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THE COMBINATORICS OF GREEN’S FUNCTIONS
IN PLANAR FIELD THEORIES

KURUSCH EBRAHIMI-FARD AND FRÉDÉRIC PATRAS

Abstract. The aim of this work is to outline in some detail the use of combinatorial algebra in

planar quantum field theory. Particular emphasis is given to the relations between the different

types of planar Green’s functions. The key object is a Hopf algebra which is naturally defined on

non-commuting sources, and the fact that its genuine unshuffle coproduct splits into left- and right

unshuffle half-coproduts. The latter give rise to the notion of unshuffle bialgebra. This setting

allows to describe the relation between planar full and connected Green’s functions by solving a

simple linear fixed point equation. A modification of this linear fixed point equation gives rise

to the relation between planar connected and one-particle irreducible Green’s functions. The

graphical calculus that arises from this approach also leads to a new understanding of functional

calculus in planar QFT, whose rules for differentiation with respect to non-commuting sources can

be translated into the language of growth operations on planar rooted trees. We also include a

brief outline of our approach in the framework of non-planar theories.
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1. Introduction

The intent of this work is to present a purely Hopf algebraic description of the well-known

relations between full, connected and one-particle irreducible (1PI) Green’s functions in planar

quantum field theory (QFT). Since this approach may as well shed new light on the classical

setting, we also include a short outline addressing the framework of non-planar theories. Although

emphasis is put on planar theories.

In the early 1980’s Cvitanovic et al. [15, 16] proposed an approach to planar quantum field

theories, which was largely motivated as a way of properly encoding the behaviour of the planar

sector of quantum chromodynamics (QCD). An interesting feature of planar theories is the manner

in which the calculus of symmetry factors changes (and simplifies) with respect to classical theories.

In fact, planarity is reflected in a strictly non-commutative nature of the theory, which results in a

rather substantial deviation from the classical description of the relations between different types

of Green’s functions. Indeed, Cvitanovic et. al. observed that the functional relation between the

generating functionals of the planar full and planar connected Green’s functions is encoded by a

fixed point equation, which is solved by those generating functionals. This fixed point equation

replaces the common exponential map relating the generating functionals of the classical, i.e.,

non-planar full and connected Green’s functions. The exponential relation between those classical

generating functionals is analog to the moments-cumulants relations in classical probability theory

[40]. Several years later it was realised that the description in [15, 16] of the relations between

planar Green’s functions is closely related to Speicher’s approach to the relations between free

moments and free cumulants [4, 37, 41, 38] in the context of Voiculescu’s theory of free probability

[44, 45]. The resulting link between free probability and planar QFT has been explored in several

works, see e.g. [17, 29].

The approach to the relations between planar Green’s functions presented in these notes is based

on our recent work on the algebraic and combinatorial structures underlying the relations between

free and classical moments and cumulants in probability theory [24, 25]. In those references,

it was shown that these relations, both classical and free, can be understood algebraically in

terms of solutions of linear fixed point equations in (co)commutative, corresponding to classical

probability, and non-(co)commutative, corresponding to free probability, shuffle Hopf algebras. It

turns out that these linear fixed point equations have proper exponential solutions. In the classical

case this exponential solution coincides with the standard exponential relating classical moments

and cumulants. In the non-classical, i.e., planar setting the relation between free cumulants and

moments is displayed by an exponential as well, which is defined with respect to a non-commutative

product. The difference between these two exponentials is analogous to the difference between

exponential solutions of scalar- and matrix-valued non-autonomous linear differential equations.
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We propose here a similar approach to the – Hopf – algebraic understanding of the relations

between Green’s functions in planar QFT.

We start by recalling the classical relation between full and connected Green’s functions [31].

The generating series of the full, or complete, Green’s function is denoted

Z(j) := 1 +
∑

k>0

1

k!
Z

(k)
j1···jk

j1 · · · jk,

with j denoting the set of commuting external sources {ji}i>0. We follow notations and conventions

used in [15, 16], where indices k, l,m, n, · · · may represent discrete as well as continuous variables,

and repeated indices indicate summations and integration over discrete respectively continuous

variables that characterise the actual Green’s functions. The generating series for connected

Green’s functions is denoted

W (j) :=
∑

m>0

1

m!
W

(m)
j1···jm

j1 · · · jm.

In both cases the Green’s functions are symmetric in the jis, and follow from functional derivations

with respect to the external sources, e.g., the complete Green’s function of order n, Z
(n)
ji1 ···jin

, is

given by

∂n

∂ji1 · · ·∂jin

∣

∣

∣

∣

∣

j=0

Z(j) = Z
(n)
ji1 ···jin

It turns out that the above generating series are related through the exponential map

Z(j) = exp
(

W (j)
)

.

Taking functional derivations, we find up to order four:

Z(0) = 1

Z
(1)
j1

= W
(1)
j1

Z
(2)
j1j2

= W
(1)
j1

W
(1)
j2

+W
(2)
j1j2

= W
(1)
j1

Z
(1)
j2

+W
(2)
j1j2

Z(0)

Z
(3)
j1j2j3

= W
(1)
j1

W
(1)
j2

W
(1)
j3

+W
(1)
j1

W
(2)
j2j3

+W
(1)
j2

W
(2)
j1j3

+W
(1)
j3

W
(2)
j1j2

+W
(3)
j1j2j3

= W
(1)
j1

Z
(2)
j2j3

+W
(2)
j1j2

Z
(1)
j3

+W
(2)
j1j3

Z
(1)
j2

+W
(3)
j1j2j3

Z(0)

Z
(4)
j1j2j3j4

= W
(1)
j1

Z
(3)
j2j3j4

+W
(2)
j1j2

Z
(2)
j3j4

+W
(2)
j1j3

Z
(2)
j2j4

+W
(2)
j1j4

Z
(2)
j2j3

(1)

+W
(3)
j1j2j3

Z
(1)
j4

+W
(3)
j1j2j4

Z
(1)
j3

+W
(3)
j1j3j4

Z
(1)
j2

+W
(4)
j1j2j3j4

Z(0).

Abstractly, these polynomial expressions for full Green’s functions given in terms of connected

ones are a multivariate generalization of the classical Bell polynomials relating, among others,

moments and cumulants in classical probability [26]. The recursive structure featured in the order

four case in place of the complete expansion displays the full Green’s function in terms of lower

order connected ones, and will be explained further below in the context of the tensor algebra

approach. The third class of Green’s functions are the one-particle irreducible (1PI) ones. They

are related to the connected Green’s functions in a somewhat more involved manner. We will

come back to this with more details in the planar setting.
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The generating functionals for planar full and planar connected Green’s functions are given by

Z[j] := 1 +
∑

k>0

Z
(k)
j1···jk

j1 · · · jk resp. W[j] :=
∑

m>0

W
(m)
j1···jm

j1 · · · jm.

Here the external sources j = {ji}i>0 are strictly non-commutative, so that neither Z
(k)
j1···jk

nor

W
(m)
j1···jm

are symmetric functions with respect to the sources any more. The corresponding non-

commutative functional calculus is explained in detail in reference [16]. Cvitanovic noted in [15]

that the planar nature of the problem yields a different functional relation between the two planar

generating functionals Z[j] and W[j], which is given in terms of the fixed point equation

(2) Z[j] := 1 +W[jZ[j]].

Due to the non-commutative nature of the external sources, a different but equivalent form is

given by Z[j] := 1 +W[Z[j]j]. We will work foremost with equality (2), which yields up to order

four:

Z(0) = 1

Z
(1)
j1

= W
(1)
j1

Z
(2)
j1j2

= W
(1)
j1
Z
(1)
j2

+W
(2)
j1j2

Z(0) = W
(1)
j1
W

(1)
j2

+W
(2)
j1j2

Z
(3)
j1j2j3

= W
(1)
j1
Z
(2)
j2j3

+W
(2)
j1j2

Z
(1)
j3

+W
(2)
j1j3

Z
(1)
j2

+W
(3)
j1j2j3

Z(0)

= W
(1)
j1
W

(1)
j2
W

(1)
j3

+W
(1)
j1
W

(2)
j2j3

+W
(2)
j1j2

W
(1)
j3

+W
(2)
j1j3

W
(1)
j2

+W
(3)
j1j2j3

Z
(4)
j1j2j3j4

= W
(1)
j1
Z
(3)
j2j3j4

+W
(2)
j1j2

Z
(2)
j3j4

+W
(2)
j1j3

Z
(1)
j2
Z
(1)
j4

+W
(2)
j1j4

Z
(2)
j2j3

(3)

+W
(3)
j1j2j3

Z
(1)
j4

+W
(3)
j1j2j4

Z
(1)
j3

+W
(3)
j1j3j4

Z
(1)
j2

+W
(4)
j1j2j3j4

Z(0).

Note that the difference with the analogous polynomials in the non-planar case starts at order

four, i.e., compare the terms W
(2)
j1j3

Z
(2)
j2j4

and W
(2)
j1j3

Z
(1)
j2
Z
(1)
j4

in lines (1) and (3), respectively. A

precise understanding of the combinatorial nature of the recursive structure which is on display

here will be given further below in terms of the double tensor Hopf algebra of non-commuting

sources, and its natural non-cocommuting unshuffle coproduct. The combinatorial description of

the relations between planar connected and planar 1PI Green’s functions, which derives from this

Hopf algebra approach will be explained in section 4.

Our approach may be summarised by saying that it captures in a purely algebraic way the

functional calculus employed to describe the relations between planar Green’s functions. More

precisely, we show that the double tensor algebra T̄ (T (J)) and the tensor algebra T̄ (J) together

with their non-cocommutative respectively cocommutative unshuffle coproducts provide the ap-

propriate Hopf algebraic setting to algebraize the relations between the generating series of planar

respectively non-planar full and connected Green’s functions. To this end, the planar and non-

planar generating functionals are considered as linear maps over the two aforementioned tensor

algebras, T̄ (T (J)) respectively T̄ (J). In both cases, the usual functional relations between gen-

erating functionals are described in Hopf algebraic terms through linear fixed point equations of

the same type, which are solved by the corresponding linear maps. In the planar case the linear

map τZ that represents Z[j], is a multiplicative unital map, i.e., a Hopf algebra character over
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T̄ (T (J)), whereas τW, representing W[j], is an infinitesimal character. They are related through

the fundamental linear fixed point equation defined in terms of the left half-shuffle product

τZ = ε+ τW ≺ τZ.

Its solution is given by the exponential map

τZ = exp⋆
(

Ω′(τW)
)

.

The map Ω′ reflects the non-commutative nature of the product ⋆ used to define the exponential.

In the non-planar case we find that the linear maps τZ , τW ∈ T̄ ∗(J) solve the analogue left half-

shuffle relation, this time, however, defined over T̄ ∗(J)

τZ = ε+ τW ≺ τZ and τZ = exp
(

τW
)

.

In the non-planar case the exponential map is defined with respect to the shuffle product ,

and the non-appearance of the map Ω′ is a consequence of the commutative nature of the shuffle

algebra. We see that in both the planar and non-planar setting the – generating series of – full

and connected Green’s functions are related through an exponential map, defined with respect to

a non-commutative respectively commutative product. This picture allows us, in particular, to

formulate the description of planar connected Green’s functions in terms of planar 1PI Green’s

functions, using the language of noncrossing partitions and planar de- or increasing trees [18]. In

this framework, functional derivations have a diagrammatical description in terms of right-grafting

single edges to planar rooted trees.

We briefly outline the organization of the article. In the next section we introduce various

notions, ranging from classical Hopf algebras to the lesser known unshuffle bialgebras. We explain

several key properties of the latter and illustrate these notions on the tensor and double tensor

algebras generated by families of external sources. The second part investigates the relations

between full and connected Green’s functions. We also introduce noncrossing Green’s functions and

show how the free probability analysis of the relations between free moments and free cumulants

can be transferred to planar QFT using the unshuffle calculus underlying our approach. The third

part investigates the links between planar connected and planar 1PI Green’s functions. This leads

to a graphical interpretation of the calculus of derivatives with respect to external sources in the

functional approach to planar QFT which is the object of the last section.

In the following K denotes a ground field of characteristic zero, e.g., K = C or R. We also

assume any K-algebra A to be associative and unital, if not stated otherwise. The unit in A is

denoted 1A. Identity morphisms are written id.

Acknowledgements: First and foremost we would like to thank the organisers of the workshop

“Dyson–Schwinger Equations in Modern Mathematics & Physics”, ECT*, Trento, Italy, Septem-

ber 22-26, 2014, for inviting us to present our work at this meeting. The authors are indebted

to T. Krajewski who pointed out to them the relevance of their work on free probabilities for

planar QCD during the workshop in Trento. The first author is supported by a Ramón y Ca-

jal research grant from the Spanish government. The second author acknowledges support from

the grant ANR-12-BS01-0017, Combinatoire Algébrique, Résurgence, Moules et Applications and
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from the ESI Vienna, where this work started. Support by the CNRS GDR Renormalisation is

also acknowledged.

2. Green’s functions and connected graded Hopf algebras

2.1. Hopf algebras. We start this section by recalling a few basic facts on Hopf algebras, which

shall also serve to fix notation. For details the reader is referred to [7, 39, 42]. However, a remark

is in order. Our work focuses exclusively on a particular connected graded non-commutative non-

cocommutative Hopf algebra with some extra structure defined on the double tensor algebra over

a set of external sources as the basic object of interest in our approach to planar Green’s functions.

These objects are related to (non-commutative) Fock spaces and can be thought of as a kind of

generalization thereof. In particular, both their structure and combinatorics are different from

the ones involved in the modelling of the Bogoliubov recursion and the BPHZ renormalization

process by means of Hopf algebras of Feynman diagrams and Rota–Baxter algebra structures. We

refer the reader interested in learning about Connes’ and Kreimer’s Hopf algebraic approach to

renormalization to the original works [12, 13, 14]. See also [19, 30, 33].

A coalgebra over K consist of a K-vector space C and two maps, the coproduct ∆ : C → C⊗C,

which is coassociative

(4) (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

and the counit ε : C → K, such that (ε⊗ id)◦∆ = (id⊗ε)◦∆ = id. A coalgebra is cocommutative

if ∆ = τ ◦ ∆, where τ is the switch map τ(x ⊗ y) := y ⊗ x. Iterated coproducts are denoted as

follows ∆0 := id and ∆n : C → C⊗n+1

∆n := (id⊗∆n−1) ◦∆.

A K-bialgebra is a K-vector space B, which is both a K-algebra and a K-coalgebra together with

certain compatibility relations, such as, for instance, both the algebra product, m : B ⊗ B → B,

and unit map, e : K → B, are coalgebra morphisms [42]. The unit of B is denoted by 1 = e(1).

A bialgebra is called graded if there exist K-vector spaces Bm such that B =
⊕

n≥0Bn, and

m(Bp ⊗ Bq) ⊆ Bp+q as well as ∆(Bn) ⊆
⊕

p+q=nBp ⊗ Bq. Elements x ∈ Bn are said to be of

degree |x| = n. Define B+ =
⊕

n>0Bn. A graded bialgebra B is called connected if the degree

zero component is one dimensional B0 = K1. In this case, the coproduct for an element x ∈ B+

of degree |x| = n is of the form

∆(x) = x⊗ 1+ 1⊗ x+∆′(x) ∈
⊕

k+l=n

Bk ⊗Bl,

where ∆′(x) := ∆(x) − x ⊗ 1 − 1 ⊗ x ∈ B+ ⊗ B+ is the reduced coproduct. Furthermore,

B+ = Ker(ε) is the augmentation ideal of B. By definition an element x ∈ B is called primitive

if ∆′(x) = 0.

Suppose that A is an algebra with product mA and unit map eA(1) = 1A, e.g., A = K or A = B,

where B is a bialgebra. The vector space L(B,A) of linear maps from B to A together with the

convolution product

(5) Φ ⋆Ψ := mA ◦ (Φ⊗Ψ) ◦∆ : B → A,
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Φ,Ψ ∈ L(B,A), is an associative algebra with unit ι := eA ◦ ε.

A K-Hopf algebra is a K-bialgebra H equiped with a K-linear map S : H → H called the

antipode which (for the kind of Hopf algebras we are interested in) is characterised as the inverse of

the identity map id ∈ L(H,H) with respect to the convolution product, that is, id⋆S = S⋆id = e◦ε,

where

S ⋆ id = m ◦ (S ⊗ id) ◦∆.

It is a well-known fact that any connected graded bialgebra is automatically a connected graded

Hopf algebra, see e.g. [7, 42].

Let H =
⊕

n≥0Hn be a connected graded Hopf algebra. Suppose A is a commutative unital

algebra. The subset g0 ⊂ L(H,A) of linear maps, α, that send the unit to zero, α(1) = 0, forms

a Lie algebra in L(H,A). The exponential exp⋆(α) =
∑

j≥0
1
j!
α⋆j defines a bijection from g0 onto

the group G0 = ι+ g0 of linear maps, γ, that send the unit of H to the algebra unit, γ(1) = 1A.

The neutral element is ι := eA ◦ ǫ, given by ι(1) = 1A and ι(x) = 0 for x ∈ H+. An infinitesimal

character with values in A is a linear map ξ ∈ g0 such that for x, y ∈ H+, ξ(m(x⊗ y)) = 0. The

linear space of infinitesimal characters is a Lie subalgebra of g0 denoted gA. An element Φ in G0 is

called a character if, for x, y ∈ H , Φ(m(x⊗y)) = mA(Φ(x)⊗Φ(y)). The set of characters is denoted

by GA ⊂ G0. It forms a pro-unipotent group for the convolution product with (pro-nilpotent) Lie

algebra gA. The exponential map exp⋆ restricts to a bijection between gA and GA. . The inverse

of Φ ∈ GA is given by composition with the Hopf algebra antipode S, i.e., Φ⋆−1 = Φ ◦ S. See

[19, 30] for more results and details.

2.2. Tensor Hopf algebras. Next we present briefly two examples of connected graded Hopf

algebra, which play a key role from our point of view, i.e., the tensor and double tensor algebra

over an arbitrary set. Let J := {j1, j2, j3, . . .} be a set (also called an alphabet). The set of

words ji1 · · · jil is denoted J∗ and the linear span of J∗ is denoted J . We start by defining

T (J) := ⊕n>0J ⊗n to be the nonunital tensor algebra over J . The full tensor algebra is denoted

T̄ (J) := ⊕n≥0J ⊗n, with J ⊗0 = K1. Elements in T (J) are written as linear combinations of words

ji1 · · · jil ∈ T (J). The natural degree of a word w = ji1 · · · jin is its lenght n =: |w|, and we write

w ∈ Tn(J). The space T (J) is a graded algebra with the natural non-commutative product defined

by concatenating words w = ji1 · · · jin ∈ Tn(J) and w′ = jk1 · · · jkm ∈ Tm(J)

w · w′ := ji1 · · · jin · jk1 · · · jkm = ji1 · · · jinjk1 · · · jkm ∈ Tn+m(J).

The tensor algebra T̄ (J) becomes a unital connected non-commutative but cocommutative Hopf

algebra if it is equipped with the unshuffle coproduct, which is defined by declaring the elements

in degree one J →֒ T̄ (J) to be primitive, i.e., ∆ (ji) := ji ⊗ 1 + 1 ⊗ ji. This definition extends

multiplicatively to all of T̄ (J), e.g.

∆ (jijl) = ∆ (ji)∆ (jl) = jijl ⊗ 1+ 1⊗ jijl + ji ⊗ jl + jl ⊗ ji.

The general form is given as follows

∆ (w) =
∑

u,v∈J∗

〈u v, w〉u⊗ v.(6)
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Here the coefficient 〈u, v〉 := 1 if u = v, and zero else. The product : T̄ (J) ⊗ T̄ (J) → T̄ (J)

displaying in (6) is the shuffle product of words [39], which is defined iteratively for any word w

by 1 w := w 1 := w, and

jiv jku := ji(v jku) + jk(jiv u),(7)

for words u, v ∈ J∗. In low degrees,

ji jk = jijk + jkji

ji jkjl = jijkjl + jk(ji jl) = jijkjl + jkjijl + jkjlji

jijn jkjm = ji(jn jkjm) + jk(jijn jm).

The shuffle product of words is associative and commutative.

Later we will see that (7) is just the commutative version of a more general shuffle product.

In fact, we will be interested mainly in the non-commutative case (the one meaningful for planar

QFT). The name “shuffle algebra” refers to general, possibly non-commutative, shuffle algebras,

and we refer explicitly to “commutative shuffle algebras” in the commutative case.

Next we augment the complexity of our word algebra T (J) by defining the double tensor algebra

T (T (J)) := ⊕n>0T (J)
⊗n, and use the bar-notation to denote elements w1| · · · |wn ∈ T (T (J)),

wi ∈ T (J), i = 1, . . . , n. The algebra T (T (J)) is equipped with the concatenation product.

For a = w1| · · · |wn and b = w′
1| · · · |w

′
m we denote the concatenation product in T (T (J)) by

a|b, that is, a|b := w1| · · · |wn|w′
1| · · · |w

′
m. This algebra is multi-graded, i.e., T (T (J))n1,...,nk

:=

Tn1(J)⊗ · · · ⊗ Tnk
(J), as well as graded

T (T (J))n :=
⊕

n1+···+nk=n

T (T (J))n1,...,nk
.

Similar observations hold for the unital case, T̄ (T (J)) = ⊕n≥0T (J)
⊗n, and we will identify without

further comments a bar symbol such as w1|1|w2 with w1|w2 (formally, using the canonical map

from T̄ (T̄ (J)) to T̄ (T (J))).

The double tensor algebra becomes a Hopf algebra by defining another unshuffle-type coproduct,

which is a refinment of the unshuffling coproduct in (6). Given two (canonically ordered) subsets

S ⊆ U of the set of integers N∗, we call connected component of S relative to U a maximal

sequence s1, . . . , sn in S such that there are no 1 ≤ i < n and u ∈ U , such that si < u < si+1. In

particular, a connected component of S in N∗ is simply a maximal sequence of successive elements

s, s+ 1, . . . , s+ n in S.

Consider a word ji1 · · · jin ∈ T (J). For S := {s1, . . . , sp} ⊆ [n], we set jS := jis1 · · · jisp (resp.

j∅ := 1). Denoting J1, . . . , Jk the connected components of [n]−S, we also set jJS
[n]

:= jJ1 | · · · |jJk .

More generally, for S ⊆ U ⊆ [n], set jJS
U

:= jJ1| · · · |jJk , where the Ji are now the connected

components of U − S in U .

Definition 1. The map δ : T (J) → T̄ (J)⊗ T̄ (T (J)) is defined by

(8) δ(ji1 · · · jin) :=
∑

S⊆[n]

jS ⊗ jJ1 | · · · |jJk =
∑

S⊆[n]

jS ⊗ jJS
[n]
.
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The coproduct is then extended multiplicatively to all of T̄ (T (J))

δ(w1| · · · |wm) := δ(w1) · · · δ(wm),

with δ(1) := 1⊗ 1.

Theorem 1. [24, 25] The graded algebra T̄ (T (J)) equipped with the coproduct (8) is a connected

graded non-commutative and non-cocommutative Hopf algebra.

2.3. Splitting of unshuffle coproducts. As we already indicated, both coproducts, (6) and (8),

are considered to be of unshuffle-type. In the latter case we keep track of the subsets of letters

that have been extracted from a word w in T (J) by “filling-in the holes” by bars in the respective

places. We will show in the rest of this paper, that this simple operation, that is, going from T (J)

to T (T (J)), is enough to understand the different natures of the relations between full, connected

and 1PI Green’s functions in the context of planar field theories. In fact, we will see that these

relations, whether in the planar or non-planar case, are encoded by a particular linear fixed point

equation defined on either T (J) or T (T (J)), and which is derived from a rather natural splitting

of the coproducts (6) and (8).

Indeed, the unshuffle-type coproducts, (6) and (8), share a particular coalgebraic property, i.e.,

both can be split into a sum of left and right unshuffle half-coproducts. We will first introduce

this splitting for the coproduct (6), where it is easily defined by realising, that (6) can be written

in more set-theoretic terms

(9) ∆ (ji1 · · · jin) =
∑

I⊆[n]

jI ⊗ j[n]−I .

As before, for subsets S = {s1, . . . , sk} ⊂ [n], jS stands for the word jis1 · · · jisk . Now we define

the left unshuffle half-coproduct ∆≺ : T (J) → T (J)⊗ T̄ (J)

(10) ∆≺(ji1 · · · jin) =
∑

I⊆[n]
1∈I

jI ⊗ j[n]−I .

The right unshuffle half-coproduct is defined through ∆≻ := ∆ −∆≺. In explicit form it writes

(11) ∆≻(ji1 · · · jin) =
∑

I⊂[n]
1/∈I

jI ⊗ j[n]−I ,

so that the splitting of the unshuffle coproduct (6) in terms of these two operations writes

(12) ∆ = ∆≻ +∆≺.

This gives rise to an unshuffle bialgebra structure on T̄ (J), whose formal definition will be given

further below. The fine structure of this mathematical notion is studied in [28]. Note that in

the following we shall use both appellations, (left) right unshuffle half-coproduct or (left) right

half-unshuffle.

Before we move on to the double tensor algebra, T (T (J)), we shall give a few examples.

∆≺(j1) = j1 ⊗ 1

∆≺(j1j2) = j1 ⊗ j2 + j1j2 ⊗ 1

∆≺(j1j2j3) = j1 ⊗ j2j3 + j1j2 ⊗ j3 + j1j3 ⊗ j2 + j1j2j3 ⊗ 1
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∆≺(j1j2j3j4) = j1 ⊗ j2j3j4 + j1j2 ⊗ j3j4 + j1j3 ⊗ j2j4 + j1j4 ⊗ j2j3

+ j1j2j3 ⊗ j4 + j1j2j4 ⊗ j3 + j1j3j4 ⊗ j2 + j1j2j3j4 ⊗ 1,

which should be compared with (1). For the right half-unshuffle ∆≻ we find up to order three

∆≻(j1) = 1⊗ j1

∆≻(j1j2) = j2 ⊗ j1 + 1⊗ j1j2

∆≻(j1j2j3) = j2 ⊗ j1j3 + j3 ⊗ j1j2 + j2j3 ⊗ j1 + 1⊗ j1j2j3.

Remark 2. Observe that τ ◦∆≻ = ∆≺, which reflects cocommutativity of (6).

Let us turn to the coproduct (8), which we would like to split into left and right unshuffle

half-coproducts

(13) δ = δ≻ + δ≺,

analogous to what we did for (12). The left unshuffle half-coproduct δ≺ : T (J) → T (J)⊗ T̄ (T (J))

is defined through

(14) δ≺(ji1 · · · jin) :=
∑

S⊆[n]
1∈S

jS ⊗ jJ1| · · · |jJk =
∑

S⊆[n]
1∈S

jS ⊗ jJS
[n]
,

and the right unshuffle half-coproduct δ≻ : T (J) → T̄ (J)⊗ T (T (J)) is defined by

(15) δ≻(ji1 · · · jin) :=
∑

S⊂[n]
1/∈S

jS ⊗ jJ1| · · · |jJk =
∑

S⊂[n]
1/∈S

jS ⊗ jJS
[n]
.

Remark 3. Note that for symmetry reasons, one can define a companion left half-unshuffle

(16) δ≺̄(ji1 · · · jin) :=
∑

S⊆[n]
n∈S

jS ⊗ jJ1| · · · |jJk =
∑

S⊆[n]
n∈S

jS ⊗ jJS
[n]
,

and correspondingly another right half-unshuffle δ≻̄(ji1 · · · jin) :=
∑

S⊂[n]
n/∈S

jS ⊗ jJS
[n]
.

We shall give a few examples

δ≺(j1) = j1 ⊗ 1

δ≺(j1j2) = j1 ⊗ j2 + j1j2 ⊗ 1

δ≺(j1j2j3) = j1 ⊗ j2j3 + j1j2 ⊗ j3 + j1j3 ⊗ j2 + j1j2j3 ⊗ 1

δ≺(j1j2j3j4) = j1 ⊗ j2j3j4 + j1j2 ⊗ j3j4 + j1j3 ⊗ j2|j4 + j1j4 ⊗ j2j3

+ j1j2j3 ⊗ j4 + j1j2j4 ⊗ j3 + j1j3j4 ⊗ j2 + j1j2j3j4 ⊗ 1.

Note the difference between the terms j1j3⊗j2|j4 ∈ T (J)⊗T (T (J)) and j1j3⊗j2j4 ∈ T (J)⊗T (J),

which distinguishes the two left unshuffles half-coproduct δ≺ and ∆≺ at order four. This distinction

reflects the one we already observed between the expansions at order four of the full Green’s

functions in terms of the connected ones in the planar and non-planar cases.

For the right unshuffle half-coproduct up to order three we find

δ≻(j1) = 1⊗ j1
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δ≻(j1j2) = j2 ⊗ j1 + 1⊗ j1j2

δ≻(j1j2j3) = j2 ⊗ j1|j3 + j3 ⊗ j1j2 + j2j3 ⊗ j1 + 1⊗ j1j2j3

δ≻(j1j2j3j4) = j2 ⊗ j1|j3j4 + j3 ⊗ j1j2|j4 + j4 ⊗ j1j2j3

+ j2j3 ⊗ j1|j4 + j2j4 ⊗ j1|j3 + j3j4 ⊗ j1j2 + j2j3j4 ⊗ j1 + 1⊗ j1j2j3j4

Remark 4. Note that contrary to Remark 2, we observe that already at order three we find

that τ ◦ δ≻ 6= δ≺. We would like to emphasize that this difference, that is, the fact that (6) is

cocommutative but (8) is not, distinguishes the non-planar from the planar setting of QFTs.

In the light of coassociativity (4) of the coproducts (6) and (8), the respective splittings in (12)

and (13) imply general properties to be satisfied by the left and right unshuffle half-coproducts,

which will be stated now in the next two definitions.

Definition 2. A counital unshuffle coalgebra is a coaugmented coassociative coalgebra C̄ = C⊕K1

with coproduct

(17) ∆(c) := ∆̄(c) + c⊗ 1+ 1⊗ c,

such that, on C, the reduced coproduct splits, ∆̄ = ∆̄≺ + ∆̄≻ with

(∆̄≺ ⊗ id) ◦ ∆̄≺ = (id⊗ ∆̄) ◦ ∆̄≺(18)

(∆̄≻ ⊗ id) ◦ ∆̄≺ = (id⊗ ∆̄≺) ◦ ∆̄≻(19)

(∆̄⊗ id) ◦ ∆̄≻ = (id⊗ ∆̄≻) ◦ ∆̄≻.(20)

The maps ∆̄≺ and ∆̄≻ are called respectively augmented left and right unshuffle half-coproducts.

A cocommutative unshuffle coalgebra satisfies ∆̄≺ = τ ◦ ∆̄≻, where τ denotes the twist map,

τ(x⊗ y) := y ⊗ x.

Definition 3. An unshuffle bialgebra is a unital and counital bialgebra B̄ = B ⊕K1 with product

mB(x ⊗ y) =: x ·B y and coproduct ∆, as well as a counital unshuffle coalgebra ∆̄ = ∆̄≺ + ∆̄≻.

Moreover, the following compatibility relations hold

∆≺(a ·B b) = ∆≺(a) ·B ∆(b)(21)

∆≻(a ·B b) = ∆≻(a) ·B ∆(b),(22)

where

∆≺(a) := ∆̄≺(a) + a⊗ 1(23)

∆≻(a) := ∆̄≻(a) + 1⊗ a,(24)

and ∆ = ∆≺ +∆≻.

For example, (9) together with the concatenation product defines the structure of a cocommu-

tative unshuffle bialgebra on T̄ (J).

Theorem 5. [24] The bialgebra T̄ (T (J)) with its coproduct (8) split into left and right unshuffle

half-coproducts, δ = δ≺ + δ≻, defined in (14) and (15), is an unshuffle bialgebra.
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Remark 6. The left unshuffle half-coproduct (14) can be further split

(25) δ̄≺(ji1 · · · jin) = δ̂≺(ji1 · · · jin) + δ̃≺(ji1 · · · jin),

where δ̂≺(ji1 · · · jin) ∈ T (J) ⊗ T (J) is the linearized part, and the rest δ̃≺(ji1 · · · jin) ∈ T (J) ⊗
⊕

n>1 T (T (J))n. The linearized part is best described in terms of intervals

(26) δ̂≺(ji1 · · · jin) =
∑

I1
∐

I2
∐

I3=[n]
1∈I1,I2 6=∅

jI1
∐

I3 ⊗ jI2 .

Here I1, I2, I3 are three disjoint intervals, such that I1
∐

I2
∐

I3 = [n] and I3 is possibly empty.

Moreover, the minimal elements of each interval satisfy min(I1) = 1 < min(I2) < min(I3).

2.4. Green’s functions revisited. Recall that the main mathematical purpose of planar and

non-planar QFTs is the calculation of Green’s functions, from which, ultimately, physical quantities

can be computed. Green’s functions are also called n-point correlation functions, and in real space

they are defined as (functional) expectation values of products of n field operators at different

positions [31, 46].

In this work we will consider the generating series of Green’s functions for planar (resp. non-

planar) theories as elements in the dual space Lin(T̄ (T (J)),C) =: T̄ ∗(T (J)) of linear maps from

the Hopf algebra T̄ (T (J)) to the complex numbers C (resp. Lin(T̄ (J),C) =: T̄ ∗(J)). This ap-

proach allows to handle Green’s functions using the full machinery of Hopf algebras and unshuffle

bialgebras.

Note that the problem of (ultraviolet) divergencies and its solution in terms of the process of

renormalization [9, 11] demands for regularization procedures, which involves replacing the field of

complex numbers as target space of linear functions, by some commutative and unital C-algebra

A, for example the algebra of Laurent series C[ε−1, ε]] in a dimensional regularization parameter ε.

We point out that changing the target algebra from C to such an algebra A would not change the

underlying algebraic and combinatorial framework. Indeed, our forthcoming developments apply

as well in this more general setting.

To make this more precise we consider first Lin(T (J),C) = T ∗(J), and introduce for each word

w = ji1 · · · jik ∈ J∗ its dual element dw ∈ T ∗(J), which is defined as a linear form over T (J), such

that for any word w′ ∈ J∗ one has that dw(w
′) := (w,w′) = 1 if w = w′, and zero else. General

linear forms over T (J) are then defined as formal series F :=
∑

w∈J∗(F,w)dw.

From this perspective generating functionals of non-planar Green’s functions are viewed now as

formal series, with the full, connected and 1PI Green’s functions as coefficients:

τZ(ji1 · · · jil) := Z
(l)
ji1 ···jil

τW (ji1 · · · jil) := W
(l)
ji1 ···jil

τΓ(ji1 · · · jil) := Γ
(l)
ji1 ···jil

.

We call these linear maps respectively the non-planar full, connected and 1PI Green’s functions.

Let us focus now on the planar case. Here, one may apply the above interpretation of generating

functionals of Green’s functions as linear forms, when restricted to degree one, that is, for words
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in T (J) →֒ T (T (J)) one writes

τZ(ji1 · · · jim) := Z
(m)
ji1 ···jim

τW(ji1 · · · jim) := W
(m)
ji1 ···jim

τΓ(ji1 · · · jim) := Γ
(m)
ji1 ···jim

.

The critical step is the extension to all of T̄ (T (J)). Indeed, the first step in clarifying the relations

between these linear maps from a Hopf algebra point of view is taken by considering full Green’s

functions as a multiplicative map on T̄ (T (J)), that is, by extending the linear map of full Green’s

functions, τZ, multiplicatively to all of T̄ (T (J))

τ(1) = 1, τZ(w1| · · · |wn) := τZ(w1) · · · τZ(wn).

In other terms, τZ ∈ GC, the group of characters on T̄ (T (J)) – we shall see later that it is natural

to require that both τW and τΓ are infinitesimal characters.

Next we remind the reader of the convolution product (5) introduced above in the context of

the space of linear maps on a Hopf algebra with values in a commutative unital algebra, say,

for instance, the complex numbers. This turns T̄ ∗(T (J)) into a non-commutative unital algebra,

where the product is defined in terms of the coproduct (8), i.e., for α, β ∈ Lin(T̄ (T (A)),C)

(27) α ⋆ β := mC ◦ (α⊗ β) ◦ δ.

Here mC stands for the product map in C.

The splitting of the coproduct (8) into left and right unshuffle half-coproducts (13) can be

lifted to the algebra T̄ ∗(T (J)). To this extend we define the left and right half-shuffle convolution

products

α ≺ β := mC ◦ (α⊗ β) ◦ δ≺(28)

α ≻ β := mC ◦ (α⊗ β) ◦ δ≻,(29)

such that (13) implies that

(30) α ⋆ β = α ≻ β + α ≺ β.

Remark 7. The same construction would hold for the dual space of an arbitrary unshuffle bial-

gebra.

Definition 2 implies the following relations for the binary operations ≻ and ≺. Note that

with the aim of emphasising the shuffle-type behaviour, we replace the product ⋆ by the classical

notation for the shuffle product .

(a ≺ b) ≺ c = a ≺ (b c)(31)

(a ≻ b) ≺ c = a ≻ (b ≺ c)(32)

a ≻ (b ≻ c) = (a b) ≻ c,(33)

where

(34) a b := a ≺ b+ a ≻ b.
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These are the axioms defining the abstract notion of a shuffle, or dendrimorphic algebra [24, 25],

which is a K-vector space D together with two bilinear compositions ≺ and ≻, the so-called left

and right half-shuffle products, satisfying (31), (32), and (33). In fact, these axioms imply that

any shuffle algebra is an associative algebra for the shuffle product defined in (34), and we call

the shuffle product on D.

A commutative shuffle algebra is a shuffle algebra, where the left and right half-shuffles are

identified as follows

x ≻ y = y ≺ x,

so that in particular the shuffle product is commutative: x y = x ≺ y + x ≻ y = y x. The

standard example of a commutative shuffle algebra structure was introduced on T̄ (J) in (7). We

remark that the same structure is obtained as the dual to the one on T̄ (J), when equipped with

the concatenation product and the unshuffle coproduct. The duality is obtained by requiring the

words in J∗ to form an orthonormal basis.

Shuffle algebras are not naturally unital. This is because it is impossible to “split” the unit

equation, 1 a = a 1 = a, into two equations involving the left and right half-shuffle products

≻ and ≺. This issue is circumvented by using the “Schützenberger trick”, that is, for D a shuffle

algebra, D̄ := D ⊕K1 denotes the shuffle algebra augmented by a unit 1, such that

(35) a ≺ 1 := a =: 1 ≻ a 1 ≺ a := 0 =: a ≻ 1,

implying a 1 = 1 a = a. By convention, 1 1 = 1, but 1 ≺ 1 and 1 ≻ 1 cannot be defined

consistently in the context of the axioms of shuffle algebras.

In the light of (28) and (29) we arrive at the next result.

Proposition 8. The space (Lin(T̄ (T (J)),C),≺,≻) is a shuffle algebra.

Remark 9. We state the proposition for T̄ (T (J)), since we always try to put the emphasis on

planar QFT. However, the proof depends only on the fact that T̄ (T (J)) is an unshuffle bialgebra

and therefore would hold for an arbitrary unshuffle bialgebra B with B̄ = B ⊕K1. In particular,

the property holds for Lin(T̄ (J),C).

Proof. For arbitrary α, β, γ ∈ T ∗(T (J)),

(α ≺ β) ≺ γ = mC[3] ◦ ((α ≺ β)⊗ γ) ◦ δ≺ = mC[3] ◦ (α⊗ β ⊗ γ) ◦ (δ≺ ⊗ id) ◦ δ≺,

where C[3] stands for the product map from C⊗3 to C. Similarly

α ≺ (β γ) = mC ◦ (α⊗ (β γ)) ◦ δ≺

= mC[3] ◦ (α⊗ β ⊗ γ) ◦ (id⊗ δ) ◦ δ≺,

where δ(u) = δ(u) − u ⊗ 1 − 1 ⊗ u is the reduced coproduct. So that the identity (α ≺ β) ≺

γ = α ≺ (β γ) follows from (δ≺ ⊗ id)⊗ δ≺ = (id⊗ δ) ◦ δ≺, and similarly for the other identities

characterizing shuffle algebras.

We equip the shuffle algebra (T ∗(T (J)),≺,≻) with the unit ε – recall that ε is the null map on

T (T (J)), and the identity map on T (J)⊗0 ∼= C1. That is, for an arbitrary α in T̄ ∗(T (J)),

α ≺ ε = α = ε ≻ α, ε ≺ α = 0 = α ≻ ε.

�
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Let us introduce some useful notations. Let La≻ (b) := a ≻ b =;R≻b (a). The shuffle axioms

yield

La≻Lb≻ = La b≻, R≺aR≺b = R≺b a.

Recall that a left pre-Lie algebra [8, 32] is a K-vector space V equipped with a bilinear product

⊲: V ⊗ V → V , such that for arbitrary a, b, c ∈ V

(36) a ⊲ (b ⊲ c)− (a ⊲ b) ⊲ c = b ⊲ (a ⊲ c)− (b ⊲ a) ⊲ c.

It implies that the bracket [a, b] := a ⊲ b − b ⊲ a satisfies the Jacobi identity. A right pre-

Lie algebra is defined appropriately. Note that any associative algebra is pre-Lie. For several

reasons pre-Lie algebras play a key role, e.g., in the understanding of recursive equations such as

Bogoliubov’s counterterm formula in perturbative quantum field theory [20, 23]. The next lemma

follows directly from the axioms (31)-(33) of shuffle products.

Lemma 10. Let D be a shuffle algebra. The product ⊲: D ⊗D → D

a ⊲ b := a ≻ b− b ≺ a

is left pre-Lie. We write its left action La⊲ (b) = a ⊲ b = La≻ − R≺a.

Note that [a, b] = a ⊲ b − b ⊲ a = a b − b a for all a, b ∈ D. The pre-Lie product is trivial

(null) on commutative shuffle algebras, since we then have a ≻ b = b ≺ a.

The following set of left and right half-shuffle words in D̄ are defined recursively for fixed

elements x1, . . . , xn ∈ D, n ∈ N

w
(0)
≺ (x1, . . . , xn) := 1 =: w

(0)
≻ (x1, . . . , xn)

w
(n)
≺ (x1, . . . , xn) := x1 ≺

(

w
(n−1)
≺ (x2, . . . , xn)

)

w
(n)
≻ (x1, . . . , xn) :=

(

w
(n−1)
≻ (x1, . . . , xn−1)

)

≻ xn.

In case that x1 = · · · = xn = x we simply write x≺n := w
(n)
≺ (x, . . . , x) and x≻n := w

(n)
≻ (x, . . . , x).

In the unital algebra D̄ both the exponential and logarithm maps are defined in terms of the

associative product (34)

(37) exp (x) := 1+
∑

n>0

x n

n!
resp. log (1+ x) := −

∑

n>0

(−1)n
x n

n
.

Notice that we do not consider convergence issues: in practice we will apply such formal power

series computations either in a purely algebraic setting (formal convergence arguments would then

apply), or when dealing with graded algebras (then the series will reduce to a finite number of

nonzero terms when restricted to a given graded component).

It is also convenient to introduce the “(time-)ordered” exponential

exp≺(x) := 1+
∑

n>0

x≺n.

Similarly, we also define exp≻(x) :=
∑

n≥0 x
≻n. It corresponds to the usual time-ordered exponen-

tial in physics, when the shuffle product is defined with respect to products of, say, matrix- or
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operator-valued iterated integrals. Notice that X = exp≺(x) and Z = exp≻(x) are respectively

the formal solutions of the two linear fixed point equations

X = 1 + x ≺ X(38)

Z = 1 + Z ≻ x.

The solution of equation (38) can also be written in terms of the proper exponential map (37).

Further below we will see that (38) is the key ingredient in our approach to a Hopf algebraic

description of the functional relations among (non-)planar Green’s functions. This point of view

paves the way to new formal results on the combinatorics of Green’s functions.

Lemma 11. Let D be a shuffle algebra, and D̄ its augmentation by a unit 1. For x ∈ D we have

exp≻(−x) exp≺(x) = 1.

Proof. Indeed, we see that

exp≻(−x) exp≺(x)− 1 =
∑

n+m≥1

(−1)n
{

(x≻n) ≺ (x≺m) + (x≻n) ≻ (x≺m)
}

=
∑

n>0,m≥0

(−1)n(x≻n) ≺ (x≺m) +
∑

n≥0,m>0

(−1)n(x≻n) ≻ (x≺m).

Now, since (−1)n(x≻n) ≺ (x≺m) = (−1)n((x≻n−1) ≻ x) ≺ (x≺m) = (−1)n(x≻n−1) ≻ (x≺m+1), the

proof follows. �

Another useful result follows from the computation of the composition inverse of the time-

ordered exponential.

Lemma 12. Let D be a shuffle algebra, and D̄ its augmentation by a unit 1. For x ∈ D and

X := 1+ Y := exp≺(x), then

x = Y ≺
(

∑

n≥0

(−1)nY n
)

.

Proof. We follow [28]. From X = 1+
∑

n>0 x
≺n, we get X − 1 = Y = x ≺ X . On the other hand,

the (formal) inverse of X for the shuffle product is given by X−1 = 1
1+Y

=
∑

k≥0(−1)kY k. We

finally obtain

x = x ≺ 1 = x ≺ (X X−1) = (x ≺ X) ≺ X−1 = Y ≺
(

∑

n≥0

(−1)nY n
)

.

�

2.5. Towards planar group theory. Recall that T̄ ∗(T (J)) := Lin(T̄ (T (J)),C) and that a lin-

ear form φ ∈ T̄ ∗(T (J)) is called a character if it is unital, φ(1) = 1, and multiplicative, i.e.,

for all a, b ∈ T̄ (T (J)), φ(a|b) = φ(a)φ(b). A linear form κ ∈ T̄ ∗(T (J)) is called infinitesimal

character, if κ(1) = 0, and if κ(a|b) = 0 for all a, b ∈ T (T (J)). Characters and infinitesimal

characters are bijectively related through the exponential map defined with respect to the con-

volution product. We write Ch(κ) for the obvious extension of a linear form on T (J) (e.g. the

restriction to T (J) of an infinitesimal character) to a character, defined by Ch(κ)(1) := 1, and

Ch(κ)(w1| · · · |wk) := κ(w1) · · ·κ(wk). Conversely, for an arbitrary F ∈ T̄ ∗(T (J)), let us write
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Res(F ) for the infinitesimal character, which is defined as the restriction of F to T (J), and the

null map on other tensor powers of T (J) in T̄ (T (J)).

The linear fixed point equation (38) is characterised in the next theorem.

Theorem 13. There exists another natural bijection between the group of characters and the Lie

algebra of infinitesimal characters on T̄ (T (J)). Indeed, for a character φ there exists an unique

infinitesimal character κ such that

(39) φ = ε+ κ ≺ φ = exp≺(κ),

and conversely, for an infinitesimal character κ

φ := exp≺(κ)

is a character.

Let us use in the following the shortcut “Hopf- or Sweedler-type” notation for δ≺(w) =: w1,≺ ⊗
w2,≺.

Proof. We know from Lemma 12 that the implicit equation φ = ε+κ ≺ φ = exp≺(κ) has a unique

solution κ in T̄ ∗(T (J)). Let us consider the infinitesimal character µ := Res(κ), and let us show

that µ also solves φ = ε+ µ ≺ φ; the first part of the Theorem will follow.

Indeed, for an arbitrary w ∈ T (T (J)), w = w1| · · · |wn, notice first that by definition of the

product ≺, and due to the vanishing of µ on any tensor power T (J)⊗k, for k 6= 1, we have:

(µ ≺ φ)(w) = µ(w1,≺
1 )φ(w2,≺

1 |w2| · · · |wn) = κ(w1,≺
1 )φ(w2,≺

1 |w2| · · · |wn).

We immediately obtain, since

φ(w1) = (ε+ κ ≺ φ)(w1) = κ(w1,≺
1 )φ(w2,≺

1 ) = µ(w1,≺
1 )φ(w2,≺

1 )

that, for any i > 1

φ(w1| · · · |wn) = φ(w1)φ(w2| · · · |wn) = µ(w1,≺
1 )φ(w2,≺

1 |w2| · · · |wn)) = (ε+ µ ≺ φ)(w1| · · · |wn),

from which the property follows. Conversely:

exp≺(κ)(w1| · · · |wn) = (ε+ κ ≺ exp≺(κ))(w1| · · · |wn) = κ(w1,≺
1 ) exp≺(κ)(w2,≺

1 | · · · |wn).

Assuming by induction that the property exp≺(κ)(w′
1| · · · |w

′
k) = exp≺(κ)(w′

1) · · · exp
≺(κ)(w′

k)

holds for elements w′
1| · · · |w

′
k ∈ T (T (J)) of total degree less than the degree of w1| · · · |wn, yields

exp≺(κ)(w1| · · · |wn) = κ(w1,≺
1 ) exp≺(κ)(w2,≺

1 ) exp≺(κ)(w2) · · · exp
≺(κ)(wn)

= exp≺(κ)(w1) exp
≺(κ)(w2) · · · exp

≺(κ)(wn).

�

The next result shows that equation (38) has a solution in terms of the proper exponential map

defined with respect to the convolution (27), which splits as a shuffle product (30) in the sense of

(34). We recall that La�(b) := a� b = a ≻ b− b ≺ a, where the product a� b satisfies the pre-Lie

relation (36). See [8, 32] for details and more results on pre-Lie algebras.
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Theorem 14. [21, 22] Equation (39) has the exponential solution

φ = exp⋆
(

Ω′(κ)
)

,

where Ω′(κ) is the pre-Lie Magnus expansion, which obeys the following recursive equation

Ω′(κ) =
LΩ′�

exp(LΩ′�)− 1
(κ) =

∑

m≥0

Bm

m!
Lm
Ω′�(κ).

Here, the Bl’s are the Bernoulli numbers.

For a proof of this theorem we refer the reader to [21, 22]. Note that for a commutative shuffle

algebra the pre-Lie product is the null product, and Ω′(κ) reduces to the identity map. In this case

the solution to (39) is given by φ = exp⋆(κ). Let us mention that the pre-Lie Magnus expansion

Ω′(κ) can also be understood from the point of view of enveloping algebras of pre-Lie algebras

[10].

3. From full to connected and noncrossing planar Green’s functions

3.1. From full to connected Green’s functions. Recall the fixed point equation relating the

generating functionals Z[j] and W[j] in the planar context

(40) Z[j] = 1 +W[jZ[j]].

When expanded to compute the planar n-point function Z
(n)
ji1 ···jin

, the equation reads

(41) Z
(n)
ji1 ...jin

=
∑

A={1=a1,...,ak}⊂[n]

W
(k)
jia1

jia2
···jiak

Z
(a2−a1−1)
jia1+1

···jia2−1
· · ·Z(n−ak)

jiak+1
···jin

.

We use now the half-(un)shuffle machinery to rewrite, in a rather natural way, this convoluted

relation. Recall that T̄ ∗(T (J)) is a unital shuffle algebra for the left and right half-shuffle products

≺,≻ defined in terms of the unshuffle half-coproducts (14) respectively (15).

We define the linear map τW ∈ T̄ ∗(T (J)) associated to planar connected n-point functions,

i.e., τW(w) := W
(|w|)
w for any word w = ji1 · · · jin ∈ Tn(J), τW(1) = 0, and τW is zero on the

components Tn(T (J)) for n ≥ 2. The latter requirement, in particular, is natural in the light

of desired connectedness. Hence, the map τW defines an infinitesimal character with respect

to the Hopf algebra T̄ (T (J)). On the other hand, recall that the planar full Green’s function

τZ(w) := Z
(|w|)
w is supposed to be multiplicative. Then we find that, by the very definition of the

left half-shuffle product ≺, the relation between planar full and connected Green’s functions (40)

is encoded equivalently by the linear fixed point equation

(42) τZ = ε+ τW ≺ τZ.

This claim follows immediately from unfolding (42) when evaluated on the word w = ji1 · · · jin ∈

Tn(J). Indeed, the very definition of the left half-unshuffle (14) on T̄ (T (J)), together with the

multiplicativity of τZ imply

Z
(n)
ji1 ...jin

= τZ(w) = (τW ≺ τZ)(w)

=
∑

S={1=s1,...,sk}⊂[n]

W
(k)
jis1

jis2
···jisk

Z
(s2−s1−1)
jis1+1

···jis2−1
· · ·Z(n−sk)

jisk+1
···jin

.(43)
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This exemplifies the naturalness of the (half-)unshuffle structure in the context of the relation

between planar full and connected Green’s functions.

Remark 15. (1) The companion equation Z[j] = 1 + W[Z[j]j] is encoded in terms of the

second left half-unshuffle defined in Remark 3, equation (16).

(2) Theorem 14 implies that the planar full Green’s function can be written as a proper expo-

nential in terms of the planar connected Green’s function

τZ = exp⋆
(

Ω′(τW)
)

.

Recall that the associative shuffle product a ⋆ b = a ≺ b+ a ≻ b is non-commutative.

(3) The last item should be seen in the context of the non-planar setting, in which the full and

connected Green’s functions are related through the exponential map. We refer the reader

to subsection 3.5.

Let us illustrate equation (43) by expanding its solution in terms of the ordered exponential

of the infinitesimal character of planar connected Green’s functions, τZ = exp≺(τW), up to order

four (compare with the identities obtained at the beginning of the article using relation (40)). At

order one we have

τZ(j1) = (ε+ τW + τW ≺ τW + τW ≺ (τW ≺ τW) + · · · )(j1)

= τW(j1),

since ε(j1) = 0 and powers of left half-shuffle products beyond order one applied to the letter

j1 are zero as well due to τW(1) = 0. For the word w = j1j2 the left half-unshuffle yields

δ≺(j1j2) = j1j2 ⊗ 1+ j1 ⊗ j2, such that

τZ(j1j2) = τW(j1j2) + τW(j1)τW(j2).

For the order three word w = j1j2j3 the left half-unshuffle yields

τZ(j1j2j3) = τW(j1j2j3) + τW(j1)τW(j2j3) + τW(j1j3)τW(j2)

+ τW(j1j2)τW(j3) + τW(j1)τW(j2)τW(j3).

And for the order four word w = j1j2j3j4, the left half-unshuffle results in the lengthy expansion

τZ(j1j2j3j4) = τW(j1j2j3j4) + τW(j1j2)τZ(j3j4) + τW(j1j3)τZ(j2)τZ(j4) + τW(j1j4)τZ(j2j3)

(44)

+ τW(j1)τZ(j2j3j4) + τW(j1j2j3)τZ(j4) + τW(j1j2j4)τZ(j3) + τW(j1j3j4)τZ(j2)

= τW(j1j2j3j4) + τW(j1j2)τW(j3j4) + τW(j1j4)τW(j2j3) + τW(j1j3)τW(j2)τW(j4)

+ τW(j1j2)τW(j3)τW(j4) + τW(j1j4)τW(j2)τW(j3) + τW(j3j4)τW(j1)τW(j2)

+ τW(j2j3)τW(j1)τW(j4) + τW(j2j4)τW(j1)τW(j3) + τW(j1)τW(j2)τW(j3)τW(j4)

+ τW(j1)τW(j2j3j4) + τW(j1j2j3)τW(j4) + τW(j1j2j4)τW(j3) + τW(j1j3j4)τW(j2).

Recall the definitions of τW and τZ, and compare lines (44) and (3). Note that multiplicativity

of τZ enters at order four in the term τW(j1j3)τZ(j2)τZ(j4) corresponding to the tensor product

j1j3 ⊗ j2|j4 ∈ T (J)⊗ T2(T (J)).
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3.2. A bialgebra of non-crossing partitions. The following sections aim at developing further

the combinatorics underlying planar theories through the notion of non-crossing partitions. Recall

that a partition L of a (finite) set [n] := {1, . . . , n} consists of a collection of (non-empty) subsets

L = {L1, . . . , Lb} of [n], called blocks, which are mutually disjoint, i.e., Li ∩ Lj = ∅ for all i 6= j,

and whose union ∪b
i=1Li = [n] [1, 40]. By |L| := b the number of blocks of the partition L is

denoted, and |Li| is the number of elements in the ith block Li. Given p, q ∈ [n] we will write

that p ∼L q if and only if they belong to the same block. The lattice of set partitions of [n] is

denoted by Pn. It has a partial order of refinement: L ≤ K if L is a finer partition than K.

The partition 1̂n = {L1} consists of a single block, i.e., |L1| = n, and is the maximum element

in Pn. The partition 0̂n = {L1, . . . , Ln} has n singleton blocks, and is the minimum partition

in Pn. A set partition L = {L1, . . . , Lk} of [n] (L1

∐

· · ·
∐

Lk = [n]) is called non-crossing if for

p1, p2, q1, q2 ∈ [n] the following property does not occur

1 ≤ p1 < q1 < p2 < q2 ≤ n

and

p1 ∼L p2 ≁L q1 ∼L q2.

The set of non-crossing partitions of [n] will be denoted by NCn, we also set NC := ∪n∈NNCn.

The reader is referred to the standard reference [37] for more details. See also [1, 38]. The common

pictorial representation of (non-crossing) partitions is envoked. For example,

1 1 2 1 2 3

the first represents the singleton 0̂1 = 1̂1 = {1} in P1. The second is the single block partition, i.e.,

the maximal element 1̂2 = {1, 2} ∈ P2. Then follows the minimal element in P3, i.e., the partition

of the set [3] into singletons, 0̂3 = {{1}, {2}, {3}}. The partition {{1, 3}, {2, 4}} is represented

and is not a non-crossing partition, whereas {{1, 9}, {2, 6, 8}, {3, 5}, {4}, {7}} and {{1, 3, 7}, {2},

{4, 5, 6}} are proper partitions without crossings.

Non-crossing partitions of arbitrary subsets of the integers are defined similarly. For example,

{{1, 6, 10}, {2}, {7, 9}} is a non-crossing partition of {1, 2, 6, 7, 9, 10}. We will use implicitly various

elementary properties of non-crossing partitions [37]. In particular, we will use the fact that, if L

is a non-crossing partition of [n], then its restriction to an arbitrary subset S of [n] (by intersecting

the blocks of L with S) defines a non-crossing partition of S.

In planar quantum field theories the planarity constraint translates into the property that the

various propagators joining external sources in the diagrammatic expansion of Green’s functions

never cross. In particular, given a Feynman graph γ in the expansion of a complete n-point Green’s

function Z
(n)
j1,...,jn

with k connected components, the partition of the external sources j1, . . . , jn
according to their common belonging to one connected component of the graph induces a non-

crossing partition L(γ) = (L1, . . . , Lk) of [n]. For example, the following Feynman diagram in
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planar Φ4 theory

is associated to the non-crossing partition

Let us write γ
(n)
j1···jn

for the amplitude associated to a given Feynman diagram γ, normalized by

the proper symmetry factor, so that the sum of all amplitudes when γ runs over all diagrams with

n external legs gives the full Green’s function Z
(n)
j1···jn

(resp. the connected Green’s function W
(n)
j1···jn

when the sum runs over connected diagrams).

Summing up all these amplitudes γ
(n)
j1···jn

of the Feynman diagrams associated to a given non-

crossing partition L = {L1, . . . , Lk} of [n] defines a new Green’s function

L
(n)
j1···jn

:=
∑

L(γ)=L

γ
(n)
j1···jn

such that, setting for S = {s1, . . . , sp} ⊂ [n], WS := W
(p)
js1 ···jsp

, one gets

L
(n)
j1···jn

=

k
∏

i=1

WLi .

One step further, full Green’s functions split according to non-crossing partitions:

Z
(n)
j1···jn

=
∑

L∈NCn

L
(n)
j1···jn

.

This is the phenomenon this section aims at investigating from a combinatorial point of view.

Let L = {L1, . . . , Lk} be an arbitrary non-crossing partition of [n] := {1, . . . , n} with inf(Li) <

inf(Li+1) for i = 1, . . . , n − 1. Let us write Li < Lj if ∀a ∈ Li and ∀b ∈ Lj we have a < b. We

define a partial order <L on the blocks Li as follows: Li <L Lj if and only if, for all m ∈ Li,

inf(Lj) < m < sup(Lj). The very definition of non-crossing partitions shows that this partial

order is well-defined. Moreover, given two distinct blocks Li, Lj ∈ L, then one and only one of the

following inequalities holds

Li < Lj , Lj < Li, Li <L Lj , Lj <L Li.

As an example we consider the particular non-crossing partition L ∈ P10 with five blocks

L = {L1, L2, L3, L4, L5} = {{1, 3, 8}, {2}, {4, 6, 7}, {5}, {9, 10}}

The block L5 > Li, i = 1, 2, 3, 4, and L2 <L L1, L4 <L L3 <L L1.

A partition of the blocks of L into two (possibly empty) subsets

L = Q
∐

T = {Q1, . . . , Qi}
∐

{T1, . . . , Tk−i}
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will be said admissible if and only if for all p ≤ i, q ≤ k − i, Qp 6<L Tq, that is, Tq <L Qp

or the two subsets of [n] are incomparable for the partial order. We write then L = Q
∐

adm
T .

Admissible partitions of non-crossing partitions of arbitrary finite subsets S of the integers are

defined accordingly. Returning to the above example, we have (note that the list is not exhaustive)

L = {L1, L2, L3, L4}

∐

adm
{L5} = {L1, L2, L5}

∐

adm
{L3, L4} = {L1, L5}

∐

adm
{L2, L3, L4}.

Given two (canonically ordered) subsets S ⊆ U of the set of integers N, recall that a connected

component of S relative to U is a maximal sequence s1, . . . , sn in S, such that there are no 1 ≤ i < n

and t ∈ U , such that si < t < si+1. In particular, a connected component of S in N is simply a

maximal sequence of successive elements s, s+ 1, . . . , s+ n in S.

For an admissible partition L = Q
∐

adm
U as above, we consider the connected components

J1, . . . , Jk(L,Q) of [n]−(Q1∪· · ·∪Qi), that we will call slightly abusively from now on the connected

components of [n]−Q . The definition of <L implies that Ji ∩Uj is empty or equals Uj . We write

J
L,Q
i for the set of all non-empty intersections Ji ∩Uj , j = 1, . . . , k− i and notice that, since L is

a non-crossing partition of [n], JL,Q
i is, by restriction, a non-crossing partition of the component

Ji. For the same reason, Q is a non-crossing partition of Q1 ∪ · · · ∪Qi.

Let us recall now that, given a finite subset S of cardinality n of the integers, the standard-

ization map st is the (necessarily unique) increasing bijection between S and [n]. By extension,

we write also st for the induced map on the various objects associated to [n] (such as parti-

tions). For example, the standardization of the non-crossing partition L := {{3, 6, 10}, {4, 5}, {8}}

of the set {3, 4, 5, 6, 8, 10} is the non-crossing partition st(L) := {{1, 4, 6}, {2, 3}, {5}} of [6] =

st({3, 4, 5, 6, 8, 10}).

The linear span NC of all non-crossing partitions can then be equipped with a coproduct map

∆ from NC to NC⊗T (NC) defined by (using our previous notations as well as the bar-| notation

for elements in T (NC))

∆(L) =
∑

Q
∐

adm
U=L

st(Q)⊗
(

st(JL,Q
1 )| · · · |st(JL,Q

k(L,Q))
)

.

A few examples are in order at this stage.

∆({{1, 4}, {2, 3}}) = {{1, 4}, {2, 3}} ⊗ 1+ 1⊗ {{1, 4}, {2, 3}}+ {1, 2} ⊗ {1, 2}

∆({{1, 5}, {2}, {3, 4}}) = {{1, 5}, {2}, {3, 4}}⊗ 1+ 1⊗ {{1, 5}, {2}, {3, 4}}

+{{1, 3}, {2}} ⊗ {1, 2}+ {{1, 4}, {2, 3}} ⊗ {1}

+{1, 2} ⊗ {{1}, {2, 3}}

∆({{1, 2}, {3}, {4}}) = {{1, 2}, {3}, {4}}⊗ 1+ 1⊗ {{1, 2}, {3}, {4}}+ {1, 2} ⊗ {{1}{2}}

+2{{1, 2}, {3}} ⊗ {1}+ {1} ⊗ {{1, 2}, {3}}+ {1} ⊗ {1, 2}|{1}

{{1}, {2}} ⊗ {1, 2}

The graphical notation of the coproduct simplifies the calculus since it is automatically standard-

ized (note that the bar of the bar notation is written in bold to distinguish it from the single
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element partition)

∆( ) = ⊗ 1+ 1⊗ ∆( ) = ⊗ 1+ 1⊗

∆( ) = ⊗ 1+ 1⊗ + ⊗

∆( ) = ⊗ 1+ 1⊗ + ⊗

∆( ) = ⊗ 1+ 1⊗ + ⊗ + ⊗ + ⊗

∆( ) = ⊗ 1+ 1⊗ + ⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗

The map ∆ is then extended multiplicatively to a coproduct on T̄ (NC)

∆(L1| · · · |Ln) := ∆(L1) · · ·∆(Ln), ∆(1) = 1⊗ 1.

Here, T̄ (NC) is equipped with the structure of a free associative algebra over NC by the concate-

nation map, (L1| · · · |Lk) · (Lk+1| · · · |Ln) := (L1| · · · |Lk|Lk+1| · · · |Ln).

Theorem 16. [25] The graded algebra T̄ (NC) equipped with the coproduct ∆ is a connected graded

non-commutative and non-cocommutative Hopf algebra.

This coproduct can be split into two parts as follows. On NC define the left half-coproduct by

(45) ∆≺(L) =
∑

Q
∐

adm
U=L

1∈Q1

st(Q)⊗
(

st(JL,Q
1 )| · · · |st(JL,Q

k(L,Q))
)

,

and

(46) ∆̄≺(L) := ∆≺(L)− L⊗ 1.

The right half-coproduct is defined by

(47) ∆≻(L) =
∑

Q
∐

adm
U=L

1/∈Q1

st(Q)⊗
(

st(JL,Q
1 )| · · · |st(JL,Q

k(L,Q))
)

,

and

(48) ∆̄≻(L) := ∆≻(L)− 1⊗ L.

Which yields ∆ = ∆≺ +∆≻, and for L ∈ NC

∆(L) = ∆̄≺(L) + ∆̄≻(L) + L⊗ 1+ 1⊗ L.

This is extended to T̄ (NC) by defining

∆≺(L1| · · · |Lm) := ∆≺(L1)∆(L2) · · ·∆(Lm)(49)

∆≻(L1| · · · |Lm) := ∆≻(L1)∆(L2) · · ·∆(Lm).(50)

Theorem 17. [25] The bialgebra T̄ (NC) equipped with ∆≻ and ∆≺ is an unshuffle bialgebra.
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3.3. Non-crossing Green’s functions. We have introduced, at the begining of this section, the

notion of Green’s functions parametrized by non-crossing partitions, L
(n)
j1...jn

. We will call them

simply non-crossing Green’s functions. These Green’s functions are parametrized by the pair of a

non-crossing partition of [n] and n external sources, denoted from now on by L(j1 · · · jn) and called

decorated non-crossing partitions. The latter are represented graphically by adding decorations

to the graphical representations of non-crossing partitions. For example, for L = {{1, 3}, {2, 4}},

L(j1j2j3j4) is represented by

j1j2 j3j4
.

The present section shows how to mimick, for these data, the analog of the calculus that has

been developed previously in order to understand from a Hopf and group-theoretical point of view

the link between full and connected Green’s functions.

For a set J = {ji}i>0 of non-commuting external sources, let us write NC(J) for the graded

vector space spanned by J-decorated (or simply decorated) non-crossing partitions. For S =

{s1, . . . , sk} ⊂ [n] and j := ji1 · · · jin , we set jS := jis1 · · · jisk . Similarly, for Q = {Q1, . . . , Qi} a

non-crossing partition of the set S, we write jQ := jS.

The definitions and results in the previous paragraph carry over to decorated non-crossing

partitions in a straightforward way. For example, the coproduct map ∆ is defined on NC(J) by

∆(L(ji1 · · · jin)) =
∑

Q
∐

adm
U=L

(

st(Q)⊗ jQ
)

⊗
(

st(JL,Q
1 )⊗ (j

J
L,Q
1

)| · · · |st(JL,Q

k(L,Q))⊗ (j
J
L,Q
k(L,Q)

)
)

,

where L is a non-crossing partition of [n]. As an example we calculate

∆
(

j1j2 j3j4

)

=
j1j2 j3j4

⊗ 1 + 1⊗
j1j2 j3j4

+
j1 j4

⊗
j2 j3

It is then extended to T (NC(J)) multiplicatively as in the previous sections; the other structural

maps on T (NC) are extended similarly to T (NC(J)), and are written using the same symbols as

before. We obtain finally

Theorem 18. The bialgebra T̄ (NC(J)) equipped with ∆≻ and ∆≺ is an unshuffle bialgebra.

Since T̄ (NC(J)) is in particular a Hopf algebra, the set of linear maps, Lin(T̄ (NC(J)),K), is a

K-algebra with respect to the convolution product, which is defined in terms of the coproduct ∆,

i.e., for f, g ∈ Lin(T̄ (NC(J)),K)

f ⋆ g := mK ◦ (f ⊗ g) ◦∆,

where mK stands for the product map in K. Notice that, motivated by the next proposition, we

will also use later a shuffle notation for this product: f ⋆ g =: f g. We define accordingly the

left and right convolution half-products on Lin(T (NC(J)),K):

f ≺ g := mK ◦ (f ⊗ g) ◦∆≺,

f ≻ g := mK ◦ (f ⊗ g) ◦∆≻.

Proposition 19. The space T ∗(NC(J)) := Lin(T (NC(J)),K) equipped with (≺,≻) is a shuffle

algebra.
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For completeness, and in view of the importance of this proposition for forthcoming develop-

ments, we recall briefly its proof: for arbitrary f, g, h ∈ T ∗(NC(J)),

(f ≺ g) ≺ h = mK ◦ ((f ≺ g)⊗ h) ◦∆≺ = m
[3]
K

◦ (f ⊗ g ⊗ h) ◦ (∆≺ ⊗ I) ◦∆≺,

where m
[3]
K

stands for the product map from K⊗3 to K. Similarly

f ≺ (g h) = mK ◦ (f ⊗ (g h)) ◦∆≺

= m
[3]
K

◦ (f ⊗ g ⊗ h) ◦ (I ⊗∆) ◦∆≺,

so that the identity (f ≺ g) ≺ h = f ≺ (g h) follows from (∆≺ ⊗ I)⊗∆≺ = (I ⊗∆) ◦∆≺, and

similarly for the other identities characterizing shuffle algebras.

As usual, we equip the shuffle algebras T ∗(NC(J)) with a unit. That is, we set T̄ ∗(NC(J)) :=

T ∗(NC(J))⊕K1 ∼= Lin(T̄ (NC(J)),K), where in the last isomorphism the unit 1 ∈ T̄ ∗(NC(J)) is

identified with the augmentation map ε ∈ Lin(T̄ (NC(J)),K) – the null map on T (NC(J)), and

the identity map on NC(J)⊗0 ∼= K. Moreover, for an arbitrary f in T ∗(NC(J)),

f ≺ ε = f = ε ≻ f, ε ≺ f = 0 = f ≻ ε.

Let now φ be a linear form on NC(J), for example the one written τnc associated with non-

crossing Green’s functions, and defined by

τnc(L(ji1 · · · jin)) := L
(n)
ji1 ···jin

.

It extends uniquely to a multiplicative linear form Φ on T (NC(J)) (still written τnc when φ = τnc)

by setting

Φ(w1| · · · |wn) := φ(w1) · · ·φ(wn),

(and to a unital and multiplicative linear form on T̄ (NC(J)) by setting Φ(1) := 1). Conversely

any such multiplicative map Φ gives rise to a linear form on NC(J) by restriction of its domain.

Definition 4. A linear form Φ ∈ T̄ (NC(J)) is called a character if it is unital, Φ(1) = 1, and

multiplicative, i.e., for all a, b ∈ T (NC(J)), Φ(a|b) = Φ(a)Φ(b). A linear form κ ∈ T̄ (NC(J)) is

called an infinitesimal character, if κ(1) = 0, and if for all a, b ∈ T (NC(J)), κ(a|b) = 0.

We write GNC for the set of characters in T̄ (NC(J)) and gNC for the corresponding set of

infinitesimal characters. Notice that, by its very definition, an infinitesimal character is entirely

determined by its restriction to NC(J) ⊂ T (NC(J)).

Theorem 20. [25] There exists a natural bijection between GNC, the set of characters, and gNC,

the set of infinitesimal characters on T̄ (NC(J)). More precisely, for Φ ∈ GNC , ∃!κ ∈ gNC such

that Φ = ε+ κ ≺ Φ, and conversely, for κ ∈ gNC(J)

Φ := ε+ κ + κ ≺ κ+ κ ≺ (κ ≺ κ) + κ ≺ (κ ≺ (κ ≺ κ)) + · · · =: exp≺(κ)

is a character.

Recall that the analogous Theorem holds for the group GC and Lie algebra gC.

In view of the importance of the Theorem for our forthcoming developments, we include a sketch

of the proof. Since we are dealing with graded structures, the implicit equation Φ = ε+κ ≺ Φ can

be shown recursively to have a unique solution κ in T̄ ∗(NC(J)). Let us consider the infinitesimal
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character µ equal to κ on the component NC(J) of T (NC(J)), and let us show that µ also solves

Φ = e+ µ ≺ Φ; the first part of the Theorem will follow.

Indeed, for an arbitrary w = w1| · · · |wn ∈ T (NC(J)), we have:

Φ(w1) = (e + κ ≺ Φ)(w1) = κ(w1,≺
1 )Φ(w2,≺

1 ) = µ(w1,≺
1 )Φ(w2,≺

1 ),

so that for any n > 1

Φ(w1| · · · |wn) = Φ(w1)Φ(w2| · · · |wn) = µ(w1,≺
1 )Φ(w2,≺

1 |w2| · · · |wn)) = (e+ µ ≺ Φ)(w1| · · · |wn),

from which the property follows. Conversely,

exp≺(κ)(w1| · · · |wn) = (e+ κ ≺ exp≺(κ))(w1| · · · |wn) = κ(w1,≺
1 ) exp≺(κ)(w2,≺

1 | · · · |wn).

Assuming (by induction on the total tensor degree of the expressions) that exp≺ acts as a character

on (w2,≺
1 | · · · |wn), we obtain:

exp≺(κ)(w1| · · · |wn) = (κ(w1,≺
1 ) exp≺(κ)(w2,≺

1 )) exp≺(κ)(w2) · · · exp
≺(κ)(wn)

= exp≺(κ)(w1) exp
≺(κ)(w2) · · · exp

≺(κ)(wn).

3.4. From full to non-crossing Green’s functions. We turn now to the relationship between

planar full and connected Green’s functions viewed through the prism of non-crossing partitions.

Definition 5. The splitting map Sp is the map from T (J) to NC(J) defined by:

Sp(j1 · · · jn) :=
∑

L∈NCn

L(j1 · · · jn).

It is extended multiplicatively to a unital map Sp from T̄ (T (J)) to T̄ (NC(J)), i.e., for x1, . . . , xk ∈

T (J),

Sp(x1| · · · |xk) := Sp(x1)| · · · |Sp(xk).

The name “splitting map” is chosen because, on dual spaces it permits to “split” the value of

a linear form, φ, on T (J) (typically the full Green’s function), into a sum of terms indexed by

non-crossing partitions (typically, the non-crossing Green’s functions).

Theorem 21. [25] The map Sp from T̄ (T (J)) to T̄ (NC(J)) is an unshuffle bialgebra morphism.

The previous constructions dualize, that is, the linear dual of an unshuffle coalgebra is a shuffle

algebra, and a morphism f between two unshuffle coalgebras induces a morphism of shuffle algebras

written f ∗ between the linear duals. In particular:

Lemma 22. The map Sp from T (T (J)) to T (NC(J)) induces a morphism of shuffle algebras with

units, Sp∗ from T̄ ∗(J) to T̄ ∗(T (J)).

Lemma 23. The map Sp∗ restricts to maps from GNC to GC and from gNC to gC.

Indeed, the map Sp from T (T (J)) to T (NC(J)) is induced multiplicatively by a map from T (J)

toNC(J). With the same notation as at the begining of this section, we find that Sp(x1| · · · |xn) =

Sp(x1)| · · · |Sp(xn). Therefore, for Φ ∈ GNC we have that

Sp∗(Φ)(x1| · · · |xn) = Φ ◦ Sp(x1| · · · |xn)

= Φ(Sp(x1)| · · · |Sp(xn))
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= Φ ◦ Sp(x1) · · ·Φ ◦ Sp(xn)

= Sp∗(Φ)(x1) · · ·Sp
∗(Φ)(xn),

and Sp∗(Φ) ∈ GC. A similar argument holds for infinitesimal characters.

Notice that elements in GNC and gNC are entirely characterized by their restrictions to NC(J);

similarly elements in GC and gC are characterized by their restrictions to T (J). It follows that any

section σ of the map Sp∗ from Lin(NC(J),K) to Lin(T (J),K) induces a right inverse to the map

Sp∗ from GNC (resp. gNC) to GC (resp. gC). The existence of such sections, and the surjectivity

of Sp∗ follow by direct inspection.

Theorem 24. The isomorphism of Theorem 20 commutes with Sp∗, in the sense that, given Φ

and κ

Sp∗(Φ) = ε+ Sp∗(κ) ≺ Sp∗(Φ) = exp≺(Sp∗(κ)).

The Theorem follows from Lemma 22 and Lemma 23.

In view of Theorems 24, 20, 13, and of the previous results in this section, one can therefore

use any section σ of the map Sp∗ from Lin(NC(J),K) to Lin(T (J),K) to lift the equation τZ =

ε + τW ≺ τZ relating full and connected Green’s functions to non-crossing partitions, that is, to

Lin(NC(J),K).

We introduce for that reason a so-called “standard section”. In free probabilities, this leads to

a new presentation of the classical Möbius-inversion type relations between free moments and free

cumulants [25]. Other choices of sections are theoretically possible, that would lead to other lifts

to non-crossing partitions of the relations between planar full and connected Green’s functions.

However, in planar QFT, the choice of a section is governed by physics and seems to be essentially

unique from this point of view: other sections than the “standard section” to be introduced now

would be probably pointless.

Definition 6. Let κ be a unital map from T (J) to K. We call the linear form sd(κ) on NC(J)

the standard section of κ, defined by

sd(κ)(L(ji1 · · · jin)) := κ(ji1 · · · jin),

if L is the trivial non-crossing partition (L = [n]), and zero else.

For an arbitrary non-crossing partition L = {L1, . . . , Lk} of [n], we write κL(ji1 · · · jin) :=
∏k

i=1 κ(jLi
). We write φ for the solution to φ = ε+ κ ≺ φ with the notation of Theorem 13.

Proposition 25. The solution Ψ of the equation Ψ = ε+sd(κ) ≺ Ψ in Lin(T̄ (NC(J)),K) satisfies

the identity:

(51) Ψ(Sp(ji1 · · · jin)) =
∑

L∈NCn

κL(ji1 · · · jin) = φ(ji1 · · · jin),

More precisely, for an arbitrary non-crossing partition L ∈ NCn we have that

(52) Ψ(L(ji1 · · · jin)) = κL(ji1 · · · jin).
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The identity Ψ(Sp(ji1 · · · jin)) = φ(ji1 · · · jin) follows from Theorem 24 since

Ψ ◦ Sp = Sp∗(Ψ) = ε+ Sp∗ ◦ sd(κ) ≺ Sp∗(Ψ) = ε+ κ ≺ Sp∗(Ψ),

from which we obtain (by unicity of the solution) that Sp∗(Ψ) = φ on T (L).

The second identity, from which Ψ(Sp(ji1 · · · jin)) =
∑

L∈NCn

κL(ji1 · · · jin) is deduced, follows by

induction on [n]. Let us assume that identity (52) holds for non-crossing partitions of [p], p < n.

We get:

Ψ(L(ji1 · · · jin)) =
∑

Q
∐

adm

P=L

sd(κ)
(

st(Q)(jQ)
)

Ψ
(

st(JL,Q
1 )(j

J
L,Q
1

)| · · · |st(JL,Q

k(L,Q)(jJL,Q
k(L,Q)

)
)

.

However, since sd(κ) vanishes on all non-crossing partitions except the trivial ones, terms on the

right hand-side vanish except when Q is the component of L containing 1, and the expression

reduces finally to

Ψ(L(ji1 · · · jin) = sd(κ)(st(L1)(jL1)Ψ(st(L2)(jL2)| · · · |st(Lk)(jLk
))

= κ(jL1)Ψ(st(L2)(jL2 | · · · |st(Lk)(jLk
)),

where L = {L1, . . . , Lk}. From the induction hypothesis and the multiplicativity of Ψ, we get the

expected identity

Ψ(L(ji1 · · · jin) =
k
∏

i=1

κ(jLi
).

Corollary 26. Let κ be the infinitesimal character on T (J) defined by the connected Green’s

function

κ(ji1 · · · jin) := W
(n)
ji1 ···jin

.

We have: sd(κ)(L(ji1 · · · jin)) = W
(n)
ji1 ···jin

if L = [n] and is equal to 0 else. Moreover, the solution

to Ψ = ε+ sd(κ) ≺ Ψ is the non-crossing Green’s function, that is

Ψ(L(ji1 · · · jin)) = L
(n)
ji1 ···jin

.

Besides, we recover from the properties of the splitting map Sp the relation linking full and non-

crossing Green’s functions

Z
(n)
ji1 ···jin

= Ψ(Sp(ji1 · · · jin)) =
∑

L∈NCn

L
(n)
ji1 ···jin

.

3.5. From full to connected (non-planar). Recall that in the non-planar case, the classical

relation between full and connected Green’s functions reads

(53) Z(j) = exp
(

W (j)
)

.

By functional derivation we therefore obtain

∂

∂j1
Z(j) = (

∂

∂j1
W (j))Z(j).
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Since the underlying algebra is commutative, the usual Leibniz rule of differential calculus applies

and we get

Z
(n)
ji1 ···jin

=
∂n

∂jin · · ·∂ji1

∣

∣

∣

∣

∣

j=0

exp
(

W (j)
)

=
∂n−1

∂jin · · ·∂ji2

(

(∂ji1W (j))Z[j]
)

∣

∣

∣

∣

∣

j=0

=
∑

S={1,s2...,sk}⊂[n]

W
(k)
j1jis2

···jisk
Z

(n−k)
ji2 ···jis2−1

jis2+1
···jisk−1

jisk+1
···jin

=
∑

S={1=s1,...,sk}⊂[n]

W
(k)
jis1

···jisk
Z

(n−k)
jil1

···jiln−k

,

where L = {l1, . . . , ln−k} and L
∐

S = [n].

We will now show that the relation between non-planar full and connected Green’s functions is

naturally described in the context of the cocommutative unshuffle bialgebra T̄ (J) with coproduct

(12). Indeed, cocommutativity ∆xxy

≻ = τ ◦∆xxy

≺ implies that, for arbitrary α, β ∈ T ∗(J), we have

α ≺ β = α ≻ β,

so that T̄ ∗(J) = Lin(T̄ (J),C) is a unital commutative shuffle algebra for the left and right half-

convolution products ≺ and ≻ defined in (10) respectively (11). Let now φ : T̄ (J) → C be a unital

map in T̄ ∗(J), and consider the linear fixed point equation

(54) φ = ι+ τ ≺ φ.

Here, the map ι : T̄ (J) → C is the identity on J ⊗0, and the null map on higher tensor powers of

J . Let w = ji ∈ J →֒ T (J) be a single letter different from the empty word. Then ∆xxy

≺(ji) = ji⊗1.

With φ(1) = 1 we find

φ(j1) = τ(j1).

Next we look at the word w = j1j2 ∈ T2(J). Recall that the left half-unshuffle ∆xxy
≺(j1j2) =

j1j2 ⊗ 1+ j1 ⊗ j2, such that

φ(j1j2) = τ(j1j2) + τ(j1)τ(j2).

For the order three word w = j1j2j3 ∈ T3(J) the left half-unshuffle yields

φ(j1j2j3) = τ(j1j2j3) + τ(j1)τ(j2j3) + τ(j1j3)τ(j2) + τ(j1j2)τ(j3) + τ(j1)τ(j2)τ(j3).

And for the order four word w = j1j2j3j4 ∈ T4(J), the left half-unshuffle gives

φ(j1j2j3j4) = τ(j1j2j3j4) + τ(j1j2)φ(j3j4) + τ(j1j3)φ(j2j4) + τ(j1j4)φ(j2j3)

+ τ(j1)φ(j2j3j4) + τ(j1j2j3)φ(j4) + τ(j1j2j4)φ(j3) + τ(j1j3j4)φ(j2)

= τ(j1j2j3j4) + τ(j1j2)τ(j3j4) + τ(j1j4)τ(j2j3) + τ(j1j3)τ(j2j4)

+ τ(j1j3)τ(j2)τ(j4) + τ(j1j2)τ(j3)τ(j4) + τ(j1j4)τ(j2)τ(j3)

+ τ(j3j4)τ(j1)τ(j2) + τ(j2j3)τ(j1)τ(j4) + τ(j2j4)τ(j1)τ(j3) + τ(j1)τ(j2)τ(j3)τ(j4)

+ τ(j1)τ(j2j3j4) + τ(j1j2j3)τ(j4) + τ(j1j2j4)τ(j3) + τ(j1j3j4)τ(j2).
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Next, observe that by defining the linear map τ(w) := τW (w) := W
(|w|)
w for w = ji1 · · · jin ∈ Tn(J)

and τ(1) := 0, we obtain that the above relations equal the relations (1) between full and connected

non-planar Green’s functions up to order four, i.e., φ(w) = τZ(w) := Z
(|w|)
W .

Hence, analog to the planar case, we obtain that the relation between non-planar full and

connected Green’s functions, τZ respectively τW , is encoded by the linear fixed point equation.

(55) τZ = ι+ τW ≺ τZ ,

in T̄ ∗(J). Indeed, by the very definition of the left half-shuffle product ≺, this equation gives for

any word w = ji1 · · · jin ∈ Tn(J)

Z
(n)
ji1 ...jin

= τZ(w) = (τW ≺ τZ)(w)

=
∑

S={1=s1,...,sk}⊂[n]

W
(k)
jis1

jis2
···jisk

Z
(n−k)
ji2 ···jis2−1

jis2+1
···jisk−1

jisk+1
···jin

.(56)

The solution to this fixed point equation is given by exponentials.

Theorem 27. Expanding the linear fixed point equation (55) yields

(57) τZ = exp≺
(

τW
)

.

A closed solution is given in terms of the proper exponential map defined with respect to the

commutative shuffle product : T̄ ∗(J)⊗ T̄ ∗(J) → T̄ ∗(J)

(58) τZ = exp
(

τW
)

,

which is the convolution product in T̄ ∗(J), defined in terms of the left and right half-shuffles defined

in (10) respectively (11), i.e., =≺ + ≻.

Proof. The first statement is obvious and follows from comparing the expansions of (57) with the

iteration of (55). The second statement follows from the fact that the unshuffle coproduct (6) is

cocommutative. In the resulting commutative shuffle algebra Theorem 14 says that Ω′(τW ) = τW .

Eventually, it is easy to verify that the shuffle algebra identity a n = n! a≺n holds. �

Note that the actual statement is the interesting identity of exponentials

Z
(n)
ji1 ···jin

=
∂n

∂jin · · ·∂ji1

∣

∣

∣

∣

∣

j=0

exp
(

W (j)
)

= exp (τW )(ji1 · · · jin),

which follows immediately from the Leibniz rule.

3.6. Partition Green’s function (non-planar). We saw that the relation between full and

connected Green’s functions can be refined in the planar case by introducing non-crossing Green’s

functions. The relations between full and connected Green’s functions can be refined similarly in

the classical, i.e., non-planar, case. The point of view we develop here seems to be new. We sketch

the arguments that follow the same lines as for the planar case.

A Feynman graph Γ with external sources j1, . . . , jn in a given QFT splits into n ≥ k ≥ 1

connected components. Grouping external sources according to their belonging to a common

connected component defines a partition L = {L1, . . . , Lk} of [n]. We assume from now on that
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the Li are ordered according to their minimal elements, so that 1 ∈ L1. Summing over all partitions

of [n] (the set of partitions of [n] is written Pn), we get:

Z
(n)
j1···jn

=
∑

L∈Pn

k
∏

i=1

W
|Li|
j
li1
···j

li
|Li|

,

where Li = {li1, . . . , l
i
|Li|

}. We abbreviate W
|Li|
j
li1
···j

li
|Li|

to WLi from now on and define the partitioned

Green’s functions by

L
(n)
j1···jn

:=

k
∏

i=1

W
|Li|
j
li1
···j

li
|Li|

,

so that

Z
(n)
j1···jn

=
∑

L∈Pn

L
(n)
j1···jn

.

Notice that we use deliberately a similar notation as for the planar case since it will always be

clear from the context that one works with a planar or non-planar theory.

The corresponding bialgebra of partitions is defined as follows. We write P (resp. P̄ ) for the

linear span of the Pn, n ∈ N∗ (resp. in N). The product is the shifted concatenation of partitions:

for L = {L1, . . . , Lk} a partition of [n] and K = {K1, . . . , Kl} a partition of [m], L · K is the

partition {L1, . . . , Lk, K1 + n, . . . , Kl + n} of [n +m] where, for a subset S = {s1, . . . , sp} of the

integers, S + n stands for {s1 + n, . . . , sp + n}. The coproduct acting on partitions is simply the

(standardized) unshuffling coproduct:

∆(L) = ∆({L1, . . . , Lk}) =
∑

I
∐

J=[n]

st(LI)⊗ st(LJ),

where LI = {Li1 , . . . , Lik} for I = {i1, . . . , ik}. This coproduct is a map of algebras from P to

P ⊗ P , and it is coassociative:

(∆⊗ id)⊗∆(L) =
∑

I
∐

J
∐

K=[n]

st(LI)⊗ st(LJ)⊗ st(LK) = (id⊗∆) ◦∆(L).

It splits naturally into two half-coproducts

∆≺(L) :=
∑

I
∐

J=[n]
1∈I

st(LI)⊗ st(LJ )

and ∆≻ := ∆−∆≺.

Decorated partitions are defined exactly as in the case of non-crossing partitions, and the pre-

vious constructions hold in the presence of decorations as well. We finally get:

Theorem 28. The algebra P and its decorated version P (J) equipped with the concatenation

product and the coproduct ∆ = ∆≺ +∆≻ define an unshuffle bialgebras.

Using mutatis mutandis the same notations as for the planar case, the splitting map Sp is now

defined as a map from T (J) to P (J):

Sp(ji1 · · · jin) :=
∑

L∈Pn

L(ji1 · · · jin),
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and we get the following proposition (the proof of which is left to the reader):

Proposition 29. The splitting map Sp is a map of unshuffle bialgebras from T̄ (J) to P̄ (J).

The standard section of a unital map κ from T (J) to the scalars is defined by

st(κ)(L(ji1 · · · jik)) := κ(ji1 · · · jik)

if L is the trivial partition (L = [n]), and zero else. For an arbitrary partition L = {L1, . . . , Lk}

of [n] we write

κL(ji1 · · · jik) :=
k
∏

i=1

κ(jLi
).

Finally, we arrive at the next result.

Proposition 30. Let κ be the linear form on T (J) defined by the connected Green’s function

κ(ji1 · · · jin) := W
(n)
ji1 ···jin

.

Then we have that: sd(κ)(L(ji1 · · · jin)) = W
(n)
ji1 ···jin

if L = [n], and zero else. Moreover, the solution

to linear fixed point equation

Ψ = ι+ sd(κ) ≺ Ψ

gives the partitioned Green’s function, that is:

Ψ(L(ji1 · · · jin)) = L
(n)
ji1 ···jin

.

From the properties of the splitting map Sp we recover the relation linking full and partitioned

Green’s functions:

Z
(n)
ji1 ···jin

= Ψ(Sp(ji1 · · · jin)) =
∑

L∈Pn

L
(n)
ji1 ···jin

.

4. Planar Connected and 1PI Green’s functions

We consider now the relation between planar connected and 1PI Green’s functions from a

Hopf algebraic point of view. It is well-known that these Green’s functions are related through

planar trees, that is, the planar connected n-point Green’s function is given as an – infinite – sum

over planar trees with n external legs and 1PI vertex insertions. In [15, 16] the corresponding

diagrammatical and functional calculus is explained. The latter is rather involved due to the non-

commutative nature of the external sources, which renders the notion of functional derivatives and

the corresponding chain and Leibniz rules rather non-standard. The diagrammatical description

can be summarized by stating that non-planar trees must be avoided. However, the precise link

between both the diagrammatical and functional calculi is non-trivial – compared, for instance,

to the non-planar case.

As outlined above, the Hopf algebraic approach puts the linear fixed point equation (42) in the

center, which provides a rather natural way to capture the relations between planar (as well as

non-planar) full and connected Green’s functions. The functional calculus is replaced by looking

at generating functionals as linear maps from the Hopf algebra T̄ (T (J)) (in the non-planar case

T̄ (J)) into the base field K. The aim of this section is to show how this approach also provides an

efficient way to describe the relation between planar connected and 1PI Green’s functions. Our
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work is inspired by [6, 35], which deal with the non-planar case. We emphasise, however, that our

approach provides a new understanding of the links between planar connected and 1PI Green’s

functions. Regarding the non-planar case, our approach is different from the one developed in

the aforementioned articles. However, from now on we refrain from developing in parallel the

non-planar case, and leave the task of writing down details to the interested reader.

As mentioned, the starting point for our approach is the linear fixed point equation (39), or

(42), in the convolution algebra T̄ ∗(T (J))

φ = ε+ κ ≺ φ

and its straightforward exponential solution

φ = exp≺(κ).

In the case of planar full and connected Green’s functions, the map φ becomes the character τZ,

and κ is the infinitesimal character τW.

The relation between planar connected and 1PI Green’s functions, both seen as linear functions

on T̄ (T (J)) is described by modifying (39) as follows. First, recall that δ
(0)
≺ := id and δ

(n)
≺ :=

(id⊗ δ
(n−1)
≺ ) ◦ δ≺ – note that δ≺ is not coassociative. Then, it is clear that in general

φ = ε+ κ+ κ ≺ κ+ κ ≺ (κ ≺ κ) + κ ≺ (κ ≺ (κ ≺ κ)) + · · ·

= ε+ κ+ (κ⊗ κ) ◦ δ≺ + (κ⊗ κ⊗ κ) ◦ (id⊗ δ≺) ◦ δ≺

+ (κ⊗ κ⊗ κ⊗ κ) ◦ (id⊗ (id⊗ δ≺) ◦ δ≺) ◦ δ≺ + · · ·

= ε+
∑

n>0

κ⊗n ◦ δ(n−1)
≺

= ε+ κ+
∑

n>1

κ⊗n ◦
n
∏

j=2

(id(⊗n−j) ⊗ δ≺),

where id(0) = 1 and 1⊗δ≺ = δ≺. Now, recall (26) in Remark 6. Assuming that κ is an infinitesimal

character permits to reduce the calculation of the left half-unshuffle to formula (26). Hence, for

instance, the solution of (42) may actually be written

τZ = ε+
∑

n>0

τ⊗n
W ◦ δ̂(n−1)

≺ .

The goal is now to relate the linear map τW to the 1PI n-point Green’s functions written I
(n)
ji1 ···jin

using a fixed point-type relation. For the sake of simplicity, we assume that tadpoles have been

removed and that I
(1)
ji

:= 0. Since τW is an infinitesimal character, the same kind of property

should hold when dealing with planar 1PI Green’s functions. In particular, the relation with the

connected ones should follow from a proper iteration of the δ≺ map. This is indeed the case.

For notational convenience and later use, we also recall the definition of amputated Green’s

functions, and introduce partially amputated planar 1PI Green’s functions (recall that the Einstein

convention is in place and one should integrate or sum over repeated indices). The amputated
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1PI Green’s function AI(n) is defined by:

AI(n)y1...yn

n
∏

k=1

GF (jik , yk) = I
(n)
ji1 ···jin

,

where GF (x, y) is the usual Feynman propagator [31]. To define the notion of partially amputated

Green’s functions, we have to distinguish between two sets of parameters: {ji1 , . . . , jik} stand for

external parameters, whereas {y1, . . . , yn−k} are associated with internal ones. We let a1 · · · an be

a word containing each of these letters once, and define a map β from the set [k] to the set [n] by

yi := aβ(i). Partially amputated n-point Green’s functions PI(n) are then given by:

PI(n)a1···an := AI
(n)
a′1···a

′
n

k
∏

l=1

GF (yl, a
′
β(l)).

where ai = a′i if i is not in the image of the map β (else it is a new parameter over which one has

to integrate or sum).

The goal of linking 1PI and connected Green’s functions is now achieved by doubling the al-

phabet, i.e., we introduce another infinite set of letters X := {x1, x
′
1, x2, x

′
2, x3, x

′
3, . . .}. Let Xn :=

{x1, x
′
1, x2, x

′
2, x3, x

′
3, . . . , xn, x

′
n}, where X0 := ∅. Next we define the maps R(i) : T (J

∐

Xi−1) →

T (J
∐

Xi)
⊗2, for i ∈ N

+

(59) R(i)(a1 · · · an) :=
∑

I1
∐

I2
∐

I3=[n]
1∈I1,I2 6=∅

aI1xiaI3 ⊗ x′
iaI2 ∈ T (J

∐

Xi)
⊗2,

where a1, . . . , an ∈ J
∐

Xi−1. Recall that I1, I2, I3 are three disjoint intervals ordered by their

minimal elements min(I1) = 1 < min(I2) < min(I3), and set partitioning [n], i.e., I1
∐

I2
∐

I3 =

[n]. Hence, the map R(i) is essentially defined in terms of δ̂≺ by inserting the letter xi ∈ X in the

position where the connected component I2 has been extracted from [n], and concatenating aI2
from the left by the letter x′

i.

With the maps R(i) at hand, we define the following equation which will be key in relating the

infinitesimal characters τW and τI.

(60) Φ(ji1 · · · jin) :=
∑

n>0

F
(n)
I ◦ R(n−1)(ji1 · · · jin).

In fact, we will show that Φ is nothing but the restriction of τW to T (J): it describes the relation

between two planar Green’s functions. But, before we get to this point, we have to understand

how its ingredients work.

i) The maps R(n) will serve to generate all the planar trees that will appear in the expansion of

connected Green’s functions as sums over planar trees with 1PI insertions: R(0) = id, and

(61) R(n) := (R(n) ⊗ id(⊗n−1)) ◦ (R(n−1) ⊗ id(⊗n−2)) ◦ · · · ◦R(1).

Note that id(⊗0) = 1, such that R(1) = R(1).

ii) The map F
(n)
I should be thought of as a Feynman-type rule. Indeed, it tells what amplitude

is going to be associated to a planar tree constructed using the map R(n) when 1PI insertions

are taken into account. The rule reads as follows. Notice first, that for any tensor product

O = O1 ⊗ · · · ⊗On constructed from R(n)(ji1 · · · jik), the Xi are non-commutative monomials
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in the letters ji1 , . . . , jik and x1, x
′
1, . . . , xn, x

′
n. Moreover each letter appears only once in the

tensor product. Then:

• to each monomial Oi (for example j3x2j5j6x1), we associate the corresponding 1PI par-

tially amputated Green’s function (for example PI
(5)
j3x2j5j6x1

). The ji are treated as exter-

nal parameters as they give rise to Feynman propagators in the expansion of PI in terms

of Feynman propagators and fully amputated Greens functions. The xi are treated as

internal parameters.

• to each pair xi, x
′
i we associate the corresponding Feynman propagator GF (xix

′
i).

• at last, as usual, one has to define the symmetry factor γX associated to the tensor

product. Its calculation will be explained later on.

The action of the map F
(n)
I on O is then obtained by multiplying the so-obtained 1PI am-

putated Green’s function and Feynman propagators, dividing by the symmetry factor, and

integrating over repeated indices, i.e., the xi and the x′
i.

Let us look at some examples at low orders to get acquainted with this construction.

F
(2)
I ◦R(1)(j1j2) = F

(2)
I (j1x1 ⊗ x′

1j2)

= PI
(2)
j1x1

GF (x1x
′
1)PI

(2)
x′
1j2

.(62)

Diagrammatically, the 1PI 2-point function I
(2)
j1j2

is represented by

(63)
1 2

whereas its partially amputated PI
(2)
j1x2

version is represented by the same diagram where the

right hand side half-line has been reduced

(64)
1 2

A Feynman propagator is represented as usual by an edge, and finally (62) is represented by

(65)
1 2

Another example is in order to understand (60).

F
(3)
I ◦ R(2)(j1j2) = F

(3)
I ◦ (R(2) ⊗ id) ◦R(1)(j1j2)

:= F
(3)
I ◦R(2)(j1x1)⊗ x′

1j2

:= F
(3)
I (j1x2 ⊗ x′

2x1 ⊗ x′
1j2)

:= PI
(2)
j1x2

GF (x2x
′
2)AI

(2)
x′
2x1

GF (x1x
′
1)PI

(2)
x′
1j2

.

Diagrammatically, this is represented by

(66)
1 2

Going one order higher we find three terms for the expression

F
(2)
I ◦R(1)(j1j2j3) = F

(2)
I (j1x1 ⊗ x′

1j2j3 + j1j2x1 ⊗ x′
1j3 + j1x1j3 ⊗ x′

1j2)
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= PI
(2)
j1x1

GF (x1x
′
1)PI

(3)

x′
1j2j3

+ PI
(3)
j1j2x1

GF (x1x
′
1)PI

(2)

x′
1j3

+ PI
(3)
j1x1j3

GF (x1x
′
1)PI

(2)
x′
1j2

.(67)

Diagrammatically, this is represented by a sum of three planar tree diagrams. Each summand

corresponds to the respective term in the above sum

(68)

1 2

3

+

1

3

2

+

1 2

3

Until now, no multiplicities (symmetries) showed up, that is, each diagram appeared only

once. This changes in the next term in (60). Let us make the computation without taking

into account symmetry factors properly (we write Fnn for the corresponding “non-normalized”

Feynman rule). We observe seven terms

F
(3)
Inn ◦ R

(2)(j1j2j3) = F
(3)
Inn ◦ (R

(2) ⊗ id)(j1x1 ⊗ x′
1j2j3 + j1j2x1 ⊗ x′

1j3 + j1x1j3 ⊗ x′
1j2)

= F
(3)
Inn ◦

(

R(2)(j1x1)⊗ x′
1j2j3 +R(2)(j1j2x1)⊗ x′

1j3 +R(2)(j1x1j3)⊗ x′
1j2

)

= F
(3)
Inn ◦

(

j1x2 ⊗ x′
2x1 ⊗ x′

1j2j3 + j1x2 ⊗ x′
2j2x1 ⊗ x′

1j3

+ j1j2x2 ⊗ x′
2x1 ⊗ x′

1j3 + j1x2x1 ⊗ x′
2j2 ⊗ x′

1j3

+ j1x2 ⊗ x′
2x1j3 ⊗ x′

1j2 + j1x1x2 ⊗ x′
2j3 ⊗ x′

1j2 + j1x2j3 ⊗ x′
2x1 ⊗ x′

1j2
)

= PI
(2)
j1x2

GF (x2x
′
2)AI

(2)
x′
2x1

GF (x1x
′
1)PI

(3)
x′
1j2j3

(69)

+ PI
(2)
j1x2

GF (x2x
′
2)PI

(3)
x′
2j2x1

GF (x1x
′
1)PI

(2)
x′
1j3

+ PI
(3)
j1j2x2

GF (x2x
′
2)AI

(2)
x′
2x1

GF (x1x
′
1)PI

(2)
x′
1j3

+ PI
(3)
j1x2x1

GF (x2x
′
2)PI

(2)
x′
2j2

GF (x1x
′
1)PI

(2)
x′
1j3

(70)

+ PI
(2)
j1x2

GF (x2x
′
2)PI

(3)
x′
2x1j3

GF (x1x
′
1)PI

(2)
x′
1j2

+ PI
(3)
j1x1x2

GF (x2x
′
2)PI

(2)
x′
2j3

GF (x1x
′
1)PI

(2)
x′
1j2

(71)

+ PI
(3)
j1x2j3

GF (x2x
′
2)AI

(2)
x′
2x1

GF (x1x
′
1)PI

(2)
x′
1j2

Diagrammatically, this is represented by
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(72)
1

3

2

+
1

3

2

+
1

3

2

(73) + 1

3

2 +
1

3

2

(74) + 1

3

2 +
1 2

3

where each tree graph corresponds respectively to the term in the sum (69).

Two important remarks are in order. First, note that the fourth and sixth tree graph are

identical. In fact, the only difference in the corresponding tensor products is manifested in the

different orders of the inner indices x1, x
′
1, x2, x

′
2. It is clear that the corresponding expressions

in (70) and (71) are identical since the “internal” points x1, x
′
1 and x2, x

′
2 are summed/integrated

over, that is

PI
(3)
j1x1x2

GF (x2x
′
2)PI

(2)

x′
2j3

GF (x1x
′
1)PI

(2)

x′
1j2

= PI
(3)
j1x2x1

GF (x2x
′
2)PI

(2)
x′
2j2

GF (x1x
′
1)PI

(2)
x′
1j3

.(75)

The calculation of the symmetry factor associated to these two expressions follows; it is two,

and the correct expression for F
(3)
I ◦R(2)(j1j2j3) is obtained from the one of F

(3)
Inn ◦R

(2)(j1j2j3) by

multiplying these two terms by 1
2
. In general, the calculation of symmetry factors can be performed

graphically (identifying diagrams as we have just done), or by a combinatorial argument allowing

to deduce symmetry factors directly from the tensor products. We will return to this further

below.
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A crucial observation is that the “external” decorations, corresponding to the external – non-

commutative – sources, or letters, j1, j2, j3 are ordered clockwise, and that the tree graphs are

strictly planar.

The latter makes it rather natural to consider those tree graphs inscribed into circles with

vertices ordered clockwise on the circumference. Below we have listed those so-called chord-type

diagrams corresponding to the above tree graphs. The first one corresponds to the simple Feynman

propagator GF (j1j2). The second corresponds to (63), the 1PI 2-point function I
(2)
j1j2

. The third

corresponds to (65), the connected 2-point function consisting of two 1PI 2-point functions linked

via the Feynman propagator GF (x1x
′
1), etc. In general, the internal decorations correspond to the

two arguments of the Feynman propagators connecting the 1PI 2- or n-point functions. However,

note that we only denote one of the two arguments. The external decorations correspond to the

external sources, that is, letters in J .

(76)

1 2 1 2 1 2
x1

1 2
x2 x1

The last chord-type diagram corresponds to (66). The next sum of chord-type diagrams corre-

sponds to (68), and displays diagrammatically the sum of terms defining F
(2)
I ◦R(1)(j1j2j3).

(77)

1 2

3

x1

+

1 2

3

x1

+

1 2

3

x1

Recall that the decoration x1 ∈ X = {x1, x
′
1, x2, x

′
2, . . .} encodes the Feynman propagator

GF (x1x
′
1) linking 1PI functions. The following seven chord-type diagrams

(78)

1 2

3

x2 x1
1 2

3

x2

x1
1 2

3

x2

x1

(79)

1 2

3

x1

x2
1 2

3

x2 x1
1 2

3

x2

x1
1 2

3

x2 x1

correspond to the seven tree graphs in (72) – (74). Note that the first and third graph in (79)

represent the two identical tree graphs in (73) and (74), respectively. They differ only in the

decorations of the two internal edges.
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To understand better symmetry factors, we shall move now from chord-type diagrams with

inscribed decorated trees to actual decorated planar rooted trees. The key step is to associate

to each chord-type diagram, and hence to each tensor product in (60), a so-called decreasing

planar rooted tree [3, 18]. It turns out that this is the most natural picture for our Hopf algebraic

approach. In fact, this will be further enhanced when we present a graphical approach to the

planar functional calculus used in references [15, 16].

In the following we consider therefore decorated planar rooted trees with all edges oriented

away from the root. The root is at the bottom and decorated by 1. The n − 1 leaves are

labelled from left to right in strictly increasing order. The left-most leave by 2 and the right-

most leave by n. The m inner vertices are decorated by the unprimed elements from the set

Xm := {x1, x
′
1, x2, x

′
2, . . . , xm, x

′
m} in such a way, that for any path from the root to any of the

leaves, the decorations of the inner vertices on this path are strictly decreasing. In the following

we outline how planar rooted trees correspond to chord-type diagrams. Each edge of a chord-type

diagram with n external sources, is marked by a vertex. Those vertices corresponding to edges

connected to the external sources are decorated by the set [n] according to the source decoration.

Internal vertices are automatically decorated by the corresponding decorations of the edges by –

unprimed – elements from the set Xm. The vertex decorated by 1 is the root. This root vertex

is connected by edges to all those vertices corresponding to edges of the chord-type diagram that

share a vertex with the edge associated to the root. Each of these vertices connected to the original

root is considered as the root of a sub-corollary, by connecting it to those vertices corresponding

to edges of the chord-type diagram that share a vertex with this sub-root. This process stops at

the leaves, i.e., the vertices of the edges connected to the external sources. The following rooted

trees correspond respectively to the chord-type diagrams in (76) and (77).

1

2 x1

2

1

x1

2

1

x2 x1

1

2 3

x1

1

2

3

x1

1

2

3

The following seven rooted trees correspond respectively to the chord-type diagrams in (78) and

(79). Note the decreasing decorations of internal vertices by – unprimed – elements from X2 =

{x1, x
′
1, x2, x

′
2}. The fourth and fifth tree are symmetric except for the decorations of internal

vertices. They represent the left- and right-hand side of (75), respectively.

x1

1

2 3

x2

x1

1

2

3

x2

x1

1

2

3

x2 x2

1

2 3

x1 x2

1

2 3

x1

x1

1

2

3

x2

x1

1

2

3x2

The decorations of the inner vertices of a decreasing planar rooted tree do no contribute to the

calculation of the corresponding amplitudes (they are dummy variables to be integrated/summed

over). We therefore may identify those trees that differ only by decorations of the internal vertices.

For instance the following trees contribute the same term in the calculation of the corresponding

amplitude
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1

5

43

2

x1

x3

x4

x2

∼

1

5

43

2

x2

x3

x4

x1

The rule for the computation of symmetry factors is as follows. First we note that each tensor

product resulting from expanding R(n) generates in turn a decreasing rooted tree. Conversely,

each decreasing rooted tree can be associated to a tensor product appearing in the expansion of

R(n). This follows by recursion: the decoration x1 corresponds to the first operation resulting from

R(n) applied to the word j1 · · · jn in the construction of the tensor product. This can be continued

recursively. For example, by looking at the graph on the left hand side just above, we see that it

is obtained by the following sequence of operations:

j1 · · · j5 → j1x1j3j4j5 ⊗ x′
1j2 → j1x1j3x2j5 ⊗ x′

2j4 ⊗ x′
1j2 → · · ·

and so on.

Two decreasing trees are equivalent if they are equal when internal decorations have been erased.

Let us write u(T ) for the undecorated planar rooted tree associated to a decreasing rooted tree

T . The symmetry factor γ(T ) associated to a given decreasing rooted tree T is therefore simply

the number of decorations of the internal vertices of u(T ) that make it a decreasing tree. We will

return to this further below.

With this definition, we get as expected

Theorem 31.

(80) τW(j1 · · · jk) =
∑

n>0

F
(n)
I ◦ R(n−1)(j1 · · · jk).

Note that the right hand side of (80) can be abstracted by writing it as a sum over all decreasing

planar rooted trees with a fixed number of leaves (in the above case k − 1). The argument in the

sum is than replaced by a functional that associates with each decreasing tree the corresponding

amplitude multiplied by a proper symmetry factor.

5. Graphical description of planar functional calculus

We return to references [15, 16], and try to see how the diagrammatic representation of the

relations between planar connected and 1PI Green’s functions in terms of decreasing trees can

be adapted to the planar, i.e., non-commutative functional calculus proposed by Cvitanovic et

al. Recall that the diagrammatic representation of the tensor products in (80) describing the

relation between planar connected and 1PI Green’s functions derives from a Hopf algebra point of

view. Further below we will see that planar functional derivations translate into a certain growth

operation on planar rooted trees.
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5.1. Planar functional calculus. First recall that the generating functional for planar full

Green’s functions is given by

Z[j] := 1 +
∑

k>0

Z
(k)
ji1 ···jik

ji1 · · · jik

and that

Z
(n)
ji1 ···jin

=
∂n

∂jin · · ·∂ji1

∣

∣

∣

∣

∣

j=0

Z[j].

The rules stated in [15, 16] for functional derivations with respect to the strictly non-commutative

sources are
∂

∂ji
(uji1 · · · jik) = uδii1ji2 · · · jik ,

and for the so-called c-number u ∈ K we have ∂
∂ji

u = 0. The key ingredients in the planar functional

calculus developed in [15, 16] are the Leibniz and chain rules. Let A[j] = a+
∑

k>0A
(k)
ji1 ···jik

ji1 · · · jik

and B[j] = b+
∑

k>0B
(k)
ji1 ···jik

ji1 · · · jik be generating series in the non-commutative sources j. Then

the functional derivative of the product A[j]B[j] is

∂

∂ji
(A[j]B[j]) =

∂

∂ji
(A[j])B[j] + A[0]

∂

∂ji
B[j].

Here A[0] = a ∈ K. Now assume that for generating functionals A,B1, . . . ,Bn, . . ., the composition

A[B] is defined by the substitution rule (composition of formal power series)

A[B] =
∑

k>0

A
(k)
ji1 ···jik

Bi1 · · ·Bik ,

where Bi[j] =
∑

k>0 B
(k)
i;ji1 ···jik

ji1 · · · jik . Note that none of the expansions have c-numbers. Then

∂

∂ji
A[B] =

∂Bm[j]

∂ji

∂

∂Bm

A[B],

with an implicit summation over m. The planar 1PI Green’s functions are denoted Γ[Φ] in [15, 16].

They are defined in terms of the fields Φi :=
∂
∂ji

W[j]. From this it follows that ∂
∂ji

= W[j]il
∂

∂Φl

. We

refrain from giving a more detailed account of the relations between planar full, Z[j], connected,

W[j], and 1PI, Γ[Φ], Green’s functions using planar functional calculus. The reader is referred to

Cvitanovic et al. [15, 16].

The corresponding Legendre transform together with the planar chain and Leibniz rules lead

to the relations between planar connected and 1PI Green’s functions. Following the non-trivial

calculations in [15, 16] one arrives, for instance, at

∂3

∂ji3∂ji2∂ji1
W[j] = W[j]ji1x1W[0]ji2x2Γ[Φ]x1x2x3W[j]x3ji3

,(81)

where W[j]jijl = ∂2

∂jl∂ji
W[j]. From this follows the expression for the planar connected 3-point

Green’s function in terms of the planar 1PI 3-point Green’s function, with dressed external legs.
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The factor W[0]ji2x2 is a c-number and denotes the full propagator. The calculation of this ex-

pression is rather non-trivial. At order four the extraction of four legs from a planar connected

generating functional W[j] gives

∂4

∂ji4 · · ·∂ji1
W[j] = W[j]ji1 ji2x1W[0]ji3x2Γ[Φ]x1x2x3W[j]x3ji4

(82)

+W[0]ji2x2W[0]ji3x3W[j]ji1x1Γ[Φ]x1x2x3x4W[j]x4ji4

+W[0]ji2x1W[0]ji3x2Γ[0]x1x2x3W[j]ji1x3ji4
.

In these calculations it is rather challenging to keep track of the planar derivatives as well as the

appearance of the c-number Green’s functions, such as W[0]ji2x2 or Γ[0]x1x2x3 . The diagrammatical

representation used in [15, 16] is intuitive, but may hide some underlying simplicity as we would

like to indicate further below.

5.2. Resummation of planar rooted trees. We always assume that planar rooted trees with

n−1 leaves carry, from now on, the decoration 1 on the root. The leaves are decorated, as before,

from left to right in increasing order by the integers 2, . . . , n. Recall that this corresponds to

terms in the expansion of W
(n)
j1···jn

, with the conventions used in an earlier section. The notion of

(branch) reduced tree is introduced. This is a planar rooted tree without vertices that have only

one incoming and one outgoing edge. The p internal vertices of a reduced tree are decorated by –

unprimed – elements from Xp := {x1, x
′
1 · · · , xp, x

′
p} from top to bottom and right to left, which

we call the standard decoration. The following example shows a tree with six leaves and three

internal vertices decorated by elements from Xp := {x1, x
′
1, x2, x

′
2, x3, x

′
3}

52

x1 4

3

76

x3

1

x2

Reduced rooted trees correspond to amplitudes calculated according to the Feynman rule F
(n)
I ,

that have no 2-point 1PI Green’s function terms PI
(2)
jlx
, PI

(2)
xjl

or AI
(2)
xx′.

Definition 7. The reduction operator red maps a planar rooted tree to the corresponding reduced

rooted tree by erasing so-called branches, that is, vertices with one incoming and one outgoing edge.

For example

red
(

2

3

1

4
)

=

2 3

1

4

One of the usual processes in QFT, consisting of replacing Feynman propagators by connected

2-point Green’s functions (through a suitable resummation of Feynman graphs), is then obtained

by defining a new Feynman rule FR for reduced trees T ∈ T red by

FR(T ) =
∑

red(T ′)=T

FI(T
′),
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where the sum is over planar rooted trees T ′ such that red(T ′) = T and

FI(T
′) := F

(m)
I (T ′

d),

where m is the number of internal vertices of T ′, and T ′
d stands for T ′ equipped with an arbitrary

decreasing decoration. Theorem 31 then yields

(83) W
(n)
j1···jn

=
∑

T∈T red
n−1

FR(T ),

where the sum runs over the set T red
n−1 of all reduced planar rooted trees with a fixed number of

n− 1 leaves.

Remark 32. Note that the sum in (83) over reduced trees with a fixed number of leaves is finite.

The number of terms is given by the Schröder–Hipparchus or super-Catalan numbers, which count

the number of planar trees with a given number of leaves: 1, 1, 3, 11, 45, 197, 903, 4279, 20793,

103049, ... 1 See [43] for details.

Let us describe the new Feynman rule FR using Cvitanovich’s notation. Hence, we write

Γ[0]x′
1x

′
2x

′
3
for the amputated 1PI 3-point function AIx′

1x
′
2x

′
3
, and similarly for the other terms.

The rule for a reduced planar rooted tree with standard decoration then reads

(1) Create an amputated 1PI function for the root and all other internal vertices.

(2) Create a connected 2-point Green’s function for all edges (and another for the source j1
corresponding to the root).

(3) Take the product of these terms and integrate/sum over repeated indices.

These rules are best understood through an example. The following decorated planar rooted tree

(84)

52

x1 4

3 6

x2

1

yields

W[0]x1x
′
1
Γ[0]x′

1a
′
2a

′
3
W[0]a′2j2W[0]a′3j3

W[0]x2x
′
2
Γ[0]x′

2a
′
5a

′
6
W[0]a′5j5W[0]a′6j6

W[0]j1a′1Γ[0]a′1x1a
′
4x2

W[0]a′4j4

5.3. Functional derivations revisited. Another notation is needed to encode functional deriva-

tions. We will write Γ[Φ]a1···an for the generating series

Γ[Φ]a1···an =
∑

i1,...,ik

AI
(n+k)
a1···anji1 ···jik

W[j]i1 · · ·W[j]ik .

Recall that W[j]ik = ∂
∂jik

W[j] = Φik .

With this notation, the following ansatz defines a new Feynman rule Fγ for reduced graphs

equipped with the standard decoration.

1Sequence A001003 in OEIS.
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(1) In the expansion of FR(T ), replace W[0] (respectively Γ[0]) by W[j] (respectively Γ[Φ]),

whenever the corresponding term is associated to the path going from the root to the right

most leaf of the tree T .

(2) Order these (non-commuting) terms from left to right according to the order obtained by

following the path from the right most leaf to the root.

Regarding (1) the rule gives with respect to the foregoing example tree (84) for each term in

the path from the root to the rightmost leaf: W[0]j1a′1 ; Γ[0]a′1x1a
′
4x2

; W[0]x2x
′
2
; Γ[0]x′

2a
′
5a

′
6
; W[0]a′6j6

the expressions

(85) W[j]j1a′1 ; Γ[Φ]a′1x1a
′
4x2

; W[j]x2x
′
2
; Γ[Φ]x′

2a
′
5a

′
6
; W[j]a′6j6.

Following rule (2), that is, taking the order into account for the non-commutative terms in (85),

we obtain the expression

Γ[0]x′
1a

′
2a

′
3
W[0]x1x

′
1
W[0]a′2j2W[0]a′3j3W[0]a′4j4W[0]a′5j5

W[j]a′6j6Γ[Φ]x′
2a

′
5a

′
6
W[j]x2x

′
2
Γ[Φ]a′1x1a

′
4x2

W[j]j1a′1

Let us look at another simple example. The term corresponding to the rooted tree

2 3

1 ,

that follows from the rules (1) and (2) is

W[0]a′2j2W[j]a′3j3Γ[Φ]a′1a′2a′3W[j]j1a′1 ,

and we recognise W[j]j1j2j3. Graphically we denote this expression by distinguishing the rightmost

brach, i.e., the path form the root to the rightmost leaf by thickening the vertices and edges along

this path. For the above example this yields

2 3

1

For the linear combination of rooted trees

2 3

1

4

+

2

3

1

4

x1

+

2 3

1

4x1

we obtain

W[0]a′2j2W[0]a′3j3W[j]a′4j4Γ[Φ]a′1a′2a′3a′4W[j]j1a′1
+W[0]a′2j2W[0]a′3j3W[j]a′4j4Γ[Φ]x′

1a
′
3a

′
4
W[j]x1x

′
1
Γ[Φ]a′1a′2x1

W[j]j1a′1
+W[0]a′2j2W[0]a′3j3Γ[0]x′

1a
′
3a

′
4
W[0]x1x

′
1
W[j]a′4j4Γ[Φ]a′1x1a

′
4
W[j]j1a′1
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which (after translating notational conventions) is just W[j]j1j2j3j4 . Diagrammatically this expres-

sion is denoted

2 3

1

4

+

2

3

1

4

x1

+

2 3

1

4x1

Remark 33. The following diagrammatical interpretation can be given to rules (1) and (2). For

any tree T the rightmost branch, i.e., the unique path form the root of T to the rightmost leaf

of T is depicted by thickened edges and vertices. The corresponding terms along this paths, i.e.,

W[j]··· and Γ[Φ]···, depend on j and Φ, respectively. All edges and vertices in the shadow of the

rightmost branch, i.e., those that are strictly to the left of the unique path form the root of T to

the rightmost leaf of T , are depicted normal. The corresponding terms W[0]··· and Γ[c]···, consist

of c-numbers, and are therefore mapped to zero by functional derivations.

These results hold in general.

Theorem 34. The Feynman rule Fγ computes the functional derivative of W[j]. That is

W[j]j1···jk =
∑

T∈T red
k−1

Fγ(T )

where the sum runs over all reduced trees with k − 1 leaves.

To avoid the introduction of cumbersome notation, we will give a graphical proof on a generic

example using induction on k. It is enough to prove that

∂

∂jk+1

W[j]j1···jk =
∑

T

∂

∂jk+1

Fγ(T )

=
∑

T̃∈T red
k

Fγ(T̃ ),

where the last sum runs over reduced trees T̃ with k leaves. Let us consider the following example

of the tree

x1
2

3

1

4

which under rules (1) and (2) is mapped to the tree

x1
2

3

1

4

corresponding to the expression

W[0]a′2j2W[0]a′3j3W[j]a′4j4Γ[Φ]x′
1a

′
3a

′
4
W[j]x1x

′
1
Γ[Φ]a′1a′2x1

W[j]j1a′1

Let us list case by case, where the functional derivation ∂
∂js

acts on non-constant terms, i.e., those

with a j- (or Φ-) dependence. Using the rules for the non-commutative calculus in [16], we first
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consider the case, where the functional derivation acts on the non-constant W[j]a4j4 term. This

yields

W[0]a′2j2W[0]a′3j3W[0]a′4j4W[j]a′5j5Γ[Φ]x′
1a

′
4a

′
5
W[j]x1x

′
1
Γ[Φ]x′

2a
′
3x1

W[j]x2x
′
2
Γ[Φ]a′1a′2x2

W[j]j1a′1

This expression is represented by the planar rooted tree with thickened rightmost branch

2

3

1

4 5

x2

x1

The next case we consider is, when the functional derivation ∂
∂js

acts on Γ[Φ]x′
1a

′
3a

′
4
(using that

∂
∂ji

= W[j]il
∂
∂Φl

). This generates the product

W[0]a′2j2W[0]a′3j3W[0]a′4j4W[j]a′5j5Γ[Φ]x′
1a

′
3a

′
4a

′
5
W[j]x1x

′
1
Γ[Φ]a′1a′2x1

W[j]j1a′1

The corresponding rooted tree is

x1
2

3

1

4 5

Let us now consider the case, where the functional derivation ∂
∂js

acts on the non-constant term

W[j]x1x
′
1
. This yields

W[0]a′2j2W[0]a′3j3W[0]a′4j4W[0]x1x
′
1
Γ[0]x′

1a
′
3a

′
4
W[j]a′5j5Γ[Φ]x′

2x1a
′
5
W[j]x2x

′
2
Γ[Φ]a′1a′2x2

W[j]j1a′1

The corresponding rooted tree is

2

3

1

4

5

x2

x1

The next case is, where the functional derivation ∂
∂js

acts on the non-constant Γ[Φ]a′1a′2x2
term

(again using that ∂
∂ji

= W[j]il
∂

∂Φl

). This yields

W[0]x1x
′
1
W[0]a′2j2W[0]a′3j3W[0]a′4j4Γ[0]x′

1a
′
3a

′
4
W[j]a′5j5Γ[Φ]a′1a′2x1a

′
5
W[j]j1a′1

corresponding to the planar rooted tree with thickened rightmost branch

x1
2

3

1

4

5

The last case is, where the functional derivation ∂
∂js

acts on the non-constant term W[j]j1a′1 , which

yields

W[0]a′3j3W[0]a′4j4Γ[0]x′
1a

′
3a

′
4
W[0]x1x

′
1
W[0]a′2j2Γ[0]x′

2a
′
2x1

W[0]x2x
′
2
W[j]a′5j5Γ[Φ]a′1x2a

′
5
W[j]j1a′1
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corresponding to the planar rooted tree with thickened rightmost branch

2

3

1

4

5
x2

x1

From this example we deduce a general rule: functional differentiation of Fγ(T ), where T is

a reduced tree with, say, k − 1 leaves, creates all the Fγ(T
′), where T ′ are reduced trees with k

leaves, and from which the theorem follows.

Observe how the functional derivation ∂
∂js

adds always a new leaf to the original rooted tree. In

fact, we can represent this functional derivation in terms of a grafting operation on planar rooted

trees with thickened rightmost branch. First we define the set (vector space) of all – decreasing –

planar rooted trees – with labeled leaves and – with thickened rightmost branch by T r (T r). On

T r we define the operator r•, which augments the number of leaves by one. It maps every tree to

a finite sum of trees following the rules:

(1) For any tree T ∈ T r with m internal vertices (decorated in decreasing order along any path

from the root to any leaf of T by the – unprimed – elements fromXm := {x1, x
′
1, . . . , xm, x

′
m})

and n− 1 leaves (labeled in increasing order from left to right by elements from [2, . . . , n])

the operator r• starts at the root of T (which is indexed by 1), and connects it to a new

thickened root vertex. The new root is indexed by 1 and the label of the original root is

replaced by the decoration by the element xm+1. The thickened edges and vertices along

the rightmost branch of T are replaced by usual edges and vertices. This new decreasing

rooted tree T ′ with thickened root is concatenated from the right by a thickened vertex

labeled by n+1, which is then connected to the root of T ′ by a thickened edge. The result

is a decreasing planar rooted tree r•(T ) ∈ T r, with a thickened rightmost branch, n leaves,

and with m+1 inner vertices decorated by Xm+1 := {x1, x
′
1, . . . , xm+1, x

′
m+1}. For instance

r•

( 2 3

1

)

=

2 3

1

4x1 + · · · r•

(

x1
2

3

1

4
)

=
2

3

1

4

5
x2

x1 + · · ·

(2) Then the operator r• is applied to the edges and vertices along the rightmost branch except

for its leaf in the following way

- When r• is applied to a vertex v (decorated by, say, xl ∈ Xm), which is different from

the root and leaf of the rightmost – thickened – branch of the tree T ∈ T r, then

it grafts a new leaf to this vertex, i.e., the tree T is concatenated on its right by a

thickened vertex which is then connected to the vertex v by a thickened edge. The

decoration of v is unchanged. Hence this new vertex is a new leaf labeled by n + 1.

The edges and vertices of the part of the thickened rightmost branch of T starting at
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v are replaced by ordinary edges and vertices.

r•

( 2 3

1

)

=
2 3

1

4

+ · · · r•

(

x1
2

3

1

4
)

= x1
2

3

1

4 5

+ · · ·

r•

(

x1
2

3

1

4
)

= x1
2

3

1

4

5 + · · ·

- When r• is applied to an edge of the rightmost – thickened – branch of the tree T ∈ T r,

then it splits this edge by putting a thickened vertex on it, and it grafts a new leaf,

which is labeled by n + 1, to this new vertex. The thickened edges and vertices to

the left of this new leaf are replaced by ordinary ones. Regarding the decreasing

decoration, the following shift is applied. Note that the edge on which r• just acted

starts in a vertex decorated by xs ∈ Xm, and it ends either in a leaf or it ends in a

vertex v of T , which is decorated by, say, xl ∈ Xm, l < s. First the set of decorations

Xm is replaced by Xm+1, and the decorations xs, . . . , xm in T are all shifted by one,

i.e., xs → xs+1, . . . , xm → xm+1. The new vertex put on the edge coming out of v

becomes a child of v, and is decorated by xs. In case the decorating set was empty,

the new vertex is decorated by x1 ∈ X1.

r•

( 2 3

1

)

= 2

3

1

4

x1 + · · · r•

(

x1
2

3

1

4
)

=
2

3

1

4

5

x2

x1 + · · ·

Hence, the functional derivation ∂
∂js

can be interpreted as a certain right-growth oper-

ation on decreasing planar rooted trees defined by grafting a new leaf on the right. The

special nature of the action of r• on the root is due to the fact that we prefer to work with

rooted trees instead of planted planar rooted trees. The single extra edge going out of the

root of the latter would explicitly account for the term W[j]j1a′1 on which the functional

derivation ∂
∂js

acts. Going back to Remark 33 we understand now that the part of the tree

that lies in the shadow of the rightmost branch is the part that is not accessible to the

right-growth operation, and hence it corresponds to terms W[0]··· and Γ[0]···, consisting of

c-numbers.
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