
Stochastic modeling of gene expression, protein modification, and polymerization

Andrew Mugler∗ and Sean Fancher
Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

Many fundamental cellular processes involve small numbers of molecules. When numbers are
small, fluctuations dominate, and stochastic models, which account for these fluctuations, are re-
quired. In this chapter, we describe minimal stochastic models of three fundamental cellular pro-
cesses: gene expression, protein modification, and polymerization. We introduce key analytic tools
for solving each model, including the generating function, eigenfunction expansion, and operator
methods, and we discuss how these tools are extended to more complicated models. These analytic
tools provide an elegant, efficient, and often insightful alternative to stochastic simulation.

Cells perform complex functions using networks of in-
teracting molecules, including DNA, mRNA, and pro-
teins. Many of these molecules are present in very low
numbers per cell. For example, over 80% of the genes
in the E. coli bacterium express fewer than a hundred
copies of each of their proteins per cell [1]. When the
numbers are this small, fluctuations in these numbers are
large. Indeed, we will see in this chapter that the sim-
plest model of gene expression predicts Poisson statistics,
meaning that the standard deviation equals the square
root of the mean. For means of 100, 10, and 1 proteins,
fluctuations are 10%, 32%, and 100% of the mean, re-
spectively. Most manmade devices would not function
properly with fluctuations this large. But for a cell these
fluctuations are unavoidable: they are not due to exter-
nal factors, but rather they arise intrinsically due the
small numbers. Experiments in recent years have vividly
demonstrated that number fluctuations are ubiquitous in
microbial and mammalian cells alike [2, 3] and occur even
when external factors are held constant [2].

From a mathematical modeling perspective, account-
ing for large fluctuations requires models that describe
not just the mean molecule numbers, but rather the full
distributions of molecule numbers. These are stochastic
models. By far the most common way to solve stochastic
models has been by computer simulation [4, 5]. Typically
one simulates many fluctuating trajectories of molecule
numbers over time, and then builds from these trajec-
tories the molecule number distribution. This technique
can be applied to arbitrarily complex reaction networks
and provides exact results in the limit of infinite sim-
ulation data. However, simulations can be inefficient
(although faster approximate schemes have been devel-
oped in recent years [6, 7]), and, perhaps more impor-
tantly, simulations do not readily provide the physical in-
tuition that analytic solutions provide. Therefore, many
researchers have devoted attention to developing meth-
ods for obtaining exact or approximate analytic solutions
to stochastic models [8–15].

In this chapter, we describe minimal stochastic mod-
els of three fundamental cellular processes: gene expres-
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sion, protein modification, and polymerization. All are
exactly solvable, and our focus here is on introducing
the key analytic tools that can be used to solve them
and gain physical insight about their behavior. These
tools include the use of a generating function, the ex-
pansion of distributions in their natural eigenfunctions,
and the use of operator methods originally derived from
quantum mechanics. The goal is to provide readers with
these tools so that they may see how to apply them to
new stochastic problems. To that end, we conclude the
chapter with a discussion of how these tools have seen
recent application to models of more complex phenom-
ena, including gene regulation, cell signaling networks,
and more detailed mechanisms of polymer growth.

With the exception of new results for the polymeriza-
tion model (Sec. III), this chapter is a review. The gen-
erating function is a canonical tool that is discussed in
several classic textbooks on stochastic processes [16, 17].
The use of quantum operator methods in a biochemical
context dates back to the 1970s [18–20] and has been
nicely reviewed [21]. The use of eigenfunctions to solve
stochastic equations has been recently developed in the
contexts of gene regulation [11, 12, 22] and spatially dis-
tributed cell signaling [23]. Thus, the aim of this chapter
is to provide a unified and accessible introduction to all
of these tools, using three fundamental processes from
cell biology.

I. GENE EXPRESSION

We begin with a discussion of gene expression, which is
the process of producing proteins from DNA. As depicted
in Fig. 1A, a particular segment of the DNA (the gene) is
transcribed into mRNA molecules, which are then trans-
lated into proteins. The processes of transcription and
translation can be highly complex, especially in higher
organisms, but for the purposes of minimal modeling
we omit these details and refer the reader to several ex-
cellent sources for more information [24, 25]. Typically
mRNAs are degraded with a timescale on the order of
minutes, whereas proteins are removed from the cell (ei-
ther via degradation or dilution from cell division) with
a timescale on the order of tens of minutes to hours [26].
This timescale separation allows us, in a minimal model,
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FIG. 1: Stochastic modeling of gene expression, protein modification, and polymerization. (A-C) In a minimal model of gene
expression, proteins are produced at rate α and removed at rate µ; there are n proteins at any given time. The probability
pn is a Poisson distribution in steady state. Different minimal models describe (D-F) protein modification by enzymes, where
the steady state is a binomial distribution, and (G-I) polymerization, where the steady state is a geometric distribution. The
parameters are γ = 5 (C), ρ = 5/6 and N = 20 (F), and γ = 1/2 (I).

to approximate the mRNA number as roughly constant
in time and focus on the protein number n as our only de-
gree of freedom. This model of gene expression neglects
such common features such as regulated protein produc-
tion and the production of proteins in bursts, both of
which are further discussed in Sec. IV.

The stochastic model of gene expression is given by
the master equation, which specifies the dynamics of the
probability pn of having n ∈ {0, 1, 2, . . . ,∞} proteins per
cell. Introducing α as the rate of protein production and
µ as the rate of protein removal, the master equation
reads

dpn
dt

= αpn−1 + µ(n+ 1)pn+1 − αpn − µnpn. (1)

The four terms on the right-hand side reflect the four
ways of either entering or leaving the state with n
proteins (Fig. 1B). Production occurs with a constant

propensity α, whereas removal occurs with propensity
µn, since any of the n proteins has a chance of being re-
moved. Eqn. 1 is modified at the n = 0 boundary: the
first and fourth terms are absent since transitions from
and to the n = −1 state are prohibited, respectively.
Eqn. 1 is often called the birth-death process.

The birth-death process admits a steady-state (or sta-
tionary) solution, where dpn/dt = 0. By considering the
equations for n = 0, 1, 2, . . . in succession, one readily
notices a pattern (see Appendix A). The result is

pn = e−γ
γn

n!
, (2)

where γ ≡ α/µ. Eqn. 2 is the Poisson distribution (Fig.
1C). As we will show below, it has the property that its
mean 〈n〉 =

∑∞
n=0 pnn equals its variance σ2 = 〈n2〉 −

〈n〉2. Therefore, relative fluctuations go down with the
mean, σ/〈n〉 = 〈n〉−1/2, which explains why small mean
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protein numbers correspond to large relative fluctuations.

A. The generating function

We now introduce the generating function, which is a
highly useful tool for solving stochastic equations. The
generating function is defined by

G(z) =
∑
n

pnz
n (3)

for some continuous variable z. Its name comes from the
fact that moments of pn are generated by derivatives of
G(z) evaluated at z = 1,

G(1) =
∑
n

pn = 1, (4)

G′(1) =
∑
n

pnn = 〈n〉, (5)

G′′(1) =
∑
n

pnn(n− 1) = 〈n2〉 − 〈n〉, (6)

and so on. We invert the relationship in Eqn. 3, also by
taking derivatives, but evaluating at z = 0,

pn =
1

n!
∂nz [G(z)]z=0 . (7)

Eqn. 7 is verified by inserting Eqn. 3 and recognizing that
limz→0 z

m = δm0.
The generating function greatly simplifies the master

equation by turning a set of coupled ordinary differential
equations (one for each value of n in Eqn. 1) into a single
partial differential equation. For the birth death-process,
we derive this partial differential equation by multiplying
Eqn. 1 by zn and summing both sides over n from 0 to
∞ (see Appendix A). The result is

∂tG = −(z − 1)(µ∂z − α)G, (8)

where the appearances of z and ∂z are due to the shifts
n − 1 and n + 1, respectively. Eqn. 8 is readily solved
in steady state, where ∂tG = 0. There we must have
µ∂zG = αG, and thus

G(z) = e−γeγz, (9)

where once again γ = α/µ, and here the factor of e−γ

follows from the normalization condition in Eqn. 4. Re-
peatedly differentiating Eqn. 9 according to Eqn. 7 imme-
diately gives the Poisson distribution, Eqn. 2. Further-
more, differentiating Eqn. 9 according to Eqns. 5 and 6
gives σ2 = 〈n〉 = γ, confirming the relationship between
the variance and the mean.

The full time-dependent solution of Eqn. 8 is obtained
either by applying the method of characteristics [22] or
by a transformation of variables [17]. We present the lat-
ter method here. Writing G(z, t) = H(z, t)eγ(z−1) trans-
forms Eqn. 8 into

∂tH = −µ(z − 1)∂zH, (10)

and writing z − 1 = ey transforms Eqn. 10 into

∂tH = −µ∂yH. (11)

Eqn. 11 is a first-order wave equation, whose solution is
any function of y − µt. For convenience we write this
function as H(z, t) = F (ey−µt) = F [(z − 1)e−µt], such
that

G(z, t) = F [(z − 1)e−µt]eγ(z−1). (12)

The unknown function F is determined by the initial
condition [17]. Note that normalization (Eqn. 4) requires
G(1, t) = F (0) = 1, which confirms that G(z, t → ∞) =
eγ(z−1) in steady state, as in Eqn. 9.

B. Eigenvalues and eigenfunctions

The master equation is a linear equation. That is, Eqn.
1 is linear in p, and Eqn. 8 is linear in G. This means that
the master equation is conveniently solved by expanding
in the eigenfunctions of its linear operator. We will see
that exploiting the eigenfunctions not only provides an
alternative to the solution techniques presented thus far,
but that the eigenfunctions are useful in their own right.
They provide insights on the dynamics, they form a com-
plete basis in which any probability distribution can be
expanded, and they facilitate extension to more complex
models of gene expression and regulation.

The linear operator for the birth-death process is evi-
dent from Eqn. 8. Writing Eqn. 8 as ∂tG = −L̂G, we see
that L̂ = (z− 1)(µ∂z −α). The eigenfunctions of L̂ then
satisfy

L̂φj(z) = λjφj(z) (13)

for eigenvalues λj . Inserting the form for L̂, we see that
Eqn. 13 is a first-order ordinary differential equation for
φj(z) that can be solved by separating variables and in-
tegrating. The result is

φj(z) = (z − 1)λj/µeγ(z−1) (14)

up to a constant prefactor. We set the prefactor to one
by recognizing that for λj = 0, Eqn. 13 is equivalent to
the master equation in steady state, and therefore Eqn.
14 should recover the steady-state solution (Eqn. 9) when
λj = 0. As in Eqn. 7, the eigenfunctions are converted
into n space via

φjn =
1

n!
∂nz [φj(z)]z=0. (15)

Example eigenfunctions are shown in Fig. 2A. Note that
for λj = 0, the eigenfunction is the Poissonian steady-
state distribution, Eqn. 2.

We now demonstrate the solution of Eqn. 8 by eigen-
function expansion. We expand

G(z, t) =
∑
j

Cj(t)φj(z) (16)
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FIG. 2: Eigenfunctions and eigenvalues of the gene expression, protein modification, and polymerization models. During the
time evolution of each stochastic process, the eigenfunctions (A, D, G) relax according to rates given by the eigenvalues (B,
E, H). The “zero mode” φ0

n is therefore the steady state distribution. In all three cases, the eigenfunctions also form a basis
in which any distribution qn can be expanded (C, F, I), which facilitates analytic solutions; the insets give the expansion
coefficients cj . The parameters are γ = 5 (A), ρ = 5/6 and N = 20 (D), and γ = 1/2 and N = 20 (G). In C, F, and I, the
parameters γ, ρ, and γ, respectively, act as “gauge freedoms”, since they affect cj but not the reconstruction of qn; they are
set to γ = 5 (C), ρ = 3/7 (F), and γ = 1/2 (I).

and insert it into Eqn. 8 to obtain∑
j

(∂tCj)φj = −L̂
∑
j

Cjφj =
∑
j

(−λjCj)φj , (17)

where the second step follows from the eigenvalue rela-
tion, Eqn. 13. Equating the terms in parentheses for
each j, we obtain an ordinary differential equation that
is solved by Cj(t) = cje

−λjt for initial conditions cj . In-
serting this form and Eqn. 14 into Eqn. 16, we find

G(z, t) = eγ(z−1)
∑
j

cje
−λjt(z − 1)λj/µ. (18)

This expression can be directly compared with our previ-
ous solution, Eqn. 12, by Taylor expanding F as F (x) =

∑∞
j=0 x

j∂jx[F (x)]x=0/j!. Then Eqn. 12 becomes

G(z, t) =

∞∑
j=0

[
(z − 1)e−µt

]j ∂jx[F (x)]x=0

j!
eγ(z−1)

= eγ(z−1)
∞∑
j=0

∂jx[F (x)]x=0

j!
e−jµt(z − 1)j . (19)

Comparing Eqn. 19 with Eqn. 18 term by term, we con-
clude that

λj = µj, (20)

for j ∈ {0, 1, 2, . . . ,∞}. Eqn. 20 gives the eigenvalues of
the birth-death process, as depicted in Fig. 2B. We also
conclude that F and c, which are both determined by the
initial condition, must be related by cj = ∂jx[F (x)]x=0/j!.



5

Eqn. 18 shows that the eigenvalues dictate the dynam-
ics of the time-dependent solution. That is, the solution
is built from a linear combination of the eigenfunctions,
each of which decays exponentially with time, and the
eigenvalues set the rates of decay. Larger eigenvalues
correspond to faster rates of decay, and in the end there
is only one eigenfunction left: the “zero mode”, with
eigenvalue λ0 = 0. Hence, the zero mode is the steady
state.

The linear operator L̂ is not Hermitian. This means
that the eigenfunctions φjn are not orthogonal to one an-
other. Instead, a different set of conjugate eigenfunc-
tions ψjn is required to satisfy the orthonormality relation∑
n φ

j
nψ

j′

n = δjj′ . Now that we know the eigenvalues, we
obtain the eigenfunctions in n space by inserting Eqn.
14 into Eqn. 15 and evaluating the derivatives (see Ap-
pendix A). The result is

φjn = e−γ
γn

n!

min(n,j)∑
`=0

(−1)j−`
(
n

`

)(
j

`

)
`!

γ`
. (21)

Each eigenfunction is the Poisson distribution multiplied
by a jth-order polynomial in n. In fact, each eigenfunc-
tion is the negative discrete derivative of the previous
one, φj+1

n = −(φjn − φjn−1) [22], which is evident from

Fig. 2A. Given Eqn. 21, the conjugate eigenfunctions ψjn
are constructed to obey the orthonormality relation [22].
They read

ψjn =
γj

j!

min(n,j)∑
`=0

(−1)j−`
(
n

`

)(
j

`

)
`!

γ`
. (22)

They are jth-order polynomials in n.
Together, Eqns. 21 and 22 form a complete basis in

which any arbitrary probability distribution qn can be
expanded [27], as demonstrated in Fig. 2C. Explicitly,
we write

qn =

∞∑
j=0

cjφ
j
n, (23)

where the coefficients cj are the projections of qn against
the conjugate eigenfunctions,

cj =

∞∑
n=0

qnψ
j
n. (24)

Even though an infinite number of eigenfunctions are
needed to complete the expansion, in most practical cases
the coefficients cj die off as a function of j (Fig. 2C inset),
allowing one to truncate the sums in Eqns. 23 and 24 ac-
cording to the desired numerical accuracy. Moreover, in
this context γ acts as a free parameter for the expan-
sion, much like a gauge freedom in field theory, and can
be tuned to minimize numerical error. The completeness
property allows one to expand more complex models of
gene regulation in these simpler birth-death eigenfunc-
tions, as further discussed in Sec. IV.

Raising and lowering operators

In the operator notation, the generating function is
introduced as an expansion over a complete set of ab-
stract states, indexed by n,

|G〉 =
∑
n

pn|n〉.

The dynamics of |G〉 are obtained by summing the
master equation against |n〉. For the birth-death pro-
cess (Eqn. 1), we find, similar to Eqn. 8,

∂t|G〉 = −(â† − 1)(µâ− α)|G〉,

where â† and â are raising and lowering operators.
Just as in quantum mechanics (but with slightly dif-
ferent prefactors), they obey

â†|n〉 = |n+ 1〉, â|n〉 = n|n− 1〉.

They satisfy the familiar commutation relation, and
â†â acts as the number operator,

[â, â†] = 1, â†â|n〉 = n|n〉.

The dynamics of |G〉 can be written ∂t|G〉 = −µb̂†b̂|G〉
if we define

b̂† = â† − 1, b̂ = â− γ,

where γ = α/µ. The operators b̂† and b̂ are raising
and lowering operators as well, not for the |n〉 states,
but for the eigenstates |j〉,

b̂†|j〉 = |j + 1〉, b̂|j〉 = j|j − 1〉.

Since b̂†b̂ is also a number operator, it is clear that the
eigenvalues of L̂ = µb̂†b̂ are λj = µj, just as in Eqn.
20. For more details on operator methods as applied
to stochastic problems, see [21] for a general review
and [22] for applications to gene expression.

C. Operator methods

The master equation can also be recast in a form that
uses raising and lowering operators, familiar to physicists
from the operator treatment of the quantum harmonic os-
cillator [28]. The idea, detailed in the box, is that these
operators raise and lower the protein number by one, and
analogous operators raise and lower the eigenvalues by
one as well. The operators provide an elegant way to per-
form linear algebraic manipulations, and they facilitate
extension to more complex models [11, 12]. They also
allow one to show that many useful properties, including
orthonormality and completeness of the eigenfunctions,
are inherited from the Hermitian quantum problem [27].
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II. PROTEIN MODIFICATION

Cells respond to signals in their environment on
timescales faster than the minutes to hours required for
proteins to be produced. They do so by modifying pro-
teins that are already present, for example by adding or
removing phosphate groups (see Fig. 1D). Modification
is typically performed by enzymes such as kinases and
phosphatases, and can occur on timescales of seconds or
fractions of a second [29]. This makes protein modifica-
tion much faster than protein production.

A minimal stochastic model of protein modification
therefore assumes that the total number of proteins N
in the cell or cellular compartment is approximately con-
stant on the timescale of modification. The degree of
freedom n is then the number of modified proteins, and
N − n is the number of unmodified proteins. Calling
α and µ the modification and demodification rates, the
master equation reads

dpn
dt

= α[N − (n− 1)]pn−1 + µ(n+ 1)pn+1

−α(N − n)pn − µnpn. (25)

This equation is similar to that for gene expression (Eqn.
1) but with two important differences: (i) n is bounded
from both sides, n ∈ {0, 1, 2, . . . , N}, and (ii) the modifi-
cation propensity α(N − n) is not a constant, but rather
it depends on the number N − n of unmodified proteins
available for modification (Fig. 1E). At the n = 0 bound-
ary the first and fourth terms in Eqn. 25 are absent, while
at the n = N boundary the second and third terms are
absent.

The steady state of Eqn. 25 is readily found by itera-
tion and pattern matching,

pn =

(
N

n

)
ρn(1− ρ)N−n, (26)

where ρ ≡ α/(α + µ). Eqn. 26 is the binomial distribu-
tion (Fig. 1F). It emerges as the steady state because it
describes the probability of achieving n successes out of
a total of N binary trials, where ρ is the success proba-
bility. Here, the trial is whether or not a given protein
is modified, and ρ is the modification probability. The
equation for the generating function can be derived in
the same way as above and reads

∂tG = −(z − 1)[(αz + µ)∂z − αN ]G. (27)

The steady state is

G(z) = [ρ(z − 1) + 1]
N
, (28)

which recovers Eqn. 26 when repeatedly differentiated
according to Eqn. 7.

The eigenvalues and eigenfunctions of the protein mod-
ification process are derived in much the same way as for
gene expression above [23]. The eigenvalues are

λj = (α+ µ)j, (29)

for j ∈ {0, 1, 2, . . . , N}. Unlike for gene expression, the
eigenvalues here depend on both α and µ because both
the modification and demodification propensities are lin-
ear in n. This means that both α and µ determine the
relaxation dynamics, instead of just µ. The eigenfunc-
tions are given in z space by

φj(z) = [(1− ρ)(z − 1)]
j

[ρ(z − 1) + 1]
N−j

, (30)

and in n space by

φjn =
∑
`∈Ω

(−1)j−n+`

(
N − j
`

)(
j

n− `

)
ρ`(1−ρ)N−`, (31)

where Ω is defined by max(0, n− j) ≤ ` ≤ min(n,N − j).
The eigenfunctions and eigenvalues are shown in Fig. 2D
and E. Just as with gene expression, any distribution qn
can be expanded in the eigenfunctions, as shown in Fig.
2F. Here ρ acts as the free parameter. The expansion fol-
lows Eqns. 23 and 24, with the conjugate eigenfunctions
given by [23]

ψjn =
1

(1− ρ)j

∑
`∈Ω

(
N − j + `

`

)(
n

j − `

)
(−ρ)`, (32)

where Ω is defined by max(0, j − n) ≤ ` ≤ j. In fact, no
truncation is necessary in this case since n, and thus j,
is explicitly bounded between 0 and N .

III. POLYMERIZATION

One of the major functions of proteins is to provide
cells with mechanical capabilities. For example, cell
rigidity and mobility are provided by networks of poly-
mers, such as microtubules and actin filaments [30]. A
polymer is a linear chain of monomer proteins that at-
tach to and detach from the polymer at one or both ends.
The attachment and detachment processes make poly-
mers highly dynamic objects that often undergo rapid
and appreciable length fluctuations over a cell’s lifetime.

Here we consider a minimal stochastic model of a poly-
mer that changes dynamically at one end only (Fig. 1G).
In this case, the degree of freedom n ∈ {0, 1, 2, . . . ,∞}
is the number of monomers in the polymer, and α and µ
define the attachment and detachment rates. The master
equation reads

∂tpn = αpn−1 + µpn+1 − αpn − µpn. (33)

This equation differs from the previous two examples
(Eqns. 1 and 25) in that neither the attachment nor the
detachment propensity is linear in n (Fig. 1H). This is
because both attachment and detachment occur only at
the polymer tip, and so neither process is influenced by
how many monomers are already part of the polymer.
The important exception is the case when n = 0; here we
must force the detachment propensity to be zero, since
there are no actual monomers to detach. This accounts
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for the highly nonlinear detachment propensity µ(1−δn0)
shown in Fig. 1H, and implies that at the n = 0 boundary
in Eqn. 33 the first and fourth terms are absent.

The steady state of Eqn. 33 is once again found by
iteration and pattern matching,

pn = (1− γ)γn (34)

where γ ≡ α/µ. We see that we must have α < µ for
Eqn. 34 to be valid. This is because in the opposite
regime α > µ, attachment outpaces detachment, and the
polymer length diverges. Therefore we restrict ourselves
here to the regime α < µ, where detachment dominates,
and the polymer length distribution has a non-divergent
steady state. Eqn. 34 is the geometric distribution, which
is the discrete analog of the exponential distribution. It
is illustrated in Fig. 1I.

The dynamics of the generating function obey

∂tG = −(z − 1)
(µ
z
− α

)
G+ (z − 1)

µ

z
p0(t). (35)

Note that Eqn. 35 is not a partial differential equa-
tion as in the previous two cases. Instead, it is a
non-homogeneous ordinary differential equation in time,
where the forcing term is proportional to the unknown
dynamic function p0(t). In steady state, this function is a
constant p0, which is set by the normalization condition
G(1) = 1, yielding

G(z) =
1− γ
1− γz

. (36)

As expected, Eqn. 36 recovers Eqn. 34 when repeatedly
differentiated according to Eqn. 7.

The presence of the p0(t) term in Eqn. 35 makes it more
difficult than in the previous two cases to find the eigen-
values and eigenfunctions using the generating function.
Nonetheless, since the problem is still perfectly linear in
p, we make progress directly in n space. To do so, we
write Eqn. 33 as a matrix equation, ∂t~p = −L~p, where

L =



α −µ
−α α+ µ −µ

−α α+ µ −µ
. . .

. . .
. . .

−α α+ µ −µ
−α µ

 (37)

is an N + 1 by N + 1 tridiagonal matrix. It is the ma-
trix form of the linear operator L̂. Here, for concreteness
we have assumed that the polymer can grow only up to
a maximum length n = N , but all subsequent results
remain valid in the limit N → ∞. A maximum length
could correspond physically to a polymer growing in a
spatially confined domain, but here we introduce it sim-
ply as a mathematical convenience.

The eigenvalues of a class of tridiagonal matrices, of
which Eqn. 37 is a member, have been derived analyt-
ically [31] using clever methods of manipulating integer

sequences [32]. For Eqn. 37 the eigenvalues satisfy [31]

λj = α+ µ+ 2
√
αµ cos θj , (38)

where θj is restricted by

0 = αµ sin(Nθj) + αµ sin[(N + 2)θj ]

+ (α+ µ)
√
αµ sin[(N + 1)θj ] (39)

and θj 6= mπ for integer m. Using the trigonometric
identity sin(a + b) = sin a cos b + sin b cos a on the first
line of Eqn. 39 we obtain

0 = [2αµ cos θj + (α+ µ)
√
αµ] sin[(N + 1)θj ] (40)

=
√
αµλj sin[(N + 1)θj ], (41)

where the second step follows from Eqn. 38. For Eqn. 41
to be true, we must either have λj = 0 or (N + 1)θj =
jπ for any integer j. The set of integers j that yield
independent values of λj in Eqn. 38 and also satisfy θj 6=
mπ are j ∈ {1, 2, . . . , N}. Therefore the eigenvalues are

λj =

{
0 j = 0

α+ µ− 2
√
αµ cos

(
jπ
N+1

)
1 ≤ j ≤ N,

(42)

where we have freely changed the sign of the cosine term
due to its symmetry with respect to j, so that λj in-
creases with j. Eqn. 42 shows that, apart from the zero
eigenvalue, the eigenvalues are confined within the region
from α+µ− 2

√
αµ to α+µ+ 2

√
αµ (see Fig. 2H). Even

when we take N → ∞, the range of the eigenvalues re-
mains finite, while their density becomes infinite. This
implies that, in contrast to the cases of gene expression
and protein modification where there are fast and slow
modes, in polymerization there are only slow modes: ev-
ery eigenfunction (except the stationary mode) relaxes
on a timescale that is on the order of α+ µ.

With the eigenvalues known, the eigenfunctions are
straightforward to compute using the matrix form of the

eigenvalue relation, L~φj = λj~φ
j . For example, when

j = 0 we know that ~φ0 is equivalent to the stationary
distribution,

φ0
n = (1− γ)γn. (43)

When j > 0, we find ~φj by solving the eigenvalue relation
for each row n = 0, 1, 2, . . . in succession. This is equiv-
alent to the iteration and pattern-matching procedure
used to find the stationary distribution (see Appendix
A). The result is

φjn = (1− γ)

n∑
`=0

(−1)n+`

(
bn+`

2 c
`

)
(−γ)d

n−`−1
2 e(

√
γχj)

`

(44)
for j > 0, where χj ≡ 2 cos[jπ/(N + 1)]. Here we use b·c
and d·e to denote the floor and ceiling functions, respec-
tively, and we freely choose the prefactor to match that
in Eqn. 43. Several eigenfunctions are shown in Fig. 2G.
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The conjugate eigenfunctions satisfy ~ψjL = λj ~ψ
j . That

is, in matrix notation, the eigenfunctions are column vec-
tors while the conjugate eigenfunctions are row vectors.
The conjugate eigenfunctions are similarly found by iter-
ation and pattern-matching. They read

ψjn =

1 j = 0∑n
`=0

(bn+`
2 c
`

)
(−γ)−d

n−`
2 e
(
χj√
γ

)`
j > 0,

(45)

up to a constant prefactor that can be chosen to satisfy
orthonormality with φjn. Just as for gene expression and
protein modification, the eigenfunctions and conjugate
eigenfunctions form a basis in which any distribution qn
can be expanded, as shown in Fig. 2I.

IV. EXTENSIONS AND OUTLOOK

In this chapter, we have introduced and solved mini-
mal stochastic models of three canonical processes in cell
biology: gene expression, protein modification, and poly-
merization. We have developed a set of analytic tools
ranging from straightforward iteration, to the use of the
generating function, eigenfunction expansion, and raising
and lowering operators from quantum mechanics. These
tools allow one to solve a given problem in multiple ways,
and they often lead to important physical insights. In
particular, we have seen that the eigenvalues tell us about
the relaxation dynamics of a stochastic process, and the
eigenfunctions form a convenient basis for expansion. In
principle, exploiting the eigenfunctions is always possible
because the master equation is a linear equation.

These and other tools have been used to study more
complex and realistic processes that extend beyond the
three minimal models considered here. In the context of
gene expression, it is now known that proteins are of-
ten not produced one molecule at a time, but instead
in quick bursts of several or tens of molecules at a time
[3, 33, 34]. Additionally, the expression levels of differ-
ent genes’ proteins are far from independent. Rather,
many genes express proteins called transcription factors
that regulate the expression of other genes. These regu-
latory interactions form networks in which phenotypic,
developmental, and behavioral information is encoded
[26]. Many researchers have used the generating func-
tion, eigenfunction expansion, and operator methods to
solve models of bursty gene expression, gene regulation,
and gene regulation with bursts [3, 8–13, 22].

Protein modification events also occur in a tightly reg-
ulated manner among different protein types. Collec-
tively these coupled modification events form cell sig-
naling networks. Since modification is faster than gene
expression, signaling networks often encode cellular re-
sponses that need to be temporally and spatially precise,
such as rapid behavioral responses to environmental sig-
nals [29]. Indeed, operator methods, field theory, and
the renormalization group haven proven especially useful

in the analysis of spatially heterogeneous signaling pro-
cesses [21, 35]. Eigenfunction expansion has also been
used to study spatially heterogenous protein modifica-
tion at the cell membrane [23]. In general, many of the
tools that we have presented in this chapter can be ex-
tended to a spatially resolved context [16, 17].

Finally, polymerization can be far more complex than
the model considered here. Microtubules undergo peri-
ods of steady growth followed by periods of rapid shrink-
age, a process termed dynamic instability [30]. Both
microtubules and actin filaments actively regulate their
length, often via the action of molecular motors, resulting
in relative fluctuations that are much smaller than for the
geometric distribution (Fig. 1I) [36, 37]. Straightforward
iteration and more sophisticated analytic techniques have
been used to solve models of dynamic instability, length
regulation, and other complex polymerization processes
[36–39].

Fluctuations dominate almost all processes at the scale
of the cell. Stochastic models will continue to be neces-
sary to understand how cells suppress or exploit these
fluctuations. Going forward, our hope is that these an-
alytic tools will be expanded upon and extended to new
problems, allowing minimal models to remain a powerful
complement to computer simulations and experiments in
understanding cell function.

Appendix A: Exercises for the reader

1. From the stationary state of Eqn. 1, derive Eqn. 2
by iteration. That is, set n = 0 to find p1 in terms of
p0, then set n = 1 to find p2, and so on until a pat-
tern is identified. What sets p0? Repeat for Eqns.
25 and 33 to derive Eqns. 26 and 34, respectively.

Finally, repeat for the ~φj and ~ψj eigenfunction re-
lations to derive Eqns. 43-45. This last task may
be aided by knowledge of some integer sequences,
e.g. from [40].

2. Derive Eqn. 8 by multiplying Eqn. 1 by zn and
summing both sides over n. Hint: distribute the
sum over all four terms on the right-hand side, and
where necessary shift the index of summation to
obtain pn instead of pn±1. Repeat for Eqns. 25 and
33 to derive Eqns. 27 and 35, respectively.

3. Derive Eqn. 21 from Eqns. 14 and 20 by taking
derivatives (see Eqn. 15). Hint: the nth deriva-
tive of a product follows a binomial expansion,
∂nx (fg) =

∑n
k=0

(
n
k

)
(∂kxf)(∂n−kx g). Repeat for Eqn.

30 to derive Eqn. 31.

4. Calculate the relative fluctuations σ/〈n〉 for the bi-
nomial (Eqn. 26) and geometric distributions (Eqn.
34), writing the expressions entirely in terms of 〈n〉
(and N for the binomial distribution). How do the
expressions compare to that for the Poisson distri-
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bution, σ/〈n〉 = 〈n〉−1/2? Sketch a plot of σ/〈n〉
vs. 〈n〉 for all three distributions.
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