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We have extended classical pattern avoidance to a new structure: multiple task-precedence posets whose Hasse diagrams
have three levels, which we will call diamonds. The verticesof each diamond are assigned labels which are compatible
with the poset. A corresponding permutation is formed by reading these labels by increasing levels, and then from left
to right. We used Sage to form enumerative conjectures for the associated permutations avoiding collections of patterns
of length three, which we then proved. We have discovered a bijection between diamonds avoiding 132 and certain
generalized Dyck paths. We have also found the generating function for descents, and therefore the number of avoiders,
in these permutations for the majority of collections of patterns of length three. An interesting application of this work
(and the motivating example) can be found when task-precedence posets represent warehouse package fulfillment by
robots, in which case avoidance of both 231 and 321 ensures wenever stack two heavier packages on top of a lighter
package.

Keywords: permutation pattern, poset

1 Introduction
In this paper, we continue a rich tradition of extending the notion of classical pattern avoidance in permuta-
tions to other structures. Given permutationsπ = π1π2 · · ·πn andρ = ρ1ρ2 · · · ρm we say thatπ contains
ρ as a pattern if there exist1 ≤ i1 < i2 < · · · < im ≤ n such thatπia < πib if and only if ρa < ρb. In this
case we say thatπi1πi2 · · ·πim is order-isomorphicto ρ and thatπi1πi2 · · ·πim reduces toρ. If π does not
containρ, thenπ is said toavoidρ. The classical definition of pattern avoidance in permutations has shown
itself to be worthwhile in many fields including algebraic geometry [17] and theoretical computer science
[9]. Analogues of pattern avoidance have been developed fora variety of combinatorial objects including
Dyck paths [1], tableaux [11], set partitions [15], trees [14], posets [8], and many more. We use a definition
of pattern avoidance that is similar to that used in the studyof heaps [10], but distinct from that used in
previous studies of trees. Unlike the question studied by Hopkins and Weiler [8] which identified classes of
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Fig. 1.1: An element ofD5,2(321).

posets for which certain properties are preserved, we extend the enumerative question of pattern avoidance
to a particular class of posets.

A task-precedence posetis a poset which represents the order relations between several tasks to be com-
pleted. We are particularly interested in consideringd identical task-precedence posets, and here we focus
our attention on those sets of tasks that require one task be completed before any others, and one final task
after any others, with no restrictions on the rest of the tasks in the list. When considering a list of4 tasks,
the Hasse diagram of this poset is a diamond, and as such we will refer to a task-precedence poset of this
type with v tasks as adiamondwith v vertices (each withv − 2 vertices in the middle level). We then
assign unique labels from{1, 2, . . . , vd} to each vertex such that the labels obey the order relations of each
diamond. We then refer to the set of all such labelled collections of diamonds asDv,d.

Given an elementD of Dv,d we associate a permutationπD by recording the vertex labels as they are
encountered reading the labels on each diamond consecutively, left to right by levels, beginning with the
least element. For example, ifD is as pictured in Figure 1.1, thenπD = 156273498(10). We say thatD
contains (respectively avoids)ρ as a pattern ifπD contains (respectively avoids)ρ as a classical pattern, using
the definition above. We will abuse notation and sometimes refer to an element ofDv,d and it’s associated
permutation interchangeably. LetDv,d(P ) be the elements ofDv,d that avoid all patterns in listP. While
Figure 1.1 contains123, 132, 213, 231, 312, it is a member ofD5,2(321). Two patterns on diamonds,α and
β, are said to bed-Wilf-equivalentif they have the same enumeration, that is, if|Dv,d(α)| = |Dv,d(β)| for
all v andd. If so, we writeα ∼W β.

Our motivation comes from a real-life application, namely afleet of robots all completing the same se-
quence of tasks in a warehouse for package fulfillment. In 2011, instead of having human employees walk
the warehouse floor retrieving items one after another to complete an order, Amazon began utilizing Kiva
robots in their package fulfillment warehouses [12]. Each robot executes4 pieces of the larger task. We
assign robots to diamonds ordered by the weight of the objectthey will deliver, heaviest object first, so that
the tasks to retrieve the first, heaviest object are represented in diamond1, and the lightest object by the final
diamond. First the robot drives to the appropriate inventory rack and mounts the rack on its back. Then it
can either drive through the warehouse highways to its picker (the human employee who will retrieve the
item off the rack without leaving their station), or it can rotate itself so that the appropriate side of the rack
is facing the picker. Both of these need to be completed before the final step: having the item picked off the
rack by the human employee in order to place it in its shippingbox. In this way, completing one order of
d items from Amazon.com is exactly the task-precedence posetrepresented byd diamonds with4 vertices
each.

We now give an example of this process, referring throughoutto Figure 1.2. A customer has made an order
for 3 objects,o1, o2, o3, with weightsw(o1) > w(o2) > w(o3). Thus the leftmost diamond will represent
the tasks completed by the robot retrieving object1, the center diamond for retrieving object2, and the
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rightmost diamond for retrieving object3. The labels represent the order in which each task of the12 total
tasks is executed. Each robot operates autonomously and independently, and each faces its own challenges.
For example one of the objects may be at the back of the warehouse, there may be significant traffic along
some of the paths the robots travel through the warehouse, orthe robot assigned to retrieve an object may
still be executing its previous assignment. Thus the labelson the least elements of each diamond can vary
significantly, and there can be a large difference in the labelling of the least element of a particular diamond
and its greatest element. In Figure 1.2, the first task completed is that the robot for object3 arrives and picks
up the rack containing object3. Next, the robot retrieving object1 arrives at the rack containing object1.
Next, the robot carrying object1 rotates its rack on its back to have the correct orientation to the picker.
This continues, and based on the labelling of the elements, we see that object3 (the lightest) is placed in its
shipping box first (in step9), then object1 (in step11), and then object2 (in step12). So our human picker
has placed two heavier objects on a lighter object (unless they rearrange the objects after packing). Then a
a sufficient (though not necessary) condition to ensure thattwo heavier objects do not arrive after a lighter
object is that the associated permutation avoid231 and321.
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Fig. 1.2: An example of a3 robot task-precedence poset whose associated permutationdoes not avoid231 and321.

One could consider other applications that arise from task-precedence problems, but our motivating ex-
ample can be generalized most appropriately by changing4 tasks per autonomous robot tov tasks.

Thegenerating function for descents (gfd) for Dv,d(P ) is fP
v,d(x, y) =

∑

D∈Dv,d(P ) x
desyd, and

fP
v (x, y) =

∑∞
d=1 f

P
v,d(x, y). For example,D4,2(213) is the set of diamonds with associated permuta-

tions1 2 3 4 5 6 7 8, 1 2 3 8 4 5 6 7, 1 2 7 8 3 4 5 6, 1 6 7 8 2 3 4 5, and5 6 7 8 1 2 3 4. So,f213
4,2 (x, y) =

y2(1 + 4x).
Throughout this paper, the main question we answer is “How many elements are inDv,d(P )?” for any

collectionP of patterns of length3. In general we fixv ≥ 4 and a set of patternsP and then determine a for-
mula for the sequence{|Dv,d(P )|}

d≥1, with key results forv = 4 shown in Table 1. The third column of the
table gives entries from the Online Encyclopedia of IntegerSequences [13]. Our results for pattern-avoiding
diamonds have connections with many other combinatorial objects, as evidenced by the low reference num-
bers. Sequences A260331, A260332 and A260579, however, arenew results particular to this study of task
precedence posets.

Our task, which answers our primary question, is to findfP
v,d(x, y). Then when we substitutex = 1 and

take the coefficient ofyd, we obtain|Dv,d(P )|.
In Section 2 we consider collections of diamonds that avoid asingle pattern of length 3. In Section 3

we consider collections of diamonds that avoid a pair of patterns of length 3, and in Section 4 we consider
collections of diamonds avoiding three or more patterns of length 3. Finally in Section 5, we list some open
problems relating to this work.
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PatternsP {|D4,d(P )|}
d≥1 OEIS Result

∅ 2, 280, 277200, 10090080000, . . . A260331 Theorem 1

123 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . A000007 Theorem 2
132

1, 5, 35, 285, 2530, 23751, 231880, 2330445, . . . A002294 Theorem 3
213
231

2, 18, 226, 3298, 52450, 881970, . . . A260332 Theorem 4
312
321 2, 106, 5976, . . . A260579 OPEN

132, 213 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . A000079 Theorem 5
132, 312

1, 2, 4, 8, 16, 32, 64, 128, 256, . . . A000079 Theorem 6
213, 231
132, 321

1, 5, 13, 25, 41, 61, 85, 113, 145, . . . A001844 Theorem 7
213, 321
231, 312 2, 8, 32, 128, 512, 2048, . . . A004171 Theorem 8
231, 321

2, 14, 98, 686, 4802, 33614, 235298, . . . A109808 Theorem 9
312, 321

132, 213, 321 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . A000027 Theorem 10
231, 312, 321 2, 8, 32, 128, 512, 2048, 8192, 32768, 131072 . . . A081294 Theorem 11

Tab. 1: Enumeration of pattern-avoiding diamonds whenv = 4

2 Diamonds avoiding a single pattern of length 3
Before we count pattern-avoiding diamonds, it is useful to enumerateall diamonds.

Theorem 1. |Dv,d(∅)| =
(vd)!

vd(v−1)d

Proof: Let v ≥ 4 andd ≥ 1, first we choosev labels for each diamond, and then there are(v − 2)! ways to
arrange the internal vertex labels of any given diamond. We obtain

(
vd

v, . . . , v

)

(v − 2)!d =
(vd)!

(v!)d
((v − 2)!)

d

=
(vd)!

vd(v − 1)d
.

Theorem 2. |Dv,d(123)| = 0.

Proof: It is impossible to avoid123 while having a diamond since the pattern is inherent in all valid diamond
labellings.

2.1 The patterns 132 and 213
The complementof a permutationπ of lengthn, denoted byπc, is obtained by replacing each letterj by
the lettern − j + 1. Thereverseof π = π1π2 . . . πn, denoted byπr, is πnπn−1 . . . π1. We letπrc be the
reverse-complementof π andDv,d(p)

rc be{πrc
D | D ∈ Dv,d(p)}.
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Proposition 1. The reverse-complement of a task precedence poset remains alegal poset andDv,d(p)
rc =

Dv,d(p
rc). In addition, fork ≥ 1, Dv,d(p1, p2, . . . , pk)

rc = Dv,d(p
rc
1 , prc2 , . . . , prck ).

Proof: This is clear from the definitions and from howDv,d(p)
rc is created fromp.

Thus we immediately see that a)132 ∼W 213, b)231 ∼W 312, c)132, 312 ∼W 213, 231, d)132, 321 ∼W

213, 321, and e)231, 321 ∼W 312, 321.
Given a permutationπ in Sn, lis(π) is the length of a longest increasing subsequence inπ. For example, in

the permutation1 2 5 6 3 4 7 8 a longest increasing subsequence is1 2 5 6 7 8 andlis(1 2 5 6 3 4 7 8) = 6.
Given a permutationπ in Sn, rlmax(π) is the number of right-left maxima inπ. For example, in the permu-
tation2 4 6 8 1 3 5 7 a maximum is reached when reading right-to-left twice andrlmax(2 4 6 8 1 3 5 7) =
2. Let Dyckv,d be the set of all paths from(0, 0) to (d, vd) using only(0, 1) and (1, 0) steps (East and
North steps) which stay weakly undery = vx. Given anyp ∈ Dyckv,d, touchpoints(p) is the number of
timesp touches the liney = vx, excluding the point(v, vd). In Figure 2.1, the Dyck path touches the line
y = 4x three times andtouchpoints(p) = 3. Given anyp ∈ Dyckv,d, corners(p) is the number of North
steps that are followed by one or more East steps inp. In Figure 2.1, there are three places where the Dyck
path has one or more North steps followed by one or more East steps andcorners(p) = 3. Given anyp ∈
Dyckv,d, height(p) is the greatest vertical distance from any point onp to the liney = vx. In figure 2.1,
the longest distance from a corner in the Dyck path to the liney = 4x is seven (from(3, 5) to (3, 12)) and
height(p) = 7.

Lemma 1. Any element ofDv,d(132) has the elements on each diamond labelled in increasing order.

Otherwise the label of the first element of the diamond together with the first descent would form a132
pattern.

Theorem 3.
∑

σ∈Dv,d(132)

wrlmax(σ)xdes(σ)ydzlis(σ) =
∑

p∈Dyckv,d

wtouchpoints(p)xcorners(p)ydzheight(p).

Proof:
We define a mapφ fromDyckv,d to Dv,d(132). To findφ(p), first write out the heights of the East steps.

For each height, include a subscriptj that indicates how many East steps are at that height. Reverse this
sequence and add1 to every item in the list, leaving the subscripts unchanged.Each of the elements of this
list becomes the first label of a diamond, and then placevj labels in increasing order using the smallest
elements that have not already been used as labels.

As an example, refer to Figure 2.1. The heights of the East steps are0, 4, 5, 12. When this sequence
is reversed and1 is added to each term, the resulting sequence is131, 61, 51, 11. Thus the permutation
associated with this Dyck path is13 14 15 16 6 7 8 9 5 10 11 12 1 2 3 4.

The importance of the subscriptsj are evident from the image of Figure 2.3 underφ. The heights of the
East steps are0, 3, 3, 10, and the resulting sequence is111, 42, 11. Thus the permutation associated to image
is 11 12 13 14 4 5 6 7 8 9 10 15 1 2 3 16.

This map is certainly reversible, with the first label on eachdiamond forming a list, unless there is an
increase between diamonds, in which case the first label is repeated. Then the list is reversed and1 is
subtracted from each element, giving us the heights of the East steps in the Dyck path.

This bijection is particularly natural when you examine common statistics on both paths and permutations.
Following touchpoints, corners, and height through the bijection, we find they correspond exactly to right-
left maximum, descents, and longest increasing sequence onthe permutation.
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(4,16)

(1,4)

(2,5)

(3,12)

Fig. 2.1: A Dyck path from (0,0) to (4,16)
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Fig. 2.2: Diamonds labelled according to the image of Figure 2.1 underthe bijection

(0,0)

(4,16)

(1,3)
(3,3)

(3,10)

Fig. 2.3: A second Dyck path from(0, 0) to (4, 16).
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Fig. 2.4: An unlabelled member ofDd
v,j for d/geq3, v/geq5, andj/geq4.

Corollary 1. |Dv,d(132)| = |Dv,d(213)| = |Dyckv,d| =
(d(v+1)

d )
(vd+1) .[5]

Proof: These equalities hold by the bijection in Theorem 3 and trivial Wilf equivalence from Proposition
1.

2.2 The patterns 231 and 312
ConsiderD in Dv,d(231), and suppose labelvd occurs in positionk. Then for alli < k and for allj >
k, ai < aj . Consequently, if labelvd is in positionk, then labels(1, . . . , k − 1) appear in positions
(1, . . . , k − 1). We defineDd

v,j to be the collection of labelled diamonds ford − 1 full diamonds withv
vertices each followed by an incomplete diamond withj vertices forj = 1, . . . , v − 1. LikewiseDd

v,j(p)
are those diamonds that avoid patternp. Note, whenj = 1 there exist no order relations in the final partial
diamond. An example is shown in Figure 2.4.
αd
v,j(x) (or sometimes simplyαd

v,j for brevity) is the generating function for descents inDd
v,j(231). In

other words,
αd
v,j(x) =

∑

D∈Dd
v,j

(231)

xdes(πD).

For example,D2
5,1(231) contains the diamonds with the following associated permutations: 123456,

124356, 142356, 132456, 143256, 123465, 124365, 142365, 132465, 143265. Counting descents in these
ten permutations gives the generating function for descentsα2

5,1(x) = 1 + 4x+ 4x2 + x3.

Theorem 4.

f
(231)
v,d (x, 1) = αd

v,v(x) = αd
v,(v−1) + x

d−1∑

i=1

αi
v,(v−1)α

d−i
v,v

where

α1
v,j =







1, if j = 1

Cj−1, if j = 2, . . . , v − 1

Cv−2, if j = v

.

andCi is theith Catalan number.

Proof: We proceed by partitioning elements ofDd
v,j(231) by where the largest label occurs. Letm =

v(d − 1) + j be the largest label in(d − 1) diamonds withv vertices followed by an incomplete diamond
with j vertices.

Now, assumej = 1. Them label can appear on the final element or on the greatest element of any of the
full diamonds. Whenm occurs on the final least element there are(d − 1) diamonds withv vertices that
precedem, so we then haveαd−1

v,v as the generating function for descents (gfd) for the vertices beforem that
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m

︸ ︷︷ ︸ ︸ ︷︷ ︸

αd−1
v,v α1

v,1

Fig. 2.5: αd
v,1 whenm appears on the greatest element of the last full diamond.

m

︸ ︷︷ ︸ ︸ ︷︷ ︸

αd
v,(j−g) α1

v,g

Fig. 2.6: αd
v,j whenm appears on the final (partial) diamond.

will avoid 231. Whenm appears on the greatest element of theith complete diamond,1/leqi/leqd− 1, we
haveαi

v,v−1 as the gfd for the vertices beforem, andαd−i
v,1 as the gfd for the vertices followingm. Because

we have created a descent fromm to the least element of the next diamond or partial diamond, we must also
multiply by x to account for this extra descent.

Hence

αd
v,1(x) = αd−1

v,v + x

d−1∑

i=1

αi
v,(v−1)α

d−i
v,1 .

Now, assume we have(d − 1) diamonds followed by an incomplete diamond withj vertices wherej =
2, . . . , v − 1. Themth element can appear on any of the interior vertices but not on the least element of the
incomplete diamond, orm can appear on the greatest element of any complete diamond. Whenm appears
on any of the interior vertices of the final diamond we need to count the descents beforem, afterm, and
fromm itself. The descents that occur beforem can be counted byαd

v,j−g whereg is the number of interior
vertices followingm includingm. The descents followingm are counted byα1

v,g because the same number
of descents can occur in the remaining interior vertices as when we have a single incomplete diamond. We
then count the descent that results fromm by multiplying our gfd byx, but we do not get a descent from
m when it appears on the final interior vertex. We then sum over all possible values ofg to give us the gfd

whenm appears on the interior vertices of the final diamond which gives usαd
v,j−1α

1
v,1+x

j−1
∑

g=2

αd
v,j−gα

1
v,g.

Also,m can appear on the greatest element of any of the full diamonds. Whenm appears on the greatest
element of theith complete diamond the gfd for vertices that appear beforem is αi

v,(v−1) andαd−i
v,j for the

vertices followingm. We count the descent fromm by multiplying our gfd byx. The total gfd whenm
appears on the greatest element of theith diamond is thenαi

v,(v−1)α
d−i
v,j x.
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v=5
d 1 2 3
αd
5,1 1 1 + 4x+ 4x2 + x3 1 + 13x + 54x2 + 95x3 +

74x4 + 25x5 + 3x6

αd
5,2 1 1 + 5x+ 7x2 + 2x3 1 + 15x + 72x2 + 149x3 +

138x4 + 53x5 + 7x6

αd
5,3 1 + x 1+7x+15x2+10x3+2x4 1 + 18x + 106x2 + 281x3 +

362x4 +225x5+65x6 +7x7

αd
5,4 1+ 3x+x2 1 + 10x+ 31x2 + 36x3 +

15x4 + 2x5
1 + 22x + 161x2 + 544x3 +
938x4 + 840x5 + 383x6 +
84x7 + 7x8

αd
5,5 1+ 3x+x2 1 + 11x+ 37x2 + 47x3 +

21x4 + 3x5
1 + 24x + 188x2 + 677x3 +
1246x4 + 1193x5 + 579x6 +
135x7 + 12x8

Tab. 2: The recursive steps necessary to find the generating function for descents inD5,3(231).

Thus

αd
v,j(x) = αd

v,j−1α
1
v,1 + x

j−1
∑

g=2

αd
v,j−gα

1
v,g + x

d−1∑

i=1

αi
v,(v−1)α

d−i
v,j

for j = 2, . . . , v − 1.
Lastly, we look at when we haved complete diamonds. Themth element can appear on any of the greatest

elements. Whenm appears on the greatest element of the last diamond, the gfd is αd
v,(v−1) which counts

descents beforem.
Whenm appears on the greatest element of theith complete diamond (1 ≤ i ≤ d−1), the gfd for vertices

that appear beforem is αi
v,(v−1) andαd−i

v,v for vertices followingm. We count the descent fromm to the
following least element by multiplying the gfd byx.

Hence

αd
v,v(x) = f

(231)
v,d (x, 1) = αd

v,(v−1) + x
d−1∑

i=1

αi
v,(v−1)α

d−i
v,v .

We can use this result to recursively obtainf231
v,d (x, 1) for anyv andd.

Corollary 2. f231
v,d (1, y)

∣
∣
∣
yd

= αd
v,v(1) = |Dv,d(231)|

Tables 2 and 3 are an example of the steps of such a computationfor α3
5,5(x) andD5,3(231).

Corollary 3. |Dv,d(231)| = |Dv,d(312)| .

Proof: By Proposition 1,231 is d-Wilf-equivalent to312.

2.3 The pattern 321
We were unable to find a closed formula for the pattern321. In Table 4, we present the first few terms
of the sequence and the first few generating functions for descents, which we found using Sage. We are
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v=5
d 1 2 3
αd
5,1 1 10 265

αd
5,2 1 15 435

αd
5,3 2 35 1065

αd
5,4 5 95 2980

αd
5,5 5 120 4055

Tab. 3: The total number of permutations forD5,d that avoid the pattern231 for d = 1, 2, 3.

v=4

d |Dv,d(321)| f321
v,d (x)

1 2 1 + x
2 106 1 + 71x+ 29x2 + 5x3

3 5976 1 + 991x+ 2747x2 + 1765x3 + 430x4 + 42x5

Tab. 4: |Dv,d(321)| andf321

v,d (x) for d = 1, 2, 3.

confident that a technique recently used by Bevan, et.al. [2]would be successful in this case too. Their
technique involved refining a bivariate generating function via a statistic called last inversion foot, using
a result of Bousquet-Mélou, and finding a functional equation, to eventually give a growth rate for the
sequence. This suspicion was confirmed by Bevan, and in fact the sequence begins: 2, 106, 5976, 387564,
27247446, 2020632046, 155622020610, 12327937844924, 998103225615208, 82224228576059340 [3].
However the authors were unable, in the time available for this project, to learn all the tools necessary to
enact the technique and so the problem remains officially open.

3 Diamonds avoiding a pair of patterns of length 3
Next, we study pairs of patterns of length3. While there are15 such pairs of patterns, we focus on the8
pairs of patternsσ, ρ where|Dv,d(σ, ρ)| is non-trivial.

3.1 Diamonds avoiding the set of patterns 132, 213

Lemma 2. In order to avoid132 and213, the labels on each diamond must be increasing and consecutive.

Proof: By Lemma 1, the labels appear in increasing order on each diamond. Then any label “missing”
from consecutive labelling would either create213 if it occurred before its surrounding labels, or a132 if it
occurred after. Therefore the labels on each diamond must beconsecutive and increasing.

Theorem 5. f132,213
v,d (x, y) =

∞∑

d=1

∑

σ∈D(132,213)

ydxdes(σ) =
1− yx

1− y(1 + x)
.

Proof: By Lemma 2, we know that the labels on each diamond are consecutive and increasing, so there is a
diamond labelled1, 2, . . ., v, another labelledv + 1, . . ., 2v, etc. So the only thing we must ensure is that
the entire collection of diamonds avoids132 and213 between the respective diamonds. In their foundational
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paper, Simion and Schmidt enumerated permutations avoiding 132 and213 [16], and the recursive nature of
their proof can also be adapted to find our generating function for descents.

The labelsv(d − 1) + 1, . . . , vd must occur on either the first diamond, or the last. In the firstcase, they
create a descent. In the second, they do not, giving a(1 + x) term in the generating function. We continue
recursively and obtain:

∑

D∈Dv,d(132,213)

ydxdes(σ(D)) = 1 +
∞∑

d=1

yd(1 + x)d−1

= 1 +
1

1 + x

(

−1 +
1

1− y(1 + x)

)

=
x

1 + x
+

1

(1 + x)(1 − y(1 + x))

=
x(1 − y(1 + x)) + 1

(1 + x)(1 − y(1 + x))

=
1− yx

1− y(1 + x).

Corollary 4. f132,213
v,d (1, y)

∣
∣
∣
yd

= |Dv,d(132, 213)| = 2d−1.

3.2 Diamonds avoiding 132, 312 and 213, 231

Lemma 3. In order to avoid132 and312, the final diamond is labelled with eitherv(d− 1)+1, v(d− 1)+
2, . . . , vd or 1, v(d− 1) + 2, . . . , vd

Proof: Sincev ≥ 4, the labelvd must appear on the final diamond in order to avoid312. Likewise the
interior vertices on the final diamond must be in consecutiveincreasing order in order to avoid132, so the
v − 1 final vertices arev(d − 1) + 2, . . . , vd. If the label on the first vertex of the last diamond were some
numberj other than1 or v(d− 1) + 1, then the first vertex of whichever diamondv(d− 1) + 1, along with
v(d− 1) + 1, andj would form a132.

Theorem 6. f132,312
v,d (x, y) =

∞∑

d=1

∑

σ∈D(132,312)

ydxdes(σ) =
1− yx

1− y(1 + x)
.

Proof: We proceed similarly to the proof of Theorem 5 with a recursive argument. By Lemma 2, the final
diamond has only two possibilities, one of which forms a descent with the previous diamond, and one of
which doesn’t. Thus our descent generating function gains a(1 + x) term for each additional diamond, and
exactly as in Theorem 5, the result follows.

Corollary 5. f132,312
v,d (1, y)

∣
∣
∣
yd

= |Dv,d(132, 312)| = |Dv,d(213, 231)| = 2d−1.

Proof: By Proposition 1,213, 231 is d-Wilf-equivalent to132, 312.
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3.3 Diamonds avoiding 132, 321 or 213, 321
Lemma 4. Any diamond avoiding132 and321 has at most one descent. Moreover, if there is a descent, it
involves the label1.

Proof: By examination of cases, any arrangement of two descents forms either a132 or a321. If a descent
does not involve the1, then either the1 occurs before, causing a132, or the1 occurs after, causing a321.

Theorem 7. f132,321
v,d (x, y) =

∞∑

d=1

∑

σ∈D(132,321)

ydxdes(σ) =
1− 2y + y2 + vxy2

(1− y)3
.

Proof:
By Lemma 4, we need only enumerate those diamonds with one descent where the descent involves the

1. Everything after the1 increases, as does everything before the1. In fact, the permutations associated to
diamonds that avoid132 and321 look like a portion of the identity permutation was deleted from the front
and inserted after positionvi, for i = 1, . . . , d− 1. Wheni = d− 1, there arev possibilities for how many
numbers appear consecutively with1, including1. Wheni = d − 2, there are2v possibilities, etc. When
i = 1, there are(d − 1)v possibilities. Thus we havev2d(d − 1) diamonds with one descent, and one with
zero descents. Thus,

∑

ydxdes(σ) =

∞∑

d=0

yd[1 +
v

2
d(d− 1)x]

=
∞∑

d=0

yd +
vx

2

∞∑

d=0

ydd(d− 1)

=
1

1− y
+

vx

2
(y2)

(
2

(1− y)3

)

=
1

1− y
+

vxy2

(1− y)3

=
(1− y)2

(1− y)3
+

vxy2

(1− y)3

=
1− 2y + y2 + vxy2

(1 − y)2
.

Corollary 6. f132,321
v,d (1, y)

∣
∣
∣
yd

= |Dv,d(132, 321)| = |Dv,d(213, 321)| = 1 + v
(

d(d−1)
2

)

Proof: Dv,d(213, 321) andDv,d(132, 321) ared-Wilf Equivalent by Proposition 1.

3.4 Diamonds avoiding 231, 312

Theorem 8. f231,312
v,d (x, y) =

∞∑

d=1

∑

σ∈D(231,312)

ydxdes(σ) =
x+ yx(1 + x)v−2 + 1

(1 + x)(1 − y(1 + x)v−2)
.
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Proof: Let n = vd be the largest label on a diamondD ∈ Dv,d(231, 312). Avoiding the pattern231 means
the1 must be at the beginning and avoiding the pattern312 implies everything aftern must be decreasing
which forcesn to the end of the permutation. By a result of Simion and Schmidt on permutations, there are
2v−3 ways to arrange the middle-level vertices within each of thed diamonds in order to avoid both231 and
312 creating between0 andv − 3 descents [16]. There are also two ways to either swap or not swap the last
element of each diamond with the first element of the next. This gives the following generating function.

∑

D∈Dv,d(231,312)

ydxdes(σ(D)) = 1 +

∞∑

d=1

yd(1 + x)(v−2)d−1

= 1 +
1

(1 + x)

∞∑

d=1

(y(1 + x))(v−2)d

= 1−
1

(1 + x)
+

1

(1 + x)(1 − y(1 + x)v−2)

=
x+ yx(1 + x)v−2 + 1

(1 + x)(1 − y(1 + x)v−2).

Corollary 7. f231,312
v,d (1, y)

∣
∣
∣
yd

= |Dv,d(231, 312)| = 2d(v−2)−1

3.5 Avoiding 231, 321

Lemma 5. All labels that appear aftern = vd must be consecutive and increasing, and ifan 6= n, then
an = n− 1.

Let βd
v,j be the generating function for descents inDv,d(231, 321). Recall Figure 2.4 is an example of

d− 1 full diamonds withv vertices followed by an incomplete diamond withj vertices forj = 1, . . . , v− 1.

Theorem 9.

f231,321
v,d (x, 1) = βd

v,v = βd
v,(v−1) + x

d−1∑

i=1

βd−i
v,(v−1)

where

β1
v,j =







1, if j = 1

2j−1, if j = 2, . . . , v − 1

2v−2, if j = v

is the generating function for descents forDv,d(231, 321).

Proof:
We approach the proof similarly to that of Theorem 4 and partition our diamonds by the position of the

largest element and proceed recursively. Because the proofs are very similar, we omit the details of this
proof for brevity. The only differences are that since we arenow avoiding321, we have no descents after
the appearance of the largest label, and we have different initial conditions on one diamond.

Table 5 is an example of using this recursive technique to findthe generating function for descents in
D5,3(231, 321).
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v=5
d 1 2 3
βd
5,1 1 1 + 4x+ 3x2 1+13x+41x2+37x3+12x4

βd
5,2 1 1 + 5x+ 6x2 1+15x+54x2+62x3+24x4

βd
5,3 1 + x 1 + 7x+ 13x2 + 3x3 1 + 18x + 80x2 + 128x3 +

73x4 + 12x5

βd
5,4 1 + 3x 1 + 10x+ 25x2 + 12x3 1 + 22x + 121x2 + 248x3 +

184x4 + 48x5

βd
5,5 1 + 3x 1 + 11x+ 28x2 + 12x3 1 + 24x + 134x2 + 273x3 +

196x4 + 48x5

Tab. 5: The recursive steps necessary to find the generating function for descents inD5,3(231, 321).

v=5
d 1 2 3
βd
5,1 1 8 104

βd
5,2 1 12 156

βd
5,3 2 24 312

βd
5,4 4 48 624

βd
5,5 4 52 676

Tab. 6: The total number of permutations forD5,d that avoid the patterns(231, 321) whend = 1, 2, 3.

Corollary 8. f231,321
v,d (1, y)

∣
∣
∣
yd

= βd
v,v(1) = |Dv,d(231, 321)| = |Dv,d(312, 321)|.

Proof: By Proposition 1,231, 321 is d-Wilf-equivalent to312, 321.

4 Diamonds avoiding three or four patterns of length 3
There are only two nontrivial cases to examine when we avoid three patterns of length 3:132, 213, 321 and
231, 312, 321.

4.1 Diamonds avoiding 132, 213, 321

Theorem 10. f132,213,321
v,d (x, y) =

∞∑

d=1

∑

σ∈D(132,213,321)

ydxdes(σ) =
1− y + xy2

(1− y)2
.

Proof: Let n = vd be the largest label ind diamonds withv vertices. Avoiding the pattern132 forces all
labels beforen to be larger than all labels after. Avoiding the pattern213 forces all labels beforen to be
increasing. Avoiding the pattern321 forces all labels aftern to be increasing. This indicates that all vertices
that appear beforen will be the consecutive numbers prior ton and all vertices aftern will be the remaining
elements ordered consecutively. A labelai = n iff i = vs for somes = 1, . . . , d, and there is only one
arrangement for the rest of the elements. Therefore, there can only be, at most, one descent and it occurs
between diamonds. So,



Pattern Avoidance in Task-Precedence Posets 15

∑

ydxdes(σ) = 1 +

∞∑

d=1

yd(1 + (d− 1)x)

=
1

1− y
+ xy2

∞∑

d=1

(d− 1)yd−2

=
1− y + xy2

(1 − y)2.

Corollary 9. f132,213,321
v,d (1, y)|yd = |Dv,d(132, 213, 321)|= d.

4.2 Diamonds avoiding 231, 312, 321

We will proceed by examining what changes can be made to the identity permutation while still avoiding
231, 312, and321.

Lemma 6. For labelsai, aj , ak if ai, aj < ak, theni < k or j < k in order to avoid the patterns312 and
321.

A swapis when two consecutive labels from the identity permutation switch positions in the permutation.
Since any permutation can be created from the identity usingswaps, restricting our changes to swaps will
not exclude any possibilities.

Lemma 7. All swaps must be disjoint in order to avoid321.

Proof: We simply examine the cases when two swaps overlap in some way, either with two swaps executed
on3 elements, or two overlapping swaps on4 elements.

Theorem 11. The generating function for descents inDv,d(231, 312, 321) is

f231,312,321
v,d (x) = (1 + x)d−1d

⌊ v−2
2 ⌋

∑

k=0

(
v − 2− k

k

)

xk.

Proof: Every final element of a diamond can either remain unchanged or be swapped with the least element
of the next diamond. This then gives the generating function(1 + x)d−1 for each possible swap. Letk
represent the nonconsecutive positions from which to choose a swap among the interior vertices. Note that
in a diamond there arev−3 positions to swap since there arev−2 interior vertices. By Lemma 6 and Lemma
7 any consecutive interior vertices can only be swapped disjointly. Since the swaps must be nonconsecutive,
k must be chosen fromv − 3 − (k − 1). This gives

(
v−2−k

k

)
. We then sum over allk in order to generate

all possible descents for a single diamond. Since we haved diamonds in which to execute these swaps, we

raise to thedth power. The gfd forDv,d(231, 312, 321) is then(1 + x)d−1
(
Σ

⌊ v−2
2 ⌋

k=0

(
v−2−k

k

)
xk

)d
.

Corollary 10. f231,312,321
v,d (1, y)

∣
∣
∣
yd

= |Dv,d(231, 312, 321)|= 2 · 4d−1.

Corollary 11. {|Dv,1(231, 312, 321)|}v≥1 is the Fibonacci numbers.
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Proof: The base cases are|D3,1(231, 312, 321)| = 1 which is the identity, and|D4,1(231, 312, 321)| = 2,
which is the identity permutation and the permutation with the interior vertices swapped. Let there be
a single diamond withv vertices, where arev − 2 interior vertices that can be swapped which gives
the theDv,1(231, 312, 321) permutations that avoid the three patterns. Now consider a single diamond
with v + 1 vertices. The final interior vertex will either be thev element when there is no descent in
the last two interior vertices, or thev − 1 element when there is a descent between the final two inte-
rior vertices. Whenv is the final interior vertex, there arev − 2 vertices that can be re-arranged. Thus
there are theDv,1(231, 312, 321) permutations. When there is a descent in the final two interior vertices,
there arev − 3 interior vertices that can be re-arranged, thus there are the Dv−1,1(231, 312, 321) per-
mutations. Hence|Dv+1,1(231, 312, 321)| = |Dv,1(231, 312, 321)|+ |Dv−1,1(231, 312, 321)|. Therefore,
|Dv,1(231, 312, 321)| follows the Fibonacci numbers.

4.3 Diamonds avoiding four patterns of length 3

Theorem 12. LetS be a set of at least4 distinct permutations of length3.

Then|Dv,d(S)| =

{

0, if 123 ∈ S

1, if 123 6∈ S
.

Proof: Let n be the largest label in any permutation. Due to the structureof the diamonds, any set of
permutations involving123 cannot be avoided. For any other collection of4 or more patterns, the result is
easily seen using the lemmas for avoiding a single pattern earlier in the paper.

5 Open problems
This investigation leaves several directions open for future study. We did not touch on patterns of length
4, they all remain open. We are confident the techniques of Bevan et.al. [2] will give the growth rate and
minimal polynomial for diamonds avoiding321, but in addition it is likely that these techniques would
also work for some patterns of length4. Although the minimal polynomials are unlikely to generalize,
the transition operators in particular cases could potentially even generalize to lengthk for the decreasing
patternk k − 1 . . . 2 1. There are also a wide variety of other poset classes that could be approached in
this manner other than diamonds. We generalized our diamonds by adding additional elements and order
relations between the least and greatest elements, but one could also imagine creating a diamond-type poset
with more than3 levels as another generalization.
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