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EXPONENTIALLY S-NUMBERS
VLADIMIR SHEVELEV

ABSTRACT. Let S be the set of all finite or infinite increasing sequences
of positive integers. For a sequence S = {s(n)},n > 1, from S, let us
call a positive number N an exponentially S-number (N € E(S5)), if all
exponents in its prime power factorization are in S. Let us accept that
1 € E(S). We prove that, for every sequence S € S with s(1) = 1, the
exponentially S-numbers have a density h = h(E(S)) such that

S 1= E(S))z + O(Valogwet i),

i<z, i€E(S)
where ¢ = 4, /24 = 7.4430... and h(E(S)) = [],(1+ Y5, “0=4=1),

where u(n) is the characteristic function of S.

1. INTRODUCTION

Let S be the set of all finite or infinite increasing sequences of positive
integers. For a sequence S = {s(n)},n > 1, from S, let us call a positive
number N an exponentially S-number (N € E(S)), if all exponents in
its prime power factorization are in S. Let us accept that 1 € E(S). For
example, if S = {1}, then the exponentially 1-numbers form the sequence
B of square-free numbers, and, as well-known,

1 1= Ex O(z2).

(1) igg;eB @ +0(2?)

In case, when S = B, we obtain the exponentially square-free numbers (for
the first time this notion was introduced by M. V. Subbarao in 1972 [6], see
A209061[5]). Namely the exponentially square-free numbers were studied
by many authors (for example, see [2], [6] (Theorem 6.7), [7], [8], [9]). In
these papers, the authors analyzed the following asymptotic formula

2) 3 1:H(1+Z“2(“) _;f(“‘l))HR(x),

i<z, i€E(B)

where the product is over all primes, p is the Mobius function. The best
result of type R(z) = o(z1) was obtained by Wu (1995) without using RH
(more exactly see [9]). In 2007, assuming that RH is true, Téth [§] obtained
R(z) = O(z5) and in 2010, Cao and Zhai [2] more exactly found that
R(z) = Cxs + O(2197¢), where C is a computable constant. Besides, Téth
[7] studied also the exponentially k-free numbers, k& > 2.
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In this paper, without using RH, we obtain a general formula with a

Viogx
remainder term O(y/z log e s logw) (cis a constant) not depended on S € S
beginning with 1. More exactly, we prove the following.

Theorem 1. For every sequence S € S the exponentially S-numbers have
a density h = h(E(S)) such that, 1) if s(1) > 1, then h = 0, while 2) if
s(1) =1, then

(3) S 1= h(E(S))x + O(Vr log e mates),

i<z, 1€E(S)

with ¢ =4 ﬂ = 7.443083... and

(1) h(E(S) 111+§j ‘“Z‘”x

1>2

where u(n) is the chamctemstzc function of sequence S : u(n) =1,if n€ S
and u(n) = 0 otherwise.

In particular, in case S = B we obtain (2)) with a less good remainder
term, but which is suitable for all sequences in S beginning with 1.

2. LEMMA

For proof Theorem [l we need a lemma proved earlier (2007) by the author
[4], pp.200-202. For a fixed square-free number r, denote by B, the set of
square-free numbers n for which ged(n,r) = 1, and put

b(x) = |B,N{1,2,...,x}|
In particular, B = B is the set of all square-free numbers.

Lemma 1. 6
b() = 25 [T+ 172+ Rua),

plr
where for every x > 1 and every r € B

ky/x, if r<N
()] < {ke meter 7, if 7> N+ 1.
where k = 3.5 ], <03(1 + %) = 57.682607... (in case r = 1, k =
3.5), ¢=4,/3Z% =7.443083..., N = 6469693229.

log 2
3. PROOF OF THEOREM 1

1) Denote by T the sequence {2,3,4, ...} of all natural numbers without
1. Let S do not contain 1. Then, evidently, £(S) C E(Y). Note that the
sequence E£(7T) is called also powerful numbers (sequence A001694 in [5]).
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Bateman and Grosswald [I] proved that

C3/2) 1 C(2/3)
(5) 1= 282) ey SWE/9) sy O(xl/ﬁ).
iSw,z‘ZeE(T) ¢(3) C(2)

So, h(E(Y)) = 0. Then what is more h(E(S)) = 0.

Furthermore, denote by r(n) the product of all distinct prime divisors of n;
set r(1) = 1.

2) Now let 1 € S. Note that the set E(Y) N E(S) contains 1 and all
numbers of E(S) whose exponents in their prime power factorizations are
more than 1. Evidently, every number y € F(S) has a unique representation
as the product of some number a € E(Y) N E(S) and a number m € B, ().
In particular, if y is square-free, then a = 1, m = y(€ B;). For a fixed
a € E(Y) N E(S), denote the set of y = am € E(S) by E(S)®. Then

E(S) = U E(S)@, where the union is disjoint. Consequently, by
a€E(S)NE(T)
Lemma, [Il we have

(6) S 1=b)+ 3 brta) (g)

i<z, i€E(S) 4<a<z, a€E(S)NE(T)

6 1 1
4<a<z, a€E(S)NE(Y) p|r(a)
where

|R(z)| < 3.5y + Z ‘Rr(a) <§)‘ < 3.5+

4<a<z, a€E(S)NE(Y)

(7) + > ’Rr(w (§>‘+ > ‘R’“(“) (2)‘

4<a<z:r(a)<N a<z:r(a)>N+1
a€E(S)NE(T) a€E(S)NE(T)

with N = 6469693229.

Let x > N go to infinity. Distinguish two cases: (i) r(a) < N; (ii) r(a) >
N.
(i) 7(a) < N. Denote by E(Y)(n) the n-th powerful number (in increasing
order). According to (&), E(T)(n) = (2EL)2n2(140(1)). S0, 1cpncp——e— =

<(3/2) VET)(n)
O(log x). Hence, by (@) and Lemma[I]

R@)| <35v3+kvd Y —==0(/Tloga).

a<z, a€E(S)NE(T)

(ii) r(a) > N. Then, by (@) and Lemma [I]

B
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1 V/1og r(a)
R(:lf) S k’\/} Z —e logloggr(a)
a<z:r(a)>N+1 \/a
a€E(S)NE(T)

where the last sum does not exceed

1 Vicga viog &
E —e logloga < e loglong(logSL’).
a

N+1<a<z: r(a)>N+1

So, R(x) = O(y/x log zeclﬁw) and, by (@), we have

> -

i<z, i€E(S)

6 1 1 VIoge

Flir X (1mg) g o oo
4<a<z, acE(S)NE(Y) p|r(a)

Moreover, if we replace here the sum Za<x aeB($)nE(T) Py the sum > W€ E(S)NE(T)’

then the error does not exceed % Z 0] — 6m0(1/x) O(1), then the

(n
result does not change. So, ﬁnally,

(8) 1=

i<z, i€E(S)

0 1 JIogz
2 Z H ( p+1) — | 2+ O(Vx log zelosios=).

a€E(S)NE(Y) plr(a)
Formula (§]) shows that, if 1 € S, then E(S) has a density.

4. COMPLETION OF THE PROOF

It remains to evaluate the sum (8). For that we follow the scheme of [4],
pp.203-204. For a fixed | € B, denote by C(l) the set of all E(S) N E(Y)-
numbers a with r(a) = [. Recall that r(1) = 1. By (&), we have

1
O ¥ = SIl(i- ) T eRe
i<z, i€E(S) IeB aeC(l)

Consider the function A : N — R given by:

> i les,
A(l) = { acC(l)
0, I ¢ B.

Example 1.

-3 . Z

aeC( )
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Example 2. Let p be prime. Since r(p) =p, then

Z -Y =5

aceC(p 2>2
The sum not contains 6(1) = % since, by the condition, a € E(S) N E(Y),

but the sequence E(Y) not contains any prime.

Example 3. Let p < q be primes. Since r(pq) = pq, then

Alpg) = ) ——

(1) gs(3) "
is2 e 7O

It is evident that, if I1,1, € B and gcd(ll, ls) =1, then

A(lly) = Z Z Z — = A(l)A(lz).

aGC(l1l2) aeC(ly) aEC (I2)
It follows that A(l) is a multiplicative function. Hence the function f
which is defined by

1
)= 1———) Al
=11 (1-57) a0
is also multiplicative. Evidently, by the definition of A(n),

S <Y Am < 2<oo.

acE(T)
Consequently ([3],p.103):

(10) S fm) =TJ+f@) + f@*) +...).

Since f(p*) = 0 for k > 2, then by (@):

Z 1:%:1:Zf(l)+R(x)
I=1

i<z, i€E(S)

6 1 1 1 1
I (1 ) (e et )) e

Now we have

(1) A(E(S)) = 7? [Ta+a-

S TI0+ 1) + R =
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1 1 u(7)
1;[((1—];)—(1—5);—-)

and, taking into account that u(1) = 1, we find

L p'p PP
BESUA SIORIED o I0
1;[((1 pH; P p; )
T A G o Ul Gt
1;[((1 p)+p+;pﬂ' p; )
H(1+Zu(z) ;(1—1))

which gives the required evaluation of the sum in (§) and completes the
proof of the theorem.

5. A QUESTION OF D. BEREND

Let p, be the n-th prime. Let A = {5, 5, ...} be an infinite sequence of
sequences S; € S beginning with 1. We say that a positive number N is an
exponentially A-number (N € E(A)), if in case that p,, n > 1, divides N,
then its exponent in the prime power factorization of N belongs to S,,. We
accept that 1 € E(A). How will change Theorem [ for the exponentially
A-numbers?

An analysis of the proof of Theorem [Ilshows that also in this more general
case, for every sequence A there exists a density h(A) of the exponentially
A-numbers such that
(12) > 1=h(E(A))z + R(x),

i<z, i€B(A)

where R(x) is the same as in Theorem [ and

(13) nEW) = TJo+ Y 20 ‘pj?“ —1,.

n>1 i>2

where u, (k) is the characteristic function of sequence S, : wu,(k) = 1, if
k € S, and u,(k) = 0 otherwise.

Example 4. Let
A={S={1},8={1,2},...8, ={1,...,n},..}.
Then, by (13),
h(E(A) =] - #) = 0.7210233... .

n>1
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6. A QUESTION

Let 1 € S. Then the density h(E(S)) is in the interval [6/7%, 1]. Whether
the set {h(E(S))} is a dense set in this interval?

D. Berend (private communication) gave a negative answer. Indeed, con-
sider the set S; of sequences {S} containing 2. Then, evidently, h(E(S)) >
h(E({1,2})) such that, by Theorem [I],

(14) BE(S))ses, > [0~ ;»

Now consider the set Sy of sequences {S} not containing 2. Then hA(E(S))
h(E({1,3,4,5,6,...})) such that, by Theorem [I]

1 1 -1
15 AEElses, < [T0 - 5+ =10 - )
Thus, by (I4)-(I15), we have a gap in the set {h(E(S))} in interval
qla -2, TIa -5

3 3
p p p p

IN

Of course, this Berend’s idea has far-reaching effects.
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