ON A CONJECTURE OF JOHN HOFFMAN REGARDING SUMS OF PALINDROMIC NUMBERS

MARKUS SIGG

Abstract

We disprove the conjecture that every sufficiently large natural number n is the sum of three palindromic natural numbers where one of them can be chosen to be the largest or second largest palindromic natural number smaller than or equal to n.

Keywords: palindromic number.
AMS subjects classification 2010: 11B13.

1. Introduction

In the following, the terms digit and palindromic refer to decimal representations. For $n \in \mathbb{N}$, its unique decimal representation is given by

$$
n=\sum_{j=0}^{h(n)} n_{j} \cdot 10^{j}
$$

with minimal $h(n) \in \mathbb{N}$ and digits $n_{0}, \ldots, n_{h(n)} \in\{0, \ldots, 9\}$. We identify n with the digit string $n_{h(n)} \ldots n_{0}$.

A natural number n is called palindromic iff $n_{j}=n_{h(n)-j}$ for $0 \leq j \leq n(h)$.
By \mathbb{P} we denote the set of palindromic natural numbers, i.e.

$$
\mathbb{P}=\{0,1,2,3,4,5,6,7,8,9,11,22,33, \ldots, 99,101,111,121, \ldots\}
$$

Until recently, it was not known whether \mathbb{P} is an additive basis of \mathbb{N}, i. e. whether there exists $d \in \mathbb{N}$ such that $\mathbb{N}=d \mathbb{P}$, where $d \mathbb{P}$ denotes the set of sums of d elements of \mathbb{P}. William D. Banks has in [1] given a proof for $\mathbb{N}=49 \mathbb{P}$, which leaves still quite some distance from the commonly conjectured $\mathbb{N}=3 \mathbb{P}$. 2] mentions an even stronger conjecture of John Hofmann, claiming that every sufficiently large natural number n is the sum of three elements of \mathbb{P} where one of them can be chosen to be the largest or second largest palindromic natural number $p \leq n$. With the palindromic precursor and palindromic successor

$$
n_{*}:=\max _{\mathbb{P} \ni p<n} p \quad \text { and } \quad n^{*}:=\min _{\mathbb{P} \ni p>n} p,
$$

and $n_{* *}:=\left(n_{*}\right)_{*}$ for $n \in \mathbb{N}$, the question is:

$$
\text { Is it true that }\left\{n-n_{*}, n-n_{* *}\right\} \cap 2 \mathbb{P} \neq \emptyset \text { for every sufficiently large } n \in \mathbb{N} \backslash \mathbb{P} \text { ? }
$$

We are going to show that the answer is "no".

[^0]
2. The Counterexample

The counterexample is constructed using 'non- $2 \mathbb{P}$ twins', the palindromic twins $10^{a} \pm 1$ for suitable $a \in \mathbb{N}$ and the fact that the distance between a palindromic number p and its successor p^{*} can be arbitrarily large. As 'non- $2 \mathbb{P}$ twins' we use the numbers $11 \cdot 10^{k}+1$ and $11 \cdot 10^{k}+3$ for even k.

Proposition 1. $11 \cdot 10^{k}+1 \notin 2 \mathbb{P}$ for $2 \leq k \in \mathbb{N}$.
Proof. For $t:=11 \cdot 10^{k}+1$ we have $h(t)=k+1$. Suppose $t=p+q$ with $p, q \in \mathbb{P}$ and $p \leq q$, so $h(p) \leq h(q) \leq k+1$. Because $t \notin \mathbb{P}$, we have $p>0$.
(a) Suppose $h(q)=k+1$. Then $q_{k+1}=1$, so $q_{0}=1$, so $p_{0}=0$, which is not possible.
(b) Suppose $h(p)=h(q)=k$. Because $t_{0}=1$ and $p_{0}, q_{0} \neq 0$, we need $p_{0}+q_{0}=11$, so 1 is carried to the tens positions, and as this must add to 10 with $p_{1}+q_{1}$, we get $p_{1}+q_{1}=9$, and a 1 is carried to the hundreds position. This goes on up to $p_{k-1}+q_{k-1}=9$ and a carry to position k. But then $p+q \geq\left(p_{k}+q_{k}+1\right) \cdot 10^{k}=\left(p_{0}+q_{0}+1\right) \cdot 10^{k}=12 \cdot 10^{k}>t$.
(c) Suppose $h(p)<h(q)=k$. Then $p+q \leq\left(10^{k}-1\right)+\left(10^{k+1}-1\right)=11 \cdot 10^{k}-2<t$.
(d) Suppose $h(p) \leq h(q)<k$. Then $p+q \leq\left(10^{k}-1\right)+\left(10^{k}-1\right)=2 \cdot 10^{k}-2<t$.

Proposition 2. $11 \cdot 10^{k}+3 \notin 2 \mathbb{P}$ for $2 \leq k \in \mathbb{N}$, k even.
Proof. For $t:=11 \cdot 10^{k}+3$ we have $h(t)=k+1$. Suppose $t=p+q$ with $p, q \in \mathbb{P}$ and $p \leq q$, so $h(p) \leq h(q) \leq k+1$. Because $t \notin \mathbb{P}$, we have $p>0$.

In the following, for a digit α and $m \in \mathbb{N},[\alpha]_{m}$ denotes the concatenation of m copies of α.
(a) Suppose $h(q)=k+1$. Then $q_{k+1}=1$, so $q_{0}=1$, so $p_{0}=2$, so $p_{h(p)}=2$, so $h(p)<k$. A carry is needed from position $h(p)$ to position $h(p)+1$ to get $(p+q)_{h(p)}=0$, and so on, up to a carry from position $k-1$ to position k. With this carry, we would get $p+q>t$ if $q_{k}>0$, so $q_{k}=0$, so $q_{1}=0$. For $h(p)>1$ we get $p_{1}=0$. For $h(p)>2$ we get $p_{h(p)-1}=0$.
(aa) Suppose $k=2$. Then $q=1001$ and $p \in\{2,22\}$, so $p+q \neq t$.
(ab) Suppose $k=4$. Then $q=10 \delta \delta 01$ with a digit δ and $p \in\{2,22,202,2002\}$, so $p+q \neq t$.
(ac) Suppose $k \geq 6 \wedge h(p) \leq 5$. Then $q=10 \delta \varepsilon \alpha \varepsilon \delta 01$ with digits δ and ε and a palindromic digit string α which is empty in case of $k=6$. To get $(p+q)_{k}=1, \delta=9$ is needed, so $q=109 \varepsilon \alpha \varepsilon 901$ and $p+q \neq t$ for $p \in\{2,22,202,2002\}$. For $p=20 \varphi 02$ with some digit φ, to get $(p+q)_{2}=0$ we need $\varphi=1$ and $\varepsilon=9$, but then in case of $k=6$ we get $p+q=20102+10999901=11020003 \neq t$, while in case of $k>6$ we need $\alpha=7[9]_{k-8} 7$, so $p+q=20102+10997[9]_{k-8} 79901=10998[0]_{k-8} 00003 \neq t$. For $p=20 \varphi \varphi 02$ with some digit φ, to get $(p+q)_{2}=0$ we need $\varphi=1$ and $\varepsilon=8$, but then in case of $k=6$ we get $p+q=201102+10988901=11190003 \neq t$, while in case of $k>6$ we have

$$
p+q<10^{6}+1099 \cdot 10^{k-2} \leq 10^{k-2}+1099 \cdot 10^{k-2}=11 \cdot 10^{k}<t
$$

(ad) Suppose $k \geq 8 \wedge h(p) \geq 6$. Then $q=10 \delta \varepsilon \alpha \varepsilon \delta 01$ and $p=20 \varphi \beta \varphi 02$ with digits $\delta, \varepsilon, \varphi$ and non-empty palindromic digit strings α, β. We will construct $p^{\prime}, q^{\prime} \in \mathbb{P}, p^{\prime} \leq q^{\prime}$ with $h\left(q^{\prime}\right)=k-1$ and $p^{\prime}+q^{\prime}=11 \cdot 10^{k-2}+3$, which gives rise to an impossible infinite descent.
(ada) Suppose $\varphi=0$. Then $\delta=0$, hence $q=100 \varepsilon \alpha \varepsilon 001$ and $p=200 \beta 002$, and we can take $q^{\prime}:=10 \varepsilon \alpha \varepsilon 01$ and $p^{\prime}:=20 \beta 02$.
(adb) Suppose $\varphi \neq 0$ and $h(p)=k-1$. We have $\varphi+\delta=10$ and $\delta \neq 0$, and β must have at least two digits, i. e. $\beta=\psi \gamma \psi$ with a digit ψ and a (possibly empty) palindromic digit string γ, so $p=20 \varphi \psi \gamma \psi \varphi 02$, which allows to take $q^{\prime}:=10 \delta \alpha \delta 01$ and $p^{\prime}:=20 \varphi \gamma \varphi 02$.
(adc) Suppose $\varphi \neq 0$ and $h(p)<k-1$. We have $\varphi+\delta=10$, and $h(p)<k-1$ leads to $\delta=9$ and $\varphi=1$, so $q=109 \varepsilon \alpha \varepsilon 901$ and $p=201 \beta 102$.
(adca) Suppose β is more than one digit, i. e. $\beta=\psi \gamma \psi$ with a digit ψ and a (possibly empty) palindromic digit string γ, hence $p=201 \psi \gamma \psi 102$. Then we take $q^{\prime}:=109 \alpha 901$ and $p^{\prime}:=201 \gamma 102$.
(adcb) Suppose β is a single digit. As k is even, α has an even number of digits. If α were two digits, say $\alpha=\tau \tau$ with a digit τ, so $q=109 \varepsilon \tau \tau \varepsilon 901$, we would need $\tau=8$ for the lower position, but $\tau=9$ for the higher position of τ. If α were more than two digits, say $\alpha=\tau \varrho \tau$ with a digit τ and a palindromic digit string ϱ with 2 or more digits, so $q=109 \varepsilon \tau \varrho \tau \varepsilon 901$, we would again need $\tau=8$ for the lower position, but $\tau=9$ for the higher position of τ. So the case (adcb) is not possible at all.
(b) Suppose $h(p)=h(q)=k$. Then $p_{0}+q_{0}=3, p_{k}+q_{k} \in\{10,11\}$, but $p_{k}=p_{0}, q_{k}=q_{0}$.
(c) Suppose $h(p)<h(q)=k$. Then $p+q \leq\left(10^{k}-1\right)+\left(10^{k+1}-1\right)=11 \cdot 10^{k}-2<t$.
(d) Suppose $h(p) \leq h(q)<k$. Then $p+q \leq\left(10^{k}-1\right)+\left(10^{k}-1\right)=2 \cdot 10^{k}-2<t$.

Proposition 3. There are infinitely many $n \in \mathbb{N} \backslash \mathbb{P}$ with $n-n_{*}, n-n_{* *} \notin 2 \mathbb{P}$.
Proof. Let $1 \leq j \in \mathbb{N}$. Then for $t:=11 \cdot 10^{2 j}+1$, propositions 1 and 2 show $t, t+2 \notin 2 \mathbb{P}$. Take $m \in \mathbb{N}$ with $10^{m}>t$ and set $p:=10^{2 m}+1 \in \mathbb{P}$. Then $p^{*}=10^{2 m}+10^{m}+1=p+10^{m}$ and $p_{*}=10^{2 m}-1=p-2$. For $n:=p+t$ we have $p<n<p+10^{m}=p^{*}$, so $n \notin \mathbb{P}$ and $n_{*}=p$, hence $n-n_{*}=n-p=t \notin 2 \mathbb{P}$ and $n-n_{* *}=n-p_{*}=n-(p-2)=t+2 \notin 2 \mathbb{P}$.

In this way, for every $j \geq 1$ choose an $m(j)$ and get an $n(j)$ with the desired properties. Taking $m(j+1)>m(j)$ gives $n(j+1)>n(j)$.

Choosing the smallest possible m with $10^{m}>11 \cdot 10^{2 j}+1$, namely $m=2 j+2$, in the proof of proposition 3 yields $n(j)=10000^{j+1}+11 \cdot 100^{j}+2$.

On a related note, we would like to point out that the greedy algorithm which, given a natural number, repeatedly subtracts the largest possible palindromic number, can result in an arbitrarily large number of palindromic summands: Start with $n(1):=1$. To get $n(j+1)$, take $m \in \mathbb{N}$ with $10^{m}>n(j)$ and set $n(j+1):=10^{2 m}+1+n(j)$. Then $n(j+1) \notin \mathbb{P}$ and $n(j+1)_{*}=10^{2 m}+1$, so $n(j+1)-n(j+1)_{*}=n(j)$. For every $j \in \mathbb{N}$, the greedy algorithm partitions $n(j)$ into j palindromic summands. Consequently, and in confirmation of a recent presumption of Neil Sloane [3], the OEIS sequence A088601 is unbounded.

References

[1] W. D. Banks, Every natural number is the sum of forty-nine palindromes, arXiv:1508.04721, http://arxiv.org/abs/1508.04721.
[2] E. Friedman, Problem of the Month (June 1999), http://www2.stetson.edu/~efriedma/mathmagic/0699.html.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A088601, http://oeis.org/A088601.

Freiburg, Germany
E-mail address: mail@markussigg.de

[^0]: Date: October 27, 2015.

