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Abstract

The bivariate series θ(q, x) :=
∑

∞

j=0 q
j(j+1)/2xj defines a partial theta function. For

fixed q (|q| < 1), θ(q, .) is an entire function. We prove a property of stabilization of
the coefficients of the Laurent series in q of the zeros of θ. These series are of the form
−q−j + (−1)jqj(j−1)/2(1 +

∑

∞

k=1 gj,kq
k). The coefficients of the stabilized series are ex-

pressed by the positive integers rk giving the number of partitions into parts of three differ-
ent kinds. They satisfy the recurrence relation rk =

∑

∞

ν=1(−1)ν−1(2ν + 1)rk−ν(ν+1)/2. Set

(Hm,j) : (
∑

∞

k=0 rkq
k)(1− qj+1+ q2j+3−· · ·+(−1)m−1q(m−1)j+m(m−1)/2) =

∑

∞

k=0 r̃k;m,jq
k.

Then for k ≤ (m+2j)(m+1)/2−1−j and j ≥ (2m−1+
√
8m2 + 1)/2 one has gj,k = r̃k;m,j .
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The partial theta function is the sum of the bivariate series θ(q, x) :=
∑

∞

j=0 q
j(j+1)/2xj,

where q ∈ C (|q| < 1) is considered as a parameter and x ∈ C as a variable. For each q fixed, θ is
an entire function. The terminology “partial theta function” stems from the fact that, compared
to the Jacobi theta function Θ(q, x) :=

∑

∞

−∞
qj

2

xj, only partial summation is performed (only
over the non-negative indices), and θ(q, x) = Θ(

√
q,
√
qx).

The interest in the study of θ is explained by its applications in different domains. For
instance, its relationship to hyperbolic polynomials (i.e. real polynomials with all roots real)
has been exhibited in the recent papers [11], [6], [10] and [7] which continue the earlier articles
of Hardy, Petrovitch and Hutchinson [4], [5] and [12]. Other, better known domains, where θ is
used, are the theory of (mock) modular forms (see [3]), asymptotic analysis (see [2]), statistical
physics and combinatorics (see [14]), Ramanujan type q-series (see [15]); see also [1].

For |q| ≤ 0.108 all zeros of θ are distinct, see [8]. They can be indexed by the order of
the pole at 0 they have as functions of q. More precisely, the j-th zero of the partial theta
function θ(q, x) :=

∑

∞

j=0 q
j(j+1)/2xj can be expanded in a Laurent series of the form −ξj =

−q−j + (−1)jqj(j−1)/2(1 +
∑

∞

k=1 gj,kq
k), see [9] (we set gj,0 = 1). Also in [9] is shown that there

exists a series (H) :
∑

∞

k=0 rkq
k, where rk =

∑

∞

ν=1(−1)ν−1(2ν + 1)rk−ν(ν+1)/2, r0 = 1, rk = 0
for k < 0, with the property that for k = 1, . . . , j and j ≥ 2 one has gj,k = rk. This property
can be termed as stabilization of the Laurent series of the zeros ξj as j increases.

In the present paper we improve this last property. We define the power series (Hm,j),
m, j ∈ N, by the formula:

(Hm,j) : (

∞
∑

k=0

rkq
k)(1− qj+1 + q2j+3 − · · ·+ (−1)m−1q(m−1)j+m(m−1)/2) =

∞
∑

k=0

r̃k;m,jq
k .

Thus (H1,j) = (H). We prove the following theorem:
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Theorem 1. For k ≤ (m + 2j)(m + 1)/2 − 1 − j and j ≥ (2m − 1 +
√
8m2 + 1)/2 one has

gj,k = r̃k;m,j.

The sequence {rk} is well-known, see [13]. It gives the number of partitions into parts of
three different kinds. We list its first 39 elements:

1 , 3 , 9 , 22 , 51 , 108 , 221 , 429 , 810 , 1479 , 2640 , 4599 , 7868 , 13209 , 21843 , 35581 , 57222 ,

90882 , 142769 , 221910 , 341649 , 521196 , 788460 , 1183221 , 1762462 , 2606604 ,

3829437 , 5590110 , 8111346 , 11701998 , 16790136 , 23964594 , 34034391 ,

48104069 , 67679109 , 94800537 , 132230021 , 183686994 , 254170332 .

Proof of Theorem 1:

Set −ξj = −q−j + (−1)jqj(j−1)/2(
∑

∞

k=0 gj,kq
k). For ν > 1 one has

(−ξj)
ν = (−q−j)ν + ν(−q−j)ν−1(−1)jqj(j−1)/2(

∞
∑

k=0

gj,kq
k) +N ,

where N contains all non-linear terms in gj,k. Consider the series θ(q,−ξj) =
∑

∞

ν=0Ψν , Ψν =
qν(ν+1)/2(−ξj)

ν . The lowest degree of q in the expansion of Ψν in Laurent series equals λν :=
ν(ν+1)/2−jν. If j ≥ 2, then the minimal degree of q encountered in a coefficient of a non-linear
term in the expansion of Ψν is

j(j − 1)− j(ν − 2) + ν(ν + 1)/2 = j(j + 1− ν) + ν(ν + 1)/2 . (1)

The coefficients gj,k can be computed from the condition θ(q,−ξj) = 0, by considering the
coefficients of the powers of q starting from the lowest one which is λj−1 = λj = λν = −j(j−1)/2.
When j is sufficiently large compared to k, then non-linear terms do not intervene in these
computations. In the proof of the theorem we explicit the conditions under which this does not
take place.

The matrix that follows is denoted by M1. Its columns contain the coefficients of the Laurent
series in q of Ψ0, Ψj−3, . . ., Ψj+2, Ψ2j−1 and Ψ2j . The first column indicates the power of q.
For negative powers only the rows containing non-zero coefficients are represented. For brevity
we set a = gj,0, b = gj,1, c = gj,2, . . .. The matrix corresponds to an index j greater than 4.
(For j = 4 the corresponding matrix is given in [9].) In the rows of higher powers of q (which
are not represented in the matrix) non-linear terms in a, b, . . . are present as well.

j + 5 (j − 3)c −(j − 2)h (j − 1)u −ju (j + 1)h −(j + 2)c
j + 4 (j − 3)b −(j − 2)d (j − 1)h −jh (j + 1)d −(j + 2)b
j + 3 (j − 3)a −(j − 2)c (j − 1)d −jd (j + 1)c −(j + 2)a
j + 2 −(j − 2)b (j − 1)c −jc (j + 1)b
j + 1 −(j − 2)a (j − 1)b −jb (j + 1)a
j (j − 1)a −ja 1

1 to j − 1

0 1 −1

λj+2 (−1)j−3 (−1)j+2

λj+2 − 1
λj+1 (−1)j−2 (−1)j+1

λj (−1)j−1 (−1)j

Ψ0 Ψj−3 Ψj−2 Ψj−1 Ψj Ψj+1 Ψj+2 Ψ2j−1 Ψ2j
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If one extends the matrix M1 to the right, by adding the columns of Ψ2j+1, Ψ2j+2, . . ., then
the terms (−1)p appear in the columns of Ψp and in the rows corresponding to qp(p+1)/2−pj.
Consider the restriction of the matrix M1 to its rows not containing non-linear terms. Hence its
µ-th column (considered only in the rows corresponding to qs for s ≥ j) up to a sign is of the
form (. . . , 0, µa, µb, µc, . . .). If there are no terms (−1)p for p > 2j, the rows of the matrix give
rise to the linear equations

− a+ 1 = 0 , − b+ 3a = 0 , − c+ 3b = 0 , − d+ 3c− 5a = 0 , − h+ 3d− 5b = 0 . . . (2)

The solution to this system is the series (H).
Enlarge the matrix M1 to the right by adding the column of Ψ2j+1. This adds the term −1

in the column of Ψ2j+1 and the row of q2j+1 and no other non-zero terms. We denote by M2 the
new matrix thus obtained. For ν ≤ j we set g0j,ν = gj,ν and for ν ≥ j+1 we set gj,ν = g0j,ν + g∗j,ν,

where g0j,ν are solutions to system (2), i.e.

−g0j,0 + 1 = 0 −g0j,1 + 3g0j,0 = 0 −g0j,2 + 3g0j,1 = 0

−g0j,3 + 3g0j,2 − 5g0j,0 = 0 −g0j,4 + 3g0j,3 − 5g0j,1 = 0 . . .
(3)

and g∗j,ν are solutions to the system

−g∗j,j+1 − 1 = 0 −g∗j,j+2 + 3g∗j,j+1 = 0 −g∗j,j+3 + 3g∗j,j+2 = 0

−g∗j,j+4 + 3g∗j,j+3 − 5g∗j,j+1 = 0 −g∗j,j+5 + 3g∗j,j+4 − 5g∗j,j+2 = 0 . . .

(4)
The solution to system (4) is the series −(H) in which the second indices of the unknown
variables g∗j,k are shifted by j + 1 compared to system (3). Hence the solution to the linear

system resulting from the matrix M2 is the series (H2,j) = (H1,j)(1− qj+1).
By adding one by one to the matrix the columns of Ψ2j+2, Ψ2j+3, . . . one obtains the matrices

M3, M4, . . . which define linear systems whose solutions are the coefficients of the corresponding
series (H3,j), (H4,j), . . .. These solutions are the coefficients gj,k provided that the following two
conditions are fulfilled:

(i) k ≤ (m+2j)(m+2j+1)/2− (m+2j)j − 1− j = (m+2j)(m+1)/2− 1− j. Indeed, the
last column of the matrix Mm is the one of Ψm+2j−1. The index k can take only these values
for which the term (−1)p has not appeared in the row of qp(p+1)/2−pj for p = m+2j. These are
the values for which the absence of the columns of Ψν for ν ≥ m + 2j in Mm does not affect
the computation of the coefficients gj,k). One has to subtract j because the coefficient a = gj,0
appears first in the row corresponding to qj.

(ii) The minimal power of q multiplying a non-linear term is ≥ (m + 2j)(m + 2j + 1)/2 −
(m+ 2j)j = (m+ 2j)(m + 1)/2 (hence the absence of the non-linear terms does not affect this
computation either). This minimal power equals

min
ν

(j(j + 1− ν) + ν(ν + 1)/2) = j(j + 3)/2 see (1).

Hence one must have

j(j + 3)/2 ≥ (m+ 2j)(m + 1)/2 , i. e. j ≥ (2m− 1 +
√

8m2 + 1)/2 . �
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Remark 2. In systems (2) and (3) the coefficients of the unknown variables are defined by the
Laurent expansions of the monomials Ψν . Hence we implicitly suppose that no monomial Ψν

with ν < 0 (i.e. a nonexisting one) is involved. The coefficients −1, 3, −5, . . . of the variables
a, b, c, . . . in these systems are obtained when considering the expansions of pairs of monomials
(Ψν ,Ψ2j−1−ν). The column of Ψν (resp. Ψ2j−1−ν) gives the terms (see this column in the
matrix) ±νa, ±νb, ±νc, . . . (resp. ±(2j − 1− ν)a, ±(2j − 1− ν)b, ±(2j − 1− ν)c, . . .). Should
there be involved a monomial Ψν with ν < 0 in the computation of a, b, c, . . ., then these
nonexisting monomials should not be taken into account and the corresponding coefficients of
systems (2) and (3) should be changed.

The minimal positive powers of q encountered in the pairs (Ψ1,Ψ2j−2), (Ψ0 = 1,Ψ2j−1) and
(Ψ−1,Ψ2j) (of which only the monomial Ψ2j exists) equal respectively j(j−1)/2+1, j(j+1)/2 and
j(j +3)/2. The third of these numbers is precisely equal to the minimal power of q multiplying
a non-linear term, see (ii). For any monomial Ψµ with µ ≥ 2j the minimal positive power of
q encountered in its Laurent expansion is ≥ j(j + 3)/2. Therefore pairs (Ψν ,Ψ2j−1−ν) with
negative values of ν are not involved in our reasoning.
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