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Abstract. In this paper we study an alternating sign matrix analogue of the Chan-Robbins-Yuen
polytope, which we call the ASM-CRY polytope. We show that this polytope has Catalan many
vertices and its volume is equal to the number of standard Young tableaux of staircase shape; we
also determine its Ehrhart polynomial. We achieve the previous by proving that the members of
a family of faces of the alternating sign matrix polytope which includes ASM-CRY are both order
and flow polytopes. Inspired by the above results, we relate three established triangulations of
order and flow polytopes, namely Stanley’s triangulation of order polytopes, the Postnikov-Stanley
triangulation of flow polytopes and the Danilov-Karzanov-Koshevoy triangulation of flow polytopes.
We show that when a graph G is a planar graph, in which case the flow polytope FG is also an order
polytope, Stanley’s triangulation of this order polytope is one of the Danilov-Karzanov-Koshevoy
triangulations of FG. Moreover, for a general graph G we show that the set of Danilov-Karzanov-
Koshevoy triangulations of FG is a subset of the set of Postnikov-Stanley triangulations of FG.
We also describe explicit bijections between the combinatorial objects labeling the simplices in the
above triangulations.
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1. Introduction

In this paper, we study a family of faces of the alternating sign matrix polytope inspired by
an intriguing face of the Birkhoff polytope: the Chan-Robbins-Yuen (CRY) polytope [7]. We call
this family of faces the ASM-CRY family of polytopes. Interest in the CRY polytope centers
around its volume formula as a product of consecutive Catalan numbers; this has been proved [24],
but the problem of finding a combinatorial proof remains open. We prove that the polytopes
in the ASM-CRY family are order polytopes and use Stanley’s theory of order polytopes [20] to
give a combinatorial proof of formulas for their volumes and Ehrhart polynomials. We also show
that these polytopes, and all order polytopes of strongly planar posets, are flow polytopes. This
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observation brings us to the general question of relating the different known triangulations of flow
and order polytopes. We show that when G is a planar graph, in which case the flow polytope of G
is also an order polytope, then Stanley’s canonical triangulation of this order polytope [20] is one
of the Danilov-Karzanov-Koshevoy triangulations of the flow polytope of G [8], a statement first
observed by Postnikov [15]. Moreover, for general G we show that the set of Danilov-Karzanov-
Koshevoy triangulations of the flow polytope of G is a subset of the set of framed Postnikov-Stanley
triangulations of the flow polytope of G [15, 19]. We also describe explicit bijections between the
combinatorial objects labeling the simplices in the above triangulations, answering a question posed
by Postnikov [15].

We highlight the main results of the paper in the following theorems. While we define some of
the notation here, some only appears in later sections to which we give pointers after the relevant
statements.

In Definition 4.1, we define the ASM-CRY family F(ASM)(n) of polytopes Pλ(n) indexed by
partitions λ ⊆ δn where δn := (n − 1, n − 2, . . . , 1). In Theorem 4.3, we prove that the polytopes
in this family are faces of the alternating sign matrix polytope A(n) defined in [4, 22]. In the case
when λ = ∅ we obtain an analogue of the Chan-Robbins-Yuen (CRY) polytope, which we call the
ASM-CRY polytope, denoted by ASMCRY(n). Our main theorem about this family of polytopes
is the following. For the necessary definitions, see Sections 3.3 and 4.

Theorem 1.1. The polytopes in the family F(ASM)(n) are affinely equivalent to flow and order
polytopes. In particular, Pλ(n) is affinely equivalent to the order polytope of the poset (δn \λ)∗ and
the flow polytope FG(δn\λ)∗

.

By Stanley’s theory of order polytopes [20] it follows that the volume of the polytope Pλ(n) for
any Pλ(n) ∈ F(ASM)(n) is given by the number of linear extensions of the poset (δn \ λ)∗ (the
number of Standard Young Tableaux of skew shape δn/λ), and its Ehrhart polynomial is given by
the order polynomial of the poset (counting weak plane partitions of skew shape δn/λ with bounded
parts). See Corollary 4.7 for the general statement. We give the application to ASMCRY(n) in
the corollary below. For further examples of polytopes in F(ASM)(n), see Figure 7.

Corollary 1.2. ASMCRY(n) is affinely equivalent to the order polytope of the poset δ∗n. Thus,

ASMCRY(n) has Cat(n) = 1
n+1

(
2n
n

)
vertices, its normalized volume is given by

vol(ASMCRY(n)) = #SY T (δn),

and its Ehrhart polynomial is

LASMCRY(n)(t) = Ωδ∗n(t+ 1) =
∏

1≤i<j≤n

2t+ i+ j − 1

i+ j − 1
.

In Theorems 3.8 and 3.10, we make explicit the relationship between flow and order polytopes,
showing that they correspond under certain planarity conditions. For an introduction to flow and
order polytopes, see Section 3, and for the definitions of (δn \ λ)∗ and G(δn\λ)∗ , see Definition 4.4
and the discussion before Theorem 3.10, respectively.

As mentioned earlier, a canonical triangulation of order polytopes was given by Stanley [20], and
two families of triangulations of flow polytopes were constructed by Postnikov and Stanley [15, 19]
as well as Danilov, Karzanov and Koshevoy [8]. It is natural to try to understand the relation
among these triangulations, and we prove the following results, the first of which was first observed
by Postnikov [15]. For the necessary definitions, see Sections 5 and 6.

Theorem 1.3 (Postnikov [15]). Given a planar graph G, the canonical triangulation of the order
polytope O(PG) is equal to the Danilov-Karzanov-Koshevoy triangulation of the flow polytope FG
coming from the planar framing.
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Theorem 1.4. Given a framed graph G, the set of Danilov-Karzanov-Koshevoy triangulations of
the flow polytope FG is a subset of the set of framed Postnikov-Stanley triangulations of FG.

All three of the above-mentioned triangulations are indexed by natural sets of combinatorial
objects and we give explicit bijections between these sets in Sections 5 and 6.

The outline of the paper is as follows. In Section 2, we discuss the Birkhoff and alternating
sign matrix polytopes, as well as some of their faces. In Section 3, we give background information
on flow and order polytopes and show that flow polytopes of planar graphs are order polytopes and
that order polytopes of strongly planar posets are flow polytopes. In Section 4, we study a family
of faces of the alternating sign matrix polytopes and show that they are affinely equivalent to both
flow and order polytopes and calculate their volumes and Ehrhart polynomials in particularly nice
cases. In Section 5, we study triangulations of flow polytopes of planar graphs (which include the
polytopes of Section 4) and show that their canonical triangulations defined by Stanley [20] are also
Danilov-Karzanov-Koshevoy triangulations [8]. Finally, in Section 6, we study triangulations of flow
polytopes of an arbitrary graph, that is, the Danilov-Karzanov-Koshevoy triangulations and the
framed Postnikov-Stanley triangulations. We show that the former is a subset of the latter. We also
exhibit explicit bijections between the combinatorial objects indexing the various triangulations,
answering a question raised by Postnikov [15].

2. Faces of the Birkhoff and alternating sign matrix polytopes

In this section, we explain the motivation for our study of certain faces of the alternating sign
matrix polytope. If P is an integral polytope, its Ehrhart polynomial LP(t) is the polynomial
that counts the number of lattice points of the dilated polytope t · P. In this case the relative
volume of P is the leading term of LP(t) and its normalized volume vol(P) ∈ N is the product
of its relative volume and dim(P)!. We start by defining the Birkhoff and Chan-Robbins-Yuen
polytopes; we then define the alternating sign matrix counterparts.

Definition 2.1. The Birkhoff polytope, B(n), is defined as

B(n) :=
{

(bij)
n
i,j=1 ∈ Rn

2 | bij ≥ 0,
∑

i

bij = 1,
∑

j

bij = 1
}
.

Matrices in B(n) are called doubly-stochastic matrices. A well-known theorem of Birkhoff
[5] and Von Neumann [23] states that B(n), as defined above, equals the convex hull of the n × n
permutation matrices. Note that B(n) has n2 facets and dimension (n − 1)2, its vertices are the
permutation matrices, and its volume has been calculated up to n = 10 by Beck and Pixton [3]. De
Loera, Liu and Yoshida [9] gave a closed summation formula for the volume of B(n), which, while
of interest on its own right, does not lend itself to easy computation. Shortly after, Canfield and
McKay [6] gave an asymptotic formula for the volume.

A special face of the Birkhoff polytope, first studied by Chan-Robbins-Yuen [7], is as follows.

Definition 2.2. The Chan-Robbins-Yuen polytope, CRY(n), is defined as

CRY(n) :=
{

(bij)
n
i,j=1 ∈ B(n) | bij = 0 for i− j ≥ 2

}
.

CRY(n) has dimension
(
n
2

)
and 2n−1 vertices. This polytope was introduced by Chan-Robbins-

Yuen [7] and in [24] Zeilberger calculated its normalized volume as the following product of Catalan
numbers.

Theorem 2.3 (Zeilberger [24]).

vol(CRY(n)) =

n−2∏

i=1

Cat(i)
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where Cat(i) = 1
i+1

(
2i
i

)
.

The proof in [24] used a relation (see Theorem 3.3) expressing the volume as a value of the
Kostant partition function (see Definition 3.4) and a reformulation of the Morris constant term
identity [14] to calculate this value. No combinatorial proof is known.

Next we give an analogue of the Birkhoff polytope in terms of alternating sign matrices. Recall
that alternating sign matrices (ASMs) [13] are square matrices with the following properties:

• entries ∈ {0, 1,−1},
• the entries in each row/column sum to 1, and
• the nonzero entries along each row/column alternate in sign.

The ASMs with no negative entries are the permutation matrices. See Figure 1 for an example.




1 0 0
0 1 0
0 0 1






1 0 0
0 0 1
0 1 0






0 1 0
1 0 0
0 0 1






0 1 0
1 −1 1
0 1 0






0 1 0
0 0 1
1 0 0






0 0 1
1 0 0
0 1 0






0 0 1
0 1 0
1 0 0




Figure 1. All the 3× 3 alternating sign matrices.

Definition 2.4 (Behrend-Knight [4], Striker [22]). The alternating sign matrix polytope,
A(n), is defined as follows:

A(n) :=
{

(aij)
n
i,j=1 ∈ Rn

2 | 0 ≤
i′∑

i=1

aij ≤ 1, 0 ≤
j′∑

j=1

aij ≤ 1,

n∑

i=1

aij = 1,

n∑

j=1

aij = 1
}
,

where we have the first sum for any 1 ≤ i′, j ≤ n, the second sum for any 1 ≤ j′, i ≤ n, the third
sum for any 1 ≤ j ≤ n, and the fourth sum for any 1 ≤ i ≤ n.

Behrend and Knight [4], and independently Striker [22], defined A(n). The alternating sign
matrix polytope can be seen as an analogue of the Birkhoff polytope, since the former is the convex
hull of all alternating sign matrices (which include all permutation matrices) while the latter is
the convex hull of all permutation matrices. The polytope A(n) has 4((n − 2)2 + 1) facets (for
n ≥ 3) [22], its dimension is (n−1)2, and its vertices are the n×n alternating sign matrices [4, 22].
The Ehrhart polynomial has been calculated up to n = 5 [4]. Its normalized volume for n = 1, . . . , 5
is calculated to be

1, 1, 4, 1376, 201675688,

and no asymptotic formula for its volume is known.
In analogy with CRY(n), we study a special face of the ASM polytope we call the ASM-CRY

polytope (and show, in Theorem 4.3, it is indeed a face of A(n)).

Definition 2.5. The ASM-CRY polytope is defined as follows.

ASMCRY(n) :=
{

(aij)
n
i,j=1 ∈ A(n) | aij = 0 for i− j ≥ 2

}
.

Since the CRY(n) polytope has a nice product formula for its normalized volume, it is then
natural to wonder if the volume of the alternating sign matrix analogue of CRY(n), which we denote
by ASMCRY(n), is similarly nice. In Theorem 1.1 and Corollary 1.2, we show that ASMCRY(n)
is both a flow and order polytope, and using the theory established for the latter, we give the volume
formula and the Ehrhart polynomial of ASMCRY(n). Just like in the CRY(n) case, all formulas
obtained are combinatorial. Unlike in the CRY(n) case, all the proofs involved are combinatorial.
In Theorem 1.1, we extend these results to a family of faces F(ASM)(n) of the ASM polytope, of
which ASMCRY(n) is a member; see Section 4.
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ASMCRY(3)

(b)

.4 .2 .1 .3

.6 0.1

.7 .2

.7 .3

.3

.10

0 0

(c)

.3 .4 .1 .2

.7 -.1-.2

.8 .1

.9 .1

.4

.10

0 0

(d)

Figure 2. (a) The polytope CRY(3) in R3, (b) the polytope ASMCRY(3) in R3,
(c) a doubly-stochastic matrix in CRY(4), (d) a matrix in ASMCRY(4).

3. Flow and order polytopes

In order to state and prove Theorem 1.1 in Section 4, we need to discuss flow and order polytopes.
In Section 3.1, we define flow and order polytopes and also explain how to see CRY(n) as the flow
polytope of the complete graph. In Sections 3.2 and 3.3, we prove that the flow polytope of a
planar graph is the order polytope of a related poset, and vice versa.

3.1. Background and definitions. LetG be a connected graph on the vertex set [n] := {1, 2, . . . , n}
with edges directed from the smallest to largest vertex. We assume that each vertex v ∈ {2, 3, . . . , n−
1} has both incoming and outgoing edges. Denote by in(e) the smallest (initial) vertex of edge e
and fin(e) the biggest (final) vertex of edge e.

Definition 3.1. A flow fl of size one on G is a function fl : E(G)→ R≥0 such that

1 =
∑

e∈E,in(e)=1

fl(e) =
∑

e∈E,fin(e)=n

fl(e),

and for 2 ≤ i ≤ n− 1

∑

e∈E,fin(e)=i

fl(e) =
∑

e∈E,in(e)=i

fl(e).

The flow polytope FG associated to the graph G is the set of all flows fl : E(G)→ R≥0 of size
one on G.

Remark 3.2. Note that the restriction that at each vertex v ∈ [2, n − 1] of G there are both
incoming and outgoing edges is not a serious one. If there is a vertex v ∈ [2, n − 1] with only
incoming or outgoing edges, then in FG the flow on all these edges must be zero, and thus, up to
removing such vertices, any flow polytope FG is equivalent to a flow polytope defined as above.

The polytope FG is a convex polytope in the Euclidean space R#E(G) and its dimension is
dim(FG) = #E(G) −#V (G) + 1 (e.g. see [1]). The vertices of FG are given by unit flows along
maximal directed paths or routes of G from the source (1) to the sink (n) [17, §13]. Figure 3
shows the equations of FK5 and explains why this polytope is equivalent to CRY(4). The same
correspondence shows that FKn+1 and CRY(n) coincide. The following theorem connects volumes
of flow polytopes and Kostant partition functions.

5



a b c d

fe

h

j

g

i0

0 0

1 = a + b + c + d

0 = e + f + g − a

0 = h + i− b− e

0 = j − c− f − h
a

b

c

d

e

g

f

h

i

j

1 0 0 0 -1

K5

Figure 3. Graph K5 with edges directed from smaller to bigger vertex. The flow
variables on the edges are a, b, c, d, e, f, g, h, i, j, the net flows in the vertices are
1, 0, 0, 0,−1. The equations defining the flow polytope corresponding to K5 are in
the middle. Note that these same equations define CRY(4) as can be seen from the
matrix on the left, where we denoted by • entries that are determined by the variables
a, b, . . . , j.

Theorem 3.3 (Postnikov-Stanley [15, 19], Baldoni-Vergne [1]). For a loopless graph G on the
vertex set {1, 2 . . . , n}, with di = (indegree of i)− 1,

vol (FG) = KG(0, d2, . . . , dn−1,−
n−1∑

i=2

di),

where KG(a) is the Kostant partition function and vol is normalized volume.

Recall the definition of the Kostant partition function.

Definition 3.4. The Kostant partition function KG(v) is the number of ways to write the
vector v as a nonnegative linear combination of the positive type An−1 roots corresponding to the
edges of G, without regard to order. The edge (i, j), i < j, of G corresponds to the vector ei − ej ,
where ei is the ith standard basis vector in Rn.

It is easy to see by definition that the Ehrhart polynomial of FG in variable t is equal to
KG(t, 0, . . . , 0,−t).

Now we are ready to define order polytopes and relate them to flow polytopes.

Definition 3.5 (Stanley [20]). The order polytope, O(P ), of a poset P with elements {t1, t2, . . . , tn}
is the set of points (x1, x2, . . . , xn) in Rn with 0 ≤ xi ≤ 1 and if ti ≤P tj then xi ≤ xj . We identify
each point (x1, x2, . . . , xn) of O(P ) with the function f : P → R with f(ti) = xi.

In general, computing or finding a combinatorial interpretation for the volume of a polytope is
a hard problem. Order polytopes are an especially nice class of polytopes whose volume has a
combinatorial interpretation.

Theorem 3.6 (Stanley [20]). Given a poset P we have that
(i) the vertices of O(P ) are in bijection with the order ideals of P ,

(ii) the normalized volume of O(P ) is e(P ), where e(P ) is the number of linear extensions of
P ,

(iii) the Ehrhart polynomial LO(P )(m) of O(P ) equals the order polynomial Ω(P,m+ 1) of P .

Definition 3.7. Given a poset P and a positive integer m, the order polynomial Ω(P,m) is the
number of order preserving maps η : P → {1, 2, . . . ,m}.
3.2. Flow polytopes of planar graphs are order polytopes. The following theorem, which
states that a flow polytope of a planar graph is an order polytope, is a result communicated to us
by Postnikov [15]. We need the following conventions. Given a connected graph G on the vertex
set [n], we draw it in the plane so that the vertices 1, 2, . . . , n are on a horizontal line in this order.
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1 2 3 4 5 1 2 3 4 5

G PG

(a) (b) (c)

G′

Figure 4. (a) A planar graph G, (b) the truncated dual graph G′ shown in red,
(c) the Hasse diagram of PG.

We say that G is planar if it has a planar embedding with 1, 2, . . . , n fixed on a horizontal line. See
Figure 4. Given such a planar embedding of G, we draw the truncated dual graph of G, denoted
G′, which is the dual graph with the vertex corresponding to the infinite region deleted together
with its incident edges. Note that since the vertices 1, 2, . . . , n are drawn on a horizontal line, we
can naturally orient the edges of G′ from “lower” to “higher” (see Figure 4 (b)). The poset PG
is then obtained by considering G′ as its Hasse diagram (see Figure 4 (c)). Note that by Euler’s
formula, #PG = #E(G)−#V (G) + 1 which equals dim(FG).

Theorem 3.8 (Postnikov [15]). Let G be a planar graph on the vertex set [n] such that at each
vertex v ∈ [2, n− 1] there are both incoming and outgoing edges. Fix a planar drawing of G. Then
there is a linear map from the flow polytope FG to the order polytope O(PG) which preserves relative
volume.

Proof. For an element x of PG let f(x) =
∑

e fl(e), where the sum is taken over the edges e that
are intersected by a fixed path from the element x to the “low point” in the dual graph of G. The
“low point” of the dual graph is the vertex corresponding to the infinite face of G and we draw it
below the graph as shown on Figure 5 (a). It is easy to see that due to flow conservation this map
is well-defined, that is it does not depend on the path we choose.

In addition, we have that 0 ≤ f(x) since fl(e) ≥ 0 for all edges e. Also, f(x) ≤ 1 since the set
of edges whose sum of flows equals f(x) can always be extended to a cut of the graph G whose
flow is the total flow 1 present in the graph. Next, if x′ covers x in PG then there is an edge e′

in G separating the graph faces x and x′. Thus f(x′) = fl(e′) + f(x) ≥ f(x). Hence the linear
map mentioned in the theorem takes a point (fl(e))e∈E(G) of FG to the point (f(x))x∈PG of the
order polytope O(PG). This map preserves the integer points in the affine spans of these polytopes,
thereby preserving relative volume. �

Remark 3.9. By Theorem 3.8, if G is a planar graph then FG is equivalent to an order polytope.
This raises the question of whether this relation holds for non-planar graphs: for instance for the
polytope CRY(n) ∼= FKn+1 for n ≥ 4. We can use a similar construction to that in Theorem 3.8 to
show that FK5 and FK6 are equivalent to the order polytopes of the posets:

,

We leave it as a question whether FK7 (dimension 15, 32 vertices, volume 140) is an order polytope.

3.3. Order polytopes of strongly planar posets are flow polytopes. We now give a converse
of Theorem 3.8, showing that the order polytope of a strongly planar poset is a flow polytope. A

7



A

B C

D E F

(a) (b)

a
b

c

d
e

f g

Figure 5. (a) The “low point” of the dual (red) graph is the lowest point on the
picture; the labels a, b, c, d, e, f, g are the names of the corresponding edges (b) our
map prescribes that f(A) = fl(a) + fl(b) + fl(c), f(B) = fl(b) + fl(c), f(C) =
fl(e) + fl(g), f(D) = fl(c), f(E) = fl(f), f(F ) = fl(g).

poset P is strongly planar if the Hasse diagram of P̂ := P t {0̂, 1̂} has a planar embedding with

all edges directed upward in the plane. Define the graph Ĝ from P̂ by taking the Hasse diagram

of P̂ and drawing in two additional edges from 0̂ to 1̂, one which goes to the left of all the poset
elements and another to the right. We can then define the graph GP to be the truncated dual of

Ĝ, provided that Ĝ is planar. Ĝ will be planar whenever P̂ is planar, which in turn is when P is
strongly planar. The orientation of GP is inherited from the poset in the following way: if in the
construction of the truncated dual, the edge e of GP crosses the edge x → y where x < y in P ,
then y is on the left and x is on the right as you traverse e.

Theorem 3.10. If P is a strongly planar poset, then there is a linear map from the order polytope
O(P ) to the flow polytope FGP which preserves relative volume.

Proof. For an edge e in GP , let fl(e) = f(y)− f(x), where in the dual construction, e crosses the
Hasse diagram edge x→ y. It is easy to see that this map is well-defined and it maps O(P ) to FGP
by mapping (f(x))x∈P to (fl(e))e∈E(GP ), where fl(e) is as prescribed above. This map preserves
the integer points in the affine spans of these polytopes, thereby preserving relative volume. �

4. ASMCRY(n) and the family of polytopes F(ASM)

In this section, we introduce the ASM-CRY family of polytopes F(ASM), which includes
ASMCRY(n), and show that each of these polytopes is a face of the ASM polytope. We, fur-
thermore, show that each polytope in this family is both an order and a flow polytope. Then, using
the theory of order and flow polytopes as discussed in Section 3.1, we write down their volumes
and Ehrhart polynomials.

Definition 4.1. Let δn = (n−1, n−2, . . . , 2, 1) be the staircase partition considered as the positions
(i, j) of an n × n matrix given by {(i, j) | j − i ≥ 1}. Let the partition λ = (λ1, λ2, . . . , λk) ⊆ δn
denote matrix positions {(i, j) | 1 ≤ i ≤ k, n− λi + 1 ≤ j ≤ n}.

We define the ASM-CRY family

F(ASM)(n) := {Pλ(n) | λ ⊆ δn} ,
where

Pλ(n) :=
{

(aij)
n
i,j=1 ∈ A(n) | aij = 0 for i− j ≥ 2 and for (i, j) ∈ λ

}
.

Note that P∅(n) = ASMCRY(n).

In the following proposition we give a convex hull description of the polytopes in this family.
8



Proposition 4.2. The polytope Pλ(n) ∈ F(ASM)(n) is the convex hull of the n × n alternating
sign matrices (Aij)

n
i,j=1 with Aij = 0 for i− j ≥ 2 and for (i, j) ∈ λ.

Proof. Let Qλ(n) denote the convex hull of the n × n alternating sign matrices (Aij)
n
i,j=1 with

Aij = 0 for i − j ≥ 2 and for (i, j) ∈ λ. It is easy to see that Qλ(n) is contained in Pλ(n), since
matrices in both polytopes have the same prescribed zeros and satisfy the inequality description of
the full ASM polytope A(n).

It remains to prove that Pλ(n) is contained in Qλ(n). Suppose there exists a matrix b =
(bij)

n
i,j=1 ∈ Pλ(n) such that b /∈ Qλ(n). We know that b is in the convex hull of all n × n ASMs.

So b = µ1A
1 +µ2A

2 + · · ·+µkA
k, where A1, . . . Ak are distinct n×n alternating sign matrices and

µ1, . . . , µk > 0. At least one of these ASMs, say A1 must have a nonzero entry A1
ij for some (i, j)

satisfying either i − j ≥ 2 or (i, j) ∈ λ. Suppose i − j ≥ 2; the argument follows similarly in the
case (i, j) ∈ λ. Now since bij = 0 and A1

ij 6= 0, there must be another ASM, say A2 such that A2
ij

is nonzero of opposite sign. Say A1
ij = 1 and A2

ij = −1. Then by the definition of an alternating

sign matrix, there must be j′ < j such that A2
ij′ = 1. But bij′ = 0 as well, so there must be an A3

with A3
ij′ = −1 and j′′ < j′ such that A3

ij′′ = 1. Eventually, we will reach the border of the matrix

and reach a contradiction. Thus, Pλ(n) = Qλ(n). �

We show in Theorem 4.3 below that the polytopes in F(ASM)(n) are faces of A(n). First, we
need some terminology from [22]. Consider n2 + 4n vertices on a square grid: n2 ‘internal’ vertices
(i, j) and 4n ‘boundary’ vertices (i, 0), (0, j), (i, n+ 1), and (n+ 1, j), where 1 ≤ i, j ≤ n. Fix the
orientation of this grid so that the first coordinate increases from top to bottom and the second
coordinate increases from left to right, as in a matrix. The complete flow grid Cn is defined as the
directed graph on these vertices with directed edges pointing in both directions between neighboring
internal vertices within the grid, and also directed edges from internal vertices to neighboring border
vertices. That is, Cn has edge set {((i, j), (i, j ± 1)), ((i, j), (i ± 1, j)) | i, j = 1, . . . , n}. A simple
flow grid of order n is a subgraph of Cn consisting of all the vertices of Cn, and in which four
edges are incident to each internal vertex: either four edges directed inward, four edges directed
outward, or two horizontal edges pointing in the same direction and two vertical edges pointing in
the same direction. An elementary flow grid is a subgraph of Cn whose edge set is the union of
the edge sets of simple flow grids. See Figure 6.

Theorem 4.3. The polytope Pλ(n) ∈ F(ASM)(n) is a face of A(n), of dimension
(
n
2

)
− |λ|. In

particular, P∅(n) = ASMCRY(n) is a face of A(n), of dimension
(
n
2

)
.

Proof. In Proposition 4.2 of [22], it was shown that the simple flow grids of order n are in bijection
with the n × n alternating sign matrices. In this bijection, the internal vertices of the simple
flow grid correspond to the ASM entries; the sources correspond to the ones of the ASM, the
sinks correspond to the negative ones, and all other vertex configurations correspond to zeros. In
Theorem 4.3 of [22], it was shown that the faces of A(n) are in bijection with n×n elementary flow
grids, with the complete flow grid Cn in bijection with the full ASM polytope A(n). This bijection
was given by noting that the convex hull of the ASMs in bijection with all the simple flow grids
contained in an elementary flow grid is, in fact, an intersection of facets of the ASM polytope A(n),
and is thus a face of A(n). Since, by Proposition 4.2, Pλ(n) equals the convex hull of the ASMs
in it, we need only show there exists an elementary flow grid whose contained simple flow grids
correspond exactly to these ASMs.

9



(a) (b) (c)

Figure 6. (a) The complete flow grid C5, which corresponds to the full ASM poly-
tope A(5). (b) The elementary flow grid corresponding to Pλ(5) with λ = (2, 1, 1).
Note there are six doubly directed regions, thus Pλ(5) is a face of A(5) of dimension
six. (c) A simple flow grid which corresponds to a 5 × 5 ASM and is contained in
the elementary flow grid of (b).

We can give this elementary flow grid explicitly. We claim that the edge set
⋃

(i,j) Si,j where

Si,j :=





((i, j + 1), (i, j)) , ((i− 1, j), (i, j)) if i− j ≥ 2

((i, j − 1), (i, j)) , ((i+ 1, j), (i, j)) if (i, j) ∈ λ
((i, j), (i, j ± 1)) , ((i, j), (i± 1, j)) otherwise.

is the union of the edge sets all the simple flow grids in bijection with ASMs in Pλ(n), thus the
digraph with this edge set is an elementary flow grid. Furthermore, no other simple flow grid can
be constructed from directed edges in this set, since such a simple flow grid would have to include
an edge pointing in the wrong direction in either the region i− j ≥ 2 or (i, j) ∈ λ. Thus, Pλ(n) is
a face of A(n).

To calculate the dimension of Pλ(n), we use the following notion from [22]. A doubly directed
region of an elementary flow grid is a connected collection of cells in the grid completely bounded
by double directed edges but containing no double directed edges in the interior. Theorem 4.5
of [22] states that the dimension of a face of A(n) equals the number of doubly directed regions in
the corresponding elementary flow grid. The number of doubly directed regions in the elementary
flow grid corresponding to Pλ(n) equals (n− 1)2 −

((
n−1

2

)
+ |λ|

)
=
(
n
2

)
− |λ|. See Figure 6. �

Our main result regarding F(ASM)(n) is Theorem 1.1, which we repeat here for convenience.
It requires the following definition and see Section 3.3 for the definition of GP .

Definition 4.4. Let δn and λ ⊆ δn be as in Definition 4.1. Let (δn \λ)∗ be the poset with elements
pij corresponding to the positions (i, j) ∈ δn \ λ with partial order pij ≤ pi′j′ if i ≥ i′ and j ≤ j′.

Theorem 1.1. The polytopes in the family F(ASM)(n) are affinely equivalent to flow and order
polytopes. In particular, Pλ(n) is affinely equivalent to the order polytope of the poset (δn \λ)∗ and
the flow polytope FG(δn\λ)∗

.

We prove Theorem 1.1 by first using two lemmas to show that Pλ(n) is affinely equivalent to the
order polytope of the poset (δn \ λ)∗. Then since this poset is planar, by Theorem 3.10 its order
polytope is affinely equivalent to the flow polytope FG(δn\λ)∗

.
10



Given a matrix (mi,j)
n
i,j=1 ∈ Pλ(n), define the corner sum matrix (ci,j)

n
i,j=1 by

ci,j =
∑

1≤i′≤i,
j≤j′≤n

mi′,j′ .

For S ⊆ R, let A(δn \ λ, S) be the set of functions g : δn \ λ → S. We view the order polytope
of (δn \ λ)∗ as a subset of A(δn \ λ, [0, 1]). Define Φ : Pλ(n) → A(δn \ λ,R) by m 7→ gm where
gm(i, j) = 1− ci,j . See the second map in Figure 8.

Lemma 4.5. The image of Φ is in A(δn \ λ, [0, 1]), i.e. if m 7→ gm then gm(i, j) = 1− ci,j ∈ [0, 1].

Proof. We first show that ci,j ≥ 0 for all i and j. By the defining inequalities of the ASM polytope
A(n) (see Definition 2.4), we have that the partial column sums satisfy

∑
1≤i′≤imi′,j ≥ 0 for any

m ∈ A(n) and 1 ≤ j ≤ n. So since ci,j is a sum of partial column sums, then ci,j ≥ 0 as desired.
Next we show that ci,j ≤ 1 for all j > i ≥ 1. Note that it is not true that ci,j ≤ 1 for all matrices

in A(n) (for example the permutation matrix of 321 has c2,2 = 2). But we show ci,j ≤ 1 for all
m ∈ Pλ(n) as follows. The forced zeros mij = 0 for i−j ≥ 2 and the requirement that each column

sums to one imply that
∑j+1

i=1 mi,j = 1, since the rest of the column entries equal zero. Thus we also

have
∑k

i=1mi,j = 1 for any k > j. If i = 1 then ci,j ≤ 1, since each m1,j ≥ 0 and
∑n

j=1mi,j = 1.
Now let i ≥ 2. Note that the sum of the first i rows satisfies ci,1 = i. Also, by the discussion of

the previous paragraph,
i−1∑

j′=1

i∑

i′=1

mi′,j′ =

i−1∑

j′=1

1 = i− 1 ≥ 1,

since i ≥ 2. Finally,
j−1∑

j′=i

i∑

i′=1

mi′,j′ ≥ 0,

since this is a sum of partial column sums. So we have

ci,j =
n∑

j′=j

i∑

i′=1

mi′,j′ ≤ 1.

Thus 0 ≤ ci,j ≤ 1 so that 0 ≤ gm(i, j) ≤ 1.
�

Lemma 4.6. The image of Φ is in the order polytope O ((δn \ λ)∗).

Proof. By Lemma 4.5 we know that the image of Φ is in A(δn \ λ, [0, 1]). Note that if i′ ≤ i and
j′ ≥ j, then ci,j ≥ ci′,j′ , thus we have that gm(i, j) ≤ gm(i′, j′) if and only if (i, j) ≤ (i′, j′) in
(δn \ λ)∗. So gm is in the order polytope O ((δn \ λ)∗). �

Proof of Theorem 1.1. By Lemmas 4.5 and 4.6 we have that the map Φ is an affine map from Pλ(n)
to O ((δn \ λ)∗) with homogeneous part −A where A is a 0, 1-upper unitriangular matrix. Thus Φ

is volume preserving (det(A) = 1) and when restricted to a lattice Z|δn\λ|/t is a bijection between
the lattice points of t ·Pλ(n) and t ·O ((δn \ λ)∗), t ∈ N. Thus, f is a bijective affine map from Pλ(n)
to O ((δn \ λ)∗), showing that they are affinely equivalent (and thus combinatorially equivalent).

Finally since the poset (δn \ λ)∗ is planar, by Theorem 3.10 Pλ(n) is also affinely equivalent to
the flow polytope FG(δn\λ)∗

. �

By Stanley’s theory of order polytopes [20] (see Theorem 3.6) we express the volume and Ehrhart
polynomial of the polytopes in this family in terms of their associated posets.
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Shape # Vertices VolumePoset

λ # order ideals
of the poset
(δn/λ)

∗

#SY T (δn/λ)
= # linear extensions

of the poset (δn/λ)
∗

1
n+1

(
2n
n

) (n2)!
1n−13n−2···(2n−3)1

Polytope

ASMCRY(n)

2n−1 (n− 1)!

Pλ(n)

Pδn−2(n)

Pδn−1(n)

F2n−1 E2n−3

(i.e. P∅(n))

Figure 7. Some polytopes in the family F(ASM)(n) and their corresponding num-
bers of vertices and volumes; see Theorem 1.1 and Corollaries 1.2, 4.7, 4.8, and 4.9.
‘Shape’ refers to the entries in the matrix not fixed to be zero. All diagrams are
drawn in the case n = 5.

.3 .4 .1 .2

.7 -.1-.2

.8 .1

.9 .1

.4

.10

0 0

.8

.7

.3 .4

.4

.3

.7 .3 .2

.6 .6

.7

ci,j 1− ci,j

gm

Figure 8. A map from a point in ASMCRY(4) to a point in the order polytope.
First, take the northwest corner sum of each entry above the main diagonal. Then
subtract that value from 1.

Corollary 4.7 ([20]). For Pλ(n) in F(ASM)(n) we have that its normalized volume is

vol(Pλ(n)) = e ((δn\λ)∗) ,

and its Ehrhart polynomial is

LPλ(n)(t) = Ω(δn\λ)∗(t+ 1).

Note that using Theorem 3.3 and the discussion below it, we can express the volume and Ehrhart
polynomial of any flow polytope as a Kostant partition function. Thus, Theorem 1.1 gives us several
Kostant partition function identities. In particular, Corollaries 1.2, 4.9 and 4.8 compute the volumes
and Ehrhart polynomials of three subfamilies of polytopes in F(ASM)(n) that are associated to
posets with a nice number of linear extensions and vertices. This includes the ASM-CRY polytope.
See Figure 7.

Corollary 1.2. ASMCRY(n) is affinely equivalent to the order polytope of the poset δ∗n and the

flow polytope FGδ∗n . Thus, ASMCRY(n) has Cat(n) = 1
n+1

(
2n
n

)
vertices, its normalized volume is
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given by

vol(ASMCRY(n)) = #SY T (δn),

and its Ehrhart polynomial is

(4.1) LASMCRY(n)(t) = Ωδ∗n(t+ 1) =
∏

1≤i<j≤n

2t+ i+ j − 1

i+ j − 1
.

Proof. When λ = ∅, P∅(n) is isomorphic to the order polytope Oδ∗n of the poset δ∗n (that is, the
type An−1 positive root lattice). The number of linear extension of this poset is the number of
standard Young tableaux (SYT) of shape (n− 1, n− 2, . . . , 2, 1),

volP∅(n) = #SY T(n−1,n−2,...,2,1) =

(
n
2

)
!

1n−13n−2 · · · (2n− 3)1
.

By Stanley’s theory of order polytopes (see Theorem 3.6) LP∅(n)(t) = Ωδ∗n−1
(t + 1). When t is an

integer, Ωδ∗n−1
(t+ 1) counts the the number of plane partitions of shape (n− 1, n− 2, . . . , 2, 1) with

largest part ≤ t. By an unpublished result of Proctor [16] (see also [10]) this number is given by
the product formula in the RHS of (4.1). �

We give a few other examples of polytopes in the family F(ASM)(n) that have known nice
formulas for the volume, namely, in the cases λ = δn−k for k ≥ 1. See Figure 7.

Let [n] be the poset with n elements and no relations and z2n−1 denote the zigzag poset with

2n− 1 elements: .

Corollary 4.8. Pδn−1(n) is isomorphic to the order polytope O[n−1] of [n− 1]. Pδn−2(n) has 2n−1

vertices and its normalized volume equals (n− 1)!.

Proof. Since the poset [n−1] is an antichain, there are no relations, so the number of order ideals is
2n−1 and the number of linear extensions is (n−1)!. Thus, the result follows from Theorem 1.1. �

Corollary 4.9. Pδn−2(n) is affinely equivalent to the order polytope Oz2n−1 of z2n−1. Pδn−2(n) has
number of vertices given by the Fibonacci number F2n−1 and normalized volume given by the Euler
number E2n−3.

Proof. The number of order ideals of z2n+1 is given by the Fibonacci number F2n−1. The number
of linear extensions of this poset is the number of SYT of skew shape δn/δn−2 which is given by
the Euler number E2n−3. Thus, the result follows from Theorem 1.1. �

Remark 4.10. For the case λ = δn−k, the polytope Pδn−k(n) is isomorphic to the order polytope
of the poset (δn \ δn−k)∗. The number of vertices of the polytope (order ideals of the poset) is
given by the number of Dyck paths with height at most k [18, A211216], [11, §3.1]. The volume of
the polytope is given by the number of skew SYT of shape δn/δn−k. There are formulas for this
number of SYT as determinants of Euler numbers (e..g see Baryshnikov-Romik [2]).

We now turn from our investigation of the family of polytopes F(ASM)(n) to triangulations of
flow and order polytopes.

5. Triangulations of flow polytopes of planar graphs

As we have seen in Section 3, flow polytopes of planar graphs are also order polytopes. Stan-
ley [20] gave a canonical way of triangulating an order polytope O(P ). For a linear extension
(a1, a2, . . . , an) of the poset P on elements {a1, a2, . . . , an}, define the simplex

(5.1) ∆a1,a2,...,an := {(x1, . . . , xn) ∈ [0, 1]n | xa1 ≤ xa2 ≤ · · · ≤ xan}.
13
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Note that the n + 1 vertices of this simplex are of the form (0m, 1n−m) for m = 0, 1, . . . , n. The
simplices corresponding to all linear extensions of P are top dimensional simplices in a triangulation
of O(P ), which we refer to as the canonical triangulation of O(P ). There are also two known
combinatorial ways of triangulating flow polytopes: one given by Postnikov and Stanley [15, 19],
and one by Danilov, Karzanov and Koshevoy [8]. In this section, we show that given a planar graph
G, the canonical triangulation of O(PG) is also a triangulation obtained by the Danilov-Karzanov-
Koshevoy method for FG. This result was first observed by Postnikov [15]. We also construct a
direct bijection between linear extensions of PG and maximal cliques of G, which index the Danilov-
Karzanov-Koshevoy triangulation of FG. In Section 6, we will prove for a general graph G that
the Danilov-Karzanov-Koshevoy triangulations of FG can also be obtained by a framed Postnikov-
Stanley method. Thus, in particular, the canonical triangulation of O(PG) for a planar graph G is
also in the set of the framed Postnikov-Stanley triangulations of FG.

In the following subsection, we first review the results of Danilov, Karzanov and Koshevoy [8]
and then prove Theorem 1.3.

5.1. The canonical triangulation of O(PG) is a Danilov-Karzanov-Koshevoy triangula-
tion of FG. Given a connected graph G on the vertex set [n] with edges oriented from smaller
to bigger vertices, the vertices of the flow polytope FG correspond to integer flows of size one on
maximal directed paths from the source (1) to the sink (n). Following [8] we call such maximal
paths routes. The following definitions also follow [8]. Let v be an inner vertex of G whenever v
is neither a source nor a sink. Fix a framing at each inner vertex v, that is, a linear ordering ≺in(v)

on the set of incoming edges in(v) to v and the linear ordering ≺out(v) on the set of outgoing edges
out(v) from v. A framed graph is a graph with a framing at each inner vertex. For a framed
graph G and an inner vertex v, we denote by In(v) and by Out(v) the set of maximal paths ending
in v and the set of maximal paths starting at v, respectively. We define the order ≺In(v) on the
paths in In(v) as follows. If P,Q ∈ In(v), then let w be the largest vertex after which P and Q
coincide and before which they differ. Let eP be the edge of P entering w and eQ be the edge of
Q entering w. Then P ≺In(v) Q if and only if eP ≺in(w) eQ. The linear order ≺Out(v) on Out(v) is
defined analogously.

Given a route P with an inner vertex v, denote by Pv the maximal subpath of P ending at v
and by vP the maximal subpath of P starting at v. We say that the routes P and Q are coherent
at a vertex v which is an inner vertex of both P and Q if the paths Pv,Qv are ordered the same
way as vP, vQ; that is, if Pv ≺In(v) Qv and vP ≺Out(v) vQ. We say that routes P and Q are
coherent if they are coherent at each common inner vertex. We call a set of mutually coherent
routes a clique. The following theorem is a special case of [8, Theorems 1 & 2].

Theorem 5.1. [8, Theorems 1 & 2] Given a framed graph G, the top dimensional simplices in a
regular triangulation of FG are obtained by taking the convex hulls of the vertices corresponding
to the routes in maximal cliques. Moreover, lower dimensional simplices of this triangulation are
obtained as convex hulls of the vertices corresponding to the routes in (not maximal) cliques.

Theorem 5.1 uses the fact that the vertices of FG are given by unit flows along the routes of G
[17, §13].

We call the triangulations appearing in Theorem 5.1 the Danilov-Karzanov-Koshevoy tri-
angulations of FG. Each such triangulation comes from a particular framing of the graph. We
are now ready to prove that the canonical triangulation of O(PG) is a Danilov-Karzanov-Koshevoy
triangulations of FG. We now define the framing needed for this result. Consider a planar graph G
on the vertex set [n] with a particular planar embedding, where 1, 2, . . . , n are drawn horizontally
on a line. At each vertex v ∈ [2, n − 1] of G there is a natural order on the edges coming from
the planar drawing of the graph: order the incoming edges as well as the outgoing edges top to
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bottom. We call this framing the planar framing of G, to emphasize that this framing comes
from a particular planar embedding of the graph G.

Theorem 1.3. Given a planar graph G, the canonical triangulation of O(PG) is equal to the
Danilov-Karzanov-Koshevoy triangulation of FG coming from the planar framing.

Proof. Suppose that to the contrary, there are two vertices of a simplex ∆a1,...,an in the canonical
triangulation of O(PG), which correspond to non-coherent routes P and Q in the above framing
of G. Suppose that P and Q are not coherent at the common inner vertex v. Suppose that the
smallest vertex after which Pv and Qv agree is w1 and the largest vertex before which vP and vQ
agree is w2. Let the edges incoming to w1 be e1

P and e1
Q for P and Q, respectively, and let the

edges outgoing from w2 be e2
P and e2

Q for P and Q, respectively. Since P and Q are not coherent at

v, this implies that either e1
P ≺in(w1) e

1
Q and e2

Q ≺out(w2) e
2
P ; or e1

Q ≺in(w1) e
1
P and e2

P ≺out(w2) e
2
Q.

We also have that the segments of P and Q between w1 and w2 coincide.
Consider the case where e1

P ≺in(w1) e1
Q and e2

Q ≺out(w2) e2
P . Let A be the element of PG

corresponding to the region bordered from above by e1
Q and below by e1

P and let B be the element

of PG corresponding to the region bordered from above by the edge e2
P and below by e2

Q:

e1Q

e1P

e2P

e2Q

A B
vw1 w2

Q

P

Then in a linear extension α of PG either f(A) ≥ f(B) or f(A) ≤ f(B). The former makes it
impossible for P to be a vertex of the simplex corresponding to α since this would force f(A) = 0
and f(B) = 1. The latter makes it impossible for Q to be a vertex of the simplex corresponding to
α since this would force f(A) = 1 and f(B) = 0. The case when e1

Q ≺in(w1) e
1
P and e2

P ≺out(w2) e
2
Q

can be ruled out similarly.
We conclude that the vertices of a simplex in the canonical triangulation of O(PG) correspond

to a maximal clique. �

5.2. A bijection between linear extensions of PG and maximal cliques in G. In this
subsection, we construct an explicit bijection b between linear extensions of PG and maximal cliques
in a planar graph G framed so that at every vertex both the incoming and outgoing edges are
ordered top to bottom. Recall from Section 3 that the elements of PG correspond to bounded
regions defined by G. Drawing the vertices of G on a horizontal line with vertices 1, 2, . . . , n in this
order, we can talk of the upper boundary of such a region. Given a linear extension a1 · · · am of PG,
where a1, . . . , am also denote the corresponding regions of G, map the linear extension a1 · · · am to
the upper boundaries of the union of regions given by the prefixes of a1 · · · am. See Figure 9 for an
example.

Theorem 5.2. Given a planar graph G, the map b defined above is a bijection between linear
extensions of PG and maximal cliques in G in the planar framing.

The proof of Theorem 5.2 is in the same spirit as that of Theorem 1.3 and is left to the reader.

Note that in Theorem 5.2 we give a bijection from linear extensions of PG to maximal cliques
of G in the planar framing. In Section 6.3, we will see that given any two framings of G there
is a natural bijection between their sets of maximal cliques. Therefore, combining the bijection
from Theorem 5.2 and the one just mentioned in Section 6.3 we obtain a bijection between linear
extensions of PG and maximal cliques in G in any framing of a planar graph G.

15



A

B

D

C

∅

C

CA

CAB

CABD

G

PG

Figure 9. On the left is the planar graph G and the poset PG on elements
A,B,C,D. On the right are all prefixes of the linear extension CABD of PG and
the routes they correspond to under the bijection b. Note that the five resulting
routes form a maximal clique in G with respect to the planar framing that orders
both the incoming and outgoing edges top to bottom.

Corollary 5.3. Given a planar graph G, the number of linear extensions of PG equals the number
of maximal cliques in G in the planar framing.

6. Triangulations of flow polytopes

In this section, we show that the set of Danilov-Karzanov-Koshevoy triangulations of a flow
polytope FG is a subset of the framed Postnikov-Stanley triangulations of FG, which we define in
this section. As a consequence of our proof, we obtain a bijection between the objects indexing
the Postnikov-Stanley triangulation of a flow polytope FG, namely, nonnegative integer flows on
the graph G with netflow (0, d2, . . . , dn−1,−

∑n−1
i=2 di), where di = indegG(i) − 1, and the objects

indexing the Danilov-Karzanov-Koshevoy triangulation of a flow polytope FG, namely, maximal
cliques of a fixed framing of G. This answers Postnikov’s question [15] about a bijection between
the sets indexing maximal simplices of the Postnikov-Stanley triangulations and the sets indexing
maximal simplices of the Danilov-Karzanov-Koshevoy triangulation. We also obtain a natural
bijection between the sets of maximal cliques of G in different framings.

6.1. Framed Postnikov-Stanley triangulations. We now define framed Postnikov-Stanley tri-
angulations. These triangulations were used in [12], though they were not described explicitly
there.

A bipartite noncrossing tree is a tree with left vertices x1, . . . , x` and right vertices x`+1, . . . , x`+r
with no pair of edges (xp, x`+q), (xt, x`+u) where p < t and q > u. We denote by TI,O the set of
bipartite noncrossing trees where I and O are the ordered sets (x1, . . . , x`) and (x`+1, . . . , x`+r)

respectively. We have that #TI,O =
(
`+r−2
`−1

)
, since the elements of TI,O are in bijection with weak

compositions of `− 1 into r parts. A tree T in TI,O corresponds to the composition (b1, . . . , br) of
(indegrees −1), where bi denotes the number of edges incident to the right vertex x`+i in T minus 1.

Example 6.1. The bipartite tree in Figure 11 corresponds to the composition (1, 0, 2).

We now define what we mean by a reduction at vertex i of a framed graph G on the vertex set [n].
Let Ii denote the multiset of incoming and Oi the multiset of outgoing edges of i. In addition, we
assume that Ii and Oi are linearly ordered according to the framing of G. A reduction performed
at i of G results in several new graphs indexed by bipartite noncrossing trees on the left vertex set
Ii and right vertex set Oi. We define these new graphs precisely below.
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(b)

Figure 10. Replacing the incident edges of vertex 2 in a graph H, by a noncrossing
tree T encoded by the composition (1, 0, 2) of 3 = indegH(2)− 1 using two different
framings (indicated by the blue numbers incident to vertex 2 in G): (a) the framing
is “top to bottom”, (b) different framing.

e1
e2
e3
e4

f1

f2

f3

e1 + f1

e4 + f3

e3 + f3

e2 +
f1

e2 + f2
e2 + f3

Figure 11. Based on the noncrossing tree: S(f1) = {e1+f1, e2+f1}, S(f2) = {e2+
f2}, and S(f1) = {e2 +f3, e3 +f3, e4 +f3}. The local orderings of these edges at the
vertices to which they are incoming are e1+f1 < e2+f1 and e2+f3 < e3+f3 < e4+f3.

Consider a tree T ∈ TIi,Oi . For each tree-edge (e1, e2) of T where e1 = (r, i) ∈ Ii and e2 =
(i, s) ∈ Oi, let e1 + e2 be the following edge:

(6.1) e1 + e2 = (r, s).

We call the edge e1 + e2 the sum of edges e1 and e2. Inductively, we can also define the sum of
more than two consecutive edges.

The graph G
(i)
T , T ∈ TIi,Oi , is defined as the graph obtained from G by removing the vertex i and

all the edges of G incident to i and adding the multiset of edges {{e1 + e2 | (e1, e2) ∈ E(T )}}. See

Figures 10 and 13 for examples of G
(i)
T . In these figures we also use the observation that a tree T in

TIi,Oi bijects to the weak composition (b1, . . . , br) of (indegrees −1), where bi denotes the number
of edges incident to the ith right vertex of T minus 1. We record this composition by labeling the
edges e in Oi of G with the corresponding part be. We can view this labeling as assigning a flow
b(e) = be to edges e of G in Oi.

A reduction of G at the vertex i replaces G by the graphs in {G(i)
T }T∈TIi,Oi . It also remembers

which sum of the edges of G is each edge of the new graphs.

We now define an inheritance framing of G
(i)
T , T ∈ TIi,Oi , which it inherits from the framing

of G. We order the edges incident to vertices smaller than i arbitrarily. For each vertex j greater

than i we look at the incoming and outgoing multisets of edges Ij(G(i)
T ) and Oj(G(i)

T ). The multiset

Oj(G(i)
T ) equals Oj(G) and is ordered the same way. If Ij(G) = {m1, . . . ,mk}, then the multiset
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Ij(G(i)
T ) consists of edges that are all sums of edges of G with one edge of {m1, . . . ,mk}. Denote by

S(ml), l ∈ [k], the edges in Ij(G(i)
T ) which are sums of edges of G with ml. Let m1 < · · · < mk in

the framing of G. Draw T with the left and right sets of vertices ordered vertically as in Figure 11,

so that we can read off its edges top to bottom. In the inheritance framing of G
(i)
T within each set

S(ml), l ∈ [k], order the edges top to bottom when viewed in the noncrossing bipartite tree: any
edge in S(mp) is less than any edge in S(mq) for p < q.

Given a framed graph G on the vertex set [n], construct a framed Postnikov-Stanley trian-
gulation of FG as follows. If a vertex v ∈ [2, n− 1] has only incoming or outgoing edges, then by
flow conservation those edges carry zero flow. Thus, we delete these vertices and the incident edges
(without changing FG). Assume from now on that for every vertex v ∈ [2, n− 1] there is both an
incoming and an outgoing edge.

Proceed from vertex 2 to n− 1 performing the reduction defined above at each vertex. First we
do a reduction at vertex 2. The sets I2 and O2 are ordered according to the framing of G. See
Figure 10 for an example of how to eliminate the vertex 2 from a graph with two different framings.
Next we need to do reductions at vertex 3 in all resulting graphs. Use inheritance framing for these
graphs, which they inherit from the framing of G. Then, in all new graphs do reductions at vertex
4, and so forth. See Figure 13 for a full example.

The Subdivision Lemma formalizes that doing one reduction on G is dissecting the polytope FG
into smaller polytopes.

Lemma 6.2 (Subdivision Lemma [12]). Let G be a connected graph with no loops on the vertex
set [n] and FG be its flow polytope. For a fixed i ∈ [2, n− 1], the flow polytope subdivides as:

(6.2) FG =
⋃

T∈TIi,Oi

F
G

(i)
T

.

Iterating the Subdivision Lemma, we can get a correspondence between integer flows on G with
netflow vector (0, d2, . . . , dn−1,−

∑n−1
i=2 di), di = (indegree of i)−1, and simplices in a triangulation

of FG. We follow the exposition of [12] for this explanation. For G a connected loopless graph on
the vertex set [n], apply the Subdivision Lemma successively to vertices 2, 3, . . . , n. At the end we
obtain the subdivision:

(6.3) FG =
⋃

Tn−1

· · ·
⋃

T3

⋃

T2

F
(···(G(2)

T2
)
(3)
T3
··· )(n−1)

Tn−1

,

where Ti are noncrossing trees. See Figure 12 for an example of an outcome of a subdivision of FG.

The graph Gn−1 := (· · · (G(2)
T2

)
(3)
T3
· · · )(n−1)

Tn−1
consists of two vertices, 1 and n, with #E(G)−n+2 edges

between them. Thus FGn−1 is an (#E(G)−n+1)–dimensional simplex with normalized unit volume.
Therefore, vol(FG) is the number of choices of bipartite noncrossing trees T2, . . . , Tn−1 where Ti+1

encodes a composition of #Ii+1(Gi) − 1 with #Oi+1(Gi) parts. Theorem 3.3 by Postnikov and
Stanley [15, 19] shows that this number of tuples of trees is the number of integer flows on G with

netflow vector (0, d2, . . . , dn−1,−
∑n−1

i=2 di), di = (indegree of i) − 1. For examples, see Figures 12
and 13.

6.2. Danilov-Karzanov-Koshevoy triangulations are also framed Postnikov-Stanley tri-
angulations. Finally we are ready to prove that any Danilov-Karzanov-Koshevoy triangulation of
FG can also be constructed as a framed Postnikov-Stanley triangulation of FG.

Proposition 6.3. Given a framed graph G on the vertex set [n], the routes of G which give
the vertices of the simplex F

(···(G(2)
T2

)
(3)
T3
··· )(n−1)

Tn−1

form a maximal clique with respect to the coherence
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Figure 12. Example of the subdivision to find the volume of FG. The subdivision
is encoded by noncrossing trees Ti+1 that are equivalent to compositions (b1, . . . , br)
of #Ii+1(Gi) − 1 with #Oi+1(Gi) parts. These trees or compositions are recorded
by the integer flow on G\{1} in the box with netflow (d2, d3,−d2 − d3) = (3, 2,−5)
where di = indegi(G)− 1. The framing used is top to bottom.

relation in G. The framing of (· · · (G(2)
T2

)
(3)
T3
· · · )(i)

Ti
is the inheritance framing obtained from the

framing of (· · · (G(2)
T2

)
(3)
T3
· · · )(i−1)

Ti−1
.

Proof. Suppose that to the contrary, there are two vertices of a simplex F
(···(G(2)

T2
)
(3)
T3
··· )(n−1)

Tn−1

, which

correspond to non-coherent routes P and Q in G. Suppose that P and Q are not coherent at
the common inner vertex v. Suppose that the smallest vertex after which Pv and Qv agree is w1

and the largest vertex before which vP and vQ agree is w2. Let the edges incoming to w1 be e1
P

and e1
Q for P and Q, respectively, and let the edges outgoing from w2 be e2

P and e2
Q for P and

Q, respectively. Since P and Q are not coherent at v, this implies that either e1
P ≺in(w1) e

1
Q and

e2
Q ≺out(w2) e

2
P or e1

Q ≺in(w1) e
1
P and e2

P ≺out(w2) e
2
Q. We also have that the segments of P and Q

between w1 and w2 coincide.
Denote by p the sum of edges between w1 and w2 on P . Denote by ∗(e1

Z + p), for Z ∈ {P,Q},
the sum of edges left of w2 that are edges in Z (including e1

Z in particular). After a certain number
of reductions executed according to the framing, we are about to perform the reduction at vertex
w2. This reduction involves deleting w2 and the edges incident to it, and adding the edges obtained
from the noncrossing tree T we constructed based on the ordering of the incoming and outgoing
edges at w2. In such a noncrossing tree, the vertex corresponding to the edge stemming from
∗(e1

Z + p), Z ∈ {P,Q}, is above the vertex ∗(e1
Z

+ p), where Z is the complement of Z in {P,Q}, in

the left partition of the vertices of T . On the other hand, the vertex corresponding to e2
Z

is above

the vertex corresponding to e2
Z in the right partition of the vertices of T . Thus, it is impossible

to obtain both routes P and Q as vertices of F
(···(G(2)

T2
)
(3)
T3
··· )(n−1)

Tn−1

since that would force connecting

∗(e1
Z + p) and e2

Z as well as ∗(e1
Z

+ p) and e2
Z

in T . This would make a crossing in the noncrossing
tree T , a contradiction. �

An immediate corollary of Proposition 6.3 is:

Corollary 6.4. For a graph G, the set of Danilov-Karzanov-Koshevoy triangulations of FG is a
subset of the framed Postnikov-Stanley triangulations of FG.
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Figure 13. Reductions executed at vertex 2 and 3 of the framed graph G. Non-
crossing trees encoding the reduction are displayed with all edges labeled. The
nonnegative flow on G with netflow (0, 1, 1,−2) is built. The flow polytope FG is
dissected into two simplices corresponding to G1 and G2.

6.3. The bijection between certain nonnegative integer flows and maximal cliques. We
can use Proposition 6.3 to define a bijection bG, where G is a framed graph on the vertex set [n],

from the set of nonnegative integer flows on the graph G with netflow (0, d2, . . . , dn−1,−
∑n−1

i=2 di)
to the set of maximal cliques of G with respect to its framing. Indeed, we can use the proof
of [12, Theorem 6.1] to biject each simplex in the framed Postnikov-Stanley triangulation with a

nonnegative integer flow on the graph G with netflow (0, d2, . . . , dn−1,−
∑n−1

i=2 di), as shown for
the top to bottom order for a particular simplex in Figure 12 and also in Figure 13. We can use
Proposition 6.3 to biject each simplex in the framed Postnikov-Stanley triangulation with a maximal
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Figure 14. The four paths on the top correspond to the vertices of the simplices
given by G1 (as in Figure 13). The four paths on the bottom correspond to the
vertices of the simplices given by G2 (as in Figure 13). Both sets of paths are
coherent in the framing of G given in Figure 13.

clique, simply by taking the routes corresponding to the vertices of the simplex; see Figures 13 and
14. In effect, then, we have a bijection bG between nonnegative integer flows on the graph G with
netflow (0, d2, . . . , dn−1,−

∑n−1
i=2 di) and maximal cliques in G.
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