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Chebyshev polynomials, quadratic surds and a
variation of Pascal’s triangle

Roland Bacher*

October 1, 2018

Abstracfl: Using iterated Chebyshev polynomials of both kinds, we
construct rational fractions which are convergents of the smallest root of
22 —ax+1 fora=3,4,5,....

Some of the underlying identities suggest an identity involving binomial
coefficients which leads to a triangular array sharing many properties with
Pascal’s triangle.

1 Introduction

refs: Watson-Whittacker, qq chose sur fractions continues, polys de Cheb.
Chebyshev polynomials of the first kind 7g, 71, . . . and of the second kind
Uy, Uy, ... have recursive definitions given by

To(x) = 1,T1(x) = 2, Tht1(z) = 22T, (x) — Ty—1(x),n > 1,
and by
Up(z) =1,U1(z) = 22, Upt1(x) = 22Uy () — Up—1(x),n > 1.

We write in the sequel always simply T,,, U,, for T,,(x), U, (z). The poly-
nomial sequences Ty, 77, ... and Uy, Uy, ... satisfy the same linear recursion
relation with characteristic polynomial Z? — 22Z + 1. This implies easily
the formulae

n n
(ac—i— Va2 — 1) + <x — V2 — 1)
T, = 5 (1)
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and

n+1 n+1
<ﬂ:—|—\/:62—1> —<x— xz—l)

U, = . 2

" 22— 1 @

The identity 2 cos x cos nz = cos(n+ 1)z +cos(n— 1)z (together with the

initial values Ty = 1,77 = z) implies by an easy induction 7},(cos x) = cos nx

(which is often used for defining Chebyshev polynomials of the first kind).
As a consequence, we have the identity

Tom = TooTpm. (3)

For n € N and d > 1 we introduce the rational fraction

n k
1
Sn,d = Sn,d(x) = Udfl o Td+1)k _. (4)
I;) ( ]1;[0 Ud (¢] T(dJrl)j

Theorem 1.1 We have for alln € N and for all d > 1 the identity

2
- 1
Sea—22Sna+1 = ([[——] - 5

Corollary 1.2 For x evaluated to a real number in R\ [—1,1], the limit
limy, 4+ g—y00 Sn,a €xists and is given by the root sign(x) <]w\ —Var?— 1) (where
sign(x) € {£1} denotes the sign of z) closest to zero of X? —2xX + 1.

The following result expresses S, 4 as a simple fraction:
Theorem 1.3 We have

Uldy1yn+1—2
Spd = 77—
Uldy1yn+1-1

Corollary is now an almost immediate consequence of Formula (2))
and Theorem [[.3]

Note that Formula (), perhaps computed using iteratively (3, is per-
haps better suited for computations than the simpler expression given by
Theorem [L.3]

Finally we have the following result:

Theorem 1.4 We have

Un
Un+1

=[0;2x — 1,1 (,2(z — 1), 1)"].



Theorem [[.3] and Theorem [[4] together imply that the evaluation at an
integer x > 2 of S, 4 is a convergent of the real quadratic surd

r+vVat—-1=1[0;2z —1,1,2(z — 1),1,2(x — 1), 1,2(x — 1)]

with minimal polynomial X — 22X + 1 € Z[X].

In a last only losely related part we study some identities involving bi-
nomial coefficients (obtained by expressing Chebyshev polynomials in terms
of binomials coefficients and generalizing some of the previously obtained
identities). They lead to the array of numbers

1
-1 1
1 0 1
-1 1 1 1
1 0 2 2 1
-1 1 2 4 3 1
1 0 3 6 7 4 1
-1 1 3 9 13 11 ) 1
1 0 4 12 22 24 16 6 1

mimicking several aspects of Pascal’s triangle.

The sequel of the paper is organised as follows:

Section 2] describes and proves useful identities among Chebyshev poly-
nomials.

Section [B] contains a proof of Theorem [Tl 3] and L4l

A final Section describes a few relations with binomial coefficients and
studies a few features of the above analogue of Pascal’s triangle.

2 Analogues of Vajda’s identity for Chebyshev poly-
nomials
Fibonacci numbers Fy = Fo =1, F,,+1 = F,, + F,,_1 satisfy Vajda’s identity
FryiFontj — FnFogivy = (—1)"FF}.
The following result describes analogues for Chebyshev polynomials:
Theorem 2.1 We have the following identities for Chebyshev polynomials:
Un+iUn+j — Un-1Unt14iv; = UiUj

TotiTnsj — Tn1Tni1viv; = (1—2*)UiUj

TntiUntj — Un—1Tnp14iv; = TU;

TotiUntj — Tn1Ungayiv; = —UTjio
TotiTotj — (2% = DUp1Uno14iy; = TiT;



The case i = j = 0 of the first identity specialises to the so-called
Cassini-Simpson identity U2 —U,,;1U,_1 = 1 and implies Turan’s inequality
UZ(z) > Upy1(2)Up—1(2) for all real x.

The last equation generalises the instance 7.2 — (2% — 1)U2_; = 1 (cor-
responding to i = j = 0) of Pell’s equation.

Only a few cases of the first identity will in fact be used in the sequel.

Proof of Theorem [2.7] We consider

R(n,4,5) = UntiUntj — Un—1Uny1yivs — UiUj.

We have to show that R(n,i,j) = 0 for all n > 1 and for all 4,j € N.
Using the recursion relation U,y; = 22U, — U,_1 on all terms depend-
ing on ¢, respectively depending on j, we see that it is enough to prove
the equalities R(n,i,j) = 0 for ¢,5 € {0,1}. Using the obvious identity
R(n,i,7) = R(n,j,i) we are left with three cases: R(n,0,0), R(n,0,1) and
R(n,1,1).

The computation

Uj = Un—1Uns1 = Ug
= Un(2$Un71 — Unfg) — Un71(2$Un — Unfl) -1
= U2, -UU,o—1

shows R(n,0,0) = R(n —1,0,0) for n > 2. Similarly,
Un+1Un - Un—lUn+2 - UlUO

= (2$Un — Unfl)Un — n,1(2$Un+1 — Un) — 2
2¢(U% — Uy 1Upy1 — 1)

shows R(n,1,0) = R(n,0,1) = 2zR(n,0,0). Finally, the identities

Un+1Un+1 - Un—lUn+3 - U12
Ups1(22U, — Un_1) — Up_1(22Up 40 — Upyr) — 42
= 2$(Un+1Un — UnflUn+2 — 22?)

show R(n,1,1) = 2xR(n,1,0). It is now enough to check that R(n,i,j) =0
for n € {1,2} and i,5 € {0,1}.
Proofs of the remaining identities are similar. O

Remark 2.2 Short direct proofs of Theorem [21 can be obtained using For-

mulae (1) and (2).



3 Proof of Theorem I.1], 1.3 and 1.4

3.1 Useful identities

The following result is well-known:
Lemma 3.1 We have for all d > 1 the identity
2Ug=Ug_1 4+ Tyq1.
The proof is an easy induction left to the reader. O
Lemma 3.2 We have for all d > 1 the identity
U =U3 |+ 2Ty Ugy + 1.

Proof Using Lemma [B.I] and the recursive definition of U, Lemma [B.2] is
equivalent to

Ui = U3 +2@Us—Usg1)Ug 1 +1
= U3 |+ (22U)Ug_1 +1
= —Uj 1+ Ugs1 + Uge1)Ug1 + 1
= Ugp1Ug1+1

which is a special case of the first equality in Theorem [2.11 O
Lemma 3.3 We have

214Uy = Upyd + Up—q
for alln € N and for all d € {0,1,... ,n}.

Proof We set
R(n,d) =2T3U,, — Upyq — Up—q.

Since Tp = 1 and T} = = we have R(n,0) = R(n,1) = 0. The identities
R(TL, d) = 2TdUn — Un+d - Un,d

22211 — Ty—2)Un — (22Unya-1 — Untd—2) — 22Un—d+1 — Un—a+2)
2¢R(n,d —1) — R(n,d — 2)

finish the proof. a
Lemma 3.4 We have for all n > 1 the identity

UZn—l = 2TnUn—1-



Proof Equality holds for n = 1. Using Lemma (B.I) we have for n > 2 the
identities

Usp—1—2T,Up—1
— Usp1 — 2(2Un1 — Up_2)Up_1
— Usnoy — (2eUn_1 — Un—2)Un—1 + Un_1Up_s
= ~UyUp_1+Usp1+Up1Up_2
= —(Ui+(n-1)Ui4m—2) = U1-1U1414(n—1)+(n—2) — Un—1Un—2).

The last expression equals zero by the first identity of Theorem 2.11 O
Lemma 3.5 We have

Un—1yd—1Un—10Tqg = Upg-1Up—9 0Ty
for all n > 2 and for all d > 1.

Proof The case n = 2 boils down Usy_1 = 2Uy_1T,; which holds by Lemma

B.4).
Adding to

0= (2TaUmn-1a-1 = Un—2)a—1 — Una—1)Un—2 0 Ty
which holds by Lemma (3.3]) the induction hypothesis we get
0 = (TaUmn-1)d-1 — Un-2)d—1 — Und—1)Un—2 0Ty
+Un-2)d-1Un—20°Tq — U—1ya—1Un—3 0 Ty

Un-1)a—1 (2T4Un—20 Ty — Up—30Ty) — Upg-1Un—20Ty
= Un-1a-1Un-10T4 — Upng—1Up—20Ty

which ends the proof. a

3.2 Proof of Theorem [1.1]

We prove first that equation (&) holds for n = 0. Multiplying the left-side
of equation (B)) by U3, we get

U3 | —22Uq Ug+ U3
= Ui 4 —Us1(Ugs1 + Ug1) + UZ
= Uj = Uq—1Uaa
= Ui=1

by applying the recursive definition of U; and the first identity of Theorem
Il withn=d,i =7 =0.



Setting = Ty41 in equation (Bl) and dividing the result by Uj, we have
now by induction
n+1 2
S. d© Td 1 S d OTd 1 1 1
(”77+ _QTOlJrlmiQJr = = Hi (6)
Uy U; Uj <o Ud o Tg41)i

where we have also used (3) on the right side. We rewrite now the obvious
identity

Ug—1+ Sna0Tap

S, = 7
n+1,d Ud ( )
as
Sn,d 0 Tgr1 = UaSnt1,a — Ug—1. (8)
Using (8]) the left side of (@] equals
UaSni1d — Ua—1\? UiSp+1,d—Ua—1 | 1
I _ 2T ) _
< Ud d+1 Ud2 + Ud2
Ui Ui, Tun Ug1 1
= §2 ,,-2-55 —2-2=9 2Ty —— +
n+1,d Ud n+1,d + UC% Ud n+1,d + d+1 UC% + Ug
Since U T
d—1 d+1
-2 U, Sn—f—l,d -2 UJ; Sn-‘,—l,d = _stn-l—l,d
by Lemma (3.1]) and
Ui, Udg—1 1
My~ — =1
by Lemma (B.2), we get finally S2, | ; —225,41,4+ 1 for the left side of (@).
This ends the proof. a

3.3 Proof of Theorem [1.3

Equality holds obviously for n = 0. Applying the induction hypothesis to
([@) we have to establish the equality

Ugyryn+1—2 © Tay1

Uldg+1ynt2—2 U+

Uq
Ugs1yn+2-1 Ugryn+1-1 © Tay1

equivalent to

0 = (UaUggrynt2—2 — Ua—1U(gprynr2—1)Ugpaynti—1 © T
—Uay1yn+2—1U@y1yn+1 2 0 Taa
= Ugrynrz—2-aUgqyn+ri-1 0 Tap
—Uay1yn+2—1U@yryn+r 2 0 T



where we have applied the first identity of Theorem 2.1l with n = d,

0,j = (d+1)"*2 — 2 — d. The identity
0 = Ugrnn+2—2-qU@ayryn+1-1 0 Ta
—Ugrnyn+21Uggryn+1 2 0 Taa
is now the case (n,d) = ((d — 1)"*!,d + 1) of Lemma B3

3.4 Proof of Theorem [1.4]

Proof of Theorem [I.4] Equality holds for n = 0.
Setting v, = [0;2x — 1,1 (,2(x — 1),1)"] we have

Tn n—1
=102z —2,1(,2(x —1),1
T (-2~ 1),1)
showing
1
771—}—1 1
20 =1+ 7=
v +1+1Z’Yn
B 1
22—,

The result follows now by induction from the trivial identities

1 Uni1 _ Unna

2 — U(r{il 20Up41 —Up Upgo

An easy computation shows the continued fraction expansion

r—Va2?2—-1=1[0;2z —1,1,2(x — 1),1,2(x — 1), 1,2(x — 1)].

for x € {2,3,4,...}. Equality follows thus from analytic continuation when-

ever both sides make sense.
Combining Theorem [[L3] and Theorem [[.4] we see that

Sna = [0522 = 1.1(.2(@ — 1), )" 2]

(using a hopefully self-explanatory notation) is a convergent of x — vz2 — 1

forx=2,3,....



4 A sum of products of two binomial coefficients

4.1 Coefficients of Chebyshev polynomials

Lemma 4.1 Ezplicit expressions for coefficients of Chebyshev polynomials
are given by the formulae

. _Z/%J <<n+;—k>_<n;i;k>>(2m)n%’

Ln/ 2J

v = > (e

k=0
(using the conventions (:2) =1, (7é 1= ) =0, (j) =1, (7:1) =0).
Proof The formulae hold obviously for Ty, T} and Uy, U;. We have now
Thyr = 22T, —Th

S S (- (00 ) e

k=0

3R () ()

_ %Z(_l)k<<n+;—k>+ nZiIk»(?x)nﬂ%

and

Upt1 = 22U, —Up
/2] _—
= 2 kz_o(—M( ) )(290)"—2’“

[(n—1)/2]
_ Z (_1)k‘ (n - ]1 - k) (21-)"*1*%
k=0

- e () ()

= > (-1 (" +; N k> (2a)" 12,

k
These identities imply the result by induction. O



4.2 A curious identity

Rewriting Chebyshev polynomials in terms of binomial coefficients using the
identities of Lemma [T} some identities among Chebyshev polynomials are
special cases of the following result.

Theorem 4.2 The expression

d—n

d —k\[(d+ k-
ot =3 (T ()

k=0

is constant in x and depends only on a,d € C andn € d—N={d,d—1,d—
2,d—3,...}.

Observe that all values f(a, d, n), are determined by the values f(0,d,n),
using the trivial identity

fla,d,n), = fla—2c,d+c,n+¢)pte 9)

with ¢ = a/2.
Theorem implies that Qn(z) = f(0,2/2,2/2 — N), is a polynomial
in Q[z] of degree N such that Qn(Z) C Z.

Lemma 4.3 We have the identities
fla,d,n)y = fla—1,d,n)y+ fla—1,d;n+1),_1 (10)
and
fla,d,n)s = fla—1,dn)es1+ fla=1,dn+1)p4 (11)

Proof Follows from the computations

fla,d,n),
_ §<<a—l+z+m—k>+<a—1—i};i—|1-m—/€>> (;ifi:i)
= fla—1,d,n),
+;(a—1+d+kx_—11—(k—1)><34_r§213:g:3>
= fla—1,d,n)e+ fla—1,dyn+ 1),
and
fla,d,n),
d—n
_ ;(a—l—d—i};x—k) <<d—£f;f;1>+<ji_z:ﬂf:;>>

= f(a_l’dan)IJrl+f(a’_1ad’n+1)r+1

10



a
Proof of Theorem 4.2 Since (}) = w, the function f(a,d,n),
is a polynomial of degree at most d —n in x. It is thus independent of = for
n = d. Subtracting equation (I0)) from (II]) we get

f(a_lad,n):erl_f(a_l,dan)m = f(a_lad,n‘i'l):vfl_f(a_ladan+1)m+1
which implies the result by induction on d — n. O

4.3 A few properties of f(0,d,n)

The numbers
lij = f0,(0=-1)/2,j = (i+1)/2)
i—j —1 i—1
_ Z T + —k 5 +k—x
= i—j—k
with ¢ € N and j € {0,...,i} (and x arbitrary) form the “Pascal-like”
triangle:

1
-1 1
1 0 1
-1 1 1 1
1 0 2 2 1
-1 1 2 4 3 1
1 0 3 6 7 4 1
-1 1 3 9 13 11 ) 1
1 0 4 12 22 24 16 6 1

as shown by the following result:
PI‘OpOSitiOH 4.4 We have li70 = (—1)i, lm’ =1 and li,j = li_17j_1 + li—l,j-

1

Proof Using x = we get for j = 0 the evaluation

<—> -2 (70
(e

Fori=j wegetl;; =f (0, 55, %1 — i) =1 by a trivial computation.

11



Using (I0) followed by two applications of (@) with ¢ = —1 we have

1—1 . 141
li,j = f<07 2 yJ — 2 >
1—1  i41 t—1  i+1
(Y ()

2 2 2
_ f<0,%—%,j—i;1—%>+f<o,%_%,j_i;1+%>
- f<07%7j_1_<z‘—;>+1>
,—1) —1 ,— 1 1
STCEEE AR,

= L1+l

which proves the result. O

4.4 An LU-decomposition

Interpreting the integers [; ;,4,j > 0 as the coefficients of an infinite unipo-
tent matrix L and introducing similarly the matrix M with coefficients
M; ; = l;yj;, we have the following result:

Proposition 4.5 We have
M=LU

where U s the upper-triangular matriz with coefficients U; j = (]Z:),i,j > 0.
In particular, we have det(M(n)) = 1 where M(n) is the square matriz
consisting of the first n rows and columns of M.

Proposition is a special case of the following more general result:

We associate two infinite matrices to an infinite sequence ag = 1, a1, aa, . . .
in a commutative ring with 1 as follows:

The first matrix M («) with coefficients M; ; indexed by 4, j € Nis defined
recursively by

M0,0 = 1, MO,]’ = 1, Mi,O = oy, Mi,j = Mifl,j + Mi,jfl,l’,j > 1.
The coefficients M; ; for j > 0 are also given by the formula
% .
k+j—1
M;; = l;) < 1 >04zk-

The second matrix is the unipotent lower-triangular matrix L(«) with lower
triangular coefficients L; ; = M;_; ;,% > j > 0. It satisfies L; ; = L;—1; +
Lifl,jfl for ’i,j Z 1.

12



Proposition 4.6 We have M(a) = L(a)U where M(a), L() are as above
and where U is unipotent upper-triangular with coefficients U = (Z) given
by binomial coefficients.

Proof We have obviously M; ; = (LU);; if i = 0 or j = 0. The remaining
cases follow by induction on i 4+ j from the equalities

= ZLi,kUk,j
k

= ZLi,kUk,jfl + ZLikak*I,jfl
k k

= Z L; xUg j—1 + Z Li 1 4Usj1
k k

M1+ M1
= Mij 1+ My
= M
where M = M(1,1+ a1,1 4 aj + ag,1 + oy + ay + as,...), respectively

L=L(1,14 a1,14 a1 + ay,...), is obtained from M by removing its first
row, respectively from L by removing its first row and column. O

4.5 A few more identities

The following results show other similarities between /; ; and binomial coef-
ficients:

Proposition 4.7 (i) We have for all n,k € N the equality (Z) = lpr +

2 kv 1-
(i) We have for all n the identity

2" = (=) + (z +1) Zn:znﬁk(x — kL
k=1

For proving assertion (i), it is enough to check the equality for all n with
k =0,1. The general case follows from the last equality in Proposition 4.4l
The second assertion holds for n = 0. We have now

()" +(z+1) Zn:lnk(ac — 1)kt
k=1

n

= ()" + @+ (arpet + o) (@ — 1P
k=1

n—1
= (z—-1) ((—1)”1 +(z+1) Zlnq,k(w - 1)’“1>

k=1

13



n—1

HD) 4 (@ 1)) g — DF

k=1
+(=1)" + (2 + (=) = (2 = (=) = (=)

= (z—Da" 4am Tt =2"

by induction. a

4.6 A few integer sequences

A few integer sequences related to the numbers [; ; appear seemingly in [I]
(proofs are probably easy in most cases).

Observe that the array [; ; with its first row removed appears in [II,
l171, 1271, 1272, 1371, 1372, 1373, 1471, l472, ... 1s A59260 of [1]

The sequence 1,0, 2,6,22,80,296,1106, ... ,l2, ,,n = 0 of central coeffi-
cients coincides seemingly with A72547 of [1].

It is easy to show that the sequence 1,0,2,2,6,10,22,...,8, =Y 1l
of row-sums is given by so = 1,8, = 2(sp—1 + (—=1)") = 28,2 + Sp—1. The
closely related sequence 3s,,41 coincides with A1045 of [1].

1,1,4,8,20,44,100, ... ,a, = > p_o lnk(k + 1) coincides with A84219 of
.

0,0,1,3,9,23,57,135,313,711,..., >} 5l kx(k — 1) coincides (up to a
shift of the index) with A45883 of [I].

1,2,6,14,34,78,178, ..., > 1 _o lnk(2k+1) coincides seemingly with A59570
of [1].

There are certainly other sequences of [1] related to the numbers I; ;.

Interestingly, the descriptions of the above sequences are linked to several

different and apparently unrelated mathematical areas.
Acknowledgements I thank Bernard Parisse for a useful discussion.
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