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Abstract. In the past decade, a lot of attention has been devoted to the enumera-
tion of walks with prescribed steps confined to a convex cone. In two dimensions,
this means counting walks in the first quadrant of the plane (possibly after a linear
transformation).

But what about walks in non-convex cones? We investigate the two most
natural cases: first, square lattice walks avoiding the negative quadrant Q1 =
{(i, j) : i < 0 and j < 0}, and then, square lattice walks avoiding the West quadrant
Q2 = {(i, j) : i < j and i < −j}. In both cases, the generating function that counts
walks starting from the origin is found to differ from a simple D-finite series by
an algebraic one. We also obtain closed form expressions for the number of n-step
walks ending at certain prescribed endpoints, as a sum of three hypergeometric
terms.

One of these terms already appears in the enumeration of square lattice walks
confined to the cone {(i, j) : i + j ≥ 0 and j ≥ 0}, known as Gessel’s walks. In fact,
the enumeration of Gessel’s walks follows, by the reflection principle, from the
enumeration of walks starting from (−1,0) and avoiding Q1. Their generating
function turns out to be purely algebraic (as the generating function of Gessel’s
walks).

Another approach to Gessel’s walks consists in counting walks that start from
(−1,1) and avoid the West quadrant Q2. The associated generating function is
D-finite but transcendental.

1. Introduction

In recent years, the enumeration of lattice walks confined to convex cones has
attracted a lot of attention. In two dimensions, this means counting walks in the
intersection of two half-spaces, which we can always assume (Figure 1) to form
the first quadrant Q = {(i, j) : i ≥ 0 and j ≥ 0}. The problem is then completely
specified by prescribing a starting point and a set of allowed steps. The two most
natural examples are walks on the square lattice (with steps→,↑,←,↓), and walks
on the diagonal square lattice (with steps↗,↖,↙,↘). Both cases can be solved
via the classical reflection principle [15, 16]. The enumeration usually records the
length n of the walk (with a variable t), and the coordinates (i, j) of its endpoint
(with variables x and y). For instance, the generating function of square lattice
walks starting from (0,0) and confined to Q is [16, 10]:

Q(x,y) =
∑
i,j,n≥0

(i + 1)(j + 1)
(n+ 1)(n+ 2)

(
n+ 2
n−i−j

2

)(
n+ 2
n+i−j+2

2

)
xiyjtn, (1)

where the sum is restricted to integers i, j,n such that n and i + j have the same
parity. (To lighten notation, we ignore the dependence in t of this series.) This
series is D-finite [21]: this means that it satisfies a linear differential equation in
each of its variables t, x and y, with coefficients in the field Q(t,x,y) of rational
functions in t, x and y.

In the past decade, a systematic study of quadrant walks with small steps (that
is, steps in {−1,0,1}2) has been carried out, and a complete classification is now
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2 M. BOUSQUET-MÉLOU

Figure 1. Square lattice walks staying in a 135° wedge are equiv-
alent to quadrant walks with steps→,↗,←,↙.

available. For walks starting at (0,0), the generating function is D-finite if and only
if a certain group of birational transformations is finite. The proof combines an
attractive combination of approaches: algebraic [7, 10, 14, 15, 23, 26], computer-
algebraic [3, 18, 19], analytic [4, 20, 29], asymptotic [5, 11, 22, 24].

The most intriguing D-finite case is probably Gessel’s model, illustrated in Fig-
ure 1. Around 2000, Ira Gessel conjectured that the number of 2n-step walks of
this type starting and ending at (0,0) was

g0,0(2n) = 16n
(1/2)n(5/6)n
(2)n(5/3)n

, (2)

where (a)n = a(a + 1) · · · (a + n − 1) is the ascending factorial. A computer-aided
proof of this conjecture was finally found in 2009 by Kauers, Koutschan and Zeil-
berger [18]. A year later, Bostan and Kauers [2] proved, using again intensive com-
puter algebra, that the three-variate generating function of Gessel’s walks starting
at (0,0) and ending anywhere in the quadrant is not only D-finite, but even alge-
braic: this means that it satisfies a polynomial equation over Q(t,x,y). Three other
proofs have now been given [1, 4, 6], but none of them explains combinatorially
the simplicity of the numbers, nor the algebraicity of the series.

The primary objective of this paper is to initiate a parallel study for walks con-
fined to non-convex cones. In two dimensions, this means that walks live in the
union of two half-spaces, which we can assume to form the three-quadrant cone

C := {(i, j) : i ≥ 0 or j ≥ 0}.
In other words, these walks avoid the negative quadrant. We solve here the two
most natural cases (and possibly the simplest): the square lattice, and the diagonal
square lattice (Figure 2). By a simple rotation, the latter model is equivalent to

Figure 2. Walks confined to the non-convex cone C: on the square
lattice (left), and on the diagonal square lattice (right).
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square lattice walks avoiding the West quadrant {(i, j) : i < −|j |}, as described in
the abstract. The first problem was raised in 2001 by David W. Wilson in entry
A060898 of the OEIS [17].

These two problems are far from being as simple as their quadrant counter-
parts. Their solutions exhibit, as in Gessel’s model, a combination of algebraicity
phenomena and hypergeometric numbers. For instance, the generating function
C(x,y) of square lattice walks starting at (0,0) and confined to C differs from the
D-finite series

1
3

(
Q(x,y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
by an algebraic one (we have written x̄ for 1/x and ȳ for 1/y, and the series Q is
given by (1))). This holds as well on the diagonal square lattice, if Q(x,y) now
counts quadrant walks with diagonal steps. In terms of numbers, we find for
instance that the number of walks of length 2n starting and ending at (0,0) on the
diagonal square lattice is

c0,0(2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n
(2)n(4/3)n

− 2
(1/2)n(5/6)n
(2)n(5/3)n

)
.

Two ingredients of this formula are familiar: 16n (1/2)2
n

(2)2
n

counts walks confined to

the first quadrant, while 16n (1/2)n(5/6)n
(2)n(5/3)n

counts Gessel’s walks. Asymptotically,
these two terms are dominated by the central one, and

c0,0(2n) ∼ 25

32
Γ (2/3)
π

42n

(2n)5/3
.

We obtain a similar, slightly more complicated formula for the square lattice (see (10)).
That Gessel’s numbers are involved in this problem should not be too surpris-

ing. Indeed, halving three quadrants gives a 135° cone as in Figure 1, and the solu-
tion of Gessel’s problem can be recovered from the reflection principle if we count
square lattice walks starting from (−1,0) and confined to C (Figure 3). An alterna-
tive approach is to count walks on the diagonal square lattice starting from (−2,0)
and confined to C (Figure 4). This connection between three-quadrant problems
and Gessel’s walks was in fact another motivation of our study, and we solve these
two problems with shifted starting point. We do not claim to have explained com-
binatorially Gessel’s ex-conjecture: as all proofs of this conjecture, our approach
to the three-quadrant problem consists in solving a functional equation satisfied
by the generating function C(x,y). The tools involved in the solution consist of
elementary power series manipulations, coefficient extractions, polynomial elimi-
nation. We have at the moment no combinatorial understanding of our results.

We hope that this work will be the starting point of a systematic study of walks
avoiding a quadrant, analogous to what has been done so far for walks confined
to a quadrant. The difficulty of the “simple” square lattice case suggests that this
study may turn out to be even more challenging.

The paper is organized as follows. In Section 2 we count square lattice walks
starting from (0,0) and confined to C. Analogous results are proved in Section 3
for walks on the diagonal square lattice. In Section 4 we go back to the square
lattice, but change the starting point to (−1,0). The x/y symmetry is lost, but we
still obtain a complete solution, in fact simpler than in the original case:

the generating function of square lattice walks that start from (−1,0)
and avoid the negative quadrant is algebraic.

In Section 5 we count similarly walks starting from (−2,0) on the diagonal square
lattice. The generating function is not algebraic, but differs from a simple D-finite



4 M. BOUSQUET-MÉLOU

series by an algebraic one. In Section 6 we derive from these results a new solution
of Gessel’s problem. Some perspectives and open questions are discussed in the
final section. The paper is accompanied by two Maple sessions (one for the square
lattice, one for the diagonal square lattice) available on the author’s webpage.

Notation. For a ring R, we denote by R[t] (resp. R[[t]]) the ring of polynomials
(resp. formal power series) in t with coefficients in R. If R is a field, then R(t)
stands for the field of rational functions in t. This notation is generalized to several
variables. For instance, the generating functionQ(x,y) that counts quadrant walks
is a series of Q[x,y][[t]], while the generating function C(x,y) of walks confined
to C belongs to Q[x, x̄,y, ȳ][[t]], where x̄ = 1/x and ȳ = 1/y.

If G(x) is a power series in t with coefficients in Q[x, x̄], written as

G(x) =
∑

i∈Z, n≥0

gi(n)tnxi ,

we denote by Gi the coefficient of xi in G:

Gi = [xi]G(x) :=
∑
n≥0

gi(n)tn. (3)

We denote by [x>]G(x) the positive part of G in x:

[x>]G(x) :=
∑

i>0, n≥0

gi(n)tnxi .

We similarly define the non-positive, negative, and non-negative parts of G(x).
Finally, for a series G(x,y) in t with coefficients in Q[x, x̄,y, ȳ], we denote by Gi,j
the coefficient of xiyj , which is a series in t.

We refer to [21] for properties of D-finite series.

2. The square lattice

The aim of this section is to determine the generating function of square lattice
walks starting from (0,0) and confined to the three-quadrant cone C. It reads

C(x,y) =
∑

(i,j)∈C

∑
n≥0

ci,j (n)xiyjtn = 1 + t(x+ x̄+ y + ȳ) +O(t2),

where ci,j (n) counts n-step walks going from (0,0) to (i, j). For walks confined to
the first quadrantQ, we define the seriesQ(x,y) and its coefficients qi,j (n) similarly.
As recalled in the introduction, these coefficients have a simple hypergeometric
form (see (1)).

Our first result (Theorem 1) states that the generating function C(x,y) differs
from the simple D-finite series

1
3

(
Q(x,y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
by an algebraic series, which we describe explicitly. From there, we can express the
generating function Ci,j of walks ending at a prescribed point (i, j) (Corollary 2),
and in some cases, obtain closed form expressions for its coefficients ci,j (n).

Theorem 1. The generating function of square lattice walks starting at (0,0), confined
to C and ending in the first quadrant (resp. at a negative abscissa) is

1
3
Q(x,y) + P (x,y),

(
resp. − 1

3
x̄2Q(x̄, y) + x̄M(x̄, y)

)
, (4)

where M(x,y) and P (x,y) are algebraic of degree 72 over Q(x,y, t).

http://www.labri.fr/perso/bousquet/publis.html
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More precisely, P can be expressed in terms of M by:

P (x,y) = x̄ (M(x,y)−M(0, y)) + ȳ (M(y,x)−M(0,x)) , (5)

M satisfies the functional equation

(1− t(x+ x̄+ y + ȳ)) (2M(x,y)−M(0, y)) =

2x/3− 2tȳM(x,0) + t(x − x̄)M(0, y) + tȳM(y,0), (6)

and the specializations M(x,0) and M(0, y) have respective degrees 24 and 12 over
Q(t,x) and Q(t,y).

Moreover, these algebraic series admit rational parametrizations. Let T be the unique
series in t with constant term 1 satisfying:

T = 1 + 256 t2
T 3

(T + 3)3 , (7)

and let Z =
√
T . Let U be the only power series in t with constant term 1 satisfying

16T 2(U2 − T ) = x(U +UT − 2T )(U2 − 9T + 8TU + T 2 − TU2). (8)

Then the series tM(xt,0) and tM(0,xt) (both even series in t) admit rational expressions
in terms of Z and U , given in Appendix A.1.

Remarks
1. Equation (4) gives the generating functions of walks ending in two quadrants
of C. By symmetry, the generating function of walks ending in the third quadrant,
that is, at a negative ordinate, is −ȳ2Q(ȳ,x)/3 + ȳM(ȳ,x).
2. The parametrization by T , Z andU already appears in van Hoeij’s parametriza-
tion for Gessel’s walks in the quadrant [3, 6]. As explained later in Section 6, this
is no coincidence. A fourth series is involved in the parametrization of Gessel’s
problem, and we will find it when counting walks confined to C on the diagonal
square lattice (Theorem 4).
3. A more compact statement of Theorem 1 reads as follows:

C(x,y) = A(x,y) +
1
3

(
Q(x,y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
,

where A(x,y) satisfies

(1− t(x+ x̄+ y + ȳ))A(x,y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ),

and A−(x) is a series in t with coefficients in Q[x], algebraic of degree 24. It equals
the series xM(x,0) given in Appendix A.1.

Of course the algebraicity of A(x,y) = P (x,y) + x̄M(x̄, y) + ȳM(ȳ,x) follows from
this statement, but it hides the fact that the series P (x,y) and M(x,y) are algebraic
themselves (there is no reason why extracting say, negative powers of x in an alge-
braic series with coefficients in Q[x, x̄,y, ȳ] should yield an algebraic series).
4. The four seriesQ(x,y),Q(x̄, y),Q(x, ȳ) andQ(x̄, ȳ) are related by a simple identity
(see (16)), which allows us to write:

C(x,y) = A(x,y)− 1
3
x̄2ȳ2Q(x̄, ȳ) +

(x − x̄)(y − ȳ)
3xy(1− t(x+ x̄+ y + ȳ))

.

This implies that C(x,y), as Q(x,y) itself, is D-finite but transcendental.
5. By combining the above results and singularity analysis of algebraic (and D-
finite) series [13], one can derive from the above theorem that the number of n-
step walks confined to C is

[tn]C(1,1) ∼ 25
√

3
33 Γ (2/3)

4n

n1/3
.
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We now focus on walks ending at a prescribed point. For (i, j) ∈ C, let Ci,j de-
note the length generating function of walks going from (0,0) to (i, j) in C. Define
similarly Qi,j , for i, j ≥ 0. According to (1), the latter series has a simple form:

Qi,j =
∑
n≥0

(i + 1)(j + 1)
(n+ 1)(n+ 2)

(
n+ 2
n−i−j

2

)(
n+ 2
n+i−j+2

2

)
tn.

The following corollary clarifies the nature of the series Ci,j .

Corollary 2 (Walks ending at a prescribed position). Let T be the unique series in
t with constant term 1 satisfying (7), and let Z =

√
T .

For j ≥ 0, the series C−1,j belongs to tj+1
Q(Z), and is thus algebraic. More generally,

for i ≥ 1 and j ≥ 0, the series C−i,j is D-finite, of the form

−1
3
Qi−2,j + ti+j Rat(Z)

for some rational function Rat. It is transcendental as soon as i ≥ 2.
Finally, for i ≥ 0 and j ≥ 0, the series Ci,j is of the form

1
3
Qi,j + ti+j Rat(Z).

It is D-finite and transcendental.

The series Ci,j can be effectively computed. For instance,

tC−1,0 =
(Z2 − 1)

(
11 + 6Z2 −Z4

)
(Z2 + 3)3 , (9)

C−1,1 = 1024
Z3

(
Z2 + 1

)2
(Z − 1)

(
1 + 2Z −Z2

)
(Z2 + 3)6 (Z + 1)

,

C−2,0 = −1
3
Q0,0 +

256Z3
(
4 + 4Z − 4Z2 + 23Z3 − 9Z4 + 18Z5 − 6Z6 + 3Z7 −Z8

)
3(Z2 + 3)6 (Z + 1)

,

C0,0 =
1
3
Q0,0 +

512Z3
(
4 + 4Z − 4Z2 + 23Z3 − 9Z4 + 18Z5 − 6Z6 + 3Z7 −Z8

)
3(Z2 + 3)6 (Z + 1)

.

The similarity between the last two expressions comes from (5), which tells us that
P0,0 = 2M1,0, while C0,0 =Q0,0/3 + P0,0 and C−2,0 = −Q0,0/3 +M1,0 by (4).

Starting from the expression of Ci,j (more precisely, of its algebraic part Pi,j or
M−i−1,j , depending on the sign of i), one can decide if the coefficients ci,j (n) have
an expression as a finite sum of hypergeometric terms: one first computes a linear
recurrence relation with polynomial coefficients satisfied by the coefficients (for
instance using the Maple commands algeqtodiffeq and diffeqtorec) and then
applies the Hyper algorithm from [27], which determines all hypergeometric so-
lutions of such a recurrence relation. Using its Maple incarnation hypergeomsols,
we thus obtain:

c0,0(2n) =
4 · 16n

35

(
34 (1/2)n(1/2)n+1

(2)n(2)n+1
+ 4(24n2 + 60n+ 29)

(1/2)n(7/6)n
(2)n+1(4/3)n+1

−2(12n2 + 30n+ 5)
(1/2)n(5/6)n

(2)n+1(5/3)n+1

)
(10)

∼ 29

34
Γ (2/3)
π

42n

(2n)5/3
.
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Given the link between C0,0 and C−2,0, this gives a closed form expression of the
same type for c−2,0(2n). We have found similar expressions for the endpoints (1,1)
and (−3,1), but not for (−1,0), (−3,0), (−4,0), (0,1), (−1,1), nor (−2,1).

As in the systematic study of quadrant models [10], the starting point of our
approach is a functional equation that translates the step by step construction of
walks confined to C. It reads:

C(x,y) = 1 + t(x+ x̄+ y + ȳ)C(x,y)− tȳC−(x̄)− tx̄C−(ȳ),

where
C−(x̄) =

∑
i<0,n≥0

ci,0(n)xitn ∈ x̄Q[x̄][[t]] (11)

counts walks ending on the negative x-axis. The terms tȳC−(x̄) and tx̄C−(ȳ) corre-
spond to forbidden moves yielding in the negative quadrant. Equivalently,

K(x,y)C(x,y) = 1− tȳC−(x̄)− tx̄C−(ȳ) (12)

where
K(x,y) = 1− t(x+ x̄+ y + ȳ)

is the kernel of the equation.
Before going further, we review a solution of the associated quadrant model,

which adapts to many other quadrant models [10]. In the square lattice case which
we consider here, it is essentially a power series version of the classical reflection
principle [15].

2.1. Warming up: walks confined to the positive quadrant

We start from the functional equation obtained by constructing quadrant walks
step by step:

K(x,y)Q(x,y) = 1− tȳQ+(x)− tx̄Q+(y) (13)

where
Q+(x) =Q(x,0) =

∑
i≥0,n≥0

qi,0(n)xitn ∈Q[x][[t]].

Equivalently,
xyK(x,y)Q(x,y) = xy − txQ+(x)− tyQ+(y). (14)

The kernel K(x,y) is invariant by the transformations x 7→ x̄ and y 7→ ȳ. Hence
we also have:

x̄yK(x,y)Q(x̄, y) = x̄y − tx̄Q+(x̄)− tyQ+(y),

x̄ȳK(x,y)Q(x̄, ȳ) = x̄ȳ − tx̄Q+(x̄)− tȳQ+(ȳ),

xȳK(x,y)Q(x, ȳ) = xȳ − txQ+(x)− tȳQ+(ȳ).

The orbit equation is the alternating sum of the last four equations:

K(x,y) (xyQ(x,y)− x̄yQ(x̄, y) + x̄ȳQ(x̄, ȳ)− xȳQ(x, ȳ)) = xy − x̄y + x̄ȳ − xȳ
= (x − x̄)(y − ȳ). (15)

Observe that the right-hand side is now explicit. We call it the orbit sum of this
quadrant model. The above equation can be rewritten as

xyQ(x,y)− x̄yQ(x̄, y) + x̄ȳQ(x̄, ȳ)− xȳQ(x, ȳ) =
(x − x̄)(y − ȳ)

1− t(x+ x̄+ y + ȳ)
. (16)

Extracting the positive part in x and y gives the following classical result [16, 10].
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Proposition 3. The series xyQ(x,y) is the positive part (in x and y) of the rational
function

(x − x̄)(y − ȳ)
1− t(x+ x̄+ y + ȳ)

.

It is thus D-finite. For i, j,m ≥ 0, the number of quadrant walks of length n = i + j + 2m
starting at (0,0) and ending at (i, j) is:

(i + 1)(j + 1)n!(n+ 2)!
m!(m+ i + j + 2)!(m+ i + 1)!(m+ j + 1)!

.

2.2. Reduction to an equation with orbit sum zero

We now return to walks avoiding the negative quadrant. We first apply to the
functional equation (12), written as

xyK(x,y)C(x,y) = xy − txC−(x̄)− tyC−(ȳ),

the treatment that we have just applied to the quadrant equation (14). The orbit
equation reads as above

K(x,y) (xyC(x,y)− x̄yC(x̄, y) + x̄ȳC(x̄, ȳ)− xȳC(x, ȳ)) = (x − x̄)(y − ȳ). (17)

We have just seen that Q(x,y) also satisfies this equation (see (15)). The same
holds for −x̄2Q(x̄, y), for −ȳ2Q(x, ȳ) and for x̄2ȳ2Q(x̄, ȳ) (by (15) again). Let a be a
real number and write

C(x,y) = A(x,y) + (1− 2a)Q(x,y)− ax̄2Q(x̄, y)− aȳ2Q(x, ȳ), (18)

where A(x,y) is a new series. (We do not involve the fourth solution x̄2ȳ2Q(x̄, ȳ),
since C(x,y) contains no monomial that is negative in x and in y). The above
observations imply that the orbit sum associated with A vanishes:

xyA(x,y)− x̄yA(x̄, y) + x̄ȳA(x̄, ȳ)− xȳA(x, ȳ) = 0. (19)

Moreover, we can compute from the equations (12) and (13) satisfied by C and Q
a functional equation for A. We first note that

C−(x̄) = A−(x̄)− ax̄2Q+(x̄),

where, as above,

A−(x̄) =
∑

i<0,n≥0

ai,0(n)xitn ∈ x̄Q[x̄][[t]].

Then we derive from (12) and (13) that:

K(x,y)A(x,y) = a(2 + x̄2 + ȳ2)− tȳA−(x̄)− tx̄A−(ȳ) + tȳ(1−3a)Q+(x) + tx̄(1−3a)Q+(y).

This suggests to choose a = 1/3, so that

K(x,y)A(x,y) = (2 + x̄2 + ȳ2)/3− tȳA−(x̄)− tx̄A−(ȳ). (20)

Note that the equations (12) and (20) satisfied by C and A only differ by their
constant term on the right-hand side: it is simply 1 for C, but (2 + x̄2 + ȳ2)/3 for
A. This results into a zero orbit sum for A. Observe also that (20) characterizes
A(x,y) uniquely as a formal power series in t. The series 3A(x,y) counts walks in
C starting from (0,0), (−2,0) or (0,−2), but those starting at (0,0) get weight 2.

We will show that A(x,y) is algebraic (hence the notation A), as claimed by
Theorem 1. We recall that all quadrant models with small steps and orbit sum
zero have an algebraic generating function too [3, 4, 6, 7, 8, 10, 14]. One main
difference with these quadrant models is that A(x,y) involves positive and negative
powers of x and y. The next subsection takes care of this difference.
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2.3. Reduction to a quadrant-like problem

We now separate in A(x,y) the contribution of the three quadrants:

A(x,y) = P (x,y) + x̄M(x̄, y) + ȳM(ȳ,x), (21)

where P (x,y) ∈ Q[x,y][[t]] and M(x̄, y) ∈ Q[x̄, y][[t]]. Note that we have exploited
the obvious x/y symmetry, and that this identity defines P and M uniquely in
terms of A. The letter P stands for positive, and the letter M for mixed. Extracting
the positive part in x and y from the orbit equation (19) gives

xyP (x,y) = y (M(x,y)−M(0, y)) + x (M(y,x)−M(0,x)) , (22)

which is equivalent to (5). Hence it suffices to determine M. We can write the
above series A in terms of M only:

A(x,y) = x̄ (M(x,y)−M(0, y)) + ȳ (M(y,x)−M(0,x)) + x̄M(x̄, y) + ȳM(ȳ,x).

Note that A−(x̄) = x̄M(x̄,0). Plugging this in the functional equation (20) gives:

K(x,y) (x̄M(x,y)− x̄M(0, y) + ȳM(y,x)− ȳM(0,x) + x̄M(x̄, y) + ȳM(ȳ,x))

= (2 + x̄2 + ȳ2)/3− tx̄ȳM(x̄,0)− tx̄ȳM(ȳ,0).

Let us extract the negative part in x of this equation. We obtain:

− tx̄
(
Mx(0, y) + ȳM(y,0)− ȳM(0,0)

)
+K(x,y)x̄M(x̄, y) + tM(0, y)− tx̄ȳM(ȳ,0)

= x̄2/3− tx̄ȳM(x̄,0)− tx̄ȳM(ȳ,0), (23)

withMx = ∂M/∂x. Observe that the term tx̄ȳM(ȳ,0) occurs on both sides and thus
cancels. Extracting from this the coefficient of x̄ gives:

−t (Mx(0, y) + ȳM(y,0)− ȳM(0,0)) + (1− t(y + ȳ))M(0, y)− tMx(0, y) = −tȳM(0,0).

From this, we obtain an expression of Mx(0, y) in terms of M(y,0) and M(0, y). By
plugging it in (23), we obtain

K(x,y) (2M(x̄, y)−M(0, y)) = 2x̄/3− 2tȳM(x̄,0) + t(x̄ − x)M(0, y) + tȳM(y,0).

Replacing x by x̄ gives the functional equation (6) for M(x,y), which we repeat
here for convenience:

K(x,y) (2M(x,y)−M(0, y)) = 2x/3− 2tȳM(x,0) + t(x − x̄)M(0, y) + tȳM(y,0). (24)

We recall that M(x,y) is a series in t with polynomial coefficients in x and y. The
equation it satisfies is reminiscent of the quadrant equation (13). However, its
right-hand side involves the series M(y,0) in addition to the two standard special-
izationsM(x,0) andM(0, y). Still, several ingredients in the rest of the solution are
borrowed from former solutions of quadrant models [7, 6, 10].

2.4. Cancelling the kernel: an equation between M(x,0), M(0,x) and
M(0, x̄)

As a polynomial in y, the kernel K(x,y) has two roots. Only one of them is a
power series in t (with coefficients in Q[x, x̄]). We denote it by Y ≡ Y (x):

Y =
1− t(x+ x̄)−

√
(1− t(x+ x̄))2 − 4t2

2t
= t + (x+ x̄)t2 +O(t3). (25)

The other root is 1/Y , and its expansion in t involves a term 1/t.
Specializing y to Y in (24) gives a relation between the three series on the right-

hand side:

2x/3− 2tM(x,0)/Y + t(x − x̄)M(0,Y ) + tM(Y ,0)/Y = 0. (26)
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Since Y is symmetric in x and x̄, we also have, upon replacing x by x̄:

2x̄/3− 2tM(x̄,0)/Y + t(x̄ − x)M(0,Y ) + tM(Y ,0)/Y = 0. (27)

Since the kernel is symmetric in x and y, we can rewrite (24) as

K(x,y) (2M(y,x)−M(0,x)) = 2y/3− 2tx̄M(y,0) + t(y − ȳ)M(0,x) + tx̄M(x,0).

Setting y = Y in this equation gives

2Y /3− 2tx̄M(Y ,0) + t(Y − 1/Y )M(0,x) + tx̄M(x,0) = 0. (28)

Finally, using once more Y (x) = Y (x̄) gives a fourth equation:

2Y /3− 2txM(Y ,0) + t(Y − 1/Y )M(0, x̄) + txM(x̄,0) = 0. (29)

We have thus obtained four equations, namely (26–29), relating the six series
M(x,0), M(x̄,0), M(Y ,0), M(0,x), M(0, x̄) and M(0,Y ). By eliminating M(0,Y ) and
M(Y ,0), we obtain two equations between the remaining series, which only differ
by the transformation x 7→ x̄. Eliminating M(x̄,0) between them gives:

(Y − 1/Y ) (xM(0,x)− 2x̄M(0, x̄))− 2x̄Y /t + 3M(x,0) = 0. (30)

Our next step is to eliminate M(x,0).

2.5. An equation betweenM(0,x) andM(0, x̄)

Let us denote the discriminant occurring in the expression (25) of Y by

∆(x) := (1− t(x+ x̄))2 − 4t2.

Denote also
R(x) = tM(x,0) and S(x) = txM(0,x). (31)

Then the above equation (30) reads√
∆(x) (S(x)− 2S(x̄)− x̄) + x̄ − t − tx̄2 = 3tR(x). (32)

Consequently,

∆(x)
(
S(x)− 2S(x̄)− x̄

)2
=

(
3tR(x)− x̄+ t + tx̄2

)2
.

Recall that S(x) is a series in t with coefficients in xQ[x]. Extracting from the above
identity the negative part in x gives (after dividing by 4):

∆(x)
(
S(x̄)2 + x̄S(x̄)

)
− [x<] (∆(x)S(x)S(x̄)) = F0 + x̄F1 + x̄2F2,

where F0,F1 and F2 are series in t than can be expressed in terms of S(x) and R(x):

F0 = t2S1(1 + S1), F1 =
t
2

(tS2 + 3tR1 − 5S1) , F2 = t2(1 + 2S1), (33)

where we have used the notation (3) (note that R0 = S1 by definition of R and S).
We have thus obtained an expression for the negative part of the series ∆(x)S(x)S(x̄):

[x<] (∆(x)S(x)S(x̄)) = ∆(x)
(
S(x̄)2 + x̄S(x̄)

)
−F0 − x̄F1 − x̄2F2.

Let us denote
P0 := [x0] (∆(x)S(x)S(x̄)) . (34)

By symmetry, we can now express ∆(x)S(x)S(x̄) as follows:

∆(x)S(x)S(x̄) = P0 +∆(x)
(
S(x)2 + S(x̄)2 + xS(x) + x̄S(x̄)

)
−2F0− (x+ x̄)F1− (x2 + x̄2)F2.

Equivalently:

∆(x)
(
S(x)2 +S(x̄)2−S(x)S(x̄)+xS(x)+ x̄S(x̄)

)
= 2F0−P0 +(x+ x̄)F1 +(x2 + x̄2)F2. (35)

This is the promised equation relating S(x) and S(x̄), or equivalently, M(0,x) and
M(0, x̄). In the next step, we will get rid of M(0, x̄).
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Remark. One may wonder whether the right-hand side of (35), as a polynomial
in x, is divisible by ∆(x), or at least by one of its two factors (1 − t(x + x̄ + 2)) and
(1−t(x+ x̄−2)). This would simplify our calculations, but one can easily check that
this is not the case.

2.6. An equation forM(0,x) only

The product S(x)S(x̄) occurring in the above equation (35) makes it difficult to
extract the positive part. To eliminate this cross term, we multiply the equation by
S(x) + S(x̄) + x+ x̄. This “trick” (based on the identity (a2 + b2 − ab)(a+ b) = a3 + b3)
was already used in the solution [6] of Gessel’s quadrant model. This gives:

∆(x)
(
S(x)3 + S(x̄)3 + (2x+ x̄)S(x)2 + (2x̄+ x)S(x̄)2 + x(x+ x̄)S(x) + x̄(x+ x̄)S(x̄)

)
=

(
2F0 − P0 + (x+ x̄)F1 + (x2 + x̄2)F2

)
(S(x) + S(x̄) + x+ x̄) .

Now we can extract the non-negative part in x:

∆(x)
(
S(x)3 + (2x+ x̄)S(x)2 + x(x+ x̄)S(x)

)
= t2(x − x̄)(1 + S1)2 + (1 + S1)(F1 + 2tS1)

+
(
2F0 − P0 + (x+ x̄)F1 + (x2 + x̄2)F2

)
(S(x) + x) .

(We have used the expression (33) of F2 to simplify the right-hand side). Extracting
the constant term in x gives F1 = −2tS1, so that the equation satisfied by S(x) =
txM(0,x) is:

∆(x)
(
S(x)3 + (2x+ x̄)S(x)2 + x(x+ x̄)S(x)

)
= t2(x − x̄)(1 + S1)2

+
(
2t2S2

1 + 2t
(
tx2 + tx̄2 − x − x̄+ t

)
S1 − P0 + t2(x2 + x̄2)

)
(S(x) + x) . (36)

In addition to S(x), it involves two series depending on t only, namely S1 and P0.
Still, we will see that this equation, combined with the fact that S(x) has polyno-
mial coefficients in x and the values of the first few of these coefficients, determines
uniquely P0 and S(x) (and consequently S1).

2.7. The generalized quadratic method: algebraicity of A(x,y)

General principle. We have described in [9] how to study equations of the form

Pol(S(x),A1, . . . ,Ak , t,x) = 0, (37)

where Pol(x0,x1, . . . ,xk , t,x) is a polynomial with complex coefficients, S(x) is a for-
mal power series in t with coefficients in Q[x], and A1, . . . ,Ak are k auxiliary series
depending on t only, under the assumption that these k + 1 series are uniquely
determined by (37). (In the above example (36), Pol is a Laurent polynomial in x,
but this makes no difference.) The strategy of [9] instructs us to look for power
series X ∈C[[t]] satisfying

∂Pol
∂x0

(S(X),A1, . . . ,Ak , t,X) = 0. (38)

Indeed, by differentiating (37) with respect to x, we see that any such series also
satisfies

∂Pol
∂x

(S(X),A1, . . . ,Ak , t,X) = 0, (39)

and we thus obtain three polynomial equations, namely Eq. (37) written for x = X,
Eqs. (38) and (39), that relate the (k + 2) unknown series S(X), A1, . . . ,Ak and X.
If we can prove the existence of k distinct series X1, . . . ,Xk satisfying (38), we
will have 3k equations between the 3k unknown series S(X1), . . . ,S(Xk), A1, . . . ,Ak ,
X1, . . . ,Xk . If there is no redundancy in this system, we will have proved that each
of the 3k unknown series is algebraic over C(t).
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Identifying the seriesXi . We apply this strategy to (36), with A1 = S1 and A2 = P0.
The polynomial Pol(x0,x1,x2, t,x) is

∆(x)
(
x3

0 + (2x+ x̄)x2
0 + x(x+ x̄)x0

)
− t2(x − x̄)(1 + x1)2

−
(
2t2x2

1 + 2t
(
tx2 + tx̄2 − x − x̄+ t

)
x1 − x2 + t2(x2 + x̄2)

)
(x0 + x) . (40)

Equation (38) reads:

∆(X)
(
3S(X)2 + 2(2X + 1/X)S(X) +X(X + 1/X)

)
= 2t2S2

1 + 2t
(
tX2 + t/X2 −X − 1/X + t

)
S1 − P0 + t2(X2 + 1/X2). (41)

Recall the definitions (31) and (34) of S and P0. Once multiplied by X, the above
equation has the following form:

X(1 +X2) = −XP0 + tPol1

(
M(0,X)−M(0,0)

X
,M(0,0), t,X

)
for some polynomial Pol1. This already shows that there exist two solutionsX1 and
X2 in C[[t]] having constant terms i and −i respectively: since P0 is a multiple of t,
the above equation allows one to compute their coefficients inductively, assuming
M(0,x) is known. But we will also use a third solution, which has constant term 0.
To show its existence, let us write X = tX̂. Then the above equation, once divided
by t, reads

X̂ = 2− X̂P0 + tPol2

(
M(0, tX̂)−M(0,0)

tX̂
,M(0,0), t, X̂

)
,

which gives a third solution X0, of the form 2t +O(t2). Using the first few coeffi-
cients of M(0,x), we obtain:

X0 = 2t + 8t3 + 64t5 + 640t7 + 7168t9 +O(t11), (42)

X1,2 = ±i + 2t3 + 16t5 ∓ 2it6 + 156t7 +O(t8). (43)

In particular, these three series are non-zero, and are thus the three solutions
of (41).

We note that

X0 =
1
2t

(
(4t2) + (4t2)2 + 2(4t2)3 + 5(4t2)4 + 14(4t2)5 + · · ·

)
,

seems to be related to Catalan numbers. Due to the special form of our polynomial
Pol (given by (40)), it is in fact simple to prove that

X0 =
1−
√

1− 16t2

4t
. (44)

Indeed, we observe that

(x2 + 1)Pol−x(x2 − 1)
∂Pol
∂x
− (2x+ x0 + x2x0)

∂Pol
∂x0

= −2x(1− 2t(x+ x̄))

× (x+ x0)
(
x+ x̄+ t(x − x̄)2x1 + x0(x0 + x+ x̄)

(
x+ x̄ − t(x − x̄)2

))
.

Since the three series X ≡ Xi cancel Pol and its partial derivatives, each of them
must satisfy

1− 2t (X + 1/X) = 0, (45)
or

X + S(X) = 0,
or

X + 1/X + t(X − 1/X)2S1 + S(X)(S(X) +X + 1/X)
(
X + 1/X − t(X − 1/X)2

)
= 0. (46)
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Using the initial values (42-43), we conclude that X0 satisfies (45) (from which the
expression (44) follows), and that X1 and X2 satisfy (46).

Elimination. Eliminating S(X) andX between Pol(S(X),S1, P0, t,X), Polx0
(S(X),S1, P0, t,X)

and (45) gives a first polynomial equation between S1 and P0. A second equation is
obtained by eliminating S(X) andX between Pol(S(X),S1, P0, t,X), Polx0

(S(X),S1, P0, t,X)
and (46). (When several factors occur, one determines the correct one using the
first coefficients of S(x), S1, P0 and the Xi ’s.) A further elimination (first of P0, then
of S1) between these two equations gives polynomial equations for each of these
two series. Both are found to be of degree 4 over Q(t):

19683t6S4
1 + 2187t4

(
20t2 − 1

)
S3

1 + 81t2
(
11t2 − 1

)(
38t2 − 1

)
S2

1

+
(
92t2 − 1

)(
11t2 − 1

)2
S1 + t2

(
1331t4 − 107t2 + 1

)
= 0, (47)

and

387420489t6P 4
0 + 3188646t4

(
284t4 − 113t2 − 1

)
P 3

0

+ 8748t2
(
31570t8 − 96755t6 + 7251t4 + t2 + 1

)
P 2

0

+
(
29962144t12 − 441273288t10 + 87261432t8 − 4754122t6 + 64860t4 − 687t2 − 8

)
P0

+ t4
(
1102736t10 − 53770928t8 + 4286896t6 − 58740t4 + 751t2 + 8

)
= 0.

From this and (36), we derive that S(x) = txM(0,x) is algebraic over Q(t,x). Then, (30)
implies that the same holds for M(x,0). Finally, the algebraicity of M(x,y) follows
from (24), and that of P (x,y) from (22). We have thus proved the algebraicity of
the series A(x,y) given by (21), which, by definition, is

C(x,y)− 1
3
Q(x,y) +

1
3
x̄2Q(x̄, y) +

1
3
ȳ2Q(x, ȳ).

2.8. Rational parametrizations and degrees

The equations obtained above for S1 and P0 can be parametrized by introducing
the unique series T ∈ Q[[t]], with constant term 1, satisfying (7). Indeed, both
equations factor when replacing t2 by (T − 1)(T + 3)3/(256T 3), and extracting the
correct factor gives:

S1 =
(T − 1)(11 + 6T − T 2)

(T + 3)3 (48)

and

P0 =
(T − 1)2(41 + 331T + 106T 2 + 38T 3 − 3T 4 − T 5)

128T 3(T + 3)3 .

We recall that parametrizations of algebraic curves (of genus 0) can be computed
using the Maple command parametrization.

We now plug these expressions in the equation (36) defining S(x). This gives
a cubic equation for S(x) over Q(t,x,T ). Eliminating T gives an irreducible poly-
nomial of degree 12 in S(x) over Q(t,x): since S(x) = txM(0,x), we conclude that
M(0,x) has degree 12 as well.

We now return to the cubic equation satisfied by S(x) over Q(t,x,T ), and re-
place x by xt. Due to the structure of the square lattice, S(xt)/t = xtM(0,xt) is
an even function of t: this allows us to replace t2 by its rational expression in
terms of T , and gives a cubic equation for S(xt)/t over Q(x,T ). Then, introducing
the parametrization (8) of x factors this cubic equation into a linear factor and a
quadratic one. The one that vanishes is found to be the linear one. This gives
a rational expression of S(xt)/t in terms of T and U , which is equivalent to the
expression (76) of tM(0,xt).
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We now want to express M(x,0), or equivalently the series R(x) = tM(x,0), us-
ing (32). Using the cubic equation (over Q(t,x,T )) found for S(x), we first find that
the term D(x) := (S(x) − 2S(x̄) − x̄) has degree 6 over Q(t,x,T ), but is in fact bicu-
bic. Thus (32) gives automatically an equation of degree 6 for R(x) over Q(t,x,T ).
Eliminating T shows that R(x) has degree 24 over Q(t,x). Since R(x) = tM(x,0),
the same holds for M(x,0).

Finally, we replace x by xt in the equation of degree 6 satisfied by R(x) over
Q(t,x,T ) (the series R(xt) is an even function of t). Then we parametrize t2 and T
by Z =

√
T , and find that R(xt) is cubic over Q(x,Z). We finally parametrize x by

U (as in (8)): the equation factors into a linear term and a quadratic one. The one
that cancels turns out to be linear, and this gives for R(xt) a rational expression in
Z and U which is equivalent to our expression (75) of tM(xt,0).

It remains to show that M(x,y) and P (x,y) have degree 72 over Q(x,y, t). It
suffices to prove this for tM(xt,yt) and P (xt,yt), which are even series in t.

First, it follows from (24) and the rational expressions of tM(0,xt) and tM(xt,0)
that tM(xt,yt) belongs to Q(Z,U,Ũ ), where Ũ is the counterpart of U for the vari-
able y instead of x. Since Z has degree 8 over Q(t), andU has degree 3 over Q(x,Z),
it follows that tM(xt,yt) has degree at most 72 over Q(t,x,y). Computing its mini-
mal equation over Q(x,y, t) (in practice, for x = 2 and y = −2 for instance, to avoid
extremely heavy computations) shows that this bound is tight.

We proceed similarly with P (x,y), expressed in terms of M(x,y) and its special-
izations thanks to (22).

We have now completed the proof of Theorem 1.

2.9. Walks ending at a prescribed position

Let us now prove Corollary 2. We want to show that for i, j ≥ 0, the coefficients
of xiyj in M(x,y) and P (x,y), which we denote by Mi,j and Pi,j respectively, belong
to ti+j+1

Q(Z) (resp. to ti+jQ(Z)). First, the connection (5) between P and M gives

Pi,j =Mi+1,j +Mj+1,i ,

and shows that it suffices to prove the property for the seriesMi,j . Then, extracting
from the functional equation (6) satisfied by M the coefficient of xiyj shows that
for i, j ≥ 0, the series Mi,j+1 can be expressed as a linear combination of series Mk,`

such that ` ≤ j and/or k = 0, with coefficients in Q[t,1/t]. Hence it suffices to prove
our results for the seriesMi,0 andM0,j . Equivalently, by definition (31) of the series
R and S, it suffices to prove that the coefficient of xi in R̃(x) := R(xt) = tM(xt,0)
and S̃(x) := S(xt)/(tx) = tM(0,xt) (which are both even functions of t) belong to
Q(Z).

Recall from the previous subsection that R̃ satisfies a cubic equation over Q(Z,x).
This equation reads

Z24(Z2 + 3)3R̃ = Z24(Z2 − 1)(11 + 6Z2 −Z4) + xPol(x,Z, R̃) (49)

for some polynomial Pol. This gives

[x0]R̃ = [x0]R(x) = tM0,0 =
(Z2 − 1)(11 + 6Z2 −Z4)

(Z2 + 3)3

(which we already obtained in (48)), and shows, by induction on i ≥ 0, that the
coefficient of xi in R̃(x) is a rational function of Z.

For the series S̃(x) = tM(0,xt), we have to go one step further in the application
of Newton’s polygon method. We start from the cubic equation satisfied by this
series over Q(T ,x), which we write as an equation over Q(Z,x) with T = Z2. Writ-
ing S̃(x) = S̃0 + xS̃1 + x2Ŝ(x), we first determine (by setting x = 0 in the equation)
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the value of S̃0 (once again equivalent to (48)). Then there are two possible values
for S̃1; after checking the first coefficients, we conclude that the correct one is

S̃1 = t2M0,1 =
4(Z − 1)2(Z2 + 1)2(1 + 2Z −Z2)

Z3(3 +Z2)3 .

For the remaining series Ŝ(x), we find an equation over Q(Z,x) which, as (49), has
degree 1 in Ŝ when x = 0. One can then compute recursively the coefficient of xi

in Ŝ(x), which belongs to Q(Z).
Finally, the nature of the series Ci,j follows from the fact thatQi,j is D-finite but

transcendental for i, j ≥ 0. Indeed, the asymptotic behaviour its nth coefficient, in
4nn−3, is not compatible with algebraicity [12].

3. The diagonal square lattice

We now adapt the calculations of Section 2 to walks on the diagonal square lat-
tice (Figure 2, right). That is, walks now take steps (±1,±1). One difference from
the square lattice case is an extra term in the basic functional equation, corre-
sponding to the forbidden move from (0,0) to (−1,−1). Otherwise the argument is
very similar, and we give much fewer details.

We adopt the same notation as before. In particular, C(x,y) denotes the gen-
erating function of walks on the diagonal square lattice, starting from (0,0) and
confined to C. As in the square lattice case, the expression of C(x,y) involves
the generating function Q(x,y) of walks confined to the first quadrant, which is
now [10]:

Q(x,y) =
∑
i,j,n≥0

(i + 1)(j + 1)(
1 + n+i

2

)(
1 + n+j

2

)( nn+i
2

)(
n
n+j

2

)
xiyjtn, (50)

where the sum is restricted to values of i, j and n having the same parity.

Theorem 4. The generating function of walks with steps (±1,±1), starting at (0,0),
confined to C and ending in the first quadrant (resp. at a negative abscissa) is

1
3
Q(x,y) + P (x,y),

(
resp. − 1

3
x̄2Q(x̄, y) + x̄M(x̄, y)

)
,

where M(x,y) and P (x,y) are algebraic series of degree 72 over Q(x,y, t).
More precisely, P can be expressed in terms of M by:

P (x,y) = x̄ (M(x,y)−M(0, y)) + ȳ (M(y,x)−M(0,x)) , (51)

M satisfies the functional equation

(1− t(x+ x̄)(y + ȳ)) (2M(x,y)−M(0, y)) = 2x/3− 2tȳ(x+ x̄)M(x,0)

+ t(x − x̄)(y + ȳ)M(0, y) + t(1 + ȳ2)M(y,0)− tȳM1,0 (52)

where M1,0 is the coefficient of x1y0 in M(x,y), and the specializations M(x,0) and
M(0, y) have respective degrees 24 and 12 over Q(t,x) and Q(t,y).

Moreover, these algebraic series admit rational parametrizations. Let us define the
series T and Z as in Theorem 1, and let V be the only series in t, with constant term 0,
satisfying

1− T + 3V +V T = xV 2(3 +V + T −V T ). (53)

Then the series
√
xM(
√
x,0) and t

√
xM(0,

√
x) (both even series in t with polynomial

coefficients in x) admit rational expressions in terms of Z and V , given in Appendix A.2.
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By combining the above results and singularity analysis of algebraic (and D-
finite) series [13], one can derive from the above theorem that the number of n-
step walks on the diagonal square lattice confined to C is

[tn]C(1,1) ∼ 23
√

3
32 Γ (2/3)

4n

n1/3
.

Corollary 5 (Walks ending at a prescribed position). Let T be the unique series in
t with constant term 1 satisfying (7), and let Z =

√
T .

For j ≥ 0, the series C−1,j belongs to tQ(T ), and is thus algebraic. More generally,
for i ≥ 1 and j ≥ 0 having the same parity, the series C−i,j is D-finite, of the form

−1
3
Qi−2,j + tmin(i,j) Rat(Z)

for some rational function Rat. It is transcendental as soon as i ≥ 2.
Finally, for i ≥ 0 and j ≥ 0 having the same parity, the series Ci,j is of the form

1
3
Qi,j + tmin(i,j) Rat(Z).

It is D-finite and transcendental.

Here are some examples:

tC−1,1 =
(T − 1)(11 + 6T − T 2)

(T + 3)3 , (54)

C−2,0 = −1
3
Q0,0 +

32
3
Z3(1 +Z + 3Z2 −Z3)

(Z + 1)(Z2 + 3)3 ,

C0,0 =
1
3
Q0,0 +

64
3
Z3(1 +Z + 3Z2 −Z3)

(Z + 1)(Z2 + 3)3 .

The similarity between the last two expressions comes from (51). Finally, we have
found closed form expressions for walks ending on the boundary of the cone C.
For instance:

c0,0(2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 8
(1/2)n(7/6)n
(2)n(4/3)n

− 2
(1/2)n(5/6)n
(2)n(5/3)n

)
,

c−2,0(2n) =
16n

9

(
−3

(1/2)2
n

(2)2
n

+ 4
(1/2)n(7/6)n
(2)n(4/3)n

− (1/2)n(5/6)n
(2)n(5/3)n

)
, (55)

c−4,0(2n) =
16n

35

(
−35n

(1/2)2
n

(2)n(2)n+1
+ 4(21n2 + 30n− 14)

(1/2)n(7/6)n
(2)n+1(4/3)n+1

−7(3n2 + 3n− 10)
(1/2)n(5/6)n

(2)n+1(5/3)n+1

)
.

It seems that this pattern persists, that is, that c−2i,0 is a sum of three hypergeo-
metric terms (we have checked this for 0 ≤ i ≤ 4.) There is no such expression for
walks ending at (−3,1), (−1,1), (1,1), (−2,2), nor (0,2).

Our starting point is of course the functional equation obtained by constructing
walks recursively. It reads

K(x,y)C(x,y) = 1− tȳ(x+ x̄)C−(x̄)− tx̄(y + ȳ)C−(ȳ)− tx̄ȳC0,0,

where C−(x̄) is still given by (11), the kernel is K(x,y) = 1 − t(x + x̄)(y + ȳ), and
C0,0 is the coefficient of x0y0 in C(x,y). As in the square lattice case, the kernel is
invariant by the transformations x 7→ x̄ and y 7→ ȳ.
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3.1. Reduction to an equation with orbit sum zero

Let us compare this equation to the one that describes walks confined to Q:

K(x,y)Q(x,y) = 1− tȳ(x+ x̄)Q+(x)− tx̄(y + ȳ)Q+(y) + tx̄ȳQ0,0,

with Q0,0 := Q(0,0) and Q+(x) = Q(x,0). The orbit equations of Q and C are still
given by (15) and (17), and in particular they have the same right-hand side (x −
x̄)(y − ȳ). This leads us to introduce a series A(x,y) defined by (18), again with
a = 1/3. The equation satisfied by A (the counterpart of (20)) is

K(x,y)A(x,y) = (2 + x̄2 + ȳ2)/3− tȳ(x+ x̄)A−(x̄)− tx̄(y + ȳ)A−(ȳ)− tx̄ȳA0,0.

The corresponding orbit sum is of course zero.

3.2. Reduction to a quadrant-like problem

In the series A, we separate the contributions of the three quadrants by intro-
ducing the series P and M given by (21). Given that the orbit sum of A is zero,
these two series are still related by (22). We now follow the lines of Section 2.3 to
obtain the quadrant-like equation (52) for M(x,y). It is the diagonal counterpart
of (24).

3.3. Cancelling the kernel: an equation between M(0,x), M(0, x̄) and
M(x,0)

As a polynomial in y, the kernel K admits only one root in the ring of formal
series in t:

Y =
1−

√
1− 4t2(x+ x̄)2

2t(x+ x̄)
= (x+ x̄)t + (x+ x̄)3t3 +O(t5). (56)

We follow the steps of Section 2.4 to obtain the counterpart of (30):

(x+ x̄)(Y − 1/Y ) (xM(0,x)− 2x̄M(0, x̄))− 2x̄Y /t + 3(x+ x̄)M(x,0) + 3M1,0 = 0. (57)

3.4. An equation betweenM(0,x) andM(0, x̄)

The discriminant occurring in the expression (56) of Y is

1− 4t2(x+ x̄)2 = 1− 4t2(x2 + 1)(x̄2 + 1).

It is an even function of x. The same holds for the series xM(x,0) and xM(0,x).
This suggests to define:

∆ = 1− 4t2(x+ 1)(x̄+ 1),

R(x) = t2/
√
xM(
√
x,0), S(x) = t

√
xM(0,

√
x). (58)

Then R(x) and S(x) both belong to Q[x][[t2]], and (57) gives:√
∆(x)

(
S(x)− 2S(x̄)− 1

1 + x

)
= 3(x+ 1)R(x) + 3R0 −

1
1 + x

, (59)

with R0 = R(0) = t2M1,0. Expanding around x = −1 gives

3R0 + S(−1) = 0, (60)

which will be useful later.
As in Section 2.5, we square (59) and then extract the negative part. This gives

∆(x)
(
S(x̄)2 +

S(x̄)
1 + x

)
− [x<] (∆(x)S(x)S(x̄)) = x̄t2 +

S(−1)
x+ 1

.
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As before, we denote by P0 the coefficient of x0 in ∆(x)S(x)S(x̄). Reconstructing
this series finally gives the counterpart of (35):

∆(x)
(
S(x)2 + S(x̄)2 − S(x)S(x̄) +

S(x)
x̄+ 1

+
S(x̄)
x+ 1

)
= S(−1)− P0 + t2(x+ x̄).

3.5. An equation forM(0,x) only

We multiply the previous equation by S(x) + S(x̄) + 1. The non-negative part of
the resulting equation reads:

∆(x)
(
S(x)3 +

2x+ 1
x+ 1

S(x)2 +
S(x)
x̄+ 1

)
=(

S(−1)− P0 + t2(x+ x̄)
)
(S(x) + 1) + t2S1 −

S(−1)(S(−1) + 1)
x+ 1

− t2x̄

with S1 := S ′(0). Extracting the constant term in x gives P0 +S(−1)2 = 2t2S1, which
allows us to rewrite the above equation as

∆(x)
(
S(x)3 +

2x+ 1
x+ 1

S(x)2 +
S(x)
x̄+ 1

)
=

(
t2(x+ x̄)−F0

)
(S(x) + 1) + t2S1 −

2t2S1 −F0

x+ 1
− t2x̄, (61)

with F0 = P0 − S(−1).

3.6. The generalized quadratic method: algebraicity of A(x,y)

We now apply the generalized quadratic method of Section 2.7. We denote

Pol(x0,x1,x2, t,x) = ∆(x)
(
x3

0 +
2x+ 1
x+ 1

x2
0 +

x0

x̄+ 1

)
−
(
t2(x+ x̄)− x2

)
(x0 + 1)− t2x1 +

2t2x1 − x2

x+ 1
+ t2x̄.

Then (37) holds with A1 = S1 and A2 = F0. We find that (38) now admits two
solutions X0 and X1. Computing their first few coefficients leads us to conjecture
that

X0 =
1− 2t −

√
1− 4t

2t
, X1 = −1 + 2t −

√
1 + 4t

2t
.

This is proved by eliminating x1 and x2 between Pol, Polx0
and Polx, since

2Pol−(1 + 2x0)Polx0
−(x2 − 1)Polx =

− (1− 2t − t(x+ x̄)) (1 + 2t + t(x+ x̄))
(1 + 2x0)2(x+ x0(1 + x))

x+ 1
.

The series X0 and X1 cancel the first and second factor, respectively.
It remains to say that the discriminant of Pol(x0,A1,A2, t,x) with respect to x0

admits roots at x = X0 and x = X1. This gives two polynomial relations between
A1 and A2, that is, between S1 and F0, from which we derive:

19683t6S4
1 + 2187t4

(
20t2 − 1

)
S3

1 + 81t2
(
11t2 − 1

)(
38t2 − 1

)
S2

1

+
(
92t2 − 1

)(
11t2 − 1

)2
S1 + t2

(
1331t4 − 107t2 + 1

)
= 0



SQUARE LATTICE WALKS AVOIDING A QUADRANT 19

and

27F4
0 + 27

(
8t2 − 1

)
F3

0 + 9(2t + 1)(2t − 1)
(
10t2 − 1

)
F2

0

+
(
224t6 − 68t4 + 16t2 − 1

)
F0 + t2

(
48t6 + 88t4 − 20t2 + 1

)
= 0.

Note that the equation satisfied by S1 is the same as in the square lattice case
(see (47)).

From this point on, we conclude that the series S(x) (orM(0,x)), R(x) (orM(x,0)),
M(x,y) and finally P (x,y) and A(x,y) are algebraic, using, in this order (61), (59),
(52), (51) and (21).

3.7. Rational parametrization and degrees

The end of the proof of Theorem 4 is very similar to Section 2.8. The above
equations for S1 and F0 factor when t2 is parametrized by T , and one obtains

S1 =
(T − 1)(11 + 6T − T 2)

(3 + T )3 ,

while

F0 =
(1− T )(3T 3 − 29T 2 − 15T + 9)

128T 3 .

We plug these expressions in the equation (61) defining S(x), parametrize x by the
series V defined by (53), and obtain a rational expression of S(x) in terms of T
and V , which is equivalent to the expression (78) of t

√
xM(0,

√
x).

We then consider (59). Our first task is to determine R0, or equivalently S(−1)
(see (60)). In order to do so, we replace x by −1 in the cubic equation defining S(x)
over Q(x,T ). The resulting equation factors once we write T = Z2, giving

R0 = −1
3
S(−1) =

(Z − 1)
(
−Z3 + 3Z2 +Z + 1

)
24Z3 .

Then, the term D(x) = S(x) − 2S(x̄) − 1/(1 + x) is found to be bicubic over Q(T ,x).
Combined with the above value of R0, this gives for R(x) an equation of degree 6
over Q(Z,x), which factors into two cubic terms, and factors even further when
parametrizing x by T (or Z) and V . This gives a rational expression for R(x) in
terms of Z and V , which is equivalent to the expression (77) of t/

√
xM(
√
x,0).

It remains to prove that M(x,y) and P (x,y) have degree 72 over Q(x,y, t). We
have proved that M(x,0) and M(0,x) belong to Q(t,x,Z,V2), where V2 denotes the
series V with x replaced by x2. The functional equations (52) and (51) defining
M(x,y) and P (x,y) prove that both series belong to Q(t,x,y,Z,V2, Ṽ2), where Ṽ2
is V2 with x replaced by y. Since V2 is cubic over Q(x,Z), it follows that M(x,y)
and P (x,y) have degree at most 72 over Q(x,y, t). Computing, by successive elim-
inations, their minimal equation when x = 2 and y = 3 shows that this bound is
tight.

3.8. Walks ending at a prescribed position

The argument is similar to that of Section 2.9. The result boils down to proving
that R(x), seen as a series in x, has coefficients in Q(Z), while S(x) has coefficients
in Q(T ).

The (cubic) equation over Q(x,Z) satisfied by R(x) has degree 1 in Rwhen x = 0,
and this permits a recursive computation of the coefficients of R(x) in Q(Z). A
similar statement holds for the equation over Q(x,T ) satisfied by S(x)/x.
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4. Starting at (−1,0) on the square lattice

We now return to the ordinary square lattice, but change the starting point
to (−1,0). The x/y symmetry is lost, which complicates the derivation a bit. On
the other hand, the series C(x,y) counting walks confined to C now satisfies a
functional equation with orbit sum zero, and turns out to be algebraic. That alge-
braicity is sensitive to the starting point is not a new phenomenon: for instance,
quadrant walks with steps↗,↓,←, known as Kreweras’ walks, are algebraic when
starting at (0,0) [14], but transcendental when starting at (1,0) [28].

Theorem 6. The generating function of square lattice walks starting at (−1,0) and
confined to the cone C is algebraic. Let P (x,y) (resp. x̄L(x̄, y), ȳB(x, ȳ)) denote the
generating function of such walks ending in the first quadrant (resp. at a negative
abscissa, at a negative ordinate). These three series are algebraic of degree 72 over
Q(x,y, t).

More precisely, P can be expressed in terms of L and B by:

P (x,y) = x̄ (L(x,y)−L(0, y)) + ȳ (B(x,y)−B(x,0)) , (62)

the series L and B satisfy

(1− t(x+ x̄+ y + ȳ)) (2L(x,y)−L(0, y)) =

1− 2tȳL(x,0) + t(x − x̄)L(0, y) + tȳB(0, y) + tȳL0,0 − tȳB0,0 (63)

and

(1− t(x+ x̄+ y + ȳ)) (2B(x,y)−B(x,0)) =

t(y − ȳ)B(x,0)− 2tx̄B(0, y) + tx̄L(x,0)− tx̄L0,0 + tx̄B0,0, (64)

where L0,0 = L(0,0) and B0,0 = B(0,0), and each specialization L(x,0), L(0,x), B(x,0)
and B(0,x) has degree 24 over Q(t,x).

Moreover, these algebraic series have rational parametrizations. Defining the series
T , Z andU as in Theorem 1, the series L(xt,0), L(0,xt), B(xt,0), B(0,xt) admit rational
expressions in terms of Z and U , given in Appendix A.3.

Corollary 7 (Walks ending at a prescribed position). Let T be the unique series in
t with constant term 1 satisfying (7), and let Z =

√
T .

For any (i, j) in C, the series Ci,j belongs to ti+j−1
Q(Z), and is thus algebraic.

Sometimes Ci,j even belongs to ti+j−1
Q(T ). Here are some examples:

tC0,0 = −
(T − 1)

(
T 2 − 6T − 11

)
(T + 3)3 , tC−2,0 = 16

(T − 1)

(T + 3)3 ,

tC0,−2 =
(T − 1)2 (5− T )

(T + 3)3 , C−1,0 = 64
Z3

(Z2 + 3)3 ,

tC−1,1 = −16
Z2 (Z − 1)(Z − 3)

(Z2 + 3)3 , C0,−1 = −32
Z3 (Z − 1)

(
Z2 − 2Z − 1

)
(Z + 1)(Z2 + 3)3 .

From these expressions, we can look for hypergeometric forms of the coefficients.
In this way, we find

c−1,0(2n) =
16n

3

(
2

(1/2)n(7/6)n
(2)n(4/3)n

+
(1/2)n(5/6)n
(2)n(5/3)n

)
,

c0,−1(2n) =
2 · 16n

3

(
(1/2)n(7/6)n
(2)n(4/3)n

− (1/2)n(5/6)n
(2)n(5/3)n

)
,
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but no other simple expression in the vicinity of the origin. The reflection princi-
ple directly relates the number of Gessel walks ending at (0,0) to the above num-
bers (see Section 6).

4.1. Reduction to two quadrant-like problems

Let C(x,y) be the generating function of square lattice walks starting at (−1,0)
and confined to C. It satisfies the functional equation

K(x,y)C(x,y) = x̄ − tȳC−0(x̄)− tx̄C0−(ȳ), (65)

where K(x,y) = 1− t(x+ x̄+ y + ȳ) is the kernel,

C−0(x̄) =
∑

i<0,n≥0

ci,0(n)xitn (66)

and
C0−(ȳ) =

∑
j<0,n≥0

c0,j (n)yjtn. (67)

Due to the constant term x̄ in (65) (instead of 1 in Section 2), the orbit sum van-
ishes:

xyC(x,y)− x̄yC(x̄, y) + x̄ȳC(x̄, ȳ)− xȳC(x, ȳ) = 0. (68)
We write

C(x,y) = P (x,y) + x̄L(x̄, y) + ȳB(x, ȳ),
where P (x,y),L(x,y) and B(x,y) belong to Q[x,y][[t]] (the letter P stands for posi-
tive, and the letters L and B for left and below, respectively). We plug this expres-
sion of C in the orbit equation (68), and extract the positive part in x and y. This
gives the expression (62) of P in terms of L and B. We can thus express C in terms
of L and B as well.

We now return to the equation (65) defining C, and replace C by its expression
in terms of L and B. Extracting from the resulting equation the negative part in x
gives

x̄K(x,y)L(x̄, y) = −tx̄ȳL(x̄,0)− tL(0, y) + tx̄ȳB(0, y) + tx̄Lx(0, y)− tx̄ȳB0,0 + x̄,

with Lx = ∂L/∂x. Extracting from this the coefficient of x̄ gives an expression of
Lx(0, y) in terms of L(0, y) and B(0, y), which, plugged in the previous equation,
leads to:

x̄K(x,y) (L(x̄, y)−L(0, y)/2) = x̄/2− tx̄ȳL(x̄,0)

+ t(x̄2 − 1)L(0, y)/2 + tx̄ȳB(0, y)/2 + tx̄ȳL0,0/2− tx̄ȳB0,0/2,

which is equivalent to (63), upon replacing x by x̄.
Repeating the procedure with y instead of x leads to the equation (64) satisfied

by B.
Equations (63) and (64) both involve the series L and B. To obtain two decou-

pled equations, we define

M(x,y) = L(x,y) +B(y,x) and N (x,y) = L(x,y)−B(y,x). (69)

Then

K(x,y) (2M(x,y)−M(0, y)) = 1− 2tȳM(x,0) + t(x − x̄)M(0, y) + tȳM(y,0)

and

K(x,y) (2N (x,y)−N (0, y)) = 1− 2tȳN (x,0) + t(x − x̄)N (0, y)− tȳN (y,0) + 2tȳN0,0.

These equations are extremely close to (24), and we solve them in exactly the same
way. Below we give a few details on some steps of the procedure, but we otherwise
refer to the Maple session available on the author’s webpage. Having foundM(x,y)

http://www.labri.fr/perso/bousquet/publis.html
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andN (x,y), we reconstruct L and B thanks to (69). The remaining results (degrees,
nature of the coefficients) are established as in Section 2.

4.2. Solving the equation forM(x,y)

We introduce the series R and S related to M by (31). Following the steps of
Sections 2.4 to 2.6 leads to a cubic equation for S(x) which, as (36), involves two
additional unknown series, namely R0 = S1 and S2.

We apply to this equation the generalized quadratic method of Section 2.7. Two
series cancel Polx0

. One of them is

X0 =
1−
√

1− 16t2

4t
,

and the other satisfies X1 = X with

(2t +X + 1/X − t(X2 + 1/X2))S(X)(2 + S(X)) + t + (X + 1/X)− t(X2 + 1/X2)/2 = 0.

Proceeding exactly as in Section 2.7, we derive from this that S1 and S2 have de-
gree 8 over Q(t). After introducing the series Z, we obtain for S1/t and S2 rational
expressions in terms of Z.

Then one finds that S(xt) = xt2M(0,xt) (which is an even function of t) has
degree 24 over Q(x, t), and is cubic over Q(Z,x). It can be expressed rationally in
terms of the series Z and U .

For the series R(xt)/t, the degree is only 12 over Q(x, t), and 3 over Q(T ,x).
Again, introducingU factors the equation and gives a rational expression ofR(xt)/t =
M(xt,0) in terms of T and U .

4.3. Solving the equation for N (x,y)

We introduce series R and S related toN in the same way they were related toM
before (see (31)). Following the steps of Sections 2.4 to 2.6 leads to a cubic equation
for S(x), which now involves only one additional unknown series, namely R0 = S1.

We apply to this equation the generalized quadratic method of Section 2.7. One
series X cancels Polx0

, and we derive from its existence an equation of degree 8 for
S1 over Q(t). Again, S1/t has a rational expression in terms of the series Z.

Then one finds that S(xt) = xt2N (0,xt) (which is an even function of t) has
degree 12 over Q(x, t), and is cubic over Q(T ,x). It can be expressed rationally in
terms of the series T and U .

For the series R(xt)/t, the degree is 24 over Q(x, t), and 3 over Q(Z,x). Introduc-
ing U factors the equation and gives a rational expression of R(xt)/t = N (xt,0) in
terms of Z and U .

5. Starting at (−2,0) on the diagonal square lattice

We finally return to the diagonal lattice and change the starting point to (−2,0).
The orbit sum associated with the generating function C(x,y) is non-zero, and the
generating function Q(x,y) counting quadrant walks with diagonal steps, given
by (50), enters the picture again. The generating function for walks starting from
(−2,0) and confined to the cone C now differs from

−1
3

(
Q(x,y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
by an algebraic series. Comparing with Theorem 4 shows that the above D-finite
part is the opposite of what it was when starting from (0,0).
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Theorem 8. The generating function of walks on the diagonal square lattice that start
from (−2,0), remain in C, and end in the first quadrant (resp. at a negative abscissa, at
a negative ordinate) is

−1
3
Q(x,y) + P (x,y)

(
resp.

1
3
x̄2Q(x̄, y) + x̄L(x̄, y),

1
3
ȳ2Q(x, ȳ) + ȳB(x, ȳ)

)
,

where P (x,y), L(x,y) and B(x,y) are algebraic of degree 72 over Q(x,y, t).
More precisely, P can be expressed in terms of L and B by:

P (x,y) = x̄ (L(x,y)−L(0, y)) + ȳ (B(x,y)−B(x,0)) , (70)

the series L and B satisfy

(1− t(x+ x̄)(y + ȳ)) (2L(x,y)−L(0, y)) =

4x/3− 2tȳ(x+ x̄)L(x,0) + t(x − x̄)(y + ȳ)L(0, y) + t(1 + ȳ2)B(0, y)− tȳB0,1 (71)

and

(1− t(x+ x̄)(y + ȳ)) (2B(x,y)−B(x,0)) =

− 2y/3 + t(x+ x̄)(y − ȳ)B(x,0)− 2tx̄(y + ȳ)B(0, y) + t(1 + x̄2)L(x,0)− tx̄L1,0, (72)

where L1,0 (resp. B0,1) denotes the coefficient of x1y0 (resp. x0y1) in L(x,y) (resp.
B(x,y)). The specializations L(0,x) and B(x,0) have degree 12 over Q(t,x), while L(x,0)
and B(0,x) have degree 24.

Moreover, these algebraic series have rational parametrizations. Defining the series
T , Z and V as in Theorem 4, the series

√
xL(
√
x,0), t

√
xL(0,

√
x), t
√
xB(
√
x,0), and√

xB(0,
√
x) (which belong to Q[x][[t2]]) admit rational expressions in terms of Z and

V , given in Appendix A.4.

Corollary 9 (Walks ending at a prescribed position). Let T be the unique series in
t with constant term 1 satisfying (7), and let Z =

√
T .

For j ≥ 0, the series C−1,j and Cj,−1 belong to tQ(T ), and are thus algebraic. More
generally, for i ≥ 1 and j ≥ 0 having the same parity, the series C−i,j and Cj,−i are
D-finite, of the form

1
3
Qi−2,j + tmin(i,j) Rat(Z)

for some rational function Rat. They are transcendental as soon as i ≥ 2.
Finally, for i ≥ 0 and j ≥ 0, having the same parity, the series Ci,j is of the form

−1
3
Qi,j + tmin(i,j) Rat(Z).

It is D-finite and transcendental.

Here are some examples:

tC−1,1 =
16(T − 1)
(T + 3)3 , tC−1,3 =

64(T − 1)2(T + 1)(7− T )
(T + 3)6 ,

C−2,0 =
1
3
Q0,0 +

32Z3(5 + 5Z − 3Z2 +Z3)
3(Z + 1)(Z2 + 3)3 ,

C0,0 = −1
3
Q0,0 +

32Z3(1 +Z + 3Z2 −Z3)
3(Z + 1)(Z2 + 3)3 ,

C0,−2 =
1
3
Q0,0 −

64Z3(2 + 2Z − 3Z2 +Z3)
3(Z + 1)(Z2 + 3)3 , tC1,−1 =

(T − 1)2(5− T )
(T + 3)3 .
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We found hypergeometric expressions for the number of n-step walks starting
from (−2,0) and ending at a prescribed point of the boundary of C:

c0,0(2n) =
16n

9

(
−3

(1/2)2
n

(2)2
n

+ 4
(1/2)n(7/6)n
(2)n(4/3)n

− (1/2)n(5/6)n
(2)n(5/3)n

)
,

c−2,0(2n) =
16n

9

(
3

(1/2)2
n

(2)2
n

+ 2
(1/2)n(7/6)n
(2)n(4/3)n

+ 4
(1/2)n(5/6)n
(2)n(5/3)n

)
,

c0,−2(2n) =
16n

9

(
2

(1/2)2
n

(2)2
n
− 5

(1/2)n(7/6)n
(2)n(4/3)n

+ 2
(1/2)n(5/6)n
(2)n(5/3)n

)
,

c−4,0(2n) =
16n

35

(
35n

(1/2)2
n

(2)n(2)n+1
+ 2(21n2 + 30n+ 16)

(1/2)n(7/6)n
(2)n+1(4/3)n+1

+4(39n2 + 66n− 10)
(1/2)n(5/6)n

(2)n+1(5/3)n+1

)
.

This pattern persists at least up to c−8,0(2n) and c0,−8(2n).
The proof of these results combines those of the last two sections: Section 3,

which dealt with walks starting from (0,0) on the diagonal lattice, and Section 4,
which dealt with walks starting at (−1,0) on the square lattice. There is one new
difficulty in the application of the generalized quadratic method, because none of
the auxiliary series Xi is easy to guess. We explain how to overcome this problem,
but otherwise simply write down some intermediate results of the derivation.

5.1. Reduction to two quadrant-like problems

Let C(x,y) be the generating function of walks starting at (−2,0) and confined
to the cone C in the diagonal square lattice. It satisfies the functional equation

K(x,y)C(x,y) = x̄2 − tȳ(x+ x̄)C−0(x̄)− tx̄(y + ȳ)C0−(ȳ)− tx̄ȳC0,0,

where K(x,y) = 1− t(x+ x̄)(y + ȳ) is the kernel, and the series C−0(x̄) and C0−(ȳ) are
defined by (66-67). The orbit sum is now −(x− x̄)(y − ȳ). This is the opposite of the
orbit sum for quadrant walks (see Section 3.1), and this leads us to introduce the
series

A(x,y) := C(x,y) +
1
3

(
Q(x,y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
.

The equation satisfied by A reads

K(x,y)A(x,y) =
1
3

(
1 + 2x̄2 − ȳ2

)
− tȳ(x+ x̄)A−0(x̄)− tx̄(y + ȳ)A0−(ȳ)− tx̄ȳA0,0, (73)

and now the orbit sum vanishes. We write

A(x,y) = P (x,y) + x̄L(x̄, y) + ȳB(x, ȳ),

where P (x,y),L(x,y) and B(x,y) belong to Q[x,y][[t]]. We plug this expression of
A in the above equation, and extract the positive part in x and y. This gives the
expression (70) of P in terms of L and B. We can thus express A in terms of L and
B as well.

We plug this expression of A in the equation (73). Extracting the negative part
in x gives an equation which is equivalent to (71), upon replacing x by x̄.

Symmetrically, extracting the negative part in y leads to the equation (72) sat-
isfied by B.

As in the square lattice case, we can decouple the series L and B by defining

M(x,y) = L(x,y) +B(y,x) and N (x,y) = L(x,y)−B(y,x). (74)
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Then

K(x,y) (2M(x,y)−M(0, y)) = 2x/3− 2tȳ(x+ x̄)M(x,0)

+ t(x − x̄)(y + ȳ)M(0, y) + t(1 + ȳ2)M(y,0)− tȳM1,0

and

K(x,y) (2N (x,y)−N (0, y)) = 2x − 2tȳ(x+ x̄)N (x,0)

+ t(x − x̄)(y + ȳ)N (0, y)− t(1 + ȳ2)N (y,0) + tȳN1,0.

The first equation is exactly the one we met when counting walks starting at (0,0)
on the diagonal lattice (see (52)), and we only have to solve the other one. Below we
give a few details on some steps of the procedure, but we again refer to the Maple
session available on the author’s webpage. Having found M(x,y) and N (x,y), we
reconstruct L and B thanks to (74). The remaining results (degrees, nature of the
coefficients) are established as in Section 3.

5.2. Solving the equation for N (x,y)

We introduce series R and S related to N in the same way they were related to
M in (58). Following the steps of Sections 3.3 to 3.5 leads to a cubic equation for
S(x) which involves two additional unknown series, namely S1 and

F0 := [x0]
(
∆(x)S(x)S(x̄)

)
− 3S(−1),

with ∆(x) = 1 − 4t(1 + x)(1 + x̄). This equation (which is the counterpart of (61))
reads Pol(S(x),S1,F0, t,x) = 0 with

Pol(x0,x1,x2, t,x) = ∆(x)
(
x3

0 −
3

x+ 1
x2

0 +
2− x
x+ 1

x0

)
−
(
16t2x1 − x2 + t2x̄+ t2x

)
x0 + 7t2x1 − x2 + t2x+

x2 + 2t2x1

x+ 1
.

We apply to this equation the generalized quadratic method of Section 2.7. Two
series, denoted X0 and X1, cancel Polx0

, and their first coefficients are:

X0 = 2− 21
2
t2 − 117

8
t4 +O(t6), X1 =

9
2
t2 +

261
8
t4 +

5067
16

+O(t8).

These coefficients do not suggest any obvious values for these series. To obtain
equations satisfied by S1 and F0, one has to actually work with the system of 6
equations

Pol(S(Xi),S1,F0, t,Xi) = 0,

Polx0
(S(Xi),S1,F0, t,Xi) = 0,

Polx(S(Xi),S1,F0, t,Xi) = 0,

as explained in [9, Sec. 9]. The most effective way seems to use Theorem 14
from [9], which says that the discriminant of Pol(x0,S1,F0, t,x) with respect to x0
admits X0 and X1 as double roots. Up to a denominator and a factor ∆(x) (which
does not vanish at X0 nor X1), this discriminant is a polynomial of degree 4 in
s := x + x̄, with coefficients in Q(t,S1,F0). This polynomial in s has two double
roots, namely X0 + 1/X0 and X1 + 1/X1, and thus it must be the square of a poly-
nomial in s of degree 2. This gives us two conditions on S1 and F0, from which we
obtain equations of degree 4 for each of these two series. As before, they can be
expressed rationally in terms of the series T :

S1 =
(T − 1)(21− 6T + T 2)

(T + 3)3 ,

http://www.labri.fr/perso/bousquet/publis.html
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F0 =
(T − 1)(5T 3 − 11T 2 + 135T − 33)

128T 3 .

From there one finds that S(x) = t
√
xN (0,

√
x) (a series of Q[x][[t2]]) has degree 12

over Q(x, t), and is cubic over Q(T ,x). It can be expressed rationally in terms of T
and V .

For the series R(x) = t2/
√
xN (
√
x,0), the degree is 24 over Q(x, t), and 3 over

Q(Z,x). Introducing V factors the equation and gives a rational expression of R(x)
in terms of Z and V .

6. Square lattice walks in a 135° wedge

We now return to Ira Gessel’s ex-conjecture (2) about square lattice walks start-
ing and ending at (0,0) and remaining in the (convex) cone {(i, j) : i + j ≥ 0 and j ≥
0} (Figure 1, left). More generally, let us denote by gi,j (n) the number of n-step
walks in this cone, starting at (0,0) and ending at (i, j). A step by step construction
of Gessel’s walks gives

(1− t(x+ x̄+ y + ȳ))G(x,y) = 1− tȳG(x,0)− t(x̄+ ȳ)G∆(x̄y) + tȳG0,0,

where
G∆(x) :=

∑
j,n≥0

g−j,j (n)xjtn

counts walks ending on the diagonal i + j = 0. Hence it suffices to determine the
series G(x,0) and G∆(x).

One of our motivations for studying walks in a three-quadrant cone was to
attack the enumeration of Gessel’s walks by the reflection principle. Indeed, let
us denote by ci,j (n) the number of n-step walks going from (−1,0) to (i, j) on the
square lattice, and avoiding the negative quadrant. The generating function of
these numbers is given in Theorem 6. Then the reflection principle (Figure 3)
implies that, for j ≥ 0 and i < j,

ci,j (n)− cj,i(n) = g−i−1,j (n).

In particular, the case j = 0 allows us to compute the specialization G(x,0) in
terms of the series L and B of Theorem 6:

G(x,0) = L(x,0)−B(0,x).

Using the rational expressions (79) and (80) of L(xt,0) and B(0,xt) in terms of Z
and U , we recover the parametrized expression of G(xt,0) given in [2, 6].

(i, j)

(j, i)

Figure 3. The reflection principle: a walk from (−1,0) to (i, j) that
crosses the line y = x+1 can be transformed bijectively into a walk
ending at (j, i).
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In order to determine the series G∆, we have to extract from C(x,y) the quasi-
diagonal terms ci,i+1(n) and ci+1,i(n). To avoid this extraction, we can use instead
our results on the diagonal square lattice obtained in Section 5. Indeed, let us
denote by c̃i,j (n) the number of n-step walks going from (−2,0) to (i, j) on the diag-
onal square lattice and avoiding the negative quadrant. The generating function
of these numbers is given by Theorem 8 (we use the tilde because we are mix-
ing results for the square lattice and the diagonal square lattice). The reflection
principle (Figure 4) now gives, for j ≥ 0 and i < j:

c̃i,j (n)− c̃j,i(n) = gk,`(n)

with k = i+j
2 + 1 and ` = j−i

2 − 1. In particular, the case j = 0 gives us the value

G∆(x) =
1
√
x

(
L̃(
√
x,0)− B̃(0,

√
x)

)
,

where L̃ and B̃ are the series denoted L and B in Theorem 8. The series
√
x̄L̃(
√
x,0)

and
√
x̄B̃(0,

√
x) have rational expressions in terms of Z and V (see (81) and (82)),

and we thus recover the parametrized expression of G∆(x) given in [2, 6].

(j, i)

(i, j)

k`

Figure 4. Second application of the reflection principle.

This solution of Gessel’s model is only short because we have spent much effort
solving three-quadrant problems. The self-contained proofs of [6, 1] remain more
direct.

7. Questions, perspectives

7.1. About the present paper

The first obvious problem raised by this paper is finding more combinatorial
proofs of our results. Since these results include a solution to Gessel’s famously
difficult problem, this is not likely to be easy. However, at least one question that
arises from the first step of our approach should be easier.

Consider square lattice walks starting from (0,0) and confined to C (Theorem 1).
The first two equations in this theorem, namely (4) and (5), come at once by form-
ing the orbit equation of C(x,y), and they imply that, for i, j ≥ 0,

Ci,j =Qi,j +C−i−2,j +Ci,−j−2.

Given that forming the orbit equation is essentially taking reflections in the co-
ordinate axes, is there a simple explanation for this identity? Note that it holds
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verbatim for walks starting at (0,0) on the diagonal square lattice. For square
lattice walks starting at (−1,0), the term in Q disappears, leaving

Ci,j = C−i−2,j +Ci,−j−2.

For walks on the diagonal square lattice starting from (−2,0), the term in Q re-
mains, but its sign changes:

Ci,j = −Qi,j +C−i−2,j +Ci,−j−2.

Another result that may be studied per se is the fact that square lattice walks
confined to C, starting at (0,0) and ending at (−1,0) are equinumerous with walks
on the diagonal square lattice, confined to C and joining (0,0) to (−1,1) (see (9)
and (54)).

7.2. Perspectives

As mentioned in the introduction, we hope that this paper will be the starting
point of a systematic study of walks with small steps confined to C, analogous to
what has been achieved in the past decade for walks confined to the first quad-
rant Q. By small steps, we mean steps taken from {−1,0,1}2.

Let us recall some of the quadrant results: given a set S of small steps, the
generating function Q(x,y) that counts walks starting from (0,0), confined to Q
and taking their steps in S is D-finite if and only if a certain group of rational
transformations is finite. This happens for 23 inherently different step sets, among
which exactly 4 even lead to an algebraic generating function (Figure 5). There
remain 56 inherently different non-D-finite step sets, among which 5 are called
singular: this means that all their elements (i, j) satisfy i + j ≥ 0. Two generic
approaches prove the non-D-finiteness of the 51 non-singular models [20, 5], and
the remaining 5 are proved non-D-finite in a more ad hoc way [24, 22].

Now what happens for walks with small steps confined to the three-quadrant
cone C?

• One can check that all models that are trivial or simple when counting
walks confined to the first quadrant (and have a rational or algebraic gener-
ating function for elementary reasons [10]) are still trivial or simple when
counting walks avoiding the negative quadrant. This leaves us, as in the
quadrant problem, with 79 inherently different models.

• The case of singular step sets is particularly simple: all walks formed of
such steps remain in the half-plane i + j ≥ 0, and a fortiori in C. Hence the

associated generating function is rational, equal to
(
1− t

∑
(i,j)∈S x

iyj
)−1

. A
simple start!

• Could it be that for any step set associated with a finite group, the generat-
ing function C(x,y) is D-finite? and, maybe, differs from a simple D-finite
series related to Q(x,y) by an algebraic series?

• In particular, could it be that for the four step sets of Figure 5, for which
Q(x,y) is known to be algebraic, C(x,y) is also algebraic? We could not
resist trying a bit of guessing on these models, and algebraicity seems very
plausible. At least, we have guessed in each case an algebraic equation for
the series C0,0 that counts walks starting and ending at (0,0). The degree
is, from left to right, 6, 6, 16, 24, which should be compared to the values
3, 3, 4, 8 obtained for quadrant walks.

• To what extent can the approach of this paper be adapted to other step sets
associated with a finite group? A first candidate would be the set of all
eight small steps, which has the same symmetries as the models studied
here, and is quite likely to be solvable by the same approach.



SQUARE LATTICE WALKS AVOIDING A QUADRANT 29

• Could it be that for non-singular step sets associated with an infinite group,
the series C(x,y) is non-D-finite? Can this be proved using asymptotic enu-
meration, as has been done for quadrant walks [5] using the results of [11]?
(This question has been answered positively by Mustapha after this paper
appeared on arXiv [25].)

• Can the powerful analytic approach of [29] be adapted to walks avoiding a
quadrant? This approach was the first to yield non-D-finiteness results for
the 51 models non-singular with an infinite group [20].

Kreweras Reverse Kreweras Double Kreweras Gessel

Figure 5. The four algebraic quadrant models.

To finish, let us mention that the reflection principle relates several three-quadrant
models to quadrant models, as exemplified in Section 6. More precisely, counting
walks with Kreweras steps in C gives a solution of walks with reverse Kreweras
steps in Q, and vice-versa. Similarly, counting walks with double Kreweras steps
in C also solves walks with double Kreweras steps in Q.

Acknowledgements. Back in 2007, the author had many interesting discussions
with Ira Gessel about the closed forms (55), which were at that time conjectures.
Ira produced more conjectures of this type for other endpoints.
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Appendix A. Parametrized expressions

Our parametrizing series T , Z, U and V are defined as follows. First, T is the
unique series in t with constant term 1 satisfying:

T = 1 + 256 t2
T 3

(T + 3)3 ,

and Z =
√
T . We have:

T = 1 + 4 t2 + 36 t4 + 396 t6 + 4788 t8 +O
(
t10

)
,

Z = 1 + 2 t2 + 16 t4 + 166 t6 + 1934 t8 +O
(
t10

)
.

In fact, Z is the sum of two hypergeometric series:

Z =
∑
n≥0

16n
(
2

(−1/2)n(1/6)n
(1)n(1/3)n

− (−1/2)n(5/6)n
(1)n(2/3)n

)
t2n.

Then, U is the only power series in t with constant term 1 (and coefficients in
Q[x]) satisfying

16T 2(U2 − T ) = x(U +UT − 2T )(U2 − 9T + 8TU + T 2 − TU2).

Finally, V is the only series in t with constant term 0 (and coefficients in Q[y])
satisfying

1− T + 3V +V T = yV 2(3 +V + T −V T ).

We have

U = 1 + 2 t2 + 16 t4 + (166 + 2x) t6 +
(
2x2 + 40x+ 1934

)
t8 +O

(
t10

)
,

V = t2 + (8 + x) t4 +
(
2x2 + 16x+ 82

)
t6 +

(
5x3 + 48x2 + 227x+ 944

)
t8 +O

(
t10

)
.
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A.1. Walks starting at (0,0) on the square lattice

The generating function of walks ending on the negative x-axis (resp. at ab-
scissa −1) is x̄M(x̄,0) − x̄2Q(x̄,0)/3 (resp. x̄M(0, y)) where Q(x,y) is given by (1)
and

tM(xt,0) =
N1(Z,U )

3T (Z − 1)(T + 3)3(U +Z)2(U2 − 9T + 8TU + T 2 − TU2)
(75)

and

tM(0,xt) =
(TU − 2T +U )2N2(T ,U )
T (T + 3)3D2(T ,U )

, (76)

with

N1(z,u) = −
(
z2 + 1

)2
(z+ 1)3 (z − 1)4u8

− 2z
(
z2 + 1

)(
z4 − 10z3 − 14z − 1

)
(z+ 1)2 (z − 1)3u7

+ 4z2 (z+ 1)
(
10z7 − 35z6 + 14z5 − 115z4 − 10z3 − 57z2 − 14z+ 15

)
(z − 1)2u6

+ 2z3 (z − 1)
(
z10 + 14z9 − 77z8 + 252z7 − 66z6 + 1224z5 + 106z4 + 68z3

+33z2 − 534z+ 3
)
u5 + 2z4 (z − 1)

(
z10 + 8z9 − 115z8 − 400z7 − 1154z6

−1728z5 − 5890z4 − 1520z3 − 2607z2 − 456z+ 549
)
u4 + 2z5

(
z11 − 11z10

−207z9 + 149z8 + 2946z7 + 2202z6 + 8506z5 + 9266z4 − 5571z3 + 4017z2

−3627z − 1287)u3 − 4z6
(
14z10 − z9 − 465z8 − 684z7 + 3704z6 + 2034z5

+11274z4 + 6756z3 − 702z2 + 3159z − 513
)
u2 − 2z7

(
z11 + 13z10 − 115z9

−95z8 + 1346z7 + 3722z6 − 8334z5 − 4470z4 − 24291z3 − 12663z2

−351z − 3915)u − z8
(
z11 − z10 − 37z9 + 293z8 + 382z7 − 894z6 − 4614z5

+7686z4 + 5409z3 + 17631z2 + 9099z − 2187
)
,

N2(t,u) = t5 +
(
−2u2 + 32u − 73

)
t4 +

(
u4 − 16u3 + 90u2 − 96u − 177

)
t3

+
(
−u4 + 82u2 − 192u − 135

)
t2 −u2

(
u2 − 16u + 42

)
t +u4,

and

D2(t,u) = −t4 + 2 (u − 2)(u − 6) t3 − (u − 3)
(
u3 + 3u2 − 15u + 3

)
t2 + 6 t u2 +u4.

A.2. Walks starting at (0,0) on the diagonal square lattice

The generating function for walks ending on the negative x-axis (resp. at ab-
scissa −1) is x̄M(x̄,0) − x̄2Q(x̄,0)/3 (resp. x̄M(0, y)) where Q(x,y) is given by (50)
and

t2
√
x
M(
√
x,0) =

V (V T − T −V − 3)N (Z,V )
48Z3(V + 1)2(VZ −V −Z − 1)2 , (77)

t
√
xM(0,

√
x) =

(T V − T + 3V + 1)(−T V 2 − 2T V +V 2 + T + 2V + 3)
2(V + 1)(T 2V 2 − 2T 2V + 2T V 2 + T 2 − 3V 2 + 2T − 6V − 3)

(78)

with

N (z,v) = −
(
z2 + 3

)
(z − 1)2 v3 + (z − 1)

(
3z3 + 9z2 + z+ 11

)
v2

+ (z+ 1)
(
3z3 − 9z2 + z − 11

)
v −

(
z2 + 3

)
(z+ 1)2 .
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A.3. Walks starting at (−1,0) on the square lattice

The generating function for walks ending on the negative x-axis (resp. at ab-
scissa −1, on the negative y-axis, at ordinate −1) is x̄L(x̄,0) (resp. x̄L(0, y), ȳB(0, ȳ),
ȳB(x,0)) where

L(xt,0) =
256Z4(UZ2 − 2Z2 +U )

(UZ +Z2 +U − 3Z)(U +Z)(Z − 1)(Z2 + 3)3 , (79)

xL(0,xt) =
256Z6(U −Z)(UZ −Z2 −U − 3Z)(U2Z2 −Z4 − 4UZ2 +U2 + 3Z2)

D(Z,U )(Z − 1)(Z2 + 3)3 ,

xB(xt,0) =
512Z6(UZ2 − 2Z2 +U )(U −Z)N1(Z,U )

(Z2 − 1)(Z2 + 3)3D(Z,U )
,

and

B(0,xt) =
16Z2(UZ2 − 2Z2 +U )N2(Z,U )

(U +Z)(1−Z2)(Z2 + 3)3(UZ −Z2 −U − 3Z)
(80)

with

D(z,u) = z8 − 2 (u − 2)(u − 6)z6 + (u − 3)
(
u3 + 3u2 − 15u + 3

)
z4 − 6u2z2 −u4,

N1 = z4 + 2(u − 3)z3 + (u + 1)(u − 3)z2 −u2,

N2(z,u) = (z+ 1)(z − 1)2u2 − 4z (3z+ 1)(z − 1)u − z2
(
z3 + 3z2 − 25z − 11

)
.

A.4. Walks starting at (−2,0) on the diagonal square lattice

The generating function for walks ending on the negative x-axis (resp. at ab-
scissa −1, on the negative y-axis, at ordinate −1) is x̄L(x̄,0) + x̄2Q(x̄,0)/3 (resp.
x̄L(0, y), ȳB(0, ȳ) + ȳ2Q(ȳ,0)/3, ȳB(x,0)) where Q(x,y) is given by (50) and

1
√
x
L(
√
x,0) =

32VZ3(V T − T −V − 3)N1(Z,V )
3(1 +V )2(T − 1)(T + 3)3(VZ −V −Z − 1)2 , (81)

t
√
xL(0,

√
x) =

(T V − T + 3V + 1)(V − 1)(T V − T −V − 3)
2(V + 1)(T 2V 2 − 2T 2V + 2T V 2 + T 2 − 3V 2 + 2T − 6V − 3)

,

t
√
xB(
√
x,0) =

V (T V − T + 3V + 1)(2− T V +V )
(V + 1)(T 2V 2 − 2T 2V + 2T V 2 + T 2 − 3V 2 + 2T − 6V − 3)

,

1
√
x
B(0,
√
x) =

16VZ3(V T − T −V − 3)N2(Z,V )
3(V + 1)2(T − 1)(T + 3)3(VZ −V −Z − 1)2 (82)

with

N1(z,v) = −
(
z2 + 3

)
(z − 1)2 v3+4(z+ 2)(z − 1)v2+4(z+ 1)(z − 2)v−

(
z2 + 3

)
(z+ 1)2

and

N2(z,v) =
(
z2 + 3

)
(z − 1)2 v3 +

(
3z2 + 12z+ 5

)
(z − 1)2 v2

+
(
3z2 − 12z+ 5

)
(z+ 1)2 v +

(
z2 + 3

)
(z+ 1)2 .
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