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Some new results on consecutive equidivisible integers
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Abstract

We have found maximum possible runs of consecutive positive integers each hav-

ing exactly k divisors for some fixed values of k. In addition, we exhibit the run of

10 consecutive positive integers each having exactly 12 divisors and two runs of 14

consecutive positive integers each having exactly 24 divisors.

1 Introduction

We let τ(n) denote the number of positive divisors of a positive integer n. Following [1],
we say positive integers m and n to be equidivisible if τ(m) = τ(n). For each k ∈ Z+, let
D(k) be the set of positive integers which begin maximal runs of equidivisible numbers with
exactly k divisors. More precisely,

D(1) = {1} and D(k) = {a ∈ Z+ | τ(a) = k, τ(a− 1) 6= k}, k > 1.

We let D(k, s) denote the set of numbers a ∈ D(k) such that τ(a+ i) = k for 0 ≤ i ≤ s− 1
and τ(a + s) 6= k. In other words, D(k, s) is the set of positive integers n that start runs
of s consecutive integers with exactly k divisors. For example, 33 and 85 both belong to
D(4, 3). Clearly, for a fixed k and varying s, the sets D(k, s) are pairwise disjoint and form
a partition of D(k). For n ∈ D(k) we write L(n) = s if n ∈ D(k, s).

It is easy to see that for each k, we have D(k, s) = ∅ for all large enough s. On the other
hand, Erdös conjectured that for every s, D(k, s) 6= ∅ for some k, i.e., there exists sequences
of consecutive equidivisible integers of any length (see [2, Problem B18]).

Let
M(k) = max{s ∈ Z+ | D(k, s) 6= ∅}.

So M(k) = 1 for all odd k because two squares cannot be consecutive positive integers and
M(2) = 2 because (2, 3) is the only pair of consecutive primes. Another trivial example is
M(4) = 3. Indeed, L(33) = 3 and if n > 8 is divisible by 4 then τ(n) ≥ 4.

Table 1 gives known ranges for M(k) for every even k < 30, according to [1].
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k 2 4 6 8 10 12 14 16 18 20 22 24 26 28
M(k) 2 3 5 7 3 5-23 3 7 3-5 3-7 1-3 5-31 1-3 2-7

Table 1: Possible ranges of M(k) for even k < 30 according to [1].

In 2006, Ali and Mishutka [3] showed that M(24) ≥ 12.
We have found exact values of M(k) for 55 fixed values of k. Also we have shown

that M(12) ≥ 10. Finally, we have found six runs of 13 and two runs of 14 consecutive
equidivisible numbers each having exactly 24 divisors.

2 Results

2.1 Consecutive integers with 2p divisors

First of all, let us consider the case k = 2p, where p > 3 is prime. Düntsch and Eggleton [1]
proved that M(2p) ≤ 3. It seems that it is exactly equal to 3. Letting n = 3p−1r1, n + 1 =
2p−1r2, n + 2 = qp−1r3 or n = qp−1r1, n + 1 = 2p−1r2, n + 2 = 3p−1r3 for suitable primes
q, r1, r2, r3, we have found many examples of n in D(2p, 3) by Chinese remainder theorem.
Moreover, for all these p we have found the smallest corresponding n. For instance, let
p = 11. Then n = 310 · 1765118938727 starts the least triple for q = 5. Since 5310 > n it is
sufficient to look over the triples for q ≤ 47. It remains to note that for each of these q we
need to check only a small number of cases.

p n

5 7939375
7 3388031791
11 104228508212890623
13 1489106237081787109375
17 273062471666259918212890623
19 804505911103256259918212890623
23 490685203356467392256259918212890623
29 6794675247932944436619977392256259918212890623
31 329757106427071213106619977392256259918212890623
37 4459248710164424946384890995893380022607743740081787109375
41 3685099958690838758895720896109004106619977392256259918212890623
43 1038001791494840815734697769103890995893380022607743740081787109375
47 12229485870130123102579152313423230896109004106619977392256259918212

890623

Table 2: Smallest elements n of D(2p, 3)), for prime 5 ≤ p ≤ 47.
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The correspondence between p and n for all prime 5 ≤ p ≤ 47 is given by the Table 2.
In fact, we have found the necessary triples for every prime p < 200. Full list one can see at
the website of Mathematical Marathon [4].

It was observed that q = 5 in all smallest triples we found. Of course, this property for
smallest triples is not guaranteed for all p. While we have not yet observed a minimal triple
with q 6= 5. The following example may serve as indirect evidence for their existence. For
p = 5, q = 19, the smallest triple starts at n = 130, 358, 662, 767, while p = 5, q = 43 give
even a smaller start of the smallest triple at n = 3, 388, 031, 791.

2.2 Exact values of M(k) for k divisible by 4 and nondivisible by 3

Let k is a positive integer such that k > 4, 4 | k and 3 ∤ k. If n ≡ 4 (mod 8) then 3 | τ(n).
Hence it can not be equal to k. Therefore M(k) ≤ 7 and for every positive integer n starting
a run of 7 numbers each having k divisors we have n ≡ 5 (mod 8).

Apparently, for the considered values k M(k) is exactly equal to 7.
We show the method of constructing of required runs for k = 20. Chinese remainder

theorem provides existence of infinite number of positive integers n such that

n = 3 · 134 · q1,
n+ 1 = 2 · 174 · q2,
n+ 2 = 74 · q3,
n+ 3 = 3 · 24 · q4,
n+ 4 = 54 · q5,
n+ 5 = 2 · 114 · q6,
n+ 6 = 34 · q7,

(1)

and all prime factors of numbers q1, q2, . . . , q7 are greater than 17.
For positive integer n = 76, 043, 484, 008, 534, 356, 379, 398, 200, 621 satisfying condi-

tions (1) numbers q1, q2, q4, q6 are prime and τ(q3) = τ(q5) = τ(q7) = 4. Hence this n
starts a run of 7 numbers each having 20 divisors.

Of course, conditions (1) are not necessary. Our choose of moduli is largely arbitrary.
We used a similar technique to obtain M(k) = 7 for some other values k. The correspon-

dence between these k and n with L(n) = M(k) = 7 is given by the Table 3.

2.3 Exact value of M(18)

We describe the case of k = 18 in more detail. First of all, note that τ(n) = 18 implies
that n has one of the following forms: p17, p8q, p5q2, or p2q2r, where p, q, r are primes. It
immediately follows that if prime p | n but p2 ∤ n then n = pa2 for some positive integer a
coprime to p.

Let n starts a run of 5 consecutive numbers with 18 divisors each. Düntsch and Eggle-
ton [1] showed that n ≡ 1 (mod 8). Hence n + 1 = 2a2 and n + 3 = 4c where a = pq or
a = p4, c = r2s or c = r5 for some odd primes p, q, r, s. Now we can prove that n + 2 is
divisible by 3.
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k n

8 171893
16 17476613
20 76043484008534356379398200621
28 452785996182923067361779632166688093890621
32 788892193463818869
40 1469311698340824775996499340503749
44 549796909842455469360784994463197630002088937189442381988212890621
52 116844969527144570418843086016323822512131294234905340708844790822

918212890621
56 22553801100353754138758323632384069700595843749
64 782810267531144296869
80 3018228484495186382136305792833733749
100 28507228700231793584389588114883537171392858414724415542297895106

76250621
112 102896381882412847725564867238989575115313463843749
128 5915712233391708437084350399869

Table 3: Elements n of D(k, 7)) for which L(n) = M(k).

We have 3 possibilities: 3 | n, 3 | (n + 1), or 3 | (n+ 2).
If 3 | n then n = 3b2 or n = 9b. In the former case, we have 3b2 + 1 = 2a2, which has no

solutions modulo 3. In the latter case, we have n + 3 = 12p2. Considering n + 1 = 2a2 one
can get 2a2 + 2 = 12p2, which again has no solutions modulo 3. Therefore n is not divisible
by 3.

If 3 | (n+1) then n+1 = 18p2 for some prime p > 3 (the case of n+1 = 2 ·38 is obviously
impossible). Hence n + 4 = 3b2, implying that 6p2 = b2 − 1, which is impossible since the
right hand side is divisible by 8 and 6p2 ≡ 6 (mod 8). Therefore n + 1 is not divisible by 3
either.

Hence, we must have 3 | (n + 2), which we satisfy by assuming that n + 2 = 9b. Since
one of the five consecutive numbers must be divisible by 5, we let n + 4 = 25d. These
assumptions fulfill the divisibility requirements by small primes.

We further find it convenient to assume the following forms of the integers: n = p21p
2
2p3,

n+2 = 9p24p5, n+3 = 4p26p7, n+4 = 25p28p9, where p1, p2, . . . , p9 are distinct primes greater
than 5.

Let m1 = p21p
2
2, m2 = 9p24, m3 = 4p26, and m4 = 25p28. We choose p1, p2, p4, p6, and p8 be
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small primes such that the following system of quadratic congruences is solvable:



















2x2 − 1 ≡ 0 (mod m1),

2x2 + 1 ≡ 0 (mod m2),

2x2 + 2 ≡ 0 (mod m3),

2x2 + 3 ≡ 0 (mod m4)

(2)

Since the moduli in system (2) are pairwise coprime and each congruence has 4 solutions,
by Chinese remainder theorem the system solution consists of 256 classes of positive integers
{xi + jm}j≥0, where 1 ≤ i ≤ 256 and 0 ≤ xi < m = m1m2m3m4. Each class can give us
n = 2(xi + jm)2 − 1 as soon as n/m1, (n + 2)/m2, (n + 3)/m3, (n + 4)/m4 are prime and
xi + jm = qr or xi + jm = q4 for some primes q, r.

The smallest known n starting 5 numbers with 18 divisors each was obtained for p1 = 7,
p2 = 17, p4 = 11, p6 = 13, p8 = 29, and j = 260. It is equal to

6, 481, 049, 360, 854, 613, 144, 556, 866, 375, 483, 521.

Using computer search one can obtain many other numbers (for the aforementioned and
other values of m1, m2, m3, m4) in D(18, 5).

2.4 New lower bounds for M(12) and M(24)

We have found n with τ(n) = 12 and L(n) = 10, implying that M(12) ≥ 10.
We have searched desired run looking over numbers n such that

n = 192 · q1;
n+ 1 = 2 · 52 · q2;
n+ 2 = 3 · 172 · q3;
n+ 3 = 22 · q4;
n+ 4 = 232 · q5;
n+ 5 = 2 · 32 · q6;
n+ 6 = 5 · 72 · p;
n+ 7 = 25 · q7;
n+ 8 = 3 · 132 · q8;
n+ 9 = 2 · 112 · q9.

(3)

First of all, these conditions fulfill the divisibility requirements by 2, 3, 5, 7 and 11. We
choose additional conditions to increase empiric probability of required number of divisors
for psitive integers qi.

Let a = 5 · 72. Using Chinese remainder theorem we have found the least positive integer
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p0 = 7, 623, 414, 751, 537, 859, satisfying to the system of linear congruences:



























































ax2 − 6 ≡ 0 (mod 192),

ax2 − 5 ≡ 0 (mod 52),

ax2 − 4 ≡ 0 (mod 172),

ax2 − 2 ≡ 0 (mod 232),

ax2 − 1 ≡ 0 (mod 32),

ax2 + 1 ≡ 0 (mod 25),

ax2 + 2 ≡ 0 (mod 132),

ax2 + 3 ≡ 0 (mod 112)

We have looked over positive integers p = p0 + jm, where m = 26 · 33 · 5 · 112 · 132 · 172 ·
192 · 232. For each p which is prime we can obtain n = ap − 6 and numbers q1, q2, . . . , q9
from conditions (3). It is enough to us to find j for which q2, q3, q6, q7, q8, q9 are prime and
τ(q1) = τ(q4) = τ(q5) = 4. The smallest j satisfying these conditions is j = 647, 045, 875,
which corresponds to n = 1, 545, 780, 028, 345, 667, 311, 380, 575, 449 starting a run of 10
consecutive equidivisible numbers each having exactly 12 divisors.

Using similar construction, we have also found six runs of 13 consecutive numbers each
having exactly 24 divisors. Smallest of them starts at

58, 032, 555, 961, 853, 414, 629, 544, 105, 797, 569.

This number gives the upper bound for A006558(13) in the OEIS [5] (A006558(n) starts the
first run of n consecutive integers with same number of divisors).

Finally, we have found two runs of 14 consecutive equidivisible numbers each having
exactly 24 divisors. The first run starts at

25, 335, 305, 376, 270, 095, 455, 498, 383, 578, 391, 968,

which was obtained in the form 3·11·232(p0+jm)−13 withm = 331, 805, 549, 004, 454, 324, 800,
p0 = 92, 513, 784, 488, 630, 385, 533, and j = 4, 373, 940, 659. The second run starts at

54, 546, 232, 085, 777, 926, 508, 945, 202, 650, 399, 569, 568,

which was obtained for the same values of m and p0 but j = 9, 416, 976, 775, 575. Thus
M(24) ≥ 14. Of course, the smallest of these numbers gives the upper bound for A006558(14).

Our results confirm the Erdös conjecture for s ≤ 14.

2.5 Smallest elements of D(k, s)

Table 4 gives a smallest known element n ∈ D(k, s) for every even k below 30, where s is
greatest known number with D(k, s) 6= ∅.
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k n L(n) M(k)

2 2 2 2
4 33 3 3
6 10093613546512321 5 5
8 171893 7 7
10 7939375 3 3
12 1545780028345667311380575449⋆ 10 ≤ 23
14 3388031791 3 3
16 17476613 7 7
18 6481049360854613144556866375483521⋆ 5 5
20 76043484008534356379398200621⋆ 7 7
22 104228508212890623⋆ 3 3
24 25335305376270095455498383578391968⋆ 14 ≤ 31
26 1489106237081787109375⋆ 3 3
28 452785996182923067361779632166688093890621⋆ 7 7

Table 4: Smallest known elements n ∈ D(k) with largest L(n) for even k < 30.

Numbers n which are guaranteed to be the smallest in the corresponding D(k, L(n)) are
in bold. Sign “⋆” in the n column showes that corresponding n have been discovered by the
author of this paper.

Acknowledgement. We would like to thank Max A. Alekseyev who carefully read our
original manuscript and proposed several corrections.
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