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Abstract

We give bijections between bipolar-oriented (acyclic with unique source and
sink) planar maps and certain random walks, which show that the uniformly
random bipolar-oriented planar map, decorated by the “peano curve” surround-
ing the tree of left-most paths to the sink, converges in law with respect to the
peanosphere topology to a

√
4/3-Liouville quantum gravity surface decorated

by an independent Schramm-Loewner evolution with parameter κ = 12 (i.e.,
SLE12). This result is universal in the sense that it holds for bipolar-oriented
triangulations, quadrangulations, k-angulations, and maps in which face sizes
are mixed.

1 Introduction

1.1 Planar maps

A planar map is a planar graph together with an embedding into R2 so that no two
edges cross. More precisely, a planar map is an equivalence class of such embedded
graphs, where two embedded graphs are said to be equivalent if there exists an
orientation preserving homeomorphism R2 → R2 which takes the first to the second.
The enumeration of planar maps started in the 1960’s in work of Tutte [Tut63],
Mullin [Mul67], and others. In recent years, new combinatorial techniques for the
analysis of random planar maps, notably via random matrices and tree bijections,
have revitalized the field. Some of these techniques were motivated from physics, in
particular from conformal field theory and string theory.

There has been significant mathematical progress on the enumeration and scaling
limits of random planar maps chosen uniformly from the set of all rooted planar
maps with a given number of edges, beginning with the bijections of Cori–Vauquelin
[CV81] and Schaeffer [Sch98] and progressing to the existence of Gromov–Hausdorff
metric space limits established by Le Gall [LG13] and Miermont [Mie13].

There has also emerged a large literature on planar maps that come equipped
with additional structure, such as the instance of a model from statistical physics,
e.g., a uniform spanning tree, or an Ising model configuration. These “decorated
planar maps” are important in Euclidean 2D statistical physics. The reason is that it
is often easier to compute “critical exponents” on planar maps than on deterministic
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lattices. Given the planar map exponents, one can apply the KPZ formula to predict
the analogous Euclidean exponents.1 In this paper, we consider random planar maps
equipped with bipolar orientations.

1.2 Bipolar and harmonic orientations

A bipolar (acyclic) orientation of a graph G with specified source and sink (the
“poles”) is an acyclic orientation of its edges with no source or sink except at the
specified poles. (A source (resp. sink) is a vertex with no incoming (resp. outgoing)
edges.) For any graph G with adjacent source and sink, bipolar orientations are
counted by the coefficient of x in the Tutte polynomial TG(x, y), which also equals the
coefficient of y in TG(x, y); see [dFdMR95] or the overview in [FPS09]. In particular,
the number of bipolar orientations does not depend on the choice of source and sink as
long as they are adjacent. If the source and sink are not adjacent, adjoining an edge
between the source and sink does not affect the number of bipolar orientations, so
bipolar orientations are counted by these Tutte coefficients in the augmented graph.

Let G be a finite connected planar map, with no self-loops but with multiple
edges allowed, with a specified source and sink that are incident to the same face. It
is convenient to embed G in the disk so that the source is at the bottom of the disk
(and is denoted S, for south pole), the sink is at the top (and is denoted N, for north
pole), all other vertices are in the interior of the disk (see Figure 1). Within the disk
there are two faces that are boundary faces, which can be called W (the west pole)
and E (the east pole). Endowing G with a bipolar orientation is a way to endow it
and its dual map G∗ with a coherent notion of “north, south, east, and west”: one
may define the directed edges to point north, while their opposites point south; a
directed dual edge points east (resp. west) if the edge it crosses is oriented left (resp.
right).

Given an orientation of a finite connected planar map G, its dual orientation of
G∗ is obtained by rotating directed edges counterclockwise. If an orientation has a
sink or source at an interior vertex, its dual has a cycle around that vertex. Suppose
an orientation has a cycle but has no source or sink at interior vertices. If this cycle
surrounds more than one face, then one can find another cycle that surrounds fewer
faces, so there is a cycle surrounding just one face, and the dual orientation has either
a source or sink at that (interior) face. Thus an orientation of G is bipolar acyclic
precisely when its dual orientation of G∗ is bipolar acyclic. The east and west poles
of G∗ are the source and sink respectively of the dual orientation (see Figure 1).

One way to construct bipolar orientations is via electrical networks. Suppose
every edge of G represents a conductor with some generic positive conductance, the

1This idea was used by Duplantier to derive the so-called Brownian intersection exponents
[Dup98], whose values were subsequently verified mathematically by Lawler, Schramm, and Werner
[LSW01b, LSW01c, LSW02] in an early triumph of Schramm’s SLE theory [Sch00]. An overview
with a long list of references can be found in [DS11].
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Figure 1: Left: A planar map embedded in a disk with two boundary vertices, with a north-going
bipolar orientation. Right: The dual bipolar-oriented planar map, which has two boundary dual
vertices on the disk. Middle: Primal and dual bipolar-oriented maps together. The dual orientations
are obtained from the primal orientations by rotating the arrows left.

south pole is at 0 volts, and the north pole is at 1 volt. The voltages are harmonic
except at the boundary vertices, and for generic conductances, provided every vertex
is part of a simple path connecting the two poles, the interior voltages are all distinct.
The harmonic orientation orients each edge towards its higher-voltage endpoint. The
harmonic orientation is clearly acyclic, and by harmonicity, there are no sources or
sinks at interior vertices. In fact, for any planar graph with source and sink incident
to the same face, any bipolar orientation is the harmonic orientation for some suitable
choice of conductances on the edges [AK15, Thm. 1], so for this class of graphs,
bipolar orientations are equivalent to harmonic orientations.

Suppose that a bipolar-oriented planar map G has an interior vertex incident to
at least four edges, which in cyclic order are oriented outwards, inwards, outwards,
inwards. By the source-free sink-free acyclic property, these edges could be extended
to oriented paths which reach the boundary, and by planarity and the acyclic property,
the paths would terminate at four distinct boundary vertices. Since (in this paper)
we are assuming that there are only two boundary vertices, no such interior vertices
exist. Thus at any interior vertex, its incident edges in cyclic order consist of a single
group of north-going edges followed by a single group of south-going edges, and dually,
at each interior face the edges in cyclic order consist of a single group of clockwise
edges followed by a single group of counterclockwise edges.

In particular, each vertex (other than the north pole) has a unique “west-most
north-going edge,” and the collection of such directed edges forms the NW tree. We
define southwest, southeast, and northeast trees similarly.

We will exhibit (see Theorems 1 and 2) a bijection between bipolar-oriented planar
maps (with given face-degree distribution) and certain types of random walks in the
nonnegative quadrant Z2

≥0. This bijection leads to exact enumerative formulae as
well as local information about the maps such as degree distributions. For previous
enumerative work on this model, including bijections between bipolar-oriented planar
maps and other objects, see e.g. [FPS09, BM11, BBMF11, FFNO11].
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1.3 SLE and LQG

After the bijections our second main result is the identification of the scaling limit of
the bipolar-oriented map with a Liouville quantum gravity (LQG) surface decorated
by a Schramm-Loewner evolution (SLE) curve, see Theorem 9.

We will make use of the fact proved in [DMS14, MS15e, GHMS15] that an SLE-
decorated LQG surface can be equivalently defined as a mating of a correlated pair
of continuum random trees (a so-called peanosphere; see Section 4.2) where the
correlation magnitude is determined by parameters that appear in the definition of
LQG and SLE (namely γ and κ′).

The scaling limit result can thus be formulated as the statement that a certain pair
of discrete random trees determined by the bipolar orientation (namely the northwest
and southeast trees, see Section 1.2) has, as a scaling limit, a certain correlated pair of
continuum random trees. Although LQG and SLE play a major role in our motivation
and intuition (see Sections 4.2 and 5), we stress that no prior knowledge about these
objects is necessary to understand either the main scaling limit result in the current
paper or the combinatorial bijections behind its proof (Sections 2 and 3).

Before we move on to the combinatorics, let us highlight another point about the
SLE connection. There are several special values of the parameters κ and κ′ = 16/κ
that are related to discrete statistical physics models. (SLEκ with 0 < κ ≤ 4 and
SLE16/κ are closely related [Zha08, Dub09, MS12a, MS13a], which is known as SLE-
duality.) These special {κ, κ′} pairs include {2, 8} (for loop-erased random walk and
the uniform spanning tree) [LSW04], {8/3, 6} (for percolation and Brownian motion)
[Smi01, LSW01a], {3, 16/3} (for the Ising and FK-Ising model) [Smi10, CDCH+14],
and {4, 4} (for the Gaussian free field contours) [SS09, SS13]. The relationships
between these special {κ, κ′} values and the corresponding discrete models were all
discovered or conjectured within a couple of years of Schramm’s introduction of
SLE, building on earlier arguments from the physics literature. We note that all of
these relationships have random planar map analogs, and that they all correspond
to {κ, κ′} ⊂ [2, 8]. This range is significant because the so-called conformal loop
ensembles CLEκ [She09, SW12] are only defined for κ ∈ (8/3, 8], and the discrete
models mentioned above are all related to random collections of loops in some way,
and hence have either κ or κ′ in the range (8/3, 8].

In this paper the relevant {κ, κ′} pair is {4/3, 12}. This special pair is interesting
in part because it lies outside the range [2, 8]. It had been proposed, based on
heuristic arguments and simulations, that “activity-weighted” spanning trees should
have SLE scaling limits with κ anywhere in the range [4/3, 4) and κ′ anywhere in
the range (4, 12] [KW15]. In more recent work, subsequent to our work on bipolar
orientations, using a generalization of the inventory accumulation model in [She11],
the activity-weighted spanning trees on planar maps were shown to converge to
SLE-decorated LQG in the peanosphere topology for this range of κ, κ′ [GKMW15].

We will further observe that if one modifies the bipolar orientation model by
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a weighting that makes the faces more or less balanced (in terms of their number
of clockwise and counterclockwise oriented boundary edges), one can obtain any
κ ∈ (0, 2) and any κ′ ∈ (8,∞). In a companion to the current paper [KMSW15], we
discuss a different generalization of bipolar orientations that we conjecture gives SLE
for κ ∈ [12− 8

√
2, 4) and κ′ ∈ (4, 12 + 8

√
2].

1.4 Outline

In Sections 2 and 3 we establish our combinatorial results and describe the scaling
limits of the NW and SE trees in terms of a certain Brownian excursion. In Section 4
we explain how this implies that the uniformly random bipolar-oriented map with n
edges, and fixed face-degree distribution, decorated by its NW tree, converges in law
as n → ∞ to a

√
4/3-Liouville quantum gravity sphere decorated by space-filling

SLE12 from ∞ to ∞. This means that, following the curve which winds around the
NW tree, the distances to the N and S poles scale to an appropriately correlated pair
of Brownian excursions. We also prove a corresponding universality result: the above
scaling limit holds for essentially any distribution on face degrees (or, dually, vertex
degrees) of the random map.

In Section 5 we explain, using the so-called imaginary geometry theory, what is
special about the value κ′ = 12. These observations allow us to explain at a heuristic
level why (even before doing any discrete calculations) one would expect κ′ = 12 to
arise as the scaling limit of bipolar orientations.

Acknowledgements. R.K. was supported by NSF grant DMS-1208191 and Simons
Foundation grant 327929. J.M. was supported by NSF grant DMS-1204894. S.S. was
supported by a Simons Foundation grant, NSF grant DMS-1209044, and EPSRC
grants EP/L018896/1 and EP/I03372X/1. We thank the Isaac Newton Institute for
Mathematical Sciences for its support and hospitality during the program on Random
Geometry, where this work was initiated. We thank Nina Holden for comments on a
draft of this paper.

2 Bipolar-oriented maps and lattice paths

2.1 From bipolar maps to lattice paths

For the bipolar-oriented planar map in Figure 1, Figure 2 illustrates its NW tree (in
red), SE tree (in blue), and the interface path (in green) which winds between them
from the south pole to the north pole. The interface path has two types of steps:

1. Steps that traverse an edge (between red and blue sides).

2. Steps that traverse an interior face from its maximum to its minimum. Face
steps can be subcategorized according to the number of edges on the west
and east sides of the face, where the maximum and minimum vertex of a face
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Figure 2: Left: A map with a bipolar orientation, embedded so each edge is oriented “upward”
(i.e., in the direction along which the vertical coordinate increases). Middle: Set of oriented edges
can be understood as a tree, the northwest tree, where the parent of each edge is the leftmost
upward oriented edge it can merge into. If we reverse the orientations of all edges, we can define an
analogous tree (blue) and embed both trees (using the British convention of driving on the left side)
so that they don’t cross each other. Right: We then add a green path tracing the interface between
the two trees. Each edge of the interface moves along an edge of the map or across a face of the map.
For illustration purposes, faces are numbered by the order they are traversed by the green path, but
it is the traversals of the edges of the green path that correspond to steps of the lattice path.

separate its west from its east. If a face has i+ 1 edges on its west and j + 1
edges on its east, we say that it is of type (i, j).

Observe that each face step has edge steps immediately before and after it.
Let E be the set of edges of the planar map, which we order e0, . . . , e|E|−1 according

to the green path going from the south pole S to the north pole N. For each edge et,
let Xt be distance in the blue tree from the blue root (S) to the lower endpoint of et,
and let Yt be the distance in the red tree from the red root (N) to the upper endpoint
of et. Suppose the west outer face has m+ 1 edges and the east outer face has n+ 1
edges. Then the sequence {(Xt, Yt)}0≤t≤|E|−1 defines a walk or lattice path that starts
at (0,m) when t = 0 and ends at (n, 0) when t = |E| − 1, and which remains in the
nonnegative quadrant. If there is no face step between et and et+1, then the walk’s
increment (Xt+1, Yt+1)− (Xt, Yt) is (1,−1). Otherwise there is exactly one face step
between et and et+1; if that face has i + 1 edges on its west and j + 1 edges on its
east, then the walk’s increment is (−i, j), see Figure 3.

For the example in Figure 2, the walk starts at (0, 2) and ends at (3, 0).

2.2 From lattice paths to bipolar maps

The above construction can be reversed, constructing a bipolar-oriented planar map
from a lattice path of the above type.

6



2-gons

triangles

quadrilaterals

pentagons

hexagons

(1,−1) = no-face increment

Figure 3: Lattice path increments.

We construct the bipolar-oriented planar map by sewing edges and oriented
polygons according to the sequence of steps of the path. Let mi,j denote a step of
(−i, j) with i, j ≥ 0, and me denote a step of (1,−1). It is convenient to extend the
bijection, so that it can be applied to any sequence of these steps. These steps give
sewing instructions to augment the current “marked bipolar map”.

A marked bipolar map is a bipolar-oriented planar map together with a “start
vertex” on its western boundary which is not at the top, and an “active vertex” on
its eastern boundary which is not at the bottom, such that the start vertex and every
vertex below it on the western boundary has at most one downward edge, and the
active vertex and every vertex above it on the eastern boundary has at most one
upward edge. We think of the edges on the western boundary below the start vertex
and on the eastern boundary above the active vertex as being “missing” from the
marked bipolar map: they are boundaries of open faces that are part of the map, but
are not themselves in the map.

Figure 4: The process of sewing oriented polygons and edges to obtain a bipolar-oriented planar
map. The intermediate structures are marked bipolar-oriented planar maps, which may have some
edges missing on the boundaries.

Initially the marked bipolar map consists of an oriented edge whose lower endpoint
is the start vertex and whose upper endpoint is the active vertex. The me moves will
sew an edge to the current marked bipolar map upwards from the active vertex and
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move the active vertex to the upper endpoint of the new edge. If the eastern boundary
had a vertex above the active vertex, the new edge gets sewn to the southernmost
missing edge on the eastern boundary, and otherwise there is a new vertex which
becomes the current top vertex. The mi,j moves will sew a face with i+ 1 edges on its
west and j + 1 edges on its east, sewing the north of the face to the active vertex and
the west of the face to the eastern boundary of the marked bipolar map, and then
sew an edge to the southernmost east edge of the new face; the new active vertex
is the upper vertex of this edge. If there are fewer than i+ 1 edges below the (old)
active vertex, then the new face gets sewn to as many of them as there are, the start
vertex is no longer at the bottom, and the remaining western edges of the face are
missing from the map.

The final marked bipolar map is considered a valid bipolar-oriented planar map if
the start vertex is at the south and the active vertex is at the north, or equivalently,
if there are no missing edges.

Theorem 1. The above mapping from sequences of moves from {me}∪{mi,j : i, j ≥ 0}
to marked bipolar maps is a bijection.

Proof. Consider a marked bipolar map obtained from a sequence of moves. The
number of edges present in the structure determines the length of the sequence. If
that length is positive, then the easternmost downward edge from the active vertex
was the last edge adjoined to the structure. If this edge is the southernmost edge
on the eastern boundary of a face, then the last move was one of the mi,j’s, and
otherwise it was me. Since the last move and preceding structure can be recovered,
the mapping is an injection.

Starting from an arbitrary marked bipolar map, we can inductively define a
sequence of moves as above by considering the easternmost downward edge from the
active vertex. This sequence of moves yields the original marked bipolar map, so the
mapping is a surjection.

Next we restrict this bijection to sequences of moves which give valid bipolar-
oriented planar maps. A sequence of moves can of course be encoded as a path.

Theorem 2. The above mapping gives a bijection from length-(` − 1) paths from
(0,m) to (n, 0) in the nonnegative quadrant having increments (1,−1) and (−i, j)
with i, j ≥ 0, to bipolar-oriented planar maps with ` total edges and m+ 1 and n+ 1
edges on the west and east boundaries respectively. A step of (−i, j) in the walk
corresponds to a face with degree i+ j + 2 in the planar map.

Proof. When we make a walk started from (0,m) using these moves, the number
of (non-missing) edges on the eastern boundary of the marked bipolar map is one
plus the first coordinate of the walk. Thus the start vertex is at the south pole
precisely when the first coordinate always remains nonnegative, and the final number
of (nonmissing) edges on the eastern boundary is n+ 1.

8



Observe that if we reverse a sequence of moves, then the structure obtained from
the reversed sequence is the same as the structure obtained from the initial sequence
rotated by 180◦, with the roles of start and active vertices reversed.

Using this reversal symmetry with our previous observation, it follows that the
active vertex is at the north pole precisely when the second coordinate achieves its
minimum on the last step, and the number of (nonmissing) edges on the western
boundary is m+ 1.

If we wish to restrict the face degrees, the bijection continues to hold simply by
restricting the set of allowed steps of the paths.

Corollary 3. Any bipolar-oriented planar map has a straight-line planar embedding
(except that the edges of 2-gons overlap) such that edges are oriented upwards, i.e., in
the direction of increasing y-coordinate, as in Figure 2.

Proof. Given a bipolar map, we can convert it to walk, and then convert it back to a
bipolar map. When converting it back to a bipolar map, each step of the process of
sewing oriented polygons can be done with straight-line edges, as in Figure 4.

2.3 Path scaling limit

What happens if we consider a random bipolar-oriented planar map such as the one
in Figure 2, where we fix the left boundary length (3 in Figure 2), the right boundary
length (4 in Figure 2), and the total number ` of edges (16 in Figure 2)? We consider
the limiting case where the boundary lengths are fixed and `→∞. What can one
say about the limiting joint law of the pair of trees in Figure 2 in this situation?

In light of Theorem 2, understanding this limiting law amounts to understanding
the limiting law of its associated lattice path. For example, if the map is required to
be a triangulation, then the lattice path is required to have increments of size (1,−1),
(−1, 0), and (0, 1). Since `→∞ with fixed endpoints, there are `/3 +O(1) steps of
each type. One can thus consider a random walk of length `− 1 with these increment
sizes (each chosen with probability 1/3) conditioned to start and end at certain fixed
values, and to stay in the nonnegative quadrant.

It is reasonable to expect that if a random walk on Z2 converges to Brownian
motion with some non-degenerate diffusion matrix, then the same random walk
conditioned to stay in a quadrant (starting and ending at fixed locations when the
number of steps gets large) should scale to a form of the Brownian bridge constrained
to stay in the same quadrant (starting and ending at 0). The recent work [DW15,
Theorem 4] contains a precise theorem of this form, and Proposition 4 below is a
special case of this theorem.

Recall that the period of a random walk on Z2 is the smallest integer p ≥ 1 such
that the random walk has a positive probability to return to zero after kp steps for
all sufficiently large integers k > 0.
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Proposition 4. Let ν be a probability measure supported on Z2 with expectation
zero and moments of all orders.2 Let p ≥ 1 denote the period of the random walk
on Z2 with step distribution ν. Suppose that for given zstart, zend ∈ Z2

≥0 there is a
positive probability path from zstart to zend with steps from ν of length `. Suppose
further that for any R > 0 there is a point z ∈ Z2

≥0 that is distance at least R
from the boundary of the quadrant, such that there is a path from zstart to z to zend
with steps from ν that remains in the quadrant Z2

≥0. For sufficiently large n with
n ≡ ` mod p, consider a random walk zstart = S0, S1, . . . , Sn = zend from zstart to
zend with increments chosen from ν, conditioned to remain in the quadrant Z2

≥0.
Then the law of Sbntc/

√
n converges weakly w.r.t. the L∞ norm on [0, 1] to that of a

Brownian excursion (with diffusion matrix given by the second moments of ν) into
the nonnegative quadrant, starting and ending at the origin, with unit time length.

Now let us return to the study of random bipolar-oriented planar triangulations.
By Theorem 2 these correspond to paths in the nonnegative quadrant from the
y-axis to the x-axis which have increments of (1,−1) and (0, 1) and (−1, 0). Fix the
boundary lengths m+ 1 and n+ 1, that is, fix the start (0,m) and end (n, 0) of the
walk, and let the length ` get large. Note that if ν is the uniform measure on the
three values (1,−1) and (0, 1) and (−1, 0), then the ν-expectation of an increment
(X, Y ) of the (unconstrained) walk is (0, 0). Furthermore, (in the unconstrained walk)
the variance of X − Y is 2 while the variance of X + Y is 2/3, and the covariance of
X − Y and X + Y is zero by symmetry. Thus the variance in the (1,−1) direction
is 3 times the variance in the (1, 1) direction. The scaling limit of the random walk
will thus be a Brownian motion with the corresponding covariance structure. We can
summarize this information as follows:

Theorem 5. Consider a uniformly random bipolar-oriented triangulation, sketched
in the manner of Figure 2, with fixed boundary lengths m + 1 and n + 1 and with
the total number of edges given by `. Let S0, S1, . . . be the corresponding lattice
walk. Then Sb`tc/

√
` converges in law (weakly w.r.t. the L∞ norm on [0, 1]), as

`→∞ with ` ≡ n−m+ 1 mod 3, to the nonnegative quadrant constrained Brownian

bridge starting and ending at the origin, with covariance matrix

(
2/3 −1/3
−1/3 2/3

)
.

(This is the covariance matrix such that if the Brownian motion were unconstrained,
the difference and sum of the two coordinates at time 1 would be independent with
respective variances 2 and 2/3.)

In particular, Theorem 5 holds when the lattice path starts and ends at the origin,
so that the left and right sides of the planar map each have length 1. In this case,

2In fact it suffices that | · |α has ν-finite expectation, for a positive constant α defined in [DW15].
The constant α depends on the angle of the cone L(R2

≥0), where L : R2 → R2 is a linear map for
which L(Sn) scales to a constant multiple of standard two-dimensional Brownian motion. In the
setting of Theorems 5 and 6 below, L can be the map that rescales the (1,−1) direction by 1/

√
3

and fixes the (1, 1) direction. In this case, the cone angle is π/3 and α = 3.
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the two sides can be glued together and treated as a single edge in the sphere, and
Theorem 5 can be understood as a statement about bipolar maps on the sphere with
a distinguished south to north pole edge.

Next we consider more general bipolar-oriented planar maps. Suppose we allow
not just triangles, but all face sizes between 2 and some value r. Then instead of
taking ν to be uniform on the triple {(1,−1), (0, 1), (−1, 0)} we may take ν to be
uniform on the set

{(1,−1)} ∪ {(−i, j) : i ≥ 0, j ≥ 0, i+ j ≤ r − 2}.

The ν defined in this is way does not have expectation (0, 0). However, note that if
we weight the law of ν on (x, y) pairs by axby (where a and b are any fixed positive
constants) this does not change the probability of any lattice path conditioned on
its endpoints. Since ν is already symmetric w.r.t. reflection across the line y = −x,
one can find an a such that the measure ν weighted by a(x−y) (normalized to be a
probability measure) has ν-expectation zero.

Indeed, in the limiting case r =∞, taking a = 1/2 yields a probability measure
with expectation zero; precisely, define

ν∞{(−i, j)} =

{
2−i−j−3 i, j ≥ 0 or i = j = −1

0 otherwise.

Using the fact that
∑∞

i=0(1/2)i
∑∞

j=0(1/2)jj =
∑∞

i=0(1/2)i · 2 = 4 (and the analog
with i and j reversed) it is easy to check that ν∞ has expectation (0, 0) and satisfies
the requirements of Proposition 4.3

To generalize still further, we may consider situations where one weights the
probability of a configuration by

∏∞
k=1 a

nk
k where ak are some constants and nk is the

number of faces with k edges. (Taking ak = 0 means that faces with k edges are
forbidden.) The ν one obtains in this general setting will assign probabilities p0, pi,j
to steps me and mi,j respectively, where pi,j only depends on i+ j, and thus each of
the k − 1 possible steps mi,k−2−i (corresponding to adding k-gons) is assigned equal
probability pk. (Recall that we allow faces of degree 2, with corresponding step m1,1.)
Then

p0 +
∑
k≥2

(k − 1)pk = 1 (1)

and the probability that in a large random map a randomly chosen face has degree k
is then

P(face has degree k) =
(k − 1)pk

1− p0
.

3It is also possible to derive the distribution ν∞ for uniformly random bipolar-oriented planar
maps using a different bijection, one to noncrossing triples of lattice paths [FPS09].
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The zero-drift condition on the increment (X, Y ) is

p0 −
∑
k≥2

(k − 2)(k − 1)

2
pk = 0. (2)

The variances of X − Y and X + Y are respectively

Var[X − Y ] = 4p0 +
∑
k≥2

(k − 2)2(k − 1)pk,

Var[X + Y ] =
∑
k≥2

pk((k − 2)2 + (k − 4)2 + · · ·+ (−k + 2)2) =
∑
k≥2

pk × 2

(
k

3

)
,

Var[X − Y ] =
∑
k≥2

(k − 2)(k − 1)k pk =
∑
k≥2

pk 6

(
k

3

)
= 3 Var[X + Y ].

Thus, the argument used to prove Theorem 5 also implies the following.

Theorem 6. The conclusion of Theorem 5 still holds if triangulations are replaced
by quadrangulations or k-angulations for any fixed k (up to a possible multiplication
of the covariance matrix by a constant). More generally, the conclusions still hold in
the “mixed face size” models described just above as long as the corresponding ν (as
described above) has moments of all orders. In particular, they apply whenever one
allows only a finite set of face sizes. They also apply (considering the case ν = ν∞)
when face size is completely unrestricted.

Remark 1. If one relaxes the requirement that the probabilities assigned by ν be the
same for all increments corresponding to a given face size, one can find a ν with
the same support as ν∞ such that the expectation is still (0, 0) and when (X, Y ) is
sampled from ν, the law is still symmetric w.r.t. reflection about the line y = −x
but the variance ratio Var[X − Y ]/Var[X + Y ] assumes any value strictly between
1 and ∞. Indeed, one approaches one extreme by letting (X, Y ) be (close to being)
supported on the y = −x antidiagonal, and the other extreme by letting (X, Y ) be
(close to being) supported on the x- and y-axes far from the origin (together with the
point (1,−1)). The former corresponds to a preference for nearly balanced faces (in
terms of the number of clockwise and counterclockwise oriented edges) while the latter
corresponds to a preference for unbalanced faces.

Remark 2. In each of the models treated above, it is natural to consider an “infinite-
volume limit” in which lattice path increments indexed by Z are chosen i.i.d. from ν.
The standard central limit theorem then implies that the walks have scaling limits
given by a Brownian motion with the appropriate covariance matrix.
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3 Bipolar-oriented triangulations

3.1 Enumeration

Corollary 7. The number of bipolar-oriented triangulations of the sphere with `
edges in which S and N are adjacent and marked is (with ` = 3n)

B` =
2 (3n)!

(n+ 2)! (n+ 1)!n!

(and zero if ` is not a multiple of 3).

Proof. In a triangulation 2E = 3F so the number of edges is a multiple of 3. Since S
and N are adjacent, there is a unique embedding in the disk so that the west boundary
has length 1 and the east boundary has length 2. The lattice walks as discussed there
go from (0, 0) to (1, 0). It is convenient to concatenate the walk with a final m1,0 step,
so that the walks are from (0, 0) to (0, 0) of length ` and remain in the first quadrant.

Applying a shear

(
1 1
0 1

)
, the walks with steps me,m0,1,m1,0 become walks with

steps (1, 0), (0, 1), (−1,−1) which remain in the domain y ≥ x ≥ 0. Equivalently this
is the number of walks from (0, 0, 0) to (n, n, n) with steps (1, 0, 0), (0, 1, 0), (0, 0, 1)
remaining in the domain y ≥ x ≥ z. These are the so-called 3D Catalan numbers,
see A005789 in the OEIS.

There are other formulas for bipolar-oriented “near-triangulations” [BM11, Prop. 5.3].

3.2 Vertex degree

Using the bijection between paths and bipolar-oriented maps, we can easily get the
distribution of vertex degrees of a large bipolar-oriented triangulation.

Proposition 8. In a large bipolar-oriented planar triangulation, the limiting in-degree
and out-degree distributions of a random vertex are independent and geometrically
distributed with mean 3.

Proof. We examine the construction of bipolar-oriented planar maps when the steps
give triangles. Any new vertex or new edge is adjoined to the marked bipolar map on
its eastern boundary, which we also call the frontier.

A new vertex is created by an m0,1 move, or an me move if there are currently
no frontier vertices above the active vertex, and when a vertex is created it is the
active vertex. Each subsequent move moves frontier vertices relative to the active
vertex, so let us record their position with respect to the active vertex by integers,
with positive integers recording the position below the active vertex and negative
integers recording the position above it.

The following facts are easily verified.
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1. A vertex moves off the frontier exactly when it is at position 1 and an m1,0

move takes place.

2. me moves increase the index of vertices by 1.

3. m0,1 moves decrease the index of a vertex by 1 if it is non-positive, else leave it
fixed.

4. m1,0 moves decrease the index by 1 if it is ≥ 2, else leave it fixed (if the index
is 1 it is moved off of the frontier).

5. The up-degree of a vertex increases by 1 each time it visits position 0, the
down-degree increases each time it visits position 1.

The transition diagram is summarized here:

0 1 2 3−1−2−3

off frontier

m1,0

me

m1,0

me

m0,1

m1,0

me

m0,1

m1,0

me

m0,1

m0,1

me

m1,0

m0,1

me

m1,0

m0,1

m1,0

For the purposes of computing the final degree of a vertex we can simply count the
number of visits to 0 before its index becomes positive, then count the number of visits
to 1 before it is absorbed. Since me,m0,1,m1,0 occur with probabilities 1/3, 1/3, 1/3,
both of these counts are geometric with mean 3.

4 Scaling limit

4.1 Statement

The proof of the following theorem is an easy computation upon application of
the infinite-volume tree-mating theory introduced in [DMS14], a derivation of the
relationship between the SLE/LQG parameters and a certain variance ratio in
[DMS14, GHMS15], and a finite volume elaboration in [MS15e]. For clarity and
motivational purposes we will reverse the standard conventions and give the proof
first, explaining the relevant background in the following subsection.

Theorem 9. The scaling limit of the bipolar-oriented planar map with its interface
curve, with fixed boundary lengths m + 1 and n + 1, and number of edges ` → ∞
(with a possible congruence restriction on `, m, and n to ensure such maps exist),
with respect to the peanosphere topology, is a

√
4/3-LQG sphere decorated by an

independent SLE12 curve.
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Proof. In Section 2.3 it was shown that the contour function (Xt, Yt) for the bipolar-
oriented random planar map converges as ` → ∞ to a Brownian excursion in the
nonnegative quadrant with increments (X, Y ) having covariance matrix (up to scale)(

2/3 −1/3
−1/3 2/3

)
, that is X − Y and X + Y are independent, and Var[X − Y ] =

3Var[X + Y ].
The fact that the limit is a Brownian excursion implies, by [DMS14, Theorem 1.13]

and the finite volume variant in [MS15e] and [GHMS15, Theorem 1.1], that the
scaling limit in the peanosphere topology is a peanosphere, that is, a γ-LQG sphere
decorated by an independent space-filling SLEκ′ . The values γ, κ′ are determined by
the covariance structure of the limiting Brownian excursion. The ratio of variances
Var[X − Y ]/Var[X + Y ] takes the form

(1 + cos[4π/κ′])/(1− cos[4π/κ′]). (3)

This relation was established for κ ∈ [2, 4) and κ′ ∈ (4, 8] in [DMS14], and more
generally for κ ∈ (0, 4) and κ′ ∈ (4,∞) in [GHMS15].4 Setting it equal to 3 and
solving we find κ′ = 12. For this value of κ′ we have γ =

√
κ =

√
16/κ′ =

√
4/3.

Remark 3. If the covariance ratios vary as in Remark 1, then the κ′ values varies
between 8 and ∞. In other words, one may obtain any κ′ ∈ (8,∞), and corresponding
γ =

√
16/κ′, by introducing weightings that favor faces more or less balanced.

Remark 4. The infinite-volume variant described in Remark 2 corresponds to the
mated pair of infinite-diameter trees first described in [DMS14], which in turn corre-
sponds to the so-called γ-quantum cone described in the next subsection.

4.2 Peanosphere background

The purpose of this section is to give a brief description of how Liouville quantum
gravity (LQG) surfaces [DS11] decorated by independent SLE processes can be viewed
as matings of random trees which are related to Aldous’ continuum random tree (CRT)
[Ald91a, Ald91b, Ald93]. The results that underly this perspective are established in
[DMS14, MS15e], building on prior results from [DS11, She10, She09, MS12a, MS12b,
MS12c, MS13a].

Recall that if h is an instance of the Gaussian free field (GFF) on a planar
domain D with zero-boundary conditions and γ ∈ (0, 2), then the γ-LQG surface
associated with h of parameter γ is described by the measure µh on D which formally

4There is as yet no analogous construction corresponding to the limiting case κ = κ′ = 4,
where (3) is zero so that Var(X − Y ) = 0 and X = Y a.s. It is not clear what such a construction
would look like, given that space-filling SLEκ′ has only been defined for κ′ > 4, not for κ′ = 4,
and the peanosphere construction in Section 4.2 is trivial when the limiting Brownian excursion is
supported on the diagonal x = y.
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t

Xt

C−Yt

Figure 5: Gluing together a pair of CRTs to obtain a topological sphere. Illustration of the
peanosphere construction. (This figure first appeared in [DMS14].)

has density eγh with respect to Lebesgue measure. As h is a distribution and does
not take values at points, this expression requires interpretation. One can construct
this measure rigorously by considering approximations hε to h (by averaging the field
on circles of radius ε) and then take µh to be the weak limit as ε→ 0 of εγ

2/4ehε(z)dz
where dz denotes Lebesgue measure on D; see [DS11]. If one has two planar domains
D1, D2, a conformal transformation ϕ : D1 → D2, an instance of the GFF h2 on D2,
and lets

h1 = h2 ◦ ϕ+Q log |ϕ′| where Q =
2

γ
+
γ

2
(4)

then the γ-LQG measure µh2 associated with h2 is a.s. the image under ϕ of the
γ-LQG measure µh1 associated with h1. A quantum surface is an equivalence class of
fields h where we say that two fields are equivalent if they are related as in (4).

This construction generalizes to any law on fields h which is absolutely continuous
with respect to the GFF. The results in this article will be related to two such laws
[She10, DMS14]:

1. The γ-quantum cone (an infinite-volume surface).

2. The γ-LQG sphere (a finite-volume surface).

We explain how they can both be constructed with the ordinary GFF h as the starting
point.

The γ-quantum cone can be constructed by the following limiting procedure
starting with an instance of the GFF h as above. Fix a constant C > 0 and note that
adding C to h has the effect of multiplying areas as measured by µ by the factor eγC .

16



If one samples z ∈ D according to µ and then rescales the domain so that the mass
assigned by µh+C to B(z, 1) is equal to 1 then the law one obtains in the C → ∞
limit is that of a γ-quantum cone. (The construction given in [She10, DMS14] is
more direct in the sense that a precise recipe is given for sampling from the law of
the limiting field.) That is, a γ-quantum cone is the infinite-volume γ-LQG surface
which describes the local behavior of an γ-LQG surface near a µh-typical point.

The (unit area) γ-LQG sphere can also be constructed using a limiting procedure
using the ordinary GFF h as above as the starting point. This construction works
by first fixing C > 0 large, ε > 0 small, and then conditioning on the event that
the amount of mass that µ assigns to D is in [eγC , eγ(C+ε)], so that the amount
mass assigned to D by µh−C is in [1, eγε], then sends first C → ∞ and then ε → 0.
(The constructions given in [DMS14, MS15e] are more direct because they involve
precise recipes for sampling from the law of the limiting h.) One can visualize this
construction by imagining that conditioning the area to be large (while keeping the
boundary values of h constrained to be 0) leads to the formation of large a bubble. In
the C →∞ limit, the opening of the bubble (which is the boundary of the domain)
collapses to a single point, and it turns out that this point is typical (i.e., conditioned
on the rest of the surface its law is given by that of the associated γ-LQG measure).

In [DMS14, MS15e], it is shown that it is possible to represent various types of γ-
LQG surfaces (cones, spheres, and disks) decorated by an independent SLE as a gluing
of a pair of continuous trees. We first explain a version of this construction in which
γ =
√

2 and the surface is a unit-area LQG sphere decorated with an independent SLE8.
Let X and Y be independent one-dimensional Brownian excursions parametrized
by [0, 1]. Let C be large enough so that the graphs of X and C − Y are disjoint,
as illustrated in Figure 5. We define an equivalence relation ∼ on the rectangle
R = [0, 1]× [0, C] by declaring to be equivalent points which lie on either:

1. horizontal chords either entirely below the graph of X or entirely above graph
of C − Y (green lines in Figure 5), or

2. vertical chords between the graphs of X and C − Y (red lines in Figure 5).

We note that under ∼, all of ∂R is equivalent so we may think of ∼ as an equivalence
relation on the two-dimensional sphere S2. It is elementary to check using Moore’s
theorem [Moo25] (as explained in [DMS14, Section 1.1]) that almost surely the
topological structure associated with R/∼ is homeomorphic to S2. This sphere comes
with additional structure, namely:

1. a space-filling path5 η′ (corresponding to the projection of the path which
follows the red lines in Figure 5 from left to right), and

2. a measure µ (corresponding to the projection of Lebesgue measure on [0, 1]).

5As explained just below, η′ is related to an SLEκ′ curve with κ′ > 4. We use the convention
here from [MS12a, MS12b, MS12c, MS13a], which is to use a prime whenever κ′ > 4.
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We refer to this type of structure as a peanosphere, as it is a topological sphere
decorated with a path which is the peano curve associated with a space-filling tree.

The peanosphere associated with the pair (X, Y ) does not a priori come with an
embedding into the Euclidean sphere S2. However, it is shown in [DMS14, MS15e] that
there is a canonical embedding (up to Möbius transformations) of the peanosphere
associated with (X, Y ) into S2, which is measurable with respect to (X, Y ). This
embedding equips the peanosphere with a conformal structure. The image of µ
under this embedding is a

√
2-LQG sphere, see [DMS14, MS15e] as well as [DKRV14,

AHS15]), and the law of the space-filling path η′ is the following natural version of
SLE8 in this context [MS13a]: If we parametrize the

√
2-LQG sphere by the Riemann

sphere Ĉ, then η′ is equal to the weak limit of the law of an SLE8 on B(0, n) from −in
to in with respect to the topology of local uniform convergence when parametrized
by Lebesgue measure. (The construction given in [MS13a] is different and is based on
the GFF.) The random path η′ and the random measure µ are coupled together in a
simple way. Namely, given µ, one samples from the law of the path by first sampling
an SLE8 (modulo time parametrization) independently of µ and then reparametrizing
it according to µ-area (so that in t units of time it fills t units of µ-area).

This construction generalizes to all values of κ′ ∈ (4,∞). In the more general
setting, we have that γ =

√
κ where κ = 16/κ′ ∈ (0, 4), and the pair of independent

Brownian excursions is replaced with a continuous process (X, Y ) from [0, 1] into R2
≥0

which is given by the linear image of a two-dimensional Brownian excursion from the
origin to the origin in the Euclidean wedge of opening angle

θ =
πγ2

4
=
πκ

4
=

4π

κ′

see [DMS14, MS15e, GHMS15]. (In the infinite-volume version of the peanosphere
construction, the Brownian excursions (X, Y ) are replaced with Brownian motions,
and the corresponding underlying quantum surface is a γ-quantum cone [DMS14].)

The main results of [DMS14, MS15e] imply that the information contained in
the pair (X, Y ) is a.s. equivalent to that of the associated SLEκ′-decorated γ-LQG
surface. More precisely, the map f from SLEκ′-decorated γ-LQG surfaces to Brownian
excursions is almost everywhere well-defined and almost everywhere invertible, and
both f and f−1 are measurable.

The peanosphere construction leads to a natural topology on surfaces decorated by
a space-filling tree and dual tree. Namely, we say that two such tree-decorated surfaces
are close if the interface functions (i.e., the function which records the distance of
a point on the tree to the root when one traces its boundary with unit speed) of
the corresponding tree/dual-tree pair are uniformly close. The topology induced by
sup-norm metric on interface functions is called the peanosphere topology.

The peanosphere approach to SLE/LQG convergence (i.e., identifying a natural
pair of trees in the discrete model and proving convergence in the topology where two
configurations are close if their tree contour functions are close) was introduced in
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[She11, DMS14] to deal with infinite-volume limits of FK-cluster-decorated random
planar maps, which correspond to κ ∈ [2, 4) and κ′ ∈ (4, 8]. Extensions to the finite
volume case and a “loop structure” topology appear in [GMS15, GS15a, GS15b,
GM15].

Since bipolar-oriented planar maps converge in the peanosphere topology to
SLE12-decorated

√
4/3-LQG, we conjecture that they also converge in other natural

topologies, such as

• The conformal path topology defined as follows. Assume we have selected a
method of “conformally embedding” discrete planar maps in the sphere. (This
might involve circle packing, Riemann uniformization, or some other method.)
Then the green path in Figure 2 becomes an actual path: a function ηn from
[0, 1] to the unit sphere (where n is the number of lattice steps) parameterized so
that at time k/n the path finishes traversing its kth edge. An SLE12-decorated√

4/3-LQG sphere can be described similarly by letting η be the SLE path
parameterized so that a t fraction of LQG volume is traversed between times 0
and t. (Note that the parameterized path η encodes both the LQG measure
and the SLE path.) The conformal path topology is the uniform topology on
the set of paths from [0, 1] to the sphere. The conjecture is that ηn converges
to η weakly w.r.t. the uniform topology on paths. See [DS11, She10] for other
conjectures of this type.

• The Gromov–Hausdorff–Prokorov topology on metric measure spaces. So
far, this problem has only been solved in the setting of uniformly random
planar maps and

√
8/3-LQG in the works [LG13, Mie13] (Gromov–Hausdorff–

Prokorhov convergence of the planar maps to a limit, the Brownian map) and
[MS13b, MS15a, MS15b, MS15c, MS15d, MS15e] (construction of the metric
space structure on

√
8/3-LQG). It is still an open problem to endow γ-LQG

with a canonical metric space structure for γ 6=
√

8/3.

An interesting problem which illustrates some of the convergence issues that arise
is the following: In the discrete setting, the interface functions between the NW and
SE trees determine the bipolar map which in turn determine the interface functions
between the NE and SW trees. Likewise, in the continuous setting, the interface
functions (a Brownian excursion) between the NW and SE trees a.s. determine the
SLE-decorated LQG which in turn a.s. determine the interface function (another
Brownian excursion) between the NE and SW trees.

Conjecture 1. The joint law of both NW/SE and NE/SW interface functions of a
random bipolar-oriented planar map converges to the joint law of both NW/SE and
NE/SW interface functions of SLE12-decorated

√
4/3-LQG.

One might expect to be able to approximate the discrete NW/SE interface
function with a continuous function, obtain the corresponding continuous NE/SW
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function, and hope that this approximates the discrete NE/SW function. One
problem with this approach is that while the maps f−1 and f are measurable, they
are (presumably almost everywhere) discontinuous, so that even if two interface
functions are close, it does not follow that the corresponding measures and paths
are close. However, since Brownian excursions are random perturbations rather than
“worst case” perturbations of random walk excursions, we expect the joint laws to
converge despite the discontinuities of f and f−1.

5 Imaginary geometry: why κ′ = 12 is special

When proving that a family of discrete random curves has SLEκ as a scaling limit, it
is sometimes possible to figure out in advance what κ should be by proving that there
is only one κ for which SLEκ has some special symmetry. For example, it is by now
well known that SLE6 is the only SLE curve with a certain locality property (expected
of any critical percolation interface scaling limit) and that SLE8/3 is the only SLE
curve with with a certain restriction property (expected of any self-avoiding-walk
scaling limit). The purpose of this section is to use the imaginary geometry theory of
[MS12a, MS13a] to explain what is special about the values κ = 4/3 and κ′ = 12.

5.1 Winding height gap for uniform spanning trees

The connections between winding height functions, statistical mechanics models, and
height gaps are nicely illustrated in the discrete setting by the uniform spanning tree
(UST). Temperley showed that spanning trees on the square grid are in bijective
correspondence with dimer configurations (perfect matchings) on a larger square
grid. Dimer configurations have a height function which is known to converge to the
Gaussian free field [Ken00]. Under the Temperley correspondence, this dimer height
function is related to the “winding” of the spanning tree, where the winding of a
given edge in the tree is defined to be the number of right turns minus the number of
left turns taken by the tree path from that edge to the root [KPW00]. If we multiply
the dimer heights by π/2, then this function describes the accumulated amount of
angle by which the path has turned right on its journey toward the root.

Notice that if v is a vertex along a branch of a spanning tree, and there are two
tree edges off of that branch that merge into the vertex v from opposite directions,
then the winding height at the edge just to the right of the branch is larger by π than
at the edge just to the left, see Figure 6. Because of this, it is intuitively natural to
expect that there will typically be a “winding height gap” across the long tree branch
of magnitude π, i.e., the winding just right of the long tree branch should be (on
average) larger by π than the winding just left of the tree branch.
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black-path winding+π/2
(on average)

black-path winding−π/2
(on average)

Long UST branch

winding of red edges is

(on average)

winding of red edges is
on this side

on this side

black-path winding+π/2
(on average)

black-path winding−π/2
(on average)

Long UST branch

winding of red edges is

(on average)

winding of red edges is
on this side

on this side

Figure 6: Every edge in a uniform spanning tree is assigned a “winding” — a real number that
indicates the total amount of right turning (minus left turning) that takes place as one moves along
the tree from the midpoint of that edge to the root. The black directed edges are those of a long
branch in the UST directed towards the root, and adjacent spanning tree edges are shown in red.
Given the long black path, the conditional law of the configuration on the left side of the path does
not depend on the orientation of the long black path. Thus, by symmetry, one expects (on average)
a π/2 angle gap between red edges and their black neighbors. This accounts for a total “average
winding gap” of π between the left and right side.

5.2 Winding height gap for SLE

Imaginary geometry extends these notions of winding height function and the height
gap to SLE. The starting point is an instance h of the GFF, which we divide by a
parameter χ > 0 to convert into units of radians. SLEκ can be constructed as a flow
line of the vector field in which z is assigned the complex unit vector eih/χ, where

χ =
2√
κ
−
√
κ

2
.

Although this vector field does not make literal sense, as h is a distribution and not
a function, one can still construct the flow lines in a natural way [MS12a, MS13a].
While it has been conjectured that these GFF flow lines are limits of flow lines of
mollified versions of the GFF, their rigorous construction follows a different route.
One first proves that they are the unique paths coupled with the GFF that satisfy
certain axiomatic properties (regarding the conditional law of the field given the
path), and then establishes a posteriori that the paths are uniquely determined by
the GFF.

We interpret flow lines of eih/χ as “east going” rays in an “imaginary geometry”. A
ray of a different angle θ is a flow line of ei[h/χ+θ]. In contrast to Euclidean geometry,
the rays of different angles started from the same point may intersect each other.
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There is a critical angle θc given by

θc =
πκ

4− κ =
4π

κ′ − 4
,

such that the flow lines of eih/χ and ei[h/χ+θ] started from a common point a.s. intersect
when θ < θc, and a.s. do not intersect when θ ≥ θc. If we condition on a flow line η,
there is a winding height gap in the GFF, in the sense that E[h/χ | η] just to the
right of η is larger by θc than the value just to the left of η.

The east-going flow lines of eih/χ started from different points can intersect, at
which point they merge. The collection of east-going rays started from all points
together form a continuum spanning tree, whose branches are SLEκ’s. There is a
space-filling curve which is the analog of the UST peano curve, which traces the
boundary of this spanning tree, and is a space-filling version of SLEκ′ with κ′ = 16/κ.

When κ = 4n/(n + 1) the critical angle is θc = nπ. The well-known “special
values” of κ have in the past corresponded to integer values of n, together with the
limiting case n → ∞. For example, n ∈ {1, 2, 3, 5,∞} gives κ ∈ {2, 8/3, 3, 10/3, 4}
and κ′ ∈ {8, 6, 16/3, 24/5, 4}. In the case κ′ = 12 and κ = 4/3, we have n = 1/2.

5.3 Bipolar winding height gap should be π/2

To make sense of winding angle in the context of a planar map, one may view the map
as a Riemannian surface obtained by interpreting the faces as regular unit polygons
glued together, and then conformally map that surface, as in Figure 7. If a random
planar map is decorated by a bipolar orientation, we can assign a winding to every
edge that indicates the total amount of right turning (minus left turning) that takes

a

b

φ

φ(b) = ∞

φ(a) = 0

Figure 7: Planar map with a distinguished outer-boundary-plus-one-chord-rooted spanning tree
(solid black edges), with chord joining marked boundary points a and b, plus image of tree under
conformally uniformizing map φ to H (sketch). (This figure first appeared in [She10].)
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place as one moves along any north-going path (it doesn’t matter which one) from
the midpoint of that edge to the north pole.

Consider a NW path started from a vertex incident to the eastern face continued
to a vertex incident to the western face. The portion of the bipolar-oriented map
that is south of this path may be east-west reflected to obtain a new bipolar-oriented
planar map. If this NW path is suitably chosen, so that it is determined by the
portion of the map north of it, then reflecting the portion of the map south of it is a
bijection.

This east-west symmetry suggests that the edges to the left of a long NW path
have a winding which is, on average, π/2 less than the winding of the NW path (as
in Figure 8).

The bipolar-oriented map to the right of the NW path does not have this same
reflection symmetry. Indeed, to the right of the NW path (but not the left), there
can be other north-going paths that split off the NW path and rejoin the NW path at
another vertex. Reflecting the bipolar map on the right side of the NW path would
then create a cycle.

However, if we reflect the map to the right of the NW path and then reverse
the orientations of the edges, no cycles are created, and no new sources or sinks
are created except at the endpoints of the NW path. Thus for a long NW path,
we expect the bipolar-oriented map to the right of the path to be approximately
reflection-reversal symmetric.

Edges to the right of the NW path may be oriented either toward or away from
the path; one expects those oriented away from the path to have smaller winding
on average and those oriented toward the path to have larger winding on average.
However, by the approximate reflection-reversal symmetry, these two effects should
cancel, so that overall there is no expected angle gap between the black path and the
red edges to its right (as in Figure 8).

black-path winding−π/2
(on average)

equals black-path winding
(on average)

Long NW ray of
bipolar orientation

winding of red edges is

winding of red edges

on this side

on this side
This side is approximately

reflection-reversal symmetric
This side is approximately

reflection symmetric

Figure 8: The average height gap on either side of a long NW ray (black) of a bipolar orientation.
On the western side the average height gap is −π/2, on the eastern side it is 0.
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6 Open questions

In addition to questions regarding strengthening the topology of convergence, which
are discussed at the end of Section 4.2, it would be interesting to extend the theory to
other surface graphs, such as the torus, or a disk with four boundary vertices which
are alternately source, sink, source, sink.
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