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SET OF ALL DENSITIES OF EXPONENTIALLY

S-NUMBERS

VLADIMIR SHEVELEV

Abstract. Let G be the set of all finite or infinite increasing sequences
of positive integers beginning with 1. For a sequence S = {s(n)}, n ≥
1, from G a positive number N is called an exponentially S-number
(N ∈ E(S)), if all exponents in its prime power factorization are in S.

The author [2] proved that, for every sequence S ∈ G, the sequence of
exponentially S-numbers has a density h = h(E(S)) ∈ [ 6

π
2 , 1]. In this

note we study the set {h(E(S)} of all such densities.

1. Introduction

Let G be the set of all finite or infinite increasing sequences of positive

integers beginning with 1. For a sequence S = {s(n)}, n ≥ 1, from G, a

positive number N is called an exponentially S-number (N ∈ E(S)), if all

exponents in its prime power factorization are in S. The author [2] proved

that, for every sequence S ∈ G, the sequence of exponentially S-numbers

has a density h = h(E(S)) ∈ [ 6
π2 , 1]. More exactly, the following theorem

was proved in [2]:

Theorem 1. For every sequence S ∈ G the sequence of exponentially S-

numbers has a density h = h(E(S)) such that

(1)
∑

i≤x, i∈E(S)

1 = h(E(S))x+O(
√
x log xec

√

log x

log log x ),

with c = 4
√

2.4
log 2

= 7.443083... and

(2) h(E(S)) =
∏

p

(

1 +
∑

i≥2

u(i)− u(i− 1)

pi

)

,

where u(n) is the characteristic function of sequence S : u(n) = 1, if n ∈ S

and u(n) = 0 otherwise.

Note that Sloane’s Online Encyclopedia of Integer Sequences [3] contains

some sequences of exponentially S-numbers, S ∈ G. For example, A005117

(S = {1}), A004709 (S = {1, 2}), A268335 (S = A005408), A138302 (S =

{2n}|n≥0), A197680 (S = {n2}|n≥1), A115063 (S = {Fn}|n≥2), A209061

(S = A005117), etc.

Everywhere below we write {h(E(S))}, understanding {h(E(S))}|S∈G. In
1991 Mathematics Subject Classification. 11A51.
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[2] (Section 6) the author posed the question: is the set {h(E(S))} dense

in the interval [ 6
π2 , 1]? Berend [1] gave a negative answer by finding a gap

in the set {h(E(S))} in the interval

(3)

(

∏

p

(1− p− 1

p3
),
∏

p

(1− 1

p3
)

)

⊂ [
6

π2
, 1].

Berend’s idea consists of the partition of G into two subsets - of those

sequences which contain 2 and those that do not contain 2 - and applying

Theorem 1. In our study of the set {h(E(S)} we use this idea.

2. Cardinality

Lemma 1. G is uncountable.

Proof. Trivially G is equivalent to the set of all subsets of {2, 3, 4, ...}. �

Lemma 2. For every two distinct A,B ∈ G, we have h(E(A)) 6= h(E(B)).

Proof. Let A = {a(i)}|i≥1, B = {b(i)}|i≥1. Let n ≥ 1 be maximal index

such that a(i) = b(i), i = 1, ..., n, while a(n + 1) 6= b(n + 1). Note that, if

An = {a(1), ..., a(n)}, A∗ = {a(1), ..., a(n), a(n+1), a(n+1)+1, a(n+1)+

2, ...}, then
(4) h(E(An+1)) ≤ h(E(A)) ≤ h(E(A∗))

and analogously for sequence B.

Distinguish four cases:

(i) a(n + 1) = a(n) + 1, b(n+ 1) ≥ a(n) + 2;

(ii) for k ≥ 2, a(n + 1) ≥ a(n) + k, b(n + 1) = a(n) + 1;

(iii) for k ≥ 3, a(n+ 1) = a(n) + k, a(n) + 2 ≤ b(n+ 1) ≤ a(n) + k − 1;

(iv) for k ≥ 2, a(n+ 1) = a(n) + k, b(n + 1) ≥ a(n) + k + 1.

(i) By (2) and (4), we have

(5) h(E(A)) ≥
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi



 ,

where u(n) is the characteristic function of A. Since here u(a(n + 1)) −
u(a(n+1)− 1) = 0, then in the right hand side we sum up to a(n). On the

other hand,

(6) h(E(B∗)) ≤
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi
− 1

pa(n)+1
+

1

pa(n)+2



 .

By (5)-(6), h(E(B)) < h(E(A)).
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(ii) Symmetrically to (i), we have

(7) h(E(B)) ≥
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi



 .

On the other hand,

(8) h(E(A∗)) ≤
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi
− 1

pa(n)+1
+

1

pa(n)+2



 .

So, h(E(A)) < h(E(B)).

(iii) Again, by (2) and (4), we have

(9) h(E(B)) ≥
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi
− 1

pa(n)+1
+

1

pa(n)+k−1



 ,

while

(10) h(E(A∗)) ≤
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi
− 1

pa(n)+1
+

1

pa(n)+k



 .

Hence, h(E(A)) < h(E(B)).

(iv) Symmetrically,

(11) h(E(B∗)) ≤
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi
− 1

pa(n)+1
+

1

pa(n)+k+1



 ,

while

(12)

h(E(A)) ≥
∏

p



1 +

a(n)
∑

i=2

u(i)− u(i− 1)

pi
− 1

pa(n)+1
+

1

pa(n)+k
− 1

pa(n)+k+1





and since 2
pa(n)+k+1 ≤ 1

pa(n)+k
, where the equality holds only in case p = 2,

then h(E(A)) > h(E(B)). �

Lemmas 1 and 2 directly imply

Theorem 2. The set {h(E(S)}|S∈G is uncountable.

Denote by G(F ) the subset of the finite sequences from G. Since the set

of all finite subsets of a countable set is countable, then G(F ) is countable

and then the set {h(E(S)}|S∈G(F ) is also countable.

3. Perfectness

Lemma 3. Every point of the set h(E(S)) is an accumulation point.

Proof. Distinguish two cases: a) S is finite set; b) S is infinite set.
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a) Let S = {s(1), ..., s(k)} ∈ G(F ). Let n ≥ s(k) + 2. Denote by Sn the

sequence Sn = {s(1), ..., s(k), n}. Then, by (2),

(13) h(E(Sn))− h(E(S)) =

∏

p



1 +

s(k)
∑

i=2

u(i)− u(i− 1)

pi
− 1

ps(k)+1
+

1

pn



−

∏

p



1 +

s(k)
∑

i=2

u(i)− u(i− 1)

pi
− 1

ps(k)+1



 .

For the first product
∏

p(n),

∏

p

(n) = exp





∑

p

log



1 +

s(k)
∑

i=2

u(i)− u(i− 1)

pi
− 1

ps(k)+1
+

1

pn







 ,

the series over primes converges uniformly since
∑

p

∑

i≥2

|u(i)− u(i− 1)|
pi

≤
∑

p

∑

i≥2

1

pi
=
∑

p

1

(p− 1)p
.

Therefore, limn→∞(
∏

p(n)) =
∏

p(limn→∞(...)) which coincides with the sec-

ond product. So limn→∞ h(E(Sn)) = h(E(S)).

b) Let S = {s(1), ..., s(k), ...} ∈ G be infinite sequence. Let Sn = {s(1), ..., s(n)}
be the n-partial sequence of S. In the same way, taking into account

the uniform convergence of the product for density of Sn, we find that

limn→∞ h(E(Sn)) = h(E(S)). �

Theorem 3. The set {h(E(S))} is a perfect set.

A proof we give in Section 5.

4. Gaps

Let us show that, for every finite S ∈ G, with the exception of S = {1},
there exists an ε > 0 such that the image of h is disjoint from the interval

(h(E(S))− ε, h(E(S)).

We need a lemma.

Lemma 4. Let A,B ∈ G be distinct sequences. Let s∗ = s∗(A,B) be the

smallest number which is a term of one of them, but not in another. If, say,

s∗ ∈ A, then h(E(A)) > h(E(B)).

Proof. In fact, the lemma is a corollary of the proof of Lemma 2. Comparing

with the proof of Lemma 2, we have s∗(A,B) = n+1. We see that in all four

cases in the proof of Lemma 2, the statement of Lemma 4 is confirmed. �
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Proposition 1. Let S1 = {s(1), ..., s(k)} ∈ G(F ), k ≥ 2, and S2 =

{s(1), ..., s(k − 1), s(k) + 1, s(k) + 2, ...}. Then the interval

(14) (h(E(S2)), h(E(S1)))

is a gap in the set {h(E(S)) : S ∈ G}.

Proof. Consider other than S1, S2 any sequence S ∈ G which contains

s∗(S1, S). By Lemma 4, h(E(S)) > h(E(S1)). So, h(E(S)) is not in interval

(14). Now consider other than S1, S2 any sequence S ∈ G which does not

contain s∗(S1, S). Then S2 contains s∗(S, S2). Indeed, 1) S cannot contain

all terms s(1), ..., s(k) (since S differs from S1, it should contain additional

terms, the smallest of which is s∗(S, S1) ∈ S that contradicts the condition);

2) if i, 1 ≤ i ≤ k, is the smallest for which S misses s(i), then, by the con-

dition, all terms of S are more than than s(i). So s∗(S, S2) = s(i) ∈ S2,

if i < k, while, if i=k, since S differs from S2, s∗(S, S2) = s(k) + j ∈ S2,

where j is the smallest for which sk + j is not in S. Hence, by Lemma 4,

h(E(S2)) > h(E(S)) and again h(E(S)) is not in interval (14). �

Lemma 5. Every gap in {h(E(S))} has the form described in Proposition

1.

Proof. Indeed, the gap (14) is in a right neighborhood of h(E(S2)). Let

a sequence S ∈ G do not contain any infinite set of positive integers K.

Adding to S k ∈ K, which goes to infinity, we obtain set Sk such that

h(E(Sk)) > h(E(S)) and h(E(Sk)) → h(E(S)). So, in a right neighborhood

of h(E(S)) cannot be a gap of {h(E(S))}. In opposite case, when S ∈ G

does not contain only a finite set of positive integers, in a right neighborhood

of h(E(S)) a gap of {h(E(S))} is possible, but in this case S has the form of

S2 in Proposition 1. Also, if S ∈ G is infinite, then in a left neighborhood

of h(E(S)) cannot be a gap of {h(E(S))}, since h(E(S)) is a limiting point

of {h(E(Sn))}, where Sn is the n-partial sequence of S. �

It is easy to see that, for distinct sequences S1, the gaps (14) are disjoint.

From Propositions 1 and Lemma 5 we have the statement:

Theorem 4. The set {h(E(S))} has countably many gaps.

5. Proof of Theorem 3

Proof. By Lemma 3, the set {h(E(S))} does not contain isolated points.

For a set A ⊆ [ 6
π2 , 1], let A be [ 6

π2 , 1]\A. Let, further, {g} be the set of all

gaps of {h(E(S))}. Then we have
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{h(E(S))} =
⋃

g =
⋂

g.

Since a gap g is an open interval, then g is a closed set. But arbitrary

intersections of closed sets are closed. Thus the set {h(E(S))} is closed

without isolated points. So it is a perfect set. �

6. Conclusion

Thus, by Theorems 2-4, the set {h(E(S))} is a perfect set with a count-

able set of gaps which associate with some left-sided neighborhoods of the

densities of all exponentially finite S-sequences, S ∈ G, except for S = {1}.
It is natural to conjecture that the sum of lengths of all gaps equals the

length of the whole interval [ 6
π2 , 1], or, the same, that the set {h(E(S))} has

zero measure. This important question we remain open.

Remark 1. Possible to solve this problem could help a remark that the

deleting in (2) 0’s (when ui = ui−1) we obtain an alternative sequence of

−1, 1.
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