Surprising Relations Between Sums-Of-Squares of Characters of the Symmetric Group Over Two-Rowed Shapes and Over Hook Shapes

By Amitai REGEV and Doron ZEILBERGER

Abstract

In a recent article, we noted (and proved) that the sum of the squares of the characters of the symmetric group, $\chi^{\lambda}(\mu)$, over all shapes λ with two rows and n cells and $\mu=31^{n-3}$, equals, surprisingly, to $1 / 2$ of that sum-of-squares taken over all hook shapes with $n+2$ cells and with $\mu=321^{n-3}$. In the present note, we show that this is only the tip of a huge iceberg! We will prove that if μ consists of odd parts and (a possibly empty) string of consecutive powers of 2 , namely $2,4, \ldots, 2^{t-1}$ for $t \geq 1$, then the the sum of $\chi^{\lambda}(\mu)^{2}$ over all two-rowed shapes λ with n cells, equals exactly $\frac{1}{2}$ times the analogous sum of $\chi^{\lambda}\left(\mu^{\prime}\right)^{2}$ over all shapes λ of hook shape with $n+2$ cells, and where μ^{\prime} is the partition obtained from μ by retaining all odd parts, but replacing the string $2,4, \ldots, 2^{t-1}$ by 2^{t}.

Recall that the Constant Term of a Laurent polynomial in $\left(x_{1}, \ldots, x_{m}\right)$ is the free term, i.e. the coefficient of $x_{1}^{0} \cdots x_{m}^{0}$. For example

$$
C T_{x_{1}, x_{2}}\left(x_{1}^{-3} x_{2}+x_{1} x_{2}^{-2}+5\right)=5
$$

Recall that a partition (alias shape) of an integer n, with m parts (alias rows), is a non-increasing sequence of positive integers

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)
$$

where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{m}>0$, and $\lambda_{1}+\ldots+\lambda_{m}=n$.
If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{r}\right)$ are partitions of n with m and r parts, respectively, then it easily follows from (7.8) (p. 114) in [M], that the characters, $\chi^{\lambda}(\mu)$, of the symmetric group, S_{n}, may be obtained via the constant term expression

$$
\begin{equation*}
\chi^{\lambda}(\mu)=C T_{x_{1}, \ldots, x_{m}} \frac{\prod_{1 \leq i<j \leq m}\left(1-\frac{x_{j}}{x_{i}}\right) \prod_{j=1}^{r}\left(\sum_{i=1}^{m} x_{i}^{\mu_{j}}\right)}{\prod_{i=1}^{m} x_{i}^{\lambda_{i}}} . \tag{Chi}
\end{equation*}
$$

As usual, for any partition $\mu,|\mu|$ denotes the sum of its parts, in other words, the integer that is being partitioned.

In [RRZ] we considered two quantities. Let μ_{0} be any partition with smallest part ≥ 2. The first quantity, that we will call henceforth $A\left(\mu_{0}\right)(n)$, is the following sum-of-squares over two-rowed shapes λ :

$$
A\left(\mu_{0}\right)(n):=\sum_{j=0}^{\lfloor n / 2\rfloor} \chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)^{2}
$$

[Note that in [RRZ] this quantity was denoted by $\psi^{(2)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)$.]

The second quantity was the sum-of-squares over hook-shapes

$$
B\left(\mu_{0}\right)(n):=\sum_{j=1}^{n} \chi^{\left(j, 1^{n-j}\right)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)^{2}
$$

[Note that in [RRZ] this quantity was denoted by $\phi^{(2)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)$.]
In [RRZ] we developed algorithms for discovering (and then proving) closed-form expressions for these quantities, for any given (specific) finite partition μ_{0} with smallest part larger than one. In fact we proved that each such expression is always a multiple of $\binom{2 n}{n}$ by a certain rational function of n that depends on μ_{0}.

Unless μ_{0} is very small, these rational functions turn out to be very complicated, but, inspired by the OEIS $([\mathrm{S}])$, Alon Regev noted (and then it was proved in [RRZ]) the remarkable identity

$$
A(3)(n)=\frac{1}{2} B(3,2)(n+2) .
$$

This lead to the following natural question:
Are there other partitions, μ_{0}, such that there exists a partition, μ_{0}^{\prime} with $\left|\mu_{0}^{\prime}\right|=\left|\mu_{0}\right|+2$, such that the ratio $A\left(\mu_{0}\right)(n) / B\left(\mu_{0}^{\prime}\right)(n+2)$ is a constant?

This lead us to write a new procedure in the Maple package
http://www.math.rutgers.edu/~zeilberg/tokhniot/Sn.txt , that accompanies [RRZ],
called SeferNisim(K,NO), that searched for such pairs $\left[\mu_{0}, \mu_{0}^{\prime}\right]$. We then used our human ability for pattern recognition to notice that all the successful pairs (we went up to $\left|\mu_{0}\right| \leq 20$) turned out to be such that μ_{0} either consisted of only odd parts, and then μ_{0}^{\prime} was μ_{0} with 2 appended, or, more generally μ_{0} consisted of odd parts together with a string of consecutive powers of 2 (starting with 2), and μ_{0}^{\prime} was obtained from μ_{0} by retaining all the odd parts but replacing the string of powers of 2 by a single power of 2 , one higher then the highest in μ_{0}. In symbols, we conjectured, (and later proved [see below], alas, by purely human means) the following:

Theorem: Let μ_{0} be any partition of the form

$$
\mu_{0}=\operatorname{Sort}\left(\left[a_{1}, \ldots, a_{s}, 2,2^{2}, \ldots, 2^{t-1}\right]\right)
$$

where

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{s} \geq 3
$$

are all odd, and $t \geq 1$ (if $t=1$ then μ_{0} only consists of odd parts). Define

$$
\mu_{0}^{\prime}=\operatorname{Sort}\left(\left[a_{1}, \ldots, a_{s}, 2^{t}\right]\right) .
$$

Then, for every $n \geq\left|\mu_{0}\right|$, we have

$$
A\left(\mu_{0}\right)(n)=\frac{1}{2} B\left(\mu_{0}^{\prime}\right)(n+2) .
$$

(For any sequence of integers, S , $\operatorname{Sort}(\mathrm{S})$ denotes that sequence sorted in non-increasing order.)
In order to prove our theorem we need to first recall, from [RRZ], the following constant-term expression for $B\left(\mu_{0}\right)(n)$.

Lemma 1: Let $\mu_{0}=\left(a_{1}, \ldots, a_{r}\right)$

$$
B\left(\mu_{0}\right)(n)=\operatorname{Coeff}_{x^{0}}\left[\frac{(1+x)^{2 n-2-2\left(a_{1}+\ldots+a_{r}\right)}}{x^{n-1}} \cdot \prod_{i=1}^{r}\left(x^{a_{i}}-(-1)^{a_{i}}\right)\left(1-(-1)^{a_{i}} x^{a_{i}}\right)\right]
$$

We need an analogous constant-term expression for $A\left(\mu_{0}\right)(n)$. To that end, let's first spell-out Equation (Chi) for the two-rowed case, $m=2$, so that we can write $\lambda=(n-j, j)$. We have, writing $\mu_{0}=\left(a_{1}, \ldots, a_{r}\right)$,

$$
\begin{equation*}
\chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)=C T_{x_{1}, x_{2}} \frac{\left(1-\frac{x_{2}}{x_{1}}\right)\left(x_{1}+x_{2}\right)^{n-a_{1}-\ldots-a_{r}} \prod_{i=1}^{r}\left(x_{1}^{a_{i}}+x_{2}^{a_{i}}\right)}{x_{1}^{n-j} x_{2}^{j}} \tag{Chi2}
\end{equation*}
$$

This can be rewritten as

$$
\chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)=C T_{x_{1}, x_{2}} \frac{\left(1-\frac{x_{2}}{x_{1}}\right)\left(1+\frac{x_{2}}{x_{1}}\right)^{n-a_{1}-\ldots-a_{r}} \prod_{i=1}^{r}\left(1+\left(\frac{x_{2}}{x_{1}}\right)^{a_{j}}\right)}{\left(\frac{x_{2}}{x_{1}}\right)^{j}} .
$$

Since the constant-termand is of the form $P\left(\frac{x_{2}}{x_{1}}\right) /\left(\frac{x_{2}}{x_{1}}\right)^{j}$ for some single-variable polynomial $P(x)$, the above can be rewritten, as

$$
\chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)=\text { Coeff } f_{x^{0}} \frac{(1-x)(1+x)^{n-a_{1}-\ldots-a_{r}} \prod_{i=1}^{r}\left(1+x^{a_{i}}\right)}{x^{j}}
$$

Note that the left side is utter nonsense if $j>\frac{n}{2}$, but the right side makes perfect sense. It is easy to see that defining $\chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)$ by the right side for $j>\frac{n}{2}$, we get

$$
\chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)=-\chi^{(j, n-j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right) .
$$

Let's denote the numerator of the constant-termand of (Chi'), namely

$$
(1-x)(1+x)^{n-a_{1}-\ldots-a_{r}} \prod_{i=1}^{r}\left(1+x^{a_{i}}\right)
$$

by $P(x)$, then equation $\left(C h i 2^{\prime \prime}\right)$ can be also rewritten as a generating function.

$$
P(x)=\sum_{j=0}^{n} \chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right) x^{j} .
$$

Since for any polynomial of a single variable, $P(x)=\sum_{j=0}^{n} c_{j} x^{j}$, we have

$$
\sum_{j=0}^{n} c_{j}^{2}=\operatorname{Coef} f_{x^{0}}\left[P(x) P\left(x^{-1}\right)\right]
$$

we get

$$
\begin{gathered}
\sum_{j=0}^{n} \chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)^{2}= \\
\operatorname{Coeff} f_{x^{0}}\left[\left((1-x)(1+x)^{n-a_{1}-\ldots-a_{r}} \prod_{j=1}^{r}\left(1+x^{a_{j}}\right)\right) \cdot\left(\left(1-x^{-1}\right)\left(1+x^{-1}\right)^{n-a_{1}-\ldots-a_{r}} \prod_{j=1}^{r}\left(1+x^{-a_{j}}\right)\right)\right] \\
=-\operatorname{Coeff}_{x^{0}}\left[\frac{(1-x)^{2}(1+x)^{2\left(n-a_{1}-\ldots-a_{r}\right)} \prod_{j=1}^{r}\left(1+x^{a_{j}}\right)^{2}}{x^{n+1}}\right] .
\end{gathered}
$$

But since, by symmetry,

$$
\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)^{2}=\frac{1}{2} \sum_{j=0}^{n} \chi^{(n-j, j)}\left(\mu_{0} 1^{n-\left|\mu_{0}\right|}\right)^{2}
$$

we have
Lemma 2: Let $\mu_{0}=\left(a_{1}, \ldots, a_{r}\right)$ be a partition with smallest part larger than one, then

$$
A\left(\mu_{0}\right)(n)=-\frac{1}{2} \operatorname{Coeff}_{x^{0}}\left[\frac{(1-x)^{2}(1+x)^{2\left(n-a_{1}-\ldots-a_{r}\right)} \prod_{j=1}^{r}\left(1+x^{a_{j}}\right)^{2}}{x^{n+1}}\right]
$$

We are now ready to prove the theorem. If $\mu_{0}=\operatorname{Sort}\left(a_{1}, \ldots, a_{r}, 2, \ldots, 2^{t-1}\right)$ then

$$
A\left(\mu_{0}\right)(n)=-\frac{1}{2} \operatorname{Coeff}_{x^{0}}\left[\frac{(1-x)^{2}(1+x)^{2\left(n-a_{1}-\ldots-a_{r}-2-2^{2}-\ldots 2^{t-1}\right)} \prod_{j=1}^{t-1}\left(1+x^{2^{j}}\right)^{2} \prod_{j=1}^{r}\left(1+x^{a_{j}}\right)^{2}}{x^{n+1}}\right]
$$

But (transferring a factor of $(1+x)^{2}$ from the second factor to the product, $\left.\prod_{j=1}^{t-1}\left(1+x^{2^{j}}\right)^{2}\right)$, we have
$(1+x)^{2\left(n-a_{1}-\ldots-a_{r}-2-2^{2}-\ldots 2^{t-1}\right)} \prod_{j=1}^{t-1}\left(1+x^{2^{j}}\right)^{2}=(1+x)^{2\left(n-a_{1}-\ldots-a_{r}-1-2-2^{2}-\ldots 2^{t-1}\right)} \prod_{j=0}^{t-1}\left(1+x^{2^{j}}\right)^{2}$.
Hence,
$A\left(\mu_{0}\right)(n)=-\frac{1}{2} \operatorname{Coeff}_{x^{0}}\left[\frac{(1-x)^{2}(1+x)^{2\left(n-a_{1}-\ldots-a_{r}-1-2-2^{2}-\ldots 2^{t-1}\right)} \prod_{j=0}^{t-1}\left(1+x^{2^{j}}\right)^{2} \prod_{j=1}^{r}\left(1+x^{a_{j}}\right)^{2}}{x^{n+1}}\right]$

By Euler's good-old $(1-x) \prod_{j=0}^{t-1}\left(1+x^{2^{j}}\right)=1-x^{2^{t}}$. Hence

$$
A\left(\mu_{0}\right)(n)=-\frac{1}{2} \operatorname{Coeff}_{x^{0}}\left[\frac{\left(1-x^{2^{t}}\right)^{2}(1+x)^{2\left(n-a_{1}-\ldots-a_{r}-1-2-2^{2}-\ldots 2^{t-1}\right)} \prod_{j=1}^{r}\left(1+x^{a_{j}}\right)^{2}}{x^{n+1}}\right]
$$

On the other hand, since $\mu_{0}^{\prime}=\operatorname{Sort}\left(a_{1}, \ldots, a_{r}, 2^{t}\right)$, and all the a_{i} 's are odd, we have

$$
B\left(\mu_{0}^{\prime}\right)(n+2)=- \text { Coeff } x_{x^{0}}\left[\frac{(1+x)^{2 n+2-2\left(a_{1}+\ldots+a_{r}+2^{t}\right)}}{x^{n+1}} \cdot\left(x^{2^{t}}-1\right)^{2} \cdot \prod_{j=1}^{r}\left(x^{a_{j}}+1\right)^{2}\right]
$$

This completes the proof, since $-\left(1+2+2^{2}+\ldots+2^{t-1}\right)=1-2^{t}$

Acknowledgment

The research for this work was done while the second-named author visited the Faculty of Mathematics at the Weizmann Institute of Science, during the week of Oct. 5-9, 2015. He wishes to thank the Weizmann Institute for its hospitality, and its dedicated stuff, most notably Gizel Maimon.

References

[M] I. G. Macdonald, "Symmetric Functions and Hall Polynomials", 2nd ed., Clarendon Press, Oxford, 1995.
[RRZ] Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in Character Tables of S_{n}, J. Difference Equations and Applications,
DOI: 10.1080/10236198.2015.1081386, published online 11 Sep 2015, volume and page tbd. http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sn.html .
[S] Neil Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org .

Amitai Regev, Department of Pure Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel ; amitai dot regev at weizmann dot ac dot il .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu

Oct. 20, 2015.

