
PATTERN AVOIDANCE FOR RANDOM PERMUTATIONS

HARRY CRANE AND STEPHEN DESALVO

Abstract. We use techniques from Poisson approximation to prove explicit error bounds
on the number of permutations that avoid any pattern. Most generally, we bound the total
variation distance between the joint distribution of pattern occurrences and a corresponding
joint distribution of independent Bernoulli random variables, which as a corollary yields a
Poisson approximation for the distribution of the number of occurrences. We also investigate
occurrences of consecutive patterns in random Mallows permutations, of which uniform
random permutations are a special case. These bounds allow us to estimate the probability
that a pattern occurs any number of times and, in particular, the probability that a random
permutation avoids a given pattern.
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1. Introduction

A permutation of [n] = {1, . . . ,n} is a bijection σ : [n] → [n], i 7→ σ(i) = σi, written
σ = σ1 · · · σn. For each n = 1, 2, . . ., we write Sn to denote the set of permutations of [n].
Given permutations σ = σ1 · · · σn and τ = τ1 · · · τm, we say that σ avoids τ if there does not
exist a subsequence 1 ≤ i1 < · · · < im ≤ n such that σi1 · · · σim is order-isomorphic to τ, and
we say that σ avoids τ consecutively if there is no j = 1, . . . ,n−m + 1 such that σ jσ j+1 · · · σ j+m−1
is order-isomorphic to τ. Here we study pattern avoidance probabilities for a wide class
of random permutations from the Mallows distribution, which is of particular interest in
the fields of statistics and probability but special cases provide insights into questions in
enumerative and extremal combinatorics.

An inversion in σ = σ1 · · · σn is a pair (i, j), i < j, such that σi > σ j. For example, σ = 34125
has four inversions, (1, 3), (1, 4), (2, 3), (2, 4). We write inv(σ) to denote the set of inversions
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2 HARRY CRANE AND STEPHEN DESALVO

of σ. With Σn denoting a random permutation of [n], the Mallows distribution with parameter
q ∈ (0,∞) on Sn assigns probability

(1) P{Σn = σ} = Pq
n(σ) = q| inv(σ)|/In(q), σ ∈ Sn,

where In(q) =
∏n

j=1
∑ j−1

i=0 qi is the inversion polynomial and | inv(σ)| is the number of inversions
in σ. Note that q = 1 corresponds to the uniform distribution on Sn, i.e., P{Σn = σ} = 1/n!
for all σ ∈ Sn, and is the critical point at which the Mallows family switches from penalizing
inversions, q < 1, to favoring them, q > 1. Results for pattern avoidance probabilities under
the uniform distribution translate to enumerative results for the number of pattern avoid-
ing permutations. Combinatorial inequalities bounding the number of pattern avoiding
permutations obtained from our techniques are contained in Equations (11) and (14).

The Mallows distribution [28] was introduced as a one-parameter model for rankings that
occur in statistical analysis. More recently, Mallows permutations have been studied in the
context of the longest increasing subsequence problem [6] and quasi-exchangeable random
sequences [19, 20]. Our study of pattern avoidance for this class relates to recent work in
the combinatorics literature, which considers the Wilf equivalence classes of the inversion
polynomials for permutations that avoid certain sets of patterns [10, 16]. For general values
of q > 0, we consider the problem of consecutive pattern avoidance for random Mallows
permutations, but our main theorems go quite a bit further by establishing explicit error
bounds on the entire distribution of the number of occurrences of patterns in a random
permutation. In the uniform setting (q = 1), our method provides an estimate for the
number of permutations with a prescribed number of occurrences as well as the number of
permutations with a prescribed number of consecutive occurrences of a given pattern. Our
main theorems, therefore, complement prior work by Elizalde & Noy [18], Perarnau [32],
and the more recent work by the current authors & Elizalde [14] on consecutive pattern
avoidance, as well as Nakamura [31], who used functional equations to enumerate sets with
a prescribed number of occurrences of a given pattern. Other related works include [33] for
patterns τ of length n − 1, and [34] for patterns τ of length n − 2. And it is left as an open
problem in [38] to perform the same analysis for patterns τ of length n − 3.

Our approach also differs from previous work in a few key respects. While most prior
work seeks either exact or asymptotic enumeration of the sets that avoid a given pattern
or collection of patterns, we use the Chen–Stein Poisson approximation method [12], in
particular [2], to bound the total variation distance between the collection of all dependent
indicator random variables indicating pattern occurrence at a prescribed set of indices,
and a joint distribution of independent Bernoulli random variables with the same marginal
distributions. From these bounds, we can approximate the probability that a random
permutation avoids a given pattern, i.e., the pattern occurs zero times, or contains any
number of occurrences of that pattern.

We summarize our main theorems in Section 3.

2. Motivation

Restricted permutations fall into two broad classes. The first, more tractable type is of
the form σ(a) , b for a, b ∈ [n], whose study dates to the classical problèmes des rencontres
in the early 1700s [15]; see also [5, Chapter 4]. A special case counts the number Dn of
derangements of [n], i.e., permutations of [n] without fixed points, yielding the asymptotic
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expression

(2) Dn = n!
n∑

i=0

(−1)i

i!
∼ n!/e as n→∞.

Equation (2) can be stated in probabilistic terms by letting Σn be a uniform random
permutation of [n], i.e., P{Σn = σ} = 1/n! for each σ ∈ Sn, in which case

(3) P{Σn is a derangement} = Dn/n! ∼ 1/e as n→∞.

See [3, 36] for more thorough treatments involving the cycle structure of random permuta-
tions.

We can also derive the expression in (2) by Poisson approximation. With W denoting
the number of fixed points in a random permutation of [n], we demonstrate in Section 4.2,
see also [5, Chapter 4], that the distribution of W converges in total variation distance to
the distribution of an independent Poisson random variable with expected value 1. In
addition to the asymptotic value for the probability that a random permutation has no fixed
points, this approach bounds the absolute error of probabilities that involve any measurable
function of the number of fixed points in a random permutation.

The second type of restriction is pattern avoidance, which attracts increasing attention in
the modern probability [6, 21, 22] and modern combinatorics literature [7]. Any sequence
of distinct positive integers w = w1 · · ·wk determines a permutation of [k] by reduction: with
{w(1), . . . ,w(k)}< denoting the set of elements listed in increasing order, we define the map
w(i) 7→ i, under which w maps to a permutation red(w) of [k], called the reduction of w. For
example, w = 826315 reduces to red(w) = 625314. We call any fixed τ ∈ Sm a pattern and
say that σ ∈ Sn contains τ if there exists a subsequence 1 ≤ i1 < · · · < im ≤ m such that
red(σi1 · · · σim) = τ. We say σ ∈ Sn avoids τ if it does not contain it. We say that σ contains
τ consecutively if there exists an index j ∈ [n − m + 1] such that red(σ jσ j+1 · · · σ j+m−1) = τ;
otherwise, we say σ avoids τ consecutively. For any pattern τ, we define

Sn(τ) := {σ ∈ Sn : σ avoids τ} and

Sn(τ) := {σ ∈ Sn : σ avoids τ consecutively},(4)

which we extend to any subset A ⊂
⋃

n≥1Sn by

Sn(A) := {σ ∈ Sn : σ avoids all τ ∈ A} and(5)

Sn(A) := {σ ∈ Sn : σ avoids all τ ∈ A consecutively}.

Much effort has been devoted to exact enumeration ofSn(A) for certain choices of A, see, e.g.,
[1, 4, 17, 25]. For the most part, we are interested in sets Sn(τ) containing all permutations
that avoid a given pattern τ, though our approach extends in a straightforward manner for
more general sets A.

Attempts to enumerate Sn(τ) are notoriously difficult for patterns of fixed length larger
than 3. Knuth [26] initiated interest in pattern avoidance in the study of algorithms by
identifying the 231-avoiding permutations as exactly those that can be sorted by a single
run through a stack; see Bona [7, Chapter 8] for further discussion. In fact, it is now well
known that the avoidance sets Sn(τ) for every length-3 pattern τ are enumerated by the
Catalan numbers [37, A000108]:

| Sn(τ)| =
(
2n
n

)
/(n + 1), τ ∈ {123, 132, 213, 231, 312, 321}.
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Just as in the derangement problem above, enumeration of Sn(A) has an elementary
probabilistic interpretation that motivates much of our paper. With Σn denoting a uniform
random permutation of [n] and A a set of permutations, the probability that Σn avoids A is

P{Σn avoids every τ ∈ A} = | Sn(A)|/n!.

The Stanley–Wilf theorem [29] states that | Sn(τ)| grows exponentially with n for every fixed
τ. For example, the Catalan numbers are known to grow asymptotically like 4n/

√

πn3,
yielding the asymptotic avoidance probability

P{Σn avoids 231} =
(
2n
n

)
/(n + 1)! ∼

1

πn2
√

2

(4 e
n

)n
as n→∞.

Such calculations quickly become intractable. For example, the sets of 1324-avoiding
permutations have only been enumerated up to n = 31 [23]. Even precise asymptotics for
| Sn(1324)| have not yet been established [8, 9, 13].

3. Main Results

3.1. Definitions. Throughout the paper, we write L(X) to denote the distribution, or law,
of a random variable X and L(Y | X) to denote the conditional distribution of Y given X.
For random variables X and Y, we write dTV(L(X),L(Y)) to denote the total variation
distance between the distributions of X and Y, which in the special case of non-negative
integer-valued random variables can be computed as

dTV(L(X),L(Y)) =
1
2

∞∑
n=0

|P(X = n) − P(Y = n)|.

Define the set of all unordered, distinct j-tuples of elements from [n] by

Γ j := {{i1, . . . , i j} : 1 ≤ i1 < · · · < i j ≤ n}, j ∈ [n].

For each α ∈ Γ j, let Dα be the set of all j-element subsets of [n] that overlap with α in
at least one element, i.e., Dα := {β ∈ Γ j : β ∩ α , ∅}. For example, if α = {1, 5, 8}, then
Dc
α = {{ j1, j2, j3} : ji < {1, 5, 8}, i = 1, 2, 3}.
With Σn denoting a uniform random permutation of [n], α ∈ Γ j, and τ a fixed pattern

of length j, we define Xα = Xi1,...,im as the indicator random variable for the event that the
reduction of Σn at positions i1, . . . , im form the pattern τ, i.e.,

(6) Xi1,...,im := I(red(Σn(i1) · · ·Σn(im)) = τ).

Let X ≡ X j := (Xα)α∈Γ j , and let B ≡ B j = (Bα)α∈Γ j denote a joint distribution of independent
Bernoulli random variables with marginal distributions satisfyingEBα = EXα for all α ∈ Γ j.
The random variable

(7) W =
∑

1≤i1<...<im≤n

Xi1,...,im

counts the total number of occurrences of τ in Σn.
For any τ ∈ Sm, for each s = 1, . . . ,m − 1 we define Ls(τ) as the overlap of size s, i.e., the

number of permutations σ ∈ S2m−s such that there are indices 1 ≤ i1 < · · · < im ≤ 2m− s and
1 ≤ j1 < · · · < jm ≤ 2m − s such that {i1, . . . , im} and { j1, . . . , jm} have exactly s elements in
common and

red(σi1 · · · σim) = red(σ j1 · · · σ jm) = τ.
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For consecutive pattern avoidance, we similarly define the set of all j-tuples of the form
{i, i + 1, . . . , i + j − 1}, 1 ≤ i ≤ n − j + 1, as

Γ j := {{i, i + 1, . . . , i + j − 1} : 1 ≤ i ≤ n − j + 1}, j ∈ [n − j + 1].

Let X ≡ X j := (Xα)α∈Γ j
, and let B ≡ B j = (Bα)α∈Γ j

denote a joint distribution of independent
Bernoulli random variables with marginal distributions which satisfy EBα = EXα for all
α ∈ Γ j. Next, we define analogously the random variable

(8) W :=
∑

1≤s≤n−m+1

Xs,s+1,...,s+m−1,

where Xs,s+1,...,s+m−1 is defined as in (6) for a fixed pattern τ ∈ Sm and a uniform random
permutation Σn. We also define Ls(τ) as the sequential overlap of size s, i.e., the number of
permutations σ ∈ S2m−s such that

red(σ1 · · · σm) = red(σm−s+1 · · · σ2m−s) = τ.

3.2. Main corollaries. We begin with several limit theorems which follow from the quanti-
tative bounds given in Section 3.3.

Corollary 3.1. Fix any η ≥ 0, and let j ≡ j(n) be some increasing, integer-valued function of n
such that j ≥ (e e1/e + η)

√
n. For any sequence of patterns τn ∈ S j, and for any measurable function

h : {0, 1}(
n
j) → R and Borel set A ⊆ R , as n tends to infinity we have

P(h(X) ∈ A) = P(h(B) ∈ A) + o(1).

We also have an analogous theorem for consecutive patterns, but with a stronger result.

Corollary 3.2. Fix any t > 0, and define M(t,n) :=
⌊ log(n/t)

log log(n/t)−log log log(n/t) −
1
2

⌋
. Let m ≡ m(n) be

some increasing, integer-valued function of n such that m ≥M(t,n). For any sequence of patterns
τn ∈ Sm, and for any measurable function h : {0, 1}n−m+1

→ R and Borel set A ⊆ R , as n tends to
infinity we have

P(h(X) ∈ A) = P(h(B) ∈ A) + o(1).

In particular, denoting by Yt an independent Poisson random variable with parameter t, and taking
m(n) = M(t,n), we have

dTV(W,Yt) = O
( 1
m

)
;

whence,

| Sn(τn)| ∼ n! e−t as n→∞.

Finally, we present an analogous result for permutations chosen according to the
Mallows(q) distribution.

Corollary 3.3. Let m ≡ m(n) be a non-decreasing integer-valued sequence, τn ∈ Sm be a sequence of
patterns, and q ≡ q(n) be a sequence of parameters. For each n ≥ 1, let Σn be a random permutation
from the Mallows distribution (1) with parameter q(n), with Xq and Bq defined analogously. For
any measurable function h : {0, 1}n−m+1

→ R and Borel set A ⊆ R , we have

P(h(Xq) ∈ A) = P(h(Bq) ∈ A) + o(1),
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provided either

q(n) ≤ n−1/ inv(τm(n)) for almost all n ≥ 1,

q(n) ≥ n1/((m(n)
2 )−| inv(τm(n))|) for almost all n ≥ 1,

| inv(τm(n))| ≤ − log(n)/ log(q(n)) for almost all n ≥ 1 and q < 1 or

| inv(τm(n))| ≥ − log(n)/ log(q(n)) + m(n)2/2 for almost all n ≥ 1 and q > 1.

3.3. Quantitative bounds for large patterns. Corollaries 3.1 and 3.2 provide an asymptotic
analysis for sequences of patterns which also grow in size. It is too much to expect a
general asymptotic formula for any fixed pattern—we have already noted the difficulty of
nailing down the asymptotic growth of 1324-avoiding sets—but Poisson approximation,
see Section 4, provides a general approach for obtaining quantitative bounds on various
quantities when all sizes are fixed.

Theorem 3.4. Assume n ≥ j ≥ 3, and τ is any pattern of length j. Let X = (Xα)α∈Γ j , and let
B = (Bα)α∈Γ j denote an independent Bernoulli process with marginal distributions which satisfy
EBα = EXα for all α ∈ Γ j. We have

dTV(L(X),L(B)) ≤ 4Dn, j +
2λ
j!
,(9)

where Dn, j = min(1, λ−1)(d1 + d2),

λ =

(
n
j

)
/ j!, d1 =

(
n
j

) ((
n
j

)
−

(
n − j

j

))
1
j!2
,

d2 =

j−1∑
s=1

(
n

2 j − s

)
2 Ls(τ)

(2 j − s)!
.(10)

Furthermore, for Y a Poisson random variable with mean λ = EW, we have

dTV(L(W),L(Y)) ≤ 2Dn, j,

and also

(11) n! e−λ
(
1 − eλDn, j

)
≤ |Sn(τ)| ≤ n! e−λ

(
1 + eλDn, j

)
.

Remark 3.5. There are several noteworthy aspects to Theorem 3.4.
(1) The expression for λ is the same for all patterns of length j.
(2) The expression for d1 cannot be improved by our approach.
(3) We are unaware of any efficient means to calculate the values Ls(τ) in general. For a simple

and explicit upper bound, applicable for all patterns τ of length j, we suggest

(12) d2 ≤

(
n
j

) j−1∑
s=1

(
n − j
j − s

)(
j
s

)
s!
j!2
,

but we suspect this bound can be improved.
(4) As Theorem 3.1 suggests, these bounds are most useful when Dn, j < 1, i.e., when j is large.

Theorem 3.6. Assume n ≥ m ≥ 3 and τ is any pattern of length m. We have

dTV
(
L

(
X
)
),L

(
B
))
≤ 4Dn,m +

2λ
m!
,(13)
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where Dn,m = min(1, 1/λ)(d1 + d2),

λ =
n −m

m!
, d1 =

n1

m!2
, d2 =

m−1∑
s=1

(n − 2m + s) 2 Ls(τ)
(2m − s)!

, n1 = 2mn − 3m2 + m.

Let Y denote a Poisson random variable with parameter λ = EW. We have

dTV
(
L

(
W

)
,L

(
Y
))
≤ 2Dn,m,

and also

n! e−λ
(
1 − eλ Dn,m

)
≤ |Sn(τ)| ≤ n! e−λ

(
1 + eλ Dn,m

)
.(14)

3.4. Limitations of Poisson Approximation. It is tempting to conjecture that Corollary 3.1
holds even when λ tends to some fixed positive constant, but we suspect this is not possible,
which we now demonstrate. First, we note the following.

Lemma 3.7 ([30]). Fix any t > 0 and let λ =
(n

j
)
/ j!. Then λ→ t for

(15) j ∼ e
√

n −
1
4

log(n) −
1
2

log(2πt) −
1
4

e2
−

1
2

as n→∞.

Lemma 3.8. Suppose n, j and n − j tend to infinity, then we have

d1 ∼ λ
2
(
1 − e− j2/n

)
.

In particular, for j ∼ e
√

n − 1
4 log(n), we have d1 → c ∈ (0,∞).

Thus, a necessary condition for d1 to tend to zero is

(16) j ∼ e
√

n −
(1
4
− ε

)
log(n).

It is also well known, see [24, 27], that the typical size of the longest increasing subsequence
is asymptotically of order 2

√
n, and so one cannot have a Poisson limit theorem which

applies to the increasing pattern 12 . . . j. It would be interesting to investigate the behavior
in the gap, i.e., for j ∼ c

√
n with any 2 < c < e.

3.5. Consecutive pattern avoidance for Mallows permutations. In Section 5, we discuss
several special properties of the Mallows distribution that are helpful for studying consec-
utive pattern avoidance. Using these properties, we obtain analogous bounds to those in
Theorems 3.4 and 3.6.

Recall the definition of the restriction Σn|A of Σn to a subset A ⊆ [n], and recall Γm denotes
the set of subsets of size m whose elements are consecutive in {1, 2, . . . ,n}.

Theorem 3.9. Fix q > 0 and let Σn ∼Mallows(q). For any m ≥ 2, let τm be any pattern of size m.
For any α ∈ Γm, let

Xα = I(red(Σn|α) = τm).

Let W =
∑
α∈Γm

Xα and let Y be an independent Poisson random variable with expected value
λ = EW. Then

dTV(L(W),L(Y)) ≤ 2(b1 + b2),



8 HARRY CRANE AND STEPHEN DESALVO

where

λ = (n −m)
q| inv(τm)|

Im(q)
, b1 =

n1q2| inv(τm)|

Im(q)2 , b2 =

m−1∑
s=1

(n − 2m + s)
∑

ρ∈Ls(τm)

q| inv(ρ)|

I2m−s(q)
,

n1 = 2mn − 3m2 + m.

The key to obtaining asymptotic formulas and Poisson limit theorems for general Mallows
permutations relies on the interplay between the parameters n, m, | inv(τ)|, and q. In
particular, we need the expected number of occurrences to converge to a constant λ ∈ (0,∞).
In the case of consecutive pattern avoidance, the expected number of occurrences of a
pattern τ ∈ Sn in Σn ∼Mallows(q) is

λ = (n −m)q| inv(τ)|/Im(q),

which, for m fixed, produces non-trivial limiting behavior as long as

q ∼ n−1/| inv(τ)| or q ∼ n1/((m
2)−| inv(τ)|).

We can also allow m to vary and keep q fixed so that

| inv(τ)| ∼ − log(n)/ log(q) or | inv(τ)| ∼ − log(n)/ log(q) + m2/2.

Combined with Theorem 3.9, these observations yield Corollary 3.3.
In Section 5.3.2, we demonstrate Theorem 3.9 for all patterns of length 3. In Section 6.2,

we compute the bounds in Theorems 3.4 and 3.9 for the specific patterns 2341 and 23451
and we plot the estimated pattern avoidance probabilities in the appropriate asymptotic
regime for q from Corollary 3.3.

4. Poisson approximation

4.1. Chen–Stein method. Stein’s method is an approach to proving the central limit theo-
rem that was adapted by Chen to Poisson convergence [12]. The advantage of this method
is that it provides guaranteed error bounds on the total variation distance between the
distribution of a sum of possibly dependent random variables and the distribution of an
independent Poisson random variable with the same mean.

Theorem 4.1 (Chen [12]). Suppose X1,X2, . . . ,Xn are indicator random variables with expectations
p1, p2, . . . , pn, respectively, and let W =

∑n
i=1 Xi. Let Y denote an independent Poisson random

variable with expectation λ =
∑n

i=1 pi. Suppose, for each i ≥ 1, a random variable Vi can be
constructed on the same probability space as W such that

L(1 + Vi) = L(W | Xi = 1).

Then

(17) dTV(L(W),L(Y)) ≤
1 − e−λ

λ

n∑
i=1

piE |W − Vi|.
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4.2. Fixed Points Example. As a simple example, let e(n) denote the number of fixed-point
free permutations of n. With Σn a uniform permutation of [n], we define indicator random
variables

Xi = I( i is a fixed point of Σn ), i = 1, . . . ,n.
(Note that these random variables are not independent.) We then define the sum

W =

n∑
i=1

Xi

so that P(W = 0) = e(n)/n! and λ = EW =
∑n

i=1
1
n = 1, the expected number of fixed points.

Even before we proceed with the bound, we obtain the heuristic estimate of n! e−1 for e(n),
just as in (2).

To apply Theorem 4.1, we need to construct W and 1 + Vi on the same probability space,
and construct an explicit coupling. This is done for more general restrictions in [5], but we
shall write out the full calculation on fixed points to demonstrate how one can construct
such a coupling.

The random variable 1 + Vi is the random sum W conditioned on Xi = 1. For a random
permutation σ, suppose σ(i) = j, for some j ∈ [n]. The coupling is: swap elements i and j.
The resulting permutation has the same marginal distribution as a random permutation
conditioned to have a fixed point at i. In fact, |W−Vi| ∈ {0, 1, 2} for each i since we modify at
most 2 elements, and the elements not involved in the swap cancel out (i.e., any fixed points
occurring on indices other than these swapping positions remain unchanged). Let us denote
the random variables after the coupling by X′1,X

′

2, . . . ,X
′
n; that is, L(X′j) = L(X j | Xi = 1), so

that 1 + Vi =
∑n

j=1 X′j. We have

|W − Vi| =

∣∣∣∣∣∣∣Xi +
∑
k,i

(Xk − X′k)

∣∣∣∣∣∣∣ = |Xi + XJI(J = σ(i), J , i)| =


0, σ(i) , i, i not in a 2-cycle,
1, σ(i) = i,
2, i in a 2-cycle.

The probability that two given elements i and j are part of a 2-cycle is precisely 1/(n(n− 1)),
and the probability that i is part of a 1-cycle is 1/n. Thus,

E |W − Vi| =
1
n

+
2
n

=
3
n
,

and Equation (17) becomes

dTV(L(W),L(Y)) ≤ (1 − e−1)
n∑

i=1

1
n

3
n

=
3(1 − e−1)

n
.

For all n ≥ 1, we have

|P(W = 0) − P(Y = 0)| =
∣∣∣∣∣e(n)

n!
− e−1

∣∣∣∣∣ ≤ supi |P(W = i) − P(Y = i)| ≤ dTV(W,Y) ≤
3(1 − e−1)

n
.

Rearranging yields

n!e−1
− 3(n − 1)!(1 − e−1) ≤ e(n) ≤ n!e−1 + 3(n − 1)!(1 − e−1).

Note that this is a guaranteed error bound that holds for all n ≥ 1, and as a corollary we get
e(n) = n!e−1(1 + o(n−1)).
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The error bounds derived from the Chen–Stein method can be improved in special
cases, e.g., e(n) above can be obtained exactly by rounding n!/e to the nearest integer for
all n ≥ 1, but the appeal of Poisson approximation is that it applies more generally. Our
main theorems (Theorems 3.1 and 3.2) identify cases in which the bounds provide an
asymptotically efficient estimate.

4.3. The Arratia–Goldstein–Gordon Theorem. Arratia, Goldstein, & Gordon [2] provide
another approach that is sometimes more practical for Poisson approximation.

Theorem 4.2 (Arratia, Goldstein, & Gordon [2]). Let I be a countable set of indices and for each
α ∈ I let Xα be an indicator random variable. LetX = (Xα)α∈I denote a collection of Bernoulli random
variables, and let B = (Bα)α∈I denote a collection of independent Bernoulli random variables with
marginal distributions which satisfyEBα = EXα for all α ∈ I. Define pα := EXα = P(Xα = 1) > 0
and pαβ := EXαXβ. Also define W :=

∑
α∈I Xα and λ := EW =

∑
α∈I pα. For each α ∈ I, define

sets Dα ⊂ I (typically, this will be the set of all indices β ∈ I for which Xα and Xβ are dependent, but
this is not necessary) and the quantities

b1 :=
∑
α∈I

∑
β∈Dα

pαpβ,

b2 :=
∑
α∈I

∑
α,β∈Dα

pαβ, and(18)

b3 :=
∑
α∈I

E |E {Xα − pα | σ(Xβ : β < Dα)}|.

We have
dTV(L(X),L(B)) ≤ 2(2b1 + 2b2 + b3) + 2

∑
α∈I

p2
α.

Furthermore, let Y denote a Poisson random variable with mean λ = EW. We have

dTV(L(W),L(Y)) ≤ 2(b1 + b2 + b3),

and also

|P(W = 0) − P(Y = 0)| ≤ (b1 + b2 + b3)
1 − e−λ

λ
.

In our applications, we are able to define sets Dα, α ∈ I, so that b3 = 0 always holds;
whence, the calculations of the bounds in our theorems require only calculations involving
first and second (unconditioned) moments. For uniform random permutations this is
straightforward, but that the analogous properties hold for consecutive patterns under
random Mallows permutations is less obvious.

5. Consecutive pattern avoidance of Mallows permutations

To fix notation, we write σ = σ1 · · · σn to denote a generic permutation, for which we
define the reversal by σr = σn · · · σ1. For any subset A ⊆ [n], we write σ|A to denote the
restriction of σ to a permutation of A obtained by removing those elements among σ1, . . . , σn
that are not in A. For example, with σ = 867531924 and A = {1, 3, 5, 7, 9}, we have σ|A = 75319.
We write Σn to denote a random permutation of [n].

From (1) it is apparent that Pq
n(σ) = P1/q

n (σr) for all σ ∈ Sn, and so we can focus on the case
0 < q ≤ 1 in our analysis.
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5.1. Sequential construction. The Mallows distribution (1) enjoys several nice properties
that are amenable to the study of pattern avoidance. These properties are readily observed
by the following sequential constructions, both of which are well known and have been
leveraged in previous studies of the Mallows distribution; see, for example, [6, 19]. While
the properties below are well known, we are not aware of their appearance in relation to
pattern avoidance. We provide proofs for completeness.

For q > 0, we say that random variable X has the truncated Geometric(q) distribution on
[n], written as X ∼ Geometric(n, q) , when the point probabilities of X are given by

(19) Pn,q(X = k) = qk−1/(1 + · · · + qn−1), k = 1, . . . ,n.

A Mallows permutation can be generated from the truncated Geometric distribution in two
ways, which we call the ordering and bumping constructions.

For the ordering construction, we generate X1,X2, . . . independently, with each Xn dis-
tributed as Geometric(n, 1/q). To initialize, we have Σ1 = 1, the only permutation of [1].
Given Σn = σ1 · · · σn and Xn+1 = k, we define

Σn+1 = σ1 · · · σk−1(n + 1)σk · · · σn.

For every n = 1, 2, . . ., it is apparent that Σn is a Mallows(q) permutation because the
probability that element n + 1 appears in position k of Σn+1 is

P{Σn+1(k) = n + 1} = Pn+1,1/q(X = k) = Pn+1,q(X = n + 1 − k) = qn+1−k/(1 + q + · · · + qn).

Since X1, . . . ,Xn are chosen independently and each event {Σn = σ} corresponds to exactly
one sequence X1, . . . ,Xn, we observe

P{Σn = σ} = q| inv(σ)|/In(q), σ ∈ Sn,

as in (1).

Definition 5.1 (Mallows process). A collection (Σn)n≥1 generated by the ordering construction
for fixed q > 0 is called a Mallows(q) process.

For the bumping construction, we generate X1,X2, . . . independently with each Xn
distributed as Geometric(n, 1/q) as before, and again we initialize with Σ1 = 1. Given
Σn = σ1 · · · σn and Xn+1 = k, we obtain Σn+1 by appending k to the end of Σn and “bumping”
all elements of Σn that are greater or equal to k. More formally, (Σn,Xn+1) 7→ Σ′1 · · ·Σ

′
nXn+1,

where

Σ′j =

{
Σ j + 1, Σ j ≥ Xn+1,

Σ j, otherwise.

For example, if Σ5 = 24135 and X6 = 3, then Σ6 = 251463. Again, the resulting distribution
of Σn is Mallows(q) because Xn+1 = k introduces exactly n + 1 − k new inversions in Σn+1
and X1,X2, . . . are generated independently.

5.2. Properties of Mallows permutations. Throughout this section, we let (Σn)n≥1 be a
family of random permutations so that each Σn is a permutation of [n]. We say that (Σn)n≥1
is consistent if for all 1 ≤ m ≤ n

(20) P{Σn|[m] = σ} = P{Σm = σ}, σ ∈ Sm .

It is immediate from the ordering construction that the Mallows process (Σn)n≥1 is consistent
for every q > 0.
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Recall the reduction map described in Section 1. We call (Σn)n≥1 homogeneous if for all
1 ≤ m ≤ n and every subsequence 1 ≤ i1 < · · · < im ≤ n

(21) P{red(Σn(i1) · · ·Σn(im)) = σ} = P{Σm = σ}, σ ∈ Sm .

We call (Σn)n≥1 consecutively homogeneous if (21) holds only for consecutive subsequences
i1, i1 + 1, . . . , i1 + m − 1.

Lemma 5.2. The Mallows(q) process is consecutively homogeneous for all q > 0 and homogeneous
for q = 1.
Proof. The q = 1 case corresponds to the uniform distribution, which is well known
to be homogeneous. For arbitrary q > 0, consider the event {red(Σn( j) · · ·Σn( j + m −
1)) = σ} for some σ ∈ Sn. By the ordering construction, we can first generate Σm =
Σm(1) · · ·Σm(m) from the Mallows(1/q) distribution on [m]. We then obtain Σm+ j−1 from Σm
using the bumping construction for Mallows(1/q) distribution. Thus, we have Σm+ j−1 ∼

Mallows(1/q) and its reversal Σr
m+ j−1 ∼Mallows(q) with red(Σr

m+ j−1( j) · · ·Σr
m+ j−1(m+ j−1)) =

Σm(m) · · ·Σm(1) ∼ Mallows(q). Finally, we obtain Σn by adding to Σr
m+ j−1 according to the

bumping construction, so that

red(Σn( j) · · ·Σn(m+ j−1)) = red(Σr
m+ j−1( j) · · ·Σr

m+ j−1(m+ j−1)) = Σm(m) · · ·Σm(1) ∼Mallows(q).

This completes the proof. �

We say that Σn is dissociated if Σn|A and Σn|B are independent for all non-overlapping
subsets A,B ⊆ [n]. If, instead, Σn|A and Σn|B are independent only when A and B are disjoint
and each consists of consecutive indices, then we call Σn weakly dissociated.

Lemma 5.3. For all n ≥ 1, the Mallows(q) distribution on Sn is weakly dissociated for all q > 0
and dissociated for q = 1.
Proof. For i′ > i ≥ 1 and m,m′ ≥ 0 satisfying i + m − 1 < i′ and i′ + m′ − 1 ≤ n, let
A = {i, i + 1, . . . , i + m − 1} and B = {i′, i′ + 1, . . . , i′ + m′ − 1}. For any n ≥ 1, we can
construct a Mallows(q) permutation of [n] by first generating Σi+m−1, for which we know
that red(Σi+m−1(i) · · ·Σi+m−1(i + m − 1)) ∼ Mallows(q) by Lemma 5.2. We then construct Σn
from Σi+m−1 by the bumping construction. Since bumping does not affect the reduction of
any part of Σn(1) · · ·Σn(i + m − 1), we have

P{red(Σn(i) · · ·Σn(i + m − 1)) = σ | red(Σn(i′) · · ·Σn(i′ + m′ − 1)) = σ′} =

= P{red(Σi+m−1(i) · · ·Σi+m−1(i + m − 1)) = σ | red(Σn(i′) · · ·Σn(i′ + m′ − 1)) = σ′}

= P{Σm(1) · · ·Σm(m) = σ},

proving that Σn is weakly dissociated. Dissociation of the uniform distribution (q = 1) is
well known and so we omit its proof. The proof is complete. �

Together, the above properties facilitate study of consecutive pattern avoidance for
Mallows permutations with arbitrary q > 0. For example, the pattern 231 has probability
q2/(1 + 2q + 2q2 + q3) to occur in any stretch of three consecutive positions of a Mallows(q)
permutation. Since there are n − 2 consecutive patterns of length 3 in a permutation of
[n], the expected number of occurrences is (n − 2)q2/(1 + 2q + 2q2 + q3). For large n and
small q, this expected value behaves asymptotically as nq2, so that taking q ∼ 1/

√
n gives

an expected number on the order of a constant. When q is large, the expected number of
occurrences behaves as nq−1 for large n, and taking q ∼ n gives an expected number on the
order of a constant.
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5.3. Poisson convergence theorems. Theorem 3.9 and its corollary follow by combining
the above properties of Mallows permutations with Theorem 4.2. The calculations and
resulting bounds for the general Mallows measure follow the same program as the uniform
case proven in Section 7, with the key distinction that we only consider consecutive patterns
for the general Mallows distribution. Unlike the uniform setting, the bounds for the
Mallows distribution depend non-trivially on the parameter q and the structure of τ. It is
more fruitful to illustrate this dependence with specific examples than to regurgitate the
same proof for Mallows permutations.

5.3.1. Monotonic patterns under Mallows distribution. Consider the set of permutations that
avoid the pattern 123. There are no inversions, and the size of the pattern is 3; thus, the
probability of seeing this pattern in any given set of three consecutive indices of a Mallows(q)
permutation is 1/I3(q). We also need to consider second moments, i.e., the probability of
seeing two 123 patterns. By Lemma 5.3 we need only consider overlapping sets of indices.
There are two cases, either two indices overlap or one does. If two indices overlap and the
first three and last three both reduce to pattern 123, then the segment must reduce to 1234.
Similarly, if one index overlaps, then the segment must reduce to 12345.

The results below extend this notion to monotonic patterns.

Lemma 5.4. Fix q > 0 and let Σn ∼Mallows(q). For each m ≥ 1, let τm denote the pattern 12 · · ·m.
For each α ∈ Jm, define

Xα = I(red(Σn|α) = τm).
For a random permutation generated using the Mallows measure, we have

EXα =
1

Im(q)
, α ∈ Jm,

and for α, β ∈ Jm, α , β, we have

EXαXβ =

 1
Im(q)2 α, β have no overlapping elements

1
I2m−s(q) α, β have exactly s overlapping elements, s = 1, 2, . . . ,m − 1.

Proof. The expression whenα and βdo not overlap is a consequence of the weak dissociation
property of Mallows permutations (Lemma 5.3), whereby

EXαXβ = EXαEXβ = P{red(Σn|α) = τm}
2 = (1/Im(q))2.

When α and β overlap in s elements, the event {Xα = Xβ = 1} requires that both Σn|α and
Σn|β reduce to the increasing permutation, which can occur only if Σn|α∪β reduces to the
increasing permutation of 2m − s. �

Proposition 5.5. Fix q > 0 and let Σn ∼ Mallows(q). For any m ≥ 2, let τm be the increasing
pattern 12 · · ·m. For any α ∈ Jm, let

Xα = I(red(Σn|α) = τm).

Let W =
∑
α∈Jm

Xα and let Y be an independent Poisson random variable with expected value
λ = EW. Then

dTV(L(W),L(Y)) ≤ 2(b1 + b2),
where

λ =
n −m
Im(q)

, b1 =
n1

Im(q)2 , b2 = n2

m−1∑
s=1

1
I2m−s(q)

,
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and n1 and n2 are given by

n1 = 2mn − 3m2 + m, and

n2 = 3m − 3m2
− 2n + 2mn.(22)

Proof. When 2m − 1 ≤ n, we have n1 = 2
∑m

s=1(n − 2m + s) = 2mn − 3m2 + m, and similarly
n2 = 2

∑m−1
s=1 (n − 2m + s) = 3m − 3m2

− 2n + 2mn. The factor of 2 is from exchanging the role
of α, β. When 2m − 1 > n, the stated expressions for n1 and n2 are still valid upper bounds,
but they can be slightly improved. �

In addition, it is easy to state the complementary result about the decreasing pattern
m · · · 21.

Proposition 5.6. Fix q > 0 and let Σn ∼ Mallows(q). For any m ≥ 2, let ηm be the decreasing
pattern m · · · 21. For any α ∈ Jm, let

Xα = I(red(Σn|α) = ηm).

Let W =
∑
α∈Jm

Xα and let Y denote an independent Poisson random variable with expected value
λ = EW. Then

dTV(L(W),L(Y)) ≤ 2(b1 + b2),
where

λ = (n −m)
q(m

2)

Im(q)
, b1 =

n1 q(m
2)

Im(q)2 , b2 = n2

m−1∑
s=1

q(2m−s
2 )

I2m−s(q)
,

and n1 and n2 are given by

n1 = 2mn − 3m2 + m, and

n2 = 3m − 3m2
− 2n + 2mn.

5.3.2. Other patterns of length 3. We now demonstrate the dependence of the total variation
bound on q for the small patterns 132, 213, 231, and 312. In this section, we again recall that
Γm denotes the set of all m-tuples with consecutive elements in {1, 2, . . . ,n}, and for a given
α ∈ Γ3, Xα denotes the indicator random variable defined in (6).

For τ = 132, we haveEXα = q/I3(q), and there can be no consecutive occurrences of τ that
overlap with two indices. The only possible ways in which we can have one overlapping
index are the patterns 13254, 15243, and 14253. In these cases, we have

λ =
(n − 3) q

I3(q)
and

EXαXβ =
1

I5(q)
×


q2, 13254,
q3, 14253,
q4, 15243.

Letting W =
∑
α∈Γ3
EXα and defining Y as an independent Poisson random variable with

expectation λ = EW = (n − 3) q/I3(q), the total variation distance bound is given by

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q2

I3(q)2 + 2(n − 5)
q2 + q3 + q4

I5(q)

)
.
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The 2(n − 5) term comes from the 2 sets of triplets {1, 2, 3} and {2, 3, 4} for which the
overlapping pair can only occur to the right of the elements, and similarly from the 2 sets
of triplets {n − 2,n − 1,n} and {n − 3,n − 2,n − 1} for which the overlapping pair can only
occur to the left of the elements, and finally the (n − 4 − 3) triplets in between for which
the overlapping pairs are both to the left and the right; hence 2 + 2(n − 7) + 2 = 2(n − 5).
Similarly, the 3n − 13 comes from 2 · 2 + 3(n − 7) + 2 · 2. Let t > 0 be fixed. If q ∼ t n−1 or
q ∼ t n1/2, we have λ→ t, and dTV(L(W),L(Y)) = O(n−1).

For τ = 213, we similarly have

λ =
(n − 3) q

I3(q)
,

EXαXβ =
1

I5(q)
×


q2, 21435,
q3, 31425,
q4, 32415,

and

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q2

I3(q)2 + 2(n − 5)
q2 + q3 + q4

I5(q)

)
,

and q ∼ t n−1 or q ∼ t n1/2 implies λ→ t and dTV(L(W),L(Y)) = O(n−1).
For τ = 231:

λ =
(n − 3) q2

I3(q)
,

EXαXβ =
1

I5(q)
×


q6, 34251,
q7, 35241,
q8, 45231,

and

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q4

I3(q)2 + 2(n − 5)
q6 + q7 + q8

I5(q)

)
,

and q ∼ t1/2n−1/2 or q ∼ n t1/2 implies λ→ t and dTV(L(W),L(Y)) = O(n−1).
And finally for τ = 312:

λ =
(n − 3) q2

I3(q)
,

EXαXβ =
1

I5(q)
×


q6, 51423,
q7, 52413,
q8, 53412,

and

dTV(L(W),L(Y)) ≤ 2
(
(3n − 13)

q4

I3(q)2 + 2(n − 5)
q6 + q7 + q8

I5(q)

)
,

and q ∼ t1/2 n−1/2 or q ∼ n t1/2 implies λ→ t and dTV(L(W),L(Y)) = O(n−1).

6. Numerical examples

6.1. Numerical values. Using Theorem 3.4, we can estimate | Sn(τ)| for various sizes of
patterns τ. Table 1 shows the lower bound thresholds for various values of n and patterns
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n j lower n!
100 36 6.85456 × 10157 9.3326 × 10157

1000 133 3.4433 × 102567 4.6045 × 102567

10000 442 8.3847 × 1035658 2.8463 × 1035659

100000 14353 9.9451 × 1065657058 1.2024 × 1065657059

Table 1. Bounds on | Sn(τ)| for τ ∈ S j, for various values of n and j.

n j lower n!
100 6 3.98735 × 10157 9.33262 × 10157

1000 7 5.77948 × 102566 4.02387 × 102567

10000 9 2.49966 × 1035659 2.84626 × 1035659

100000 10 2.48004 × 10456573 2.82423 × 10456573

1000000 11 7.34802 × 105565708 8.26393 × 105565708

Table 2. Bounds on | Sn(τ)| for τ ∈ S j, for various values of n and j.

permutation no. inversions permutation no. inversions
3452671 9 3462571 10
3472561 11 3562471 11
3572461 12 4562371 12
4572361 13 3672451 13
4672351 14 5672341 15

Table 3. List of all permutations that have pattern 2341 in overlapping
positions along with the number of inversions.

of size j. Similarly, using Theorem 3.6, we estimate | Sn(τ)| in Table 2. In the case of n = 1000
and j = 133, we have more specifically 3.4433 × 102567

≤ |Sn(τ)| ≤ 4.0239 × 102567.

6.2. Detailed illustration for the patterns 2341 and 23451. Propositions 5.5 and 5.6 give an
expression for the total variation bound between the number of occurrences of the increasing
and decreasing patterns and an independent Poisson random variable. In principle, these
bounds can be computed exactly for any pattern by way of the Arratia–Goldstein–Gordon
theorem (Theorem 4.2); we need only compute the quantities b1, b2, and b3 as in Theorem
4.2.

By Lemma 5.3, all Mallows(q) permutations are weakly dissociated and, therefore, b3 ≡ 0
for all patterns in the case of consecutive pattern avoidance. For any pattern τ, homogeneity
of the Mallows measure implies pα = q| inv(τ)|/Im(q) for all α, and so b1 is easy to compute. The
only complication involves the consideration of overlapping patterns in the calculation of
b2. We cannot provide anything more general than Arratia–Goldstein–Gordon for arbitrary
patterns; instead, we compute these bounds in the special cases of τ = 2341 and τ = 23451.
Figure 1 shows the performance of these bounds at the critical values q ∼ n−1/3 and q ∼ n1/3

for τ = 2341, and q ∼ n−1/4 and q ∼ n1/6 for τ = 23451.

6.2.1. The pattern 2341. For τ = 2341, we have pα = q3/I4(q) and b1 = (n − 4)q3/I4(q). The
structure of τonly permits overlap with the first or last position. Table 3 lists all permutations
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Figure 1. Plot of pattern avoidance probabilities of Mallows(q) distribution
for: (top left) pattern τ = 2341 with q = n−1/3; (top right) pattern τ = 23451
with q = n−1/4; (bottom left) pattern τ = 2341 with q = n1/3; and (bottom
right) pattern τ = 23451 with q = n1/6. The dashed lines represent the upper
and lower error bounds from the Arratia–Goldstein–Gordon theorem, and
the solid line represent their average, i.e., the heuristic approximation. In all
panels, the horizontal axis is on the logarithmic scale with base 10.

that have pattern 2341 in the first 4 and last 4 positions. These are the only permutations that
contribute to b2 in the bound of Theorem 4.2. We assume n ≥ 7. For positions 5, . . . ,n − 5,
each of these overlapping patterns can occur twice; otherwise, the patterns occur only once
for a total of 2(n − 8) + 8 = 2n − 8 possibilities. There are 6(n − 8) + 2(5 + 4 + 3) = 6n − 24
overlapping patterns α and β that contribute to b1. Thus,

λ = (n − 4)q3/I4(q),

b1 = (6n − 24)q6/I4(q)2, and

b2 = (2n − 8)q9(1 + q + 2q2 + 2q3 + 2q4 + q5 + q6)/I7(q),
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Figure 2. Plot of lower and upper bounds on pattern avoidance probabilities
of uniform distribution (q = 1) for: (left) pattern τ = 2341; (right) pattern
τ = 23451.

permutation no. inversions permutation no. inversions permutation no. inversions
345627891 12 347825691 16 456923781 18
345726891 13 347925681 17 467823591 19
345826791 14 348925671 18 467923581 20
345926781 15 357824691 17 468923571 21
346725891 14 357924681 18 567823491 20
346825791 15 358924671 19 567923481 21
346924781 16 367824591 18 568923471 22
356724891 15 367924581 19 378924561 21
356824781 16 368924571 20 478923561 22
356924781 17 457823691 18 578923461 23
456723891 16 457923681 19 678923451 24
456823791 17 458923671 20

Table 4. List of all permutations that have pattern 23451 in overlapping
positions along with the number of inversions.

producing the bounds

e−λ − (b1 + b2)
1 − e−λ

λ
≤ P(W = 0) ≤ e−λ + (b1 + b2)

1 − e−λ

λ
.

6.2.2. The pattern 23451. For τ = 23451, we have pα = q4/I5(q) and b1 = (n − 5)q4/I5(q).
The structure of τ only permits overlap with the first or last position. Table 4 lists all
permutations that have pattern 23451 in the first 5 and last 5 positions. These are the only
permutations that contribute to b2 in the bound of Theorem 4.2. We assume n ≥ 9. For
positions 5, . . . ,n − 5, each of these overlapping patterns can occur twice; otherwise, the
patterns occur only once for a total of 2(n − 10) + 10 = 2n − 10 possibilities. There are
8(n− 10) + 2(7 + 6 + 5 + 4) = 8n− 36 overlapping patterns α and β that contribute to b1. Thus,

λ = (n − 5)q4/I5(q),

b1 = (8n − 36)q8/I5(q)2, and

b2 = (2n − 10)q12(1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 5q6 + 4q7 + 4q8 + 3q9 + 2q10 + q11 + q12)/I9(q),
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producing the bounds

e−λ − (b1 + b2)
1 − e−λ

λ
≤ P(W = 0) ≤ e−λ + (b1 + b2)

1 − e−λ

λ
.

7. Proofs

7.1. Bounds on pα and pαβ. We first prove several lemmas, from which the theorems follow.
By the homogeneity property of uniform permutations we have

pα = EXα = 1/ j! for all α ∈ Γ j.

To calculate the Poisson rate λ, we use linearity of expectation: there are
(n

j
)

possible j-tuples
of elements in [n], and so the expected number of subsets of j elements that reduce to the
pattern k1k2 · · · k j is

λ = |Γ j| pα =

(
n
j

)
/ j!.

Next, we consider the joint expectation pαβ = EXαXβ.

Lemma 7.1. Fix α, β ∈ Γ j and let s = 1, . . . , j − 1 denote the number of elements that α, β have in
common. For any such pair α, β, we have

(23) pαβ ≤
s!
j!2
.

Proof. First we condition on Xα, which contributes a factor of 1/ j!. By conditioning on Xα,
we assume that the s common elements are in their proper order with respect to Xβ. It may
so happen that, conditional on Xα, no such event can occur, which justifies the inequality.

Consider first s = j − 1, i.e., condition on j − 1 of the entries being in their proper order.
Assuming that it is possible to realize both events simultaneously, the remaining element
has probability 1/ j of appearing in its correct order.

Consider, for general s, conditional on s entries being in their proper order, the probability
that the remaining j−s elements appear in their proper order is then ((s+1)(s+2) · · · j)−1. �

7.2. Proof of Theorem 3.4. We have the following lemma.

Lemma 7.2. For Dα defined as in Section 3.1 and b3 as in Theorem 4.2, we have b3 = 0 for all
patterns τ.

Proof. This follows from the dissociated property of uniform permutations (Lemma 5.3).
We interpret the conditioning on σ(Xβ : β < Dα) as the σ-algebra containing all possible
information about just the order of a particular set of three elements. Since these three
elements do not overlap any of the elements in α, knowing only their order does not affect
Xα because uniform permutations are dissociated. �

Remark 7.3. Note that the conditioning in the expression for b3 is not the σ-algebra containing
all information about the elements indexed by each tuple. If it were, then knowing their particular
location would have an impact. However, simply knowing their order does not reveal any more
information about Xα.

Next we obtain the size of Dα, which is the same for all α ∈ Γ j.
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Lemma 7.4. For each α ∈ Γ j,

|Dα| =

(
n
j

)
−

(
n − j

j

)
.

Proof. Fix any α, β ∈ Γ j and let s = 1, . . . , j denote the number of elements that α, β have in
common. (This includes the case α = β.) For each s = 1, 2, . . . , j, we select any s elements
out of the j for the two sets of indices α, β to have in common, then we select the remaining
j − s elements from the n − j remaining elements that are not in α. That is,

|Dα| =

j∑
s=1

(
n − j
j − s

)(
j
s

)
=

(
n
j

)
−

(
n − j

j

)
, for all α ∈ Γ j. �

Lemma 7.5. We have

d1 =

(
n
j

) ((
n
j

)
−

(
n − j

j

))
/ j!2.

Proof. Follows immediately from Lemma 7.4 and Lemma 7.1. �

The expression given for d2 in Equation (10) in the statement of Theorem 3.4 is straightfor-
ward, although it contains the overlap quantities Ls(τ), which can vary wildly for different
patterns τ, and for which we are unaware of any general explicit or asymptotic expression.
We calculate explicit upper bounds for d2 in Lemma 7.7.

7.3. Proof of Theorem 3.6 and Theorem 3.9. Theorem 3.6 follows from Theorem 3.9 using
q = 1 and the fact that In(1) = n!. Theorem 3.9 is a straightforward generalization of
Proposition 5.5.

7.4. Proof of corollaries. For the proof of Corollary 3.1 it is sufficient that the bounds for
d1 and d2 in Theorem 3.4 converge to 0 as n→∞.

Lemma 7.6. Suppose j ≥ (e + ε)
√

n. Then for d1 as in Theorem 3.4, we have d1 → 0.

Proof. The proof is an elementary application of Stirling’s formula. �

For d2, the asymptotic analysis is not so straightforward, which is why we instead use
the inequality in Equation (23).

Lemma 7.7. We have

d2 ≤

(n
j
)

j!2

j−1∑
s=1

(
n − j
j − s

)(
j
s

)
s! ≤

e2( 1
12−

3
13 )

(2π)2

(
e2(n − j)

j2

) j
1
j

e2
√

n− j log( j).

Whence, for any η ≥ 0, taking j ≥ (e e1/e + η)
√

n, we have d2 → 0.

Proof. We count the number of pairs (α, β), α ∈ Γ j and β ∈ Dα with exactly s shared elements.
We may first choose any 2 j − s locations among the n possible choices for the patterns to
occur on. Of those 2 j− s locations, we can choose any j of them for the elements of α. Then,
of those j locations, any s can also be shared with β. Thus, for a given s ∈ {1, 2, . . . , j − 1},
there are (

n
2 j − s

)(
2 j − s

j

)(
j
s

)
=

(
n
j

)(
n − j
j − s

)(
j
s

)
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terms in the sum. Using Equation (23), we have

d2 ≤

(n
j
)

j!2

j−1∑
s=1

(
n − j
j − s

)(
j
s

)
s! =

(n
j
)

j!

j−1∑
s=1

(n− j
j−s

)
( j − s)!

.

In order to handle the sum, first we recall the quantitative bounds of Robbins [35], i.e.,

e
1

12n+1 <
n!

(n/e)n
√

2πn
< e

1
12n , for all n ≥ 1.

Again we emphasize that this inequality holds for all n ≥ 1, which allows us to provide the
simpler bound of

d2 ≤ λ exp
(( 1

12
−

3
13

)) j−1∑
s=1

(
e2(n − j)
( j − s)2

) j−s
e−

( j−s)2

n− j

2π( j − s)
.

The term
(

e2(n− j)
( j−s)2

) j−s
is maximized when j − s =

√
n − j, whence

d2 ≤
λ

2π
exp

(( 1
12
−

3
13

)) (
e2
)√n− j

j−1∑
s=1

e−s2/(n− j)

s
≤
λ

2π
exp

(( 1
12
−

3
13

))
e2
√

n− j log( j).

Note next that

λ ≤

(
e2 n
j2

) j e−
j2

n

2π j
,

so that for j ∼ (e + ε)
√

n, we have

λ ≤
(
1 +

ε
e

)2 j e−(e+ε)2

2π j
,

and so

d2 ≤

((
1 +

ε
e

) (
e

1
e+ε

))2 j log j
2π j

≤

(
e1/e

1 + ε
e

)2 j log j
2π j

.

Letting ε = e(e1/e
− 1) + η for any η ≥ 0, we conclude that taking j ≥ (e e1/e + η)

√
n implies

d2 → 0. �

We now compute an upper bound on d2 which is explicit and establishes Corollary 3.2.

Lemma 7.8.

d2 ≤

m−1∑
s=1

(n − 2m + s)
s!

(m)!2
∼

n
m!

1
m
.

Taking m ≥ Γ(−1)(n/t) − 1 and m ∼ Γ(−1)(n/t) − 1, we have d2 ≤
t
m → 0 as n tends to infinity.

Proof. It is easy to see that

m−1∑
s=1

1
(m + s − 1)!

=
1

m!

(
1 + O(m−1)

)
,
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and also
m−1∑
s=1

s
(m + s − 1)!

=
1

m!

(
1 + O(m−1)

)
.

Using Equation (23), the result immediately follows. �

For a more explicit form of the growth of m, we define ψ(x) = Γ′(x)/Γ(x), the digamma
function, as the logarithmic derivative of the gamma function, and denote by k0 the smallest
positive root of ψ(x), i.e., k0 = 1.46163 . . .. Also, let c = e−1

√
2π − Γ(k0) = 0.036534 . . . , and

denote by W(x) the Lambert W function, i.e., the solution to x = W(x)eW(x). Finally, let
L(x) := log((x + c)/2π).

Lemma 7.9 ([11]). As x tends to infinity, we have

Γ(−1)(x) ∼
L(x)

W(L(x)/e)
+

1
2
∼

log(x)
log log(x) − log log log(x)

.

Lemma 7.10. Suppose t > 0 is some fixed constant and m = dΓ(−1)(n/t) − 1e. Then

λ =
n −m

m!
→ t.

Remark 7.11. We must be slightly careful when specifying the length of the pattern m in Lemma 7.10,
since in general Γ(−1)(n/t)−1 will not be an integer. However, as long as m always exceeds this value,
which we have ensured by setting it equal to the smallest integer exceeding it, then the asymptotic
expressions still hold.
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