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Abstract
In this paper we consider a class of partial differential equations that arise in modeling of surface-volume reactions.
According to the literature, the class of differential equations we studied are normally solved using the Laplace
transform method. In this study, we solve the equation using a fractional calculus approach. Several examples
are considered to illustrate the method of solution. In this paper, for the first time, we encounter an order of the
fractional derivative other than 1

2 in an applied problem. This is the first in a series of papers which explore the
applicability of fractional calculus in real-world applications, redefining the true nature of fractional calculus.
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1. Introduction

Until very recently, the fractional calculus had been a purely mathematical tool without apparent appli-
cations. Nowadays, fractional dynamical equations play a major role in the modeling of anomalous behavior
and memory effects, which are common characteristics of natural phenomena [27, 46, 48]. The fact that
fractional derivatives introduce a convolution integral with a power-law memory kernel makes the fractional
differential equations an important model to describe memory effects in complex systems. Thus, it is seen
that fractional derivatives or integrals appear naturally when modeling long-term behaviors, especially in
the areas of viscoelastic materials and viscous fluid dynamics [41, 82].

Abel’s study of the tautochrone problem [1] is considered to be the first application of fractional calculus
to an engineering problem. In it one finds the path where the time it takes for an object to fall under the
influence of gravity is independent of the initial position. The solution, which was solved using a fractional
calculus approach, is now known to be a part of the inverted cycloid [1, 55].

Now it is not hard to find very interesting and novel applications of fractional differential equations in
physics, chemistry, biology, engineering, finance and other areas of sciences that have been developed in
the last few decades. Some of the applications include: diffusion processes [51, 76], mechanics of materials
[14, 81], combinatorics [36, 77], calculus of variations [12, 13, 52, 60], signal processing [53], image processing
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[7], advection and dispersion of solutes in porous or fractured media [8], modeling of viscoelastic materials
under external forces [20], bioengineering [49], relaxation and reaction kinetics of polymers [23], random
walks [24], mathematical finance [75], modelling of combustion [42], control theory [64], heat propagation
[67], modelling of viscoelastic materials [32] and even in areas such as psychology [4, 78]. The list is by no
means complete. It is easy to find hundreds, if not thousands, of new applications in which the fractional
calculus approach is more than welcome.

This is the first in a series of papers that seeks to find further potential applications of fractional calculus
in solving real-world problems, a journey that can benefit both the understanding of profound complexities
in the application, and the field of fractional calculus itself. As an application of the theory developed in
this paper, we consider the surface-volume reaction problem. The governing equations of the mathematical
formulation of such models naturally give rise to a nonlinear equation that contains a fractional integral
embedded in it and have no solutions to date. A linear variation of this equation is normally solved
using the Laplace transform method [16]. Thus, in this paper we extend the theory of fractional calculus
methods by considering equations motivated by modeling the surface-volume reactions, and explore another
interpretation of the fractional integral.

The remainder of this paper is organized as follows. The definitions and basic results are given in the
second section. In Section 3, we give the main results, which are generalizations of Abel’s integral approach
to the tautochrone problem. In section 4, we give illustrative examples to motivate our approaches. One of
the main examples is the surface-volume reaction problem that have several very interesting applications in
mathematical biology and engineering [17].

2. Basic Definitions and Preliminary Results

We adopt definitions given in [63] or in the encyclopaedic book by Samko et al. [74] here. We begin by
introducing the concept of a Riemann–Liouville fractional integral:

Definition 2.1 ([63]). Let α > 0 with n − 1 < α ≤ n, n ∈ N, and a < x < b. The left- and right-
Riemann–Liouville fractional integrals of order α of a function f are given by

Jα
a+f(x) = 1

Γ(α)

∫ x

a
(x − t)α−1f(t) dt and Jα

b−f(x) = 1
Γ(α)

∫ b

x

(t − x)α−1f(t) dt

respectively, where Γ(·) is Euler’s gamma function defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt.

Non-local fractional derivatives are defined via fractional integrals [35, 74], while the local fractional
derivatives are defined via a limit-based approach [38, 39]. A new class of controlled-derivative approach
appeared in [5], though the results may not be considered as fractional derivatives according to the current
literature [62]. In this work we utilize only the non-local Volterra-type definitions for the fractional derivative
given below.

Definition 2.2 ([63]). The left- and right- Riemann–Liouville fractional derivatives of order α > 0, n −1 <
α < n, n ∈ N, are defined by

Dα
a+f(x) = 1

Γ(n − α)

(
d

dx

)n ∫ x

a
(x − t)n−α−1f(t) dt,

Dα
b−f(x) = (−1)n

Γ(n − α)

(
d

dx

)n ∫ b

x

(t − x)n−α−1f(t) dt,

respectively. It can be shown that in the case of α ∈ N the above definitions coincide with the standard
definition of the nth-derivative of f(x).

2



R. M. Evans et al. / 00 (2015) 1–20 3

Definition 2.3 ([63]). The left- and right- Caputo fractional derivatives of order α > 0, n−1 < α < n, n ∈ N,
are defined by

CDα
a+f(x) = 1

Γ(n − α)

∫ x

a
(x − t)n−α−1f (n)(t) dt and CDα

b−f(x) = (−1)n
Γ(n − α)

∫ b

x

(t − x)n−α−1f (n)(t) dt,

respectively. It can be shown that in the case of α ∈ N the above definitions reduce to the standard definition
of the nth-derivative of f(x). To see this, let us assume that 0 ≤ n − 1 < α < n, and f(x) ∈ Cn+1[a, T ].
Then in the case of Caputo’s derivative, we have, by integration by parts [63, p. 79],

lim
α→n

CDα
a+f(x) = lim

α→n

(f (n)(a)(x − a)n−a

Γ(n − α+ 1) + 1
Γ(n − α+ 1)

∫ x

a
(x − τ)n−αf (n+1)(τ) dτ

)
(1)

= f (n)(a) +
∫ x

a
f (n+1)(τ) dτ = f (n)(x), n = 1, 2, . . . . (2)

This shows that the Caputo derivative is a generalization of the integer-order derivative. A different proof
of the fact in question, which does not use integration by parts, can be found on [15, pp. 49, 51] using an
equivalent definition of the Caputo derivative. On the other hand, for the Riemann–Liouville derivative, the
result follows easily since J0

a+ is defined to be the identity operator and the fact that Dα
a+ = D

çαè
a+ J

çαè−α
a+

[15, p. 27].
The following relations between the Caputo and Riemann–Liouville fractional derivatives are noteworthy

[15, 63]:

CDα
a+f(x) = Dα

a+f(x)−
n−1∑

k=0

f (k)(a)
Γ(k − α+ 1)(x − a)k−α (3)

and
CDα

b−f(x) = Dα
b−f(x)−

n−1∑

k=0

f (k)(b)
Γ(k − α+ 1)(b − x)k−α. (4)

The two relations in question have interesting properties. That is, if f ∈ Cn[a, b] and f (k)(a) = 0, k =
0, 1, . . . , n − 1, then

CDα
a+f = Dα

a+f,

and if f (k)(b) = 0, k = 0, 1, . . . , n − 1, then

CDα
b−f = Dα

b−f.

The fractional integrals and derivatives also satisfy the following important properties: fractional operators
are linear, that is, if L is a fractional integral or derivative, then

L(f + kg) = L(f) + kL(g)

for any functions f, g ∈ Cn[a, b] or f, g ∈ Lp(a, b) (as the case may be) and k ∈ R. For any α, β > 0, they
also satisfy the following semigroup properties:

JαJβ = Jα+β and DαDβ = Dα+β .

Further, if f ∈ L∞(a, b) or f ∈ Cn[a, b] and α > 0, then

CDα
a+Jα

a+f = f and CDα
b+Jα

b+f = f. (5)

Equation 5 will be the key property used to prove the main results of this paper. It also says that the
Caputo derivative is the left-inverse of the Riemann–Liouville fractional integral. Unfortunately, the Caputo
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derivative is not the right-inverse of the Riemann–Liouville integral. But, we have the following result
concerning those two operators:

Jα
a+

CDα
a+f(x) = f(x)−

n−1∑

k=0

f (k)(a)
k! (x − a)k,

and

Jα
b−

CDα
b−f(x) = f(x)−

n−1∑

k=0

f (k)(b)
k! (b − x)k,

if f ∈ Cn[a, b] and α > 0.
The Caputo derivatives have some advantage over the Riemann–Liouville derivatives. One of the most

important properties is that the Caputo derivative of a constant function is zero whereas the Riemann–
Liouville derivative is not. From an analytical point of view, this result does not create difficulties though
it is commonly not acceptable in the physical sense.
Using a convolution integral approach, Podlubny [65, 66] provided geometric and physical interpretations

of fractional integration and fractional differentiation for the Riemann–Liouville fractional operators, Caputo
derivatives, Riesz potentials and Feller potential. Several other attempts to provide geometric meanings to
fractional operators can be found, for example, in the works by Ben Adda [2, 3]. Further approaches can
be found in, for example, [25, 28, 29, 37, 47, 54, 57, 58, 69–71, 79, 83]. Among such approaches, as pointed
out by Rutman [71], there were misunderstandings in some approaches which try to find interpretations of
fractional integrals and derivatives [57]. Thus, one of the goals of this paper is to find concrete examples
that can be directly related to the fractional operators so that we may find a better physical interpretation
rather than building our own models. Further details of the approach can be found in Section 4 of this work.
The rest of the paper will adopt the following definitions of Volterra-type integrals.

Definition 2.4 ([31]). An integral equation of the form

w(t) =
∫ t

a
K(t, s)v(s) ds, a ≤ s ≤ t ≤ T, (6)

is known as a Volterra integral equation of the first kind with kernel K(t, s). Its kernel is said to be non-
singular or singular depending on whether K(t, s) is continuous or discontinuous on the triangular region
a ≤ s ≤ t ≤ T . In the special case where K(t, s) has the form

K(t, s) = k(t, s)
(t − s)α , 0 < α < 1,

with k(t, s) continuous on a ≤ s ≤ t ≤ T , (6) is called a generalized Abel integral equation or an integral
equation of Abel type.

For Abel type integral equations of the form

w(t) =
∫ t

0

k(t, s)
(t − s)α v(s) ds, 0 ≤ s ≤ t ≤ T, 0 < α < 1, (7)

we have the following result [40, pp. 80–82]:

Theorem 2.5. If

(i) k(t, t) , 0, 0 ≤ t ≤ T ,

(ii) k(t, s) has continuous partial derivatives up to order m ∈ {0, 1, 2, . . .}, and ∂m+1k(t, s)/∂tm+1 is
continuous on 0 ≤ s ≤ t ≤ T ,

(iii) w(t) ∈ Cm+1[0, T ] and w(l)(0) = 0, (l = 0, 1, 2, . . . m), and
4
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(iv) W (t) = d
dt

∫ t

0
w(s)

(t−s)1−α ds ∈ C[0, T ],

then v(s) ∈ Cm[0, T ] is unique.

It is interesting to see that condition (iv) of Theorem 2.5 is the Riemann–Liouville fractional derivative
of order α for 0 < α < 1 though there is no explicit mention about such a derivative in the literature.

Now consider the following Abel integral equation of the first kind:

f(x) =
∫ x

0

g(t)
(x − t)α dt, 0 < α < 1, 0 ≤ x ≤ b, (8)

where f ∈ C1[a, b] is a given function satisfying f(0) = 0 and g is the unknown function to be determined.
These Volterra-type integral equations are normally solved using the Laplace transform method [33, Chap.
8]. There are several other methods available in the literature for solving Abel’s integral equations of
the first and second kind. Among them, the Chebyshev polynomial approach [6], orthogonal polynomial
approach [56], Galerkin methods [19], collocation methods [11], Haar/CAS wavelet method [43, 72, 73] and
Mikusinski’s operator approach [44] can be found in the references given.

Jahanshahi et al. [30] solved the problem given in (8) using a fractional calculus approach and arrived
at the solution given below.

Theorem 2.6 ([30]). The solution to (8) is

g(x) = sin(πα)
π

∫ x

0

f ′(t)
(x − t)1−α

dt.

The interested reader may find a similar result in [44] and also in the work by Gelfand and Vilenkin [22,
Section 5.5]. Those approaches are very similar to the method introduced by Abel in [1].

Continuing in the same direction, we shall solve a Volterra-type integral equation that involves two
variable functions in the integrand, which contains partial derivatives. The method we describe here is new,
to the authors’ knowledge.

Before elaborating on the new results, let us make some remarks about the notations that will be used
in the rest of the paper.

2.1. Notations
Here we will go through some notation that is common to the current literature of the subject. It will

be convenient to use operator notation. By Jα we will mean the fractional integral operator

Jαf(x, t) = 1
Γ(α)

∫ x

0

f(ν, t)
(x − ν)1−α

dν, α ∈ [0, 1].

Note this fractional integral is with respect to space. The reason for this will become clearer in section 5. If
we take the fractional integral with respect to time, we will denote this by

Jα
t f(x, t) = 1

Γ(α)

∫ t

0

f(ν, t)
(t − τ)1−α

dτ.

Also by If(x, t), or simply by If , we will always mean an integral with respect to time:

If =
∫ t

0
f(x, τ) dτ.

Additionally we will use the notation

Igf =
∫ t

0
g(τ)f(x, τ) dτ.
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When dealing with fractional derivatives, we will always understand the fractional derivative in the Caputo
sense

Dαf = 1
Γ(1− α)

∫ x

0

1
(x − ν)α

∂f(ν, t)
∂ν

dν.

We use a similar definition for the temporal fractional Caputo derivative

Dα
t f = 1

Γ(1− α)

∫ t

0

1
(t − τ)α

∂f(x, τ)
∂τ

dτ.

We are now ready to state our results.

3. Main Results

The following is the main result of this paper, which is motivated by a surface-volume reaction problem
after taking into account transport effects. There equations are nonlinear in nature and have no exact
solutions to date. Equations of this form can be found in the works of [16–18]. For example, the governing
equations of this form can be found in Equations (2a) and (2b) of [18]. Further treatment of this class of
equations can be found in Section 5.1 of this work.

Lemma 3.1. Let C be a function such that its first partial derivative with respect to x exists. Let 0 < α < 1.
Then the solution of the integral equation

C(x, t) =
∫ x

0

∂B

∂t
(x − ξ, t) dξ

ξα
, with B(x, 0) = 0, (9)

is given by

B(x, t) = sin(πα)
π

∫ t

0

∫ x

0

∂C

∂x
(ξ, τ) dξ

(x − ξ)1−α
dτ. (10)

Proof. We prove this first using a change of variable and then identifying (9) as a fractional integral of order
α. To that end, let x − ξ = η and F (x; t) = ∂B

∂t (x, t). Making this substitution, (9) becomes

C(x, t) =
∫ x

0

∂B

∂t
(η, t) dξ

(x − η)α dη. (11)

This may be written as
C(x, t) = Γ(1− α)J1−αF (x; t). (12)

Considering t to be a parameter and then taking the Caputo derivative of order 1− α of both sides of (12),
we have

F (x; t) = 1
Γ(1− α)D1−αC(x; t).

Upon integration and using the definition of the Caputo derivative we arrive at

B(x, t) =
∫ t

0
F (x, τ) dτ

= 1
Γ(1− α)Γ(α)

∫ t

0

∫ x

0

∂C

∂x
(ξ, τ) dξ

(x − ξ)1−α
dτ

= sin(πα)
π

∫ t

0

∫ x

0

∂C

∂x
(ξ, τ) dξ

(x − ξ)1−α
dτ. (13)

This completes the proof.
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We also propose a new method for solving fractional-order integrodifferential equations. This method
relies on transforming the integrodifferential equation into an integral equation, and then using Picard
iterations to arrive at the solution. This approach is motivated by [45], where Loverro solves fractional
integral equations by Picard iterations. Here we extend his approach to integrodifferential equations of
fractional order.

Theorem 3.2. Let Lt be a second order linear partial differential operator of the form

Lt =
∂2

∂t2 + φ(t) ∂

∂t
+ θ(t),

for some differentiable functions φ, θ. Let y(t) be such that

Lty = 0, (14)

with y(t) , 0 for all t. Then if f(x, t) is continuous on [0, 1] × [0, T ], the problem

LtB = Jα ∂B

∂t
+ f, with B(x, 0) = ∂B

∂t
(x, 0) = 0 (15)

on [0, 1] × [0, T ] has a unique solution given by

B(x, t) =
∞∑

n=0
y (K2)n (K1f), (16)

where K1, K2, and g are defined by

K1(ρ) := Ig(−φ, −y)Ig(φ, y)y−1Jαρ,

K2(ρ) := Ig(−y, −φ)(Jαgρ − JαI
∂(gy−1)

∂t
(ρ)),

g(y, φ) := exp
(

I

(
2dy

dt
y−1 + φ

))
.

Proof. To prove existence we will transform equation (15) into a linear integral equation, and then use an
inductive (iterative) process to arrive at the solution. In order to do this, an integrating factor method
would be helpful. However, with the equation in its current form, we are unable to do so due to the presence
of the term θB. To eliminate this we will proceed with an ansatz of the form

B(x, t) = b(x, t)y(t),

where y solves the homogenous equation (14) and y(t) , 0 for any t , 0. Substituting this into (15) we
obtain (

y
∂2b

∂t2 + 2∂b

∂t

dy

dt
+ b

d2y

dt2

)
+ φ

(
y

∂b

∂t
+ b

dy

dt

)
+ θby = Jα ∂

∂t
(yb) + f.

However since y is a solution of Lt = 0, we have

∂2b

∂t2 +
(
2dy

dt
y−1 + φ

)
∂b

∂t
= y−1

(
Jα ∂

∂t
(yb) + f

)
.

This is a Bernoulli-type linear differential equation for the term ∂b
∂t . Thus, following the standard procedure

and multiplying by an integrating factor we have

∂

∂t

(
exp

(
I

(
2dy

dt
y−1 + φ

))
∂b

∂t

)
= exp

(
I

(
2dy

dt
y−1 + φ

))
y−1

(
Jα ∂

∂t
(yb) + f

)
. (17)
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Before proceeding, for simplicity, let

g(y, φ) := exp
(

I

(
2dy

dt
y−1 + φ

))

and

K1(ρ) := Ig(−φ, −y)Ig(φ, y)y−1ρ.

Then integrating (applying I to) each side of (17), multiplying each side by g(−φ, −y), and integrating again
we arrive at

b = K1

(
Jα ∂

∂t
(yb) + f

)
.

In order to get the time derivative off of the term ∂(yb)
∂t , we may apply integration by parts after applying

Fubini’s theorem. Indeed, since gy−1 is independent of the underlying space,

Igy−1Jα = IJαgy−1.

Therefore if ∂B
∂t = ∂(by)

∂t is integrable (which we will show later),

1
(x − ν)1−α

∂B

∂t

is integrable on [0, T ] × [0, 1]. So we may apply Fubini’s theorem

IJαgy−1 ∂(yb)
∂t

= JαIgy−1 ∂(yb)
∂t

,

and integration by parts to obtain

JαIgy−1 ∂(yb)
∂t

= Jαgb − JαI
∂(gy−1)

∂t
(yb).

Now we define K2b by

K2b := Ig(−y, −φ)
(

Jαgb − JαI
∂(gy−1)

∂t
(yb)

)
,

in order to cast our differential equation as an integral equation:

b = K2b + K1f. (18)

Similarly we define the iterative sequence

bn+1 = K2bn + K1f.

Then for some initial guess b0 we have

bn+1 =
n∑

i=0
Kn

2 K1f + Kn+1
2 b0. (19)

If the sequence defined by (19) converges (see the Appendix), then we have

b =
∞∑

i=0
Kn

2 K1f, (20)

which gives rise to (16) upon substitution of B = yb into the product. Also observe that (18) implies
uniqueness, for the associated homogenous problem is a linear integral equation for which 0 is a solution.

8



R. M. Evans et al. / 00 (2015) 1–20 9

Remark 3.3. Clearly the assumption B(x, 0) = 0 is not necessary, and was just made to simplify the algebra.
Certainly the theorem applies with more general initial conditions such as B(x, 0) = h(x), ∂B

∂t (x, 0) = 0; in
those cases the form of (16) would simply change. Also note the second-order differential operator Lt need not
be constant coefficient. We require only the knowledge of a solution to the corresponding equation Lty = 0,
with y(t) , 0. Solving (15) would be quite difficult using Laplace transform methods. Indeed, inverting the
solution back from transform space would necessitate evaluating a very difficult contour integral.

We have proved the theorem when Lt is a linear non-constant-coefficient, second-order differential op-
erator. But similar results hold when Lt is first order, or even when Lt is a temporal Riemann–Liouville
fractional derivative. Indeed, if we have

Dβ
t B = JαB + f,

then
B = Jβ

t JαB + Jβ
t f,

which is a linear integral equation, and hence may be solved by Picard’s iteration method. The solution is
given as

B =
∞∑

n=0
(Jβ

t Jα)nJβ
t f.

This may be summarized in the following theorem.
Theorem 3.4. Let B, f : [0, 1]× [0, T ] → R be differentiable with respect to t, and integrable with respect to
x. Then the problem

Dβ
t B = JαB + f B(x, 0) = f(x, 0) = 0 (21)

has a unique solution given by

B =
∞∑

n=0
(Jβ

t Jα)nJβ
t f.

Proof. We first apply a fractional integral operator Jβ
t to each side of (21). This transforms (21) into

B = Jβ
t JαB + Jβ

t f.

This is simply a linear integral equation, which may be solved using Picard’s iterations. Doing so, one
obtains

B =
∞∑

n=0
(Jβ

t Jα)n(Jβ
t f).

Convergence may be verified by an application of Weierstrass’s M -test.

4. Illustrative Examples

Example 4.1. Consider the following Abel-type multivariate integral equation (of the first kind):

x4/3 =
∫ x

0

∂B

∂t
(x − ξ, t) dξ

ξ
2
3

with B(x, 0) = 0. (22)

According to Lemma 3.1, taking C(x, t) = x4/3, the solution of (22) is given by

B(x, t) =
sin( 2π

3 )
π

∫ t

0

∫ x

0

∂C

∂x
(ξ, τ) dξ

(x − ξ) 1
3

dτ

=
sin( 2π

3 )
π

∫ t

0

∫ x

0

4
3ξ

1
3

dξ

(x − ξ) 1
3

dτ

= 4x

3 · sin(
2π
3 )

π

∫ t

0

∫ 1

0
u

1
3 (1 − u)− 1

3 dudτ, where u = ξ

x
,

= 4
9xt. (23)

9
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Notice that we have used the properties of the Γ(·) function such as

B(α, β) = Γ(α)Γ(β)
Γ(α+ β) =

∫ 1

0
uα−1(1− u)β−1du, Γ(n+ 1) = nΓ(n), Γ(α)Γ(1− α) = π

sin(πα) .

Next we will study some applications of our method that arise in modeling surface-volume reactions.

5. Applications

5.1. Setting
One of the major goals of this paper is to explore the applications of fractional calculus in solving

real-world applications that arise in science, engineering and other disciplines. For example, stereology is
concerned with the determination of three-dimensional objects from two- or one-dimensional data, and the
extrapolation to three dimensions is based on the solution of a mathematical model derived using geometric
probability and statistics. It is quite often the case that the model emerges in the form of an Abel integral
equation [31, p. 123] given by ∫ ∞

a

(x

a

)µ−1 g(
√

x/a)
(x − a)µ dx = kz(a),

where g(x) and z(x) are probability density functions.
The Abel integral equations of the first/second kind with α = 1

2 also appear in a variety of problems in
physics and chemistry; see, for example, the references in [10, 31, 61]. In this section we discuss a situation
where, for the first time, we come across a fractional order different from 1

2 in a real-world application.
The applications we consider here arise in the setting of surface-volume reactions. A surface-volume

reaction is one where a buffer fluid containing ligand molecules is convected through a channel over a
surface to which immobilized ligands (or receptors) are confined (see Figure 1). The scope of surface-volume
reactions is very broad, and are of great importance in biology. Such reactions occur in blood clotting
[26], drug absorption [9], and antigen-antibody interactions [68]. Surface-volume reactions also occur in
DNA-protein interaction, which affects gene expression [16]. Additionally, purification processes often occur
in channels with reactants embedded along the wall [16]. In order to experimentally study such reactions,
scientists use an apparatus known as an optical biosensor. The use of optical biosensors is quite popular,
with over 10,000 authors citing the use of an optical biosensors as of 2009 alone [80]. A schematic is depicted
below.

Figure 1: Cross-sectional schematic of the channel and binding/unbinding. Taken from [17].

10
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In figure 1 one can see the unbound ligand being convected through the channel. As the unbound ligand
molecules bind with the receptors on the surface, an evanescent wave is reflected off of the floor of the device.
Refractive changes due to binding of the reactants are then averaged over the length of the ceiling to provide
scientists with real-time mass measurements of the bound ligand concentration. The chemical kinetics at
the boundary may be written as

E + Li

k̃a−⇀↽−
k̃d

Li,

where E represents an empty receptor and Li denotes an unbound ligand molecule at the surface. A single
ligand may bind with each receptor. The parameter k̃a represents the dimensional reaction rate of ligand
binding, and k̃d represents the dimensional dissociation rate. Herein we will denote dimensional quantities
with a tilde. Also we denote the dimensionless concentration of bound receptor sites at the surface by

[ELi] = B, [Li] = C.

In general C = C(x, y, t), and because there are only receptor sites on the floor of the channel, B is a
function of x and t only. Following [16] we have scaled both the dimensional bound ligand concentration
B̃ and the dimensional unbound concentration C̃, so that the dimensionless variables B, C are between 0
and 1. Since there are no other sources or sinks, the bound ligand will change only due to association or
dissociation:

∂B

∂t
= (1 − B)C(x, 0, t) − KB, B(x, 0) = 0. (24)

Here K is a dimensionless parameter containing the ratio of the association and dissociation coefficients
k̃a, k̃d. The term (1 − B)C represents a bimolecular production term, and −KB represents dissociation. If
the unbound ligand concentration at the boundary C(x, 0, t) were uniform, taking C = 1 gives the following
solution of (24):

B(t) = 1
K + 1

[
1 − e−t/(K+1)

]
.

There is initially no bound ligand in the channel, and as time progresses ligand molecules bind with the
receptors until a balance between association and dissociation is reached, and the system reaches chemical
equilibrium. Due to dissociation effects, this will happen before saturation.

In reality, transport will not be perfectly efficient. Edwards [16] has shown that C(x, 0, t) takes the form
of a fractional integral

C(x0, , t) = 1 − Da
31/3Γ(2/3)

∫ x

0

∂B

∂t
(x − ν)−2/3dν,

which may be expressed in terms of the Riemann-Louiville fractional integral

C(x, 0, t) =1 − DaΓ(1/3)
31/3Γ(2/3)J1/3 ∂B

∂t
. (25)

Substituting C(x, 0, t) into the kinetics equation we arrive at

∂B

∂t
= (1 − B)

(
1 − DaΓ(1/3)

31/3Γ(2/3)J1/3 ∂B

∂t

)
− KB, B(x, 0) = 0, (26)

where Da denotes the Damköhler number, an important dimensionless parameter representing a ratio of
reaction to diffusion. The Damköhler number

Da = k̃aL̃1/3h̃1/3R̃t

Ṽ 1/3D̃2/3
11
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Figure 2: Numerical solution of (26), Da = 2, K = 1, computed numerically.

is a function of the dimensions of the channel h̃, L̃, characteristic velocity scale Ṽ , diffusion rate of the ligand
molecules D̃, the reaction rate k̃a, and the concentration of total receptor sites R̃t. For physically realizable
scenarios, Da is either o(1) or O(1) [16]. In Figure 2 we took Da = 2 to exaggerate transport effects; however
in this paper we will only be consider the case where Da = o(1). This corresponds to the parameter regime
in which diffusion is much quicker than reaction. Therefore transport is quite efficient. Note that (24) is
recovered in the limit as the Damköhler number goes to zero in (26). For a visualization of transport effects
on the evolution of the bound ligand concentration, see Figure 2.

5.2. Physical Interpretation
We now discuss the physical interpretation of the fractional integral in (25). There are multiple time

scales associated with the problem. There is a time scale for convection tc, diffusion near the wall tw,
diffusion into the surface td, and reaction t. The flow away from the wall reaches equilibrium on the tc time
scale, and reaction occurs on the latter of the two time scales. The time scale for reaction is much slower
than convection. Thus, one would expect that the unbound concentration at the boundary C(x, 0, t) would
be a perturbation away from the uniform outer concentration of 1:

C(x, 0, t) = 1 − Dac(x, t). (27)

Edwards showed in ([16]) that

c(x, t) = Γ(1/3)
31/3Γ(2/3)J1/3 ∂B

∂t
,

which gives (25) upon substitution into (27).
When transport effects are considered, initially there will be slightly more bound ligand upstream than

downstream. This is due to the fact that the ligand will diffuse into the surface upstream first. Thus the
fractional integral in (25) represents upstream ligand depletion [16]. If x is smaller, then less ligand will have
already bound, thus (25) will be larger, and there will be more ligand available for binding at the surface
upstream. Note that B is increasing so ∂B

∂t will be non-negative.
Thus far we have discussed only the association phase (or the injection phase) of the experiment. One

can also model the dissociation or wash phase of the experiment. After studying the association phase of
the experiment, scientists may wish to clean the optical biosensor for reuse. Therefore to clean the device
scientists will simply convect only the buffer fluid through the channel. This has the effect of washing out
all of the bound ligand. In the absence of transport this can be well modeled by the standard exponential
decay curve

B(t) = e−t/(K+1)

1 + K
.

12
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This is given as C = 0 in (24) with B(0) = 1/(1 + K) (the equilibrium concentration in the association
phase). However when considering transport effects, Edwards has shown in [17] that the kinetics process is
governed by

∂B

∂t
= (1 − B)

[ −Da
31/3Γ(2/3)

∫ x

0

∂B

∂t
(x − ν)−2/3 dν

]
− KB, B(x, 0) = 1

1 + K
,

or
∂B

∂t
= (1 − B)

(
− DaΓ(1/3)
31/3Γ(2/3)J1/3 ∂B

∂t

)
− KB. (28)

Note that in this phase B is decreasing, so ∂B
∂t will be negative and the term

(1 − B)
[ −Da
31/3Γ(2/3)

∫ x

0

∂B

∂t
(x − ν)−2/3 dν

]

will be positive. Observe that if Da = 0, transport is perfectly efficient and we recover the standard
exponential decay model. The fractional integral in this phase has a slightly different interpretation. Ligand
will bind in the wash phase only when ligand molecules dissociating upstream rebind with receptor sites
downstream. If a receptor site is further downstream, then it is more likely that a ligand that has dissociated
upstream will rebind with it. This is exactly what the fractional integral in (28) tells us. When x is very
small, the fractional integral in (28) will also be small, and there will be a small possibility that a ligand
molecule will rebind. Near the end of the channel, x will be close to 1, and inefficient transport will result
in rebinding. Thus in this phase the fractional integral accounts for ligand rebinding due to inefficient
transport. Notice that when Da is larger, the fractional integral will have a larger effect. This is because as
the Damköhler number increases, reaction and diffusion (the transport mechanism) balance, and transport
is less efficient. If transport is less efficient the nonuniformities will be greater, which is what (28) tells us.

5.3. Applications of Theorem 3.2
5.3.1. A Multiple Scale Expansion

One may propose a perturbation expansion to find approximate solutions of (26) where Da = o(1) (the
only parameter regime we are considering herein). A regular expansion of the form

B(x, t) = B0(x, t) + DaB1(x, t) + O(Da2)

may be shown to be secular. However one may search for a multiple scale solution of the form:

B(x, t) = B0(x, T, τ) + DaB1(x, T, τ) + O(Da2),

where

T = Dat and τ =
(
1 +

∞∑

n=2
ωnDan

)
t.

When doing so, in order to eliminate a secular term, one must solve the equation [16]

∂f

∂t
= K

31/3Γ(2/3)

∫ x

0
f(ν, t)(x − ν)−2/3 dν, f(x, 0) = − 1

α
. (29)

Edwards solved this equation by using a Laplace transform, solving the PDE in transform space, and
mapping back via a term-by-term inversion of the Taylor series to the solution of the PDE in transform
space.

We can also use fractional calculus methods to get this result. First let us rewrite (29) using the
Riemann–Liouville integral:

∂f

∂t
= rJ1/3f, where r = Γ(1/3)K

Γ(2/3)31/3 .

13
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Now integrating both sides gives

f + α−1 = r

∫ t

0
J1/3f dt.

Rearranging, we have
(1− rIJ1/3)f = −α−1.

Inverting the operator on the left-hand side, we obtain

f = − 1
α

∞∑

n=0

(rtx1/3)n
Γ(1 + n/3)n! . (30)

This is exactly the solution that Edwards arrives at in [16]. It is interesting to see that the expression in
(30) is nothing but the Hadamard product of the two functions ert and the Mittag-Leffler function [63]

E 1
3
(x1/3) =

∞∑

n=0

(x1/3)n
Γ(1 + n/3) .

5.3.2. A Linearized Equation
A solution of (26) in closed form is very difficult to obtain. However, it may be of mathematical interest

to consider a linear variant of (26) given by

∂B

∂t
+ αB = 1− βJ1/3 ∂B

∂t
, B(x, 0) = 0, β = DaΓ(1/3)

31/3Γ(2/3) . (31)

This equation is difficult to solve. Given the Abel-type integral operator one may try searching for solutions
using Laplace transform methods. Indeed, via a Laplace transform, one arrives at a solution of the form

B̂(s, t) = exp
(

t

1 + βs1/3

)
.

To the authors’ knowledge there is no inverse transform to such function in the literature, and finding one
would result in evaluating a difficult contour integral. One may then try inverting term-by-term.

B̂ =
∞∑

n=0

(
t

1 + βs1/3

)n

(n!)−1

which is again difficult to deal with. Thus we solve the linearized version by using a method similar to the
one given in Theorem 3.2. First we multiply (31) by the integrating factor:

eαt

(
∂B

∂t
+ αB

)
= eαt

(
1− βJ1/3 ∂B

∂t

)
,

which gives

B = α−1(1− e−αt)− βIJ1/3eα(s−t) ∂B

∂t
,

where we have used the spatial independence of the exponential function. Next we interchange the order of
integration by appealing to Fubini’s Theorem:

B = α−1(1− e−αt)− βJ1/3Ieα(s−t) ∂B

∂t
.

14
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Note an integration by parts gives

I

(
eα(s−t) ∂B

∂t

)
= B − αIeα(s−t)B.

This implies

B = α−1(1− e−αt)− βJ1/3(B − αIeα(s−t)B),

or rearranging,

[1− βJ1/3(−1 + αIeα(s−t))]B = α−1(1− e−αt).

By inverting the operator on the left-hand side, after some algebra we arrive at

B =
∞∑

n=0

(βx1/3)n
Γ(1 + n/3)




n∑

j=0

(
n

j

)
(−1)n−jαj(Ieα(s−t))jα−1(1− e−αs)


 .

Here (Ieα(s−t))j denotes an iterated j-fold integral

(Ieα(s−t))jα−1(1− e−αs) =
∫ t

0
eα(s−t) · · ·

∫ t

0
eα(s−t)α−1(1− e−αs) ds . . . ds.

︸                                                                  ︷︷                                                                  ︸
j times

Convergence and differentiability follow from applications of the M -test.

6. Conclusion

Recently fractional calculus has been an area that is rich in application. We have found yet another
application of fractional calculus in modeling surface-volume reactions. In particular, we have considered
applications that occur when scientists simulate surface-volume reactions experimentally in an optical biosen-
sor. We have seen that when modeling surface-volume reactions in optical biosensors, the fractional integral
may be interpreted as a ligand depletion term during the injection phase of the experiment. In the disso-
ciation phase the fractional integral represents ligand rebinding due to inefficient transport. Thus we have
another interpretation to a centuries-old problem: “what is meant by a fractional integral operator?” This
is also the first time we identify a fractional integral with order other than 1

2 in an engineering problem.
Motivated by equation (26), we have considered several related equations. We have shown that these

equations may be solved using fractional differentiation and integration. Additionally we have extended
the approach in [45] to non-constant-coefficient partial integrodifferential equations. Attempting to solve
the equations considered herein using Laplace transforms would be difficult to impossible. By considering
equations motivated by the chemical kinetics in surface-volume reactions, we have been able to extend the
theory of fractional calculus methods to more naturally occurring applications. It is of no doubt that further
applications of the fractional derivative and integral are yet to be discovered. In the future we plan to use
such applications to further enrich the theory and mathematical power of fractional calculus.
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Appendix

It is left to show that (19) converges to (20), and that b is actually twice differentiable with respect to
time. To prove this we show that each one of the series

∞∑

n=0
Kn

2 (K1)f (32)

∞∑

n=0

∂

∂t
Kn

2 (K1)f (33)

∞∑

n=0

∂2

∂t2 Kn
2 (K1)f (34)

converge uniformly, and to do so we will apply the Weierstrass M -test.
To apply Weierstrass we will first need to show that the function K1f(x, t) is continuous in x and t. We

will actually show that it is twice differentiable with respect to t. Now by definition

K1(f(x, t)) = Ig(−φ, −y)Ig(φ, y)y−1f

=
∫ t

0
g(−φ, −y)

∫ τ

0
g(φ, y)y−1f(x, s)︸                   ︷︷                   ︸

1

ds dτ.

︸                                                    ︷︷                                                    ︸
2

Since f is continuous in x, so is K1f . Also since f is a continuous function of t, g(φ, y) is a composition of
differentiable functions, and y−1 is differentiable (this follows from the differentiability of y), then

∫ τ

0
g(φ, y)y−1f(x, s) ds

is a differentiable function of τ. For the same reasons the term labeled 2 is also the product of two differen-
tiable functions with respect to time, thus

∫ t

0
g(−φ, −y)

∫ τ

0
g(φ, y)y−1f(x, s) ds dτ

is differentiable with respect to t. Therefore K1f is twice differentiable with respect to time, and continuous
with respect to space. Now since K1f is a continuous function on a compact set, it is uniformly continuous
and bounded. Thus there exists a constant C1 such that for (x, t) ∈ R := [0, 1] × [0, T ], |K1f | ≤ C1.

We are now in a position to apply the M -test; first we show uniform convergence of (32), and then
move on to showing uniform convergence of (33) and (34). As a first step towards showing (32) converges
uniformly, let

C2 = max
R

|g(−φ, −y), g(φ, y)| and C3 = max
R

∣∣∣∣
∂(gy−1)

∂t
y−1

∣∣∣∣ ,

and observe:

K2|(K1f)| ≤ K2C1

≤ (Ig(−φ, −y)Jαg(φ, y) + Ig(φ, −y)JαI
∂(ty−1)

∂t
y)C1

= xα

Γ(1 + α)

(
tC2

2 +
C2C3t2

2

)
C1

≤ xα

Γ(1 + α)

(
TC2

2 +
C2C3T 2

2

)
C1.
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Therefore inductively

Kn
2 |K1| ≤ xnα

Γ(1 + nα)

(
TC2

2 +
C2C3T 2

2

)n

C1

≤ 1
Γ(1 + nα)

(
TC2

2 +
C2C3T 2

2

)n

C1

and since ∞∑

n=0

1
Γ(1 + nα)

(
TC2

2 +
C2C3T 2

2

)n

C1

is finite, our series converges uniformly. We now show (33) is convergent. The proof of this is quite similar.
Letting

Mn =
1

Γ(1 + nα)

(
TC2

2 +
C2C3T 2

2

)n

,

one may show

∂

∂t
Kn

2 (K1f) = ∂

∂t
K2(Kn−1

2 (K1f))

≤ ∂

∂t
K2|(Kn−1

2 (K1f))|

≤ ∂

∂t
K2Mn−1C1

≤ΛMn−1C1

Thus (33) is also bounded above by a convergent series, so (33) is convergent. An analagous argument may
be given to show that the series (34) is convergent.

Acknowledgement. The first and third authors were partially supported by the National Science Foun-
dation (USA) research grant DMS-1312529. The second author was partially supported by the Department
of Defense (USA) research grant 67459MA-15-139-MJ.

References
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RN , as an example, Frac. Calc. Appl. Anal. 17(2)(2014) 361–370.

[29] N. Heymans, I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann–
Liouville fractional derivatives, Rheologica Acta, 45(5)(2006) 765–772.

[30] S. Jahanshahi, E. Babolian, D. F. M. Torres, A. Vahidi, Solving Abel integral equations of first kind via fractional calculus,
J. King Saud University - Science 27(2015) 161–167.

[31] A.J. Jakeman, R.S. Anderssen, Abel type integral equations in stereology I. General discussion, 105(2)(1975) 121–133.
[32] A.A. Jarbouh, Rheological Behaviour Modelling of Viscoelastic Materials by Using Fractional Model, Energy Procedia

19(2012) 143–157.
[33] R.P. Kanwal, Linear Integral Equations: Theory & Technique, Springer, New York, 2013.
[34] U.N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218(3)(2011) 860–865.
[35] U.N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6(4)(2014) 1–15.
[36] U.N. Katugampola, Mellin transforms of generalized fractional integrals and derivatives, Appl. Math. Comput. 257(2015)

566–580.
[37] V. Kiryakova, A long standing conjecture failed? In: P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods

and Special Functions, Varna’96 (Proc. 3rd Internat. Workshop), Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences, Sofia (1998) 579–588.

[38] K.M. Kolwankar, Local fractional calculus: a review, arXiv preprint arXiv:1307.0739.
[39] K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6(4)

505–513.
[40] G. Kowalewski, Integralgleichungen, Water de Gruyter and Co., Berlin W und Leipzig, 1930.
[41] D. Kumar, J. Singh, S. Kumar, A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid,

Journal of the Association of Arab Universities for Basic and Applied Sciences 17(2015) 14–19.
[42] C. Lederman, J.-M. Roquejoffre, N. Wolanski, Mathematical justification of a nonlinear integrodifferential equation for

the propagation of spherical flames, C. R. Math. Acad. Sci. Paris 334(2002) 569–574.
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