SET OF ALL DENSITIES OF EXPONENTIALLY S-NUMBERS

VLADIMIR SHEVELEV

Abstract

Let \mathbf{G} be the set of all finite or infinite increasing sequences of positive integers beginning with 1 . For a sequence $S=\{s(n)\}, n \geq$ 1 , from \mathbf{G} a positive number N is called an exponentially S-number ($N \in E(S)$), if all exponents in its prime power factorization are in S. The author [2] proved that, for every sequence $S \in \mathbf{G}$, the sequence of exponentially S-numbers has a density $h=h(E(S)) \in\left[\frac{6}{\pi^{2}}, 1\right]$. In this note we study the set $\{h(E(S)\}$ of all such densities.

1. Introduction

Let \mathbf{G} be the set of all finite or infinite increasing sequences of positive integers beginning with 1 . For a sequence $S=\{s(n)\}, n \geq 1$, from G, a positive number N is called an exponentially S-number $(N \in E(S)$), if all exponents in its prime power factorization are in S. The author [2] proved that, for every sequence $S \in \mathbf{G}$, the sequence of exponentially S-numbers has a density $h=h(E(S)) \in\left[\frac{6}{\pi^{2}}, 1\right]$. More exactly, the following theorem was proved in [2]:

Theorem 1. For every sequence $S \in \mathbf{G}$ the sequence of exponentially S numbers has a density $h=h(E(S))$ such that

$$
\begin{equation*}
\sum_{i \leq x,} 1=h(E(S)) x+O\left(\sqrt{x} \log x e^{c \frac{\sqrt{\log x}}{\log \log x} x}\right) \tag{1}
\end{equation*}
$$

with $c=4 \sqrt{\frac{2.4}{\log 2}}=7.443083 \ldots$ and

$$
\begin{equation*}
h(E(S))=\prod_{p}\left(1+\sum_{i \geq 2} \frac{u(i)-u(i-1)}{p^{i}}\right) \tag{2}
\end{equation*}
$$

where $u(n)$ is the characteristic function of sequence $S: u(n)=1$, if $n \in S$ and $u(n)=0$ otherwise.

Note that Sloane's Online Encyclopedia of Integer Sequences [3] contains some sequences of exponentially S-numbers, $S \in \mathbf{G}$. For example, A005117 ($S=\{1\}$), A004709 ($S=\{1,2\}$), A268335 ($S=$ A005408), A138302 ($S=$ $\left.\left.\left\{2^{n}\right\}\right|_{n \geq 0}\right)$, A197680 $\left(S=\left.\left\{n^{2}\right\}\right|_{n \geq 1}\right)$, A115063 $\left(S=\left.\left\{F_{n}\right\}\right|_{n \geq 2}\right)$, A209061 ($S=A 005117$), etc.

Everywhere below we write $\{h(E(S))\}$, understanding $\left.\{h(E(S))\}\right|_{S \in \mathbf{G}}$. In
[2] (Section 6) the author posed the question: is the set $\{h(E(S))\}$ dense in the interval $\left[\frac{6}{\pi^{2}}, 1\right]$? Berend [1] gave a negative answer by finding a gap in the set $\{h(E(S))\}$ in the interval

$$
\begin{equation*}
\left(\prod_{p}\left(1-\frac{p-1}{p^{3}}\right), \prod_{p}\left(1-\frac{1}{p^{3}}\right)\right) \subset\left[\frac{6}{\pi^{2}}, 1\right] . \tag{3}
\end{equation*}
$$

Berend's idea consists of the partition of \mathbf{G} into two subsets - of those sequences which contain 2 and those that do not contain 2 - and applying Theorem 11. In our study of the set $\{h(E(S)\}$ we use this idea.

2. Cardinality

Lemma 1. G is uncountable.
Proof. Trivially \mathbf{G} is equivalent to the set of all subsets of $\{2,3,4, \ldots\}$.
Lemma 2. For every two distinct $A, B \in \mathbf{G}$, we have $h(E(A)) \neq h(E(B))$.
Proof. Let $A=\left.\{a(i)\}\right|_{i \geq 1}, B=\left.\{b(i)\}\right|_{i \geq 1}$. Let $n \geq 1$ be maximal index such that $a(i)=b(i), \quad i=1, \ldots, n$, while $a(n+1) \neq b(n+1)$. Note that, if $A_{n}=\{a(1), \ldots, a(n)\}, A^{*}=\{a(1), \ldots, a(n), a(n+1), a(n+1)+1, a(n+1)+$ $2, \ldots\}$, then

$$
\begin{equation*}
h\left(E\left(A_{n+1}\right)\right) \leq h(E(A)) \leq h\left(E\left(A^{*}\right)\right) \tag{4}
\end{equation*}
$$

and analogously for sequence B.
Distinguish four cases:

$$
\text { (i) } a(n+1)=a(n)+1, \quad b(n+1) \geq a(n)+2
$$

(ii) for $k \geq 2, a(n+1) \geq a(n)+k, b(n+1)=a(n)+1$;
(iii) for $k \geq 3, a(n+1)=a(n)+k, a(n)+2 \leq b(n+1) \leq a(n)+k-1$;
(iv) for $k \geq 2$, $a(n+1)=a(n)+k, \quad b(n+1) \geq a(n)+k+1$.
(i) By (2) and (4), we have

$$
\begin{equation*}
h(E(A)) \geq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}\right) \tag{5}
\end{equation*}
$$

where $u(n)$ is the characteristic function of A. Since here $u(a(n+1))-$ $u(a(n+1)-1)=0$, then in the right hand side we sum up to $a(n)$. On the other hand,

$$
\begin{equation*}
h\left(E\left(B^{*}\right)\right) \leq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{a(n)+1}}+\frac{1}{p^{a(n)+2}}\right) . \tag{6}
\end{equation*}
$$

By (5)- (6),$h(E(B))<h(E(A))$.
(ii) Symmetrically to (i), we have

$$
\begin{equation*}
h(E(B)) \geq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}\right) \tag{7}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
h\left(E\left(A^{*}\right)\right) \leq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{a(n)+1}}+\frac{1}{p^{a(n)+2}}\right) . \tag{8}
\end{equation*}
$$

So, $h(E(A))<h(E(B))$.
(iii) Again, by (2) and (4), we have

$$
\begin{equation*}
h(E(B)) \geq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{a(n)+1}}+\frac{1}{p^{a(n)+k-1}}\right) \tag{9}
\end{equation*}
$$

while

$$
\begin{equation*}
h\left(E\left(A^{*}\right)\right) \leq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{a(n)+1}}+\frac{1}{p^{a(n)+k}}\right) \tag{10}
\end{equation*}
$$

Hence, $h(E(A))<h(E(B))$.
(iv) Symmetrically,

$$
\begin{equation*}
h\left(E\left(B^{*}\right)\right) \leq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{a(n)+1}}+\frac{1}{p^{a(n)+k+1}}\right) \tag{11}
\end{equation*}
$$

while

$$
\begin{equation*}
h(E(A)) \geq \prod_{p}\left(1+\sum_{i=2}^{a(n)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{a(n)+1}}+\frac{1}{p^{a(n)+k}}-\frac{1}{p^{a(n)+k+1}}\right) \tag{12}
\end{equation*}
$$

and since $\frac{2}{p^{a(n)+k+1}} \leq \frac{1}{p^{a(n)+k}}$, where the equality holds only in case $p=2$, then $h(E(A))>h(E(B))$.

Lemmas 1 and 2 directly imply
Theorem 2. The set $\left\{\left.h(E(S)\}\right|_{S \in \mathbf{G}}\right.$ is uncountable.
Denote by $\mathbf{G}(F)$ the subset of the finite sequences from \mathbf{G}. Since the set of all finite subsets of a countable set is countable, then $\mathbf{G}(F)$ is countable and then the set $\left\{\left.h(E(S)\}\right|_{S \in \mathbf{G}(F)}\right.$ is also countable.

3. Perfectness

Lemma 3. Every point of the set $h(E(S))$ is an accumulation point.
Proof. Distinguish two cases: a) S is finite set; b) S is infinite set.
a) Let $S=\{s(1), \ldots, s(k)\} \in \mathbf{G}(F)$. Let $n \geq s(k)+2$. Denote by S_{n} the sequence $S_{n}=\{s(1), \ldots, s(k), n\}$. Then, by (22),

$$
\begin{gather*}
h\left(E\left(S_{n}\right)\right)-h(E(S))= \tag{13}\\
\prod_{p}\left(1+\sum_{i=2}^{s(k)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{s(k)+1}}+\frac{1}{p^{n}}\right)- \\
\prod_{p}\left(1+\sum_{i=2}^{s(k)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{s(k)+1}}\right) .
\end{gather*}
$$

For the first product $\prod_{p}(n)$,

$$
\prod_{p}(n)=\exp \left(\sum_{p} \log \left(1+\sum_{i=2}^{s(k)} \frac{u(i)-u(i-1)}{p^{i}}-\frac{1}{p^{s(k)+1}}+\frac{1}{p^{n}}\right)\right)
$$

the series over primes converges uniformly since

$$
\sum_{p} \sum_{i \geq 2} \frac{|u(i)-u(i-1)|}{p^{i}} \leq \sum_{p} \sum_{i \geq 2} \frac{1}{p^{i}}=\sum_{p} \frac{1}{(p-1) p}
$$

Therefore, $\lim _{n \rightarrow \infty}\left(\prod_{p}(n)\right)=\prod_{p}\left(\lim _{n \rightarrow \infty}(\ldots)\right)$ which coincides with the second product. So $\lim _{n \rightarrow \infty} h\left(E\left(S_{n}\right)\right)=h(E(S))$.
b) Let $S=\{s(1), \ldots, s(k), \ldots\} \in \mathbf{G}$ be infinite sequence. Let $S_{n}=\{s(1), \ldots, s(n)\}$ be the n-partial sequence of S. In the same way, taking into account the uniform convergence of the product for density of S_{n}, we find that $\lim _{n \rightarrow \infty} h\left(E\left(S_{n}\right)\right)=h(E(S))$.

Theorem 3. The set $\{h(E(S))\}$ is a perfect set.
A proof we give in Section 5 .

4. GAPS

Let us show that, for every finite $S \in \mathbf{G}$, with the exception of $S=\{1\}$, there exists an $\varepsilon>0$ such that the image of h is disjoint from the interval $(h(E(S))-\varepsilon, h(E(S))$.

We need a lemma.
Lemma 4. Let $A, B \in \mathbf{G}$ be distinct sequences. Let $s^{*}=s^{*}(A, B)$ be the smallest number which is a term of one of them, but not in another. If, say, $s^{*} \in A$, then $h(E(A))>h(E(B))$.

Proof. In fact, the lemma is a corollary of the proof of Lemma 2. Comparing with the proof of Lemma 2, we have $s^{*}(A, B)=n+1$. We see that in all four cases in the proof of Lemma 2, the statement of Lemma 4 is confirmed.

Proposition 1. Let $S_{1}=\{s(1), \ldots, s(k)\} \in \mathbf{G}(F), k \geq 2$, and $S_{2}=$ $\{s(1), \ldots, s(k-1), s(k)+1, s(k)+2, \ldots\}$. Then the interval

$$
\begin{equation*}
\left(h\left(E\left(S_{2}\right)\right), \quad h\left(E\left(S_{1}\right)\right)\right) \tag{14}
\end{equation*}
$$

is a gap in the set $\{h(E(S)): S \in \mathbf{G}\}$.
Proof. Consider other than S_{1}, S_{2} any sequence $S \in \mathbf{G}$ which contains $s^{*}\left(S_{1}, S\right)$. By Lemma 4, $h(E(S))>h\left(E\left(S_{1}\right)\right)$. So, $h(E(S))$ is not in interval (14). Now consider other than S_{1}, S_{2} any sequence $S \in \mathrm{G}$ which does not contain $s^{*}\left(S_{1}, S\right)$. Then S_{2} contains $s^{*}\left(S, S_{2}\right)$. Indeed, 1) S cannot contain all terms $s(1), \ldots, s(k)$ (since S differs from S_{1}, it should contain additional terms, the smallest of which is $s^{*}\left(S, S_{1}\right) \in S$ that contradicts the condition); 2) if $i, 1 \leq i \leq k$, is the smallest for which S misses $s(i)$, then, by the condition, all terms of S are more than than $s(i)$. So $s^{*}\left(S, S_{2}\right)=s(i) \in S_{2}$, if $i<k$, while, if $\mathrm{i}=\mathrm{k}$, since S differs from $S_{2}, s^{*}\left(S, S_{2}\right)=s(k)+j \in S_{2}$, where j is the smallest for which $s_{k}+j$ is not in S. Hence, by Lemma 4, $h\left(E\left(S_{2}\right)\right)>h(E(S))$ and again $h(E(S))$ is not in interval (14).

Lemma 5. Every gap in $\{h(E(S))\}$ has the form described in Proposition 1.

Proof. Indeed, the gap (14) is in a right neighborhood of $h\left(E\left(S_{2}\right)\right)$. Let a sequence $S \in \mathbf{G}$ do not contain any infinite set of positive integers K. Adding to $S k \in K$, which goes to infinity, we obtain set S_{k} such that $h\left(E\left(S_{k}\right)\right)>h(E(S))$ and $h\left(E\left(S_{k}\right)\right) \rightarrow h(E(S))$. So, in a right neighborhood of $h(E(S))$ cannot be a gap of $\{h(E(S))\}$. In opposite case, when $S \in \mathbf{G}$ does not contain only a finite set of positive integers, in a right neighborhood of $h(E(S))$ a gap of $\{h(E(S))\}$ is possible, but in this case S has the form of S_{2} in Proposition 1. Also, if $S \in \mathbf{G}$ is infinite, then in a left neighborhood of $h(E(S))$ cannot be a gap of $\{h(E(S))\}$, since $h(E(S))$ is a limiting point of $\left\{h\left(E\left(S_{n}\right)\right)\right\}$, where S_{n} is the n-partial sequence of S.

It is easy to see that, for distinct sequences S_{1}, the gaps (14) are disjoint.
From Propositions 1 and Lemma 5 we have the statement:
Theorem 4. The set $\{h(E(S))\}$ has countably many gaps.

5. Proof of Theorem 3

Proof. By Lemma 3, the set $\{h(E(S))\}$ does not contain isolated points. For a set $A \subseteq\left[\frac{6}{\pi^{2}}, 1\right]$, let \bar{A} be $\left[\frac{6}{\pi^{2}}, 1\right] \backslash A$. Let, further, $\{g\}$ be the set of all gaps of $\{h(E(S))\}$. Then we have

$$
\{h(E(S))\}=\overline{\bigcup g}=\bigcap \bar{g}
$$

Since a gap g is an open interval, then \bar{g} is a closed set. But arbitrary intersections of closed sets are closed. Thus the set $\{h(E(S))\}$ is closed without isolated points. So it is a perfect set.

6. Conclusion

Thus, by Theorems 2-4, the set $\{h(E(S))\}$ is a perfect set with a countable set of gaps which associate with some left-sided neighborhoods of the densities of all exponentially finite S-sequences, $S \in \mathbf{G}$, except for $S=\{1\}$. It is natural to conjecture that the sum of lengths of all gaps equals the length of the whole interval $\left[\frac{6}{\pi^{2}}, 1\right]$, or, the same, that the set $\{h(E(S))\}$ has zero measure. This important question we remain open.

Remark 1. Possible to solve this problem could help a remark that the deleting in (2) 0 's (when $u_{i}=u_{i-1}$) we obtain an alternative sequence of $-1,1$.

7. Acknowledgement

The author is grateful to Daniel Berend for very useful discussions.

References

[1] D. Berend, Private communication.
[2] V. Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
[3] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences http://oeis.org
Department of Mathematics, Ben-Gurion University of the Negev, BeerSheva 84105, Israel. E-mail:Shevelev@bgu.ac.il

