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ON A CONJECTURE OF JOHN HOFFMAN REGARDING

SUMS OF PALINDROMIC NUMBERS

MARKUS SIGG

Abstract. We disprove the conjecture that every sufficiently large natural number n is
the sum of three palindromic natural numbers where one of them can be chosen to be the
largest or second largest palindromic natural number smaller than or equal to n.
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1. Introduction

In the following, the terms digit and palindromic refer to decimal representations. For n ∈ N,
its unique decimal representation is given by

n =

h(n)∑

j=0

nj · 10
j.

with minimal h(n) ∈ N and digits n0, . . . , nh(n) ∈ {0, . . . , 9}. We identify n with the digit
string nh(n) . . . n0.

A natural number n is called palindromic iff nj = nh(n)−j for 0 ≤ j ≤ n(h).

By P we denote the set of palindromic natural numbers, i. e.

P = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, . . . , 99, 101, 111, 121, . . .}.

Until recently, it was not known whether P is an additive basis of N, i. e. whether there
exists d ∈ N such that N = dP, where dP denotes the set of sums of d elements of P.
William D. Banks has in [1] given a proof for N = 49P, which leaves still quite some dis-
tance from the commonly conjectured N = 3P. [2] mentions an even stronger conjecture of
John Hofmann, claiming that every sufficiently large natural number n is the sum of three
elements of P where one of them can be chosen to be the largest or second largest palindromic
natural number p ≤ n. With the palindromic precursor and palindromic successor

n∗ := max
P∋p<n

p and n∗ := min
P∋p>n

p ,

and n∗∗ := (n∗)∗ for n ∈ N, the question is:

Is it true that {n− n∗, n− n∗∗} ∩ 2P 6= ∅ for every sufficiently large n ∈ N \ P?

We are going to show that the answer is “no”.
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2. The Counterexample

The counterexample is constructed using ’non-2P twins’, the palindromic twins 10a ± 1 for
suitable a ∈ N and the fact that the distance between a palindromic number p and its
successor p∗ can be arbitrarily large. As ’non-2P twins’ we use the numbers 11 · 10k + 1 and
11 · 10k + 3 for even k.

Proposition 1. 11 · 10k + 1 6∈ 2P for 2 ≤ k ∈ N.

Proof. For t := 11 · 10k +1 we have h(t) = k+1. Suppose t = p+ q with p, q ∈ P and p ≤ q,
so h(p) ≤ h(q) ≤ k + 1. Because t 6∈ P, we have p > 0.

(a) Suppose h(q) = k + 1. Then qk+1 = 1, so q0 = 1, so p0 = 0, which is not possible.

(b) Suppose h(p) = h(q) = k. Because t0 = 1 and p0, q0 6= 0, we need p0 + q0 = 11, so 1 is
carried to the tens positions, and as this must add to 10 with p1 + q1, we get p1 + q1 = 9,
and a 1 is carried to the hundreds position. This goes on up to pk−1 + qk−1 = 9 and a carry
to position k. But then p+ q ≥ (pk + qk + 1) · 10k = (p0 + q0 + 1) · 10k = 12 · 10k > t.

(c) Suppose h(p) < h(q) = k. Then p+ q ≤ (10k − 1) + (10k+1 − 1) = 11 · 10k − 2 < t.

(d) Suppose h(p) ≤ h(q) < k. Then p+ q ≤ (10k − 1) + (10k − 1) = 2 · 10k − 2 < t. �

Proposition 2. 11 · 10k + 3 6∈ 2P for 2 ≤ k ∈ N, k even.

Proof. For t := 11 · 10k +3 we have h(t) = k+1. Suppose t = p+ q with p, q ∈ P and p ≤ q,
so h(p) ≤ h(q) ≤ k + 1. Because t 6∈ P, we have p > 0.

In the following, for a digit α and m ∈ N, [α]m denotes the concatenation of m copies of α.

(a) Suppose h(q) = k + 1. Then qk+1 = 1, so q0 = 1, so p0 = 2, so ph(p) = 2, so h(p) < k.
A carry is needed from position h(p) to position h(p) + 1 to get (p+ q)h(p) = 0, and so on,
up to a carry from position k − 1 to position k. With this carry, we would get p + q > t if
qk > 0, so qk = 0, so q1 = 0. For h(p) > 1 we get p1 = 0. For h(p) > 2 we get ph(p)−1 = 0.

(aa) Suppose k = 2. Then q = 1001 and p ∈ {2, 22}, so p+ q 6= t.

(ab) Suppose k = 4. Then q = 10δδ01 with a digit δ and p ∈ {2, 22, 202, 2002}, so p+ q 6= t.

(ac) Suppose k ≥ 6 ∧ h(p) ≤ 5. Then q = 10δεαεδ01 with digits δ and ε and a palindromic
digit string α which is empty in case of k = 6. To get (p+ q)k = 1, δ = 9 is needed,
so q = 109εαε901 and p + q 6= t for p ∈ {2, 22, 202, 2002}. For p = 20ϕ02 with some
digit ϕ, to get (p+ q)2 = 0 we need ϕ = 1 and ε = 9, but then in case of k = 6 we get
p + q = 20102 + 10999901 = 11020003 6= t, while in case of k > 6 we need α = 7[9]k−87,
so p + q = 20102 + 10997[9]k−879901 = 10998[0]k−800003 6= t. For p = 20ϕϕ02 with some
digit ϕ, to get (p+ q)2 = 0 we need ϕ = 1 and ε = 8, but then in case of k = 6 we get
p + q = 201102 + 10988901 = 11190003 6= t, while in case of k > 6 we have

p+ q < 106 + 1099 · 10k−2 ≤ 10k−2 + 1099 · 10k−2 = 11 · 10k < t.

(ad) Suppose k ≥ 8 ∧ h(p) ≥ 6. Then q = 10δεαεδ01 and p = 20ϕβϕ02 with digits δ, ε, ϕ
and non-empty palindromic digit strings α, β. We will construct p′, q′ ∈ P, p′ ≤ q′ with
h(q′) = k − 1 and p′ + q′ = 11 · 10k−2 + 3, which gives rise to an impossible infinite descent.

(ada) Suppose ϕ = 0. Then δ = 0, hence q = 100εαε001 and p = 200β002, and we can take
q′ := 10εαε01 and p′ := 20β02.
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(adb) Suppose ϕ 6= 0 and h(p) = k − 1. We have ϕ+ δ = 10 and δ 6= 0, and β must have at
least two digits, i. e. β = ψγψ with a digit ψ and a (possibly empty) palindromic digit string
γ, so p = 20ϕψγψϕ02, which allows to take q′ := 10δαδ01 and p′ := 20ϕγϕ02.

(adc) Suppose ϕ 6= 0 and h(p) < k−1. We have ϕ+ δ = 10, and h(p) < k−1 leads to δ = 9
and ϕ = 1, so q = 109εαε901 and p = 201β102.

(adca) Suppose β is more than one digit, i. e. β = ψγψ with a digit ψ and a (possibly
empty) palindromic digit string γ, hence p = 201ψγψ102. Then we take q′ := 109α901 and
p′ := 201γ102.

(adcb) Suppose β is a single digit. As k is even, α has an even number of digits. If α were
two digits, say α = ττ with a digit τ , so q = 109εττε901, we would need τ = 8 for the lower
position, but τ = 9 for the higher position of τ . If α were more than two digits, say α = τ̺τ

with a digit τ and a palindromic digit string ̺ with 2 or more digits, so q = 109ετ̺τε901,
we would again need τ = 8 for the lower position, but τ = 9 for the higher position of τ . So
the case (adcb) is not possible at all.

(b) Suppose h(p) = h(q) = k. Then p0 + q0 = 3, pk + qk ∈ {10, 11}, but pk = p0, qk = q0.

(c) Suppose h(p) < h(q) = k. Then p+ q ≤ (10k − 1) + (10k+1 − 1) = 11 · 10k − 2 < t.

(d) Suppose h(p) ≤ h(q) < k. Then p+ q ≤ (10k − 1) + (10k − 1) = 2 · 10k − 2 < t. �

Proposition 3. There are infinitely many n ∈ N \ P with n− n∗, n− n∗∗ 6∈ 2P.

Proof. Let 1 ≤ j ∈ N. Then for t := 11 · 102j + 1, propositions 1 and 2 show t, t + 2 6∈ 2P.
Take m ∈ N with 10m > t and set p := 102m + 1 ∈ P. Then p∗ = 102m + 10m + 1 = p+ 10m

and p∗ = 102m − 1 = p − 2. For n := p + t we have p < n < p + 10m = p∗, so n 6∈ P and
n∗ = p, hence n− n∗ = n− p = t 6∈ 2P and n− n∗∗ = n− p∗ = n− (p− 2) = t+ 2 6∈ 2P.

In this way, for every j ≥ 1 choose an m(j) and get an n(j) with the desired properties.
Taking m(j + 1) > m(j) gives n(j + 1) > n(j). �

Choosing the smallest possible m with 10m > 11 · 102j + 1, namely m = 2j + 2, in the proof
of proposition 3 yields n(j) = 10 000j+1 + 11 · 100j + 2.

On a related note, we would like to point out that the greedy algorithm which, given a
natural number, repeatedly subtracts the largest possible palindromic number, can result in
an arbitrarily large number of palindromic summands: Start with n(1) := 1. To get n(j+1),
take m ∈ N with 10m > n(j) and set n(j + 1) := 102m + 1 + n(j). Then n(j + 1) 6∈ P and
n(j + 1)

∗
= 102m +1, so n(j + 1)− n(j + 1)

∗
= n(j). For every j ∈ N, the greedy algorithm

partitions n(j) into j palindromic summands. Consequently, and in confirmation of a recent
presumption of Neil Sloane [3], the OEIS sequence A088601 is unbounded.

References

[1] W. D. Banks, Every natural number is the sum of forty-nine palindromes, arXiv:1508.04721,
http://arxiv.org/abs/1508.04721.

[2] E. Friedman, Problem of the Month (June 1999), http://www2.stetson.edu/~efriedma/mathmagic/0699.html.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A088601, http://oeis.org/A088601.

Freiburg, Germany

E-mail address : mail@markussigg.de

http://arxiv.org/abs/1508.04721
http://arxiv.org/abs/1508.04721
http://www2.stetson.edu/~efriedma/mathmagic/0699.html
http://www2.stetson.edu/~friedma/mathmagic/0699.html
http://oeis.org/A088601
http://oeis.org/A088601

	1. Introduction
	2. The Counterexample
	References

