 51], of Vargas [52], of Bundschuh [5], of Bundschun and Väänänen [6]
and of Allouche and Mendès France [1]). What are the polynomial analogs for TRIP-Stern
sequences?

In essence, in this paper we start with a triple of numbers v = (a, b, c) and two 3 × 3
matrices A and B and then examine the concatenation of the triples

vA, vB, vAA, vAB, vBA, vBB, vAAA, vAAB, vABA, . . . .

Since there are 216 different triangle partition algorithms, we have 216 different pairs of 3×3
matrices. Naively then, we would expect for there to be 216 different types of sequences, or,
216 different stories. As we have seen, this is not the case. We have found clear patterns
and classes among the 216 different TRIP-Stern sequences. The real question is why these
patterns exist. Further, do the TRIP-Stern sequences that share, say common sequences of
maximum terms, have common number theoretic properties? These questions strike us as
hard.

12 Acknowledgments

We thank L. Pedersen and the referee for useful comments and the National Science Foun-
dation for their support of this research via grant DMS-0850577.

40



References

[1] J.-P. Allouche and M. Mendès France, Lacunary formal power series and the Stern-Brocot
sequence, Acta Arith. 159 (2013), 47–61.

[2] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theor. Comput. Sci. 98
(1992), 163–197.

[3] J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theor. Comput. Sci.
307 (2003), 3–29.

[4] I. Amburg, Explicit Forms for and Some Functional Analysis behind a Family of Mul-
tidimensional Continued Fractions – Triangle Partition Maps – and their Associated
Transfer Operators, senior thesis, Williams College, 2014.

[5] P. Bundschuh, Transcendence and algebraic independence of series related to Stern’s
sequence, Int. J. Number Theory 8 (2012), 361–376.

[6] P. Bundschuh and K. Väänänen, Algebraic independence of the generating functions of
Stern’s sequence and of its twist, J. Théor. Nombres de Bordeaux 25 (2013), 43–57.
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