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Abstract. We present an evolutionary self-governing model based on the numerical atomic rule
Z(a, b) = ab/ gcd(a, b)2, for a, b positive integers. Starting with a sequence of numbers, the initial
generation Gin, a new sequence is obtained by applying the Z-rule to any neighbor terms. Likewise,
applying repeatedly the same procedure to the newest generation, an entire matrix TGin is generated.
Most often, this matrix, which is the recorder of the whole process, shows a fractal aspect and has
intriguing properties.

If Gin is the sequence of positive integers, in the associated matrix remarkable are the distin-
guished geometrical figures called the Z-solitons and the sinuous evolution of the size of numbers
on the western edge. We observe that TN∗ is close to the analogue free of solitons matrix generated
from an initial generation in which each natural number is replaced by its largest divisor that is a
product of distinct primes. We describe the shape and the properties of this new matrix.

N. J. A. Sloane raised a few interesting problems regarding the western edge of the matrix TN∗ .
We solve one of them and present arguments for a precise conjecture on another.

1. Introduction Story

Many different mathematical models have been proposed to study an evolutionary self-governing
system. In the last several decades, a particular attention was devoted to those that are based on
simple generating rules that produce complex outcomes. Such an example is the growing model
based on the numerical Z-rule introduced in [CZ’13]

Z(a, b) =
ab

gcd(a, b)2
, a, b ∈ N∗, (1.1)

where N∗ := N\{0}. The numbers are recorded in cells and, for simplicity, we keep the unidirectional
development of future generations, composed of children Z(a, b) born from parents a and b, which
are neighbor cells in the previous generation.

For a plastic representation of the Z-rule (1.1), one can think that any cell containing a positive
integer n is a citadel composed of towers. There are as many towers in the citadel as prime factors
n has. Each tower is associated to a prime and the height of the tower corresponding to a prime p
that divides n equals the power of p in the factor decomposition of n. In particular, the citadel of
a cell containing the number 1 has no towers at all. Likewise, one may think that the citadel n has
towers associated to the primes that do not divide n also, but these towers have zero height. Then,
the Z-rule topples the towers of the neighbor citadels a and b creating a new citadel Z(a, b) in the
next generation. The towers of the new citadel have heights equal with the absolute difference of
the heights of towers corresponding to the same prime in a and b and, if a prime divides only one
of a and b, then this tower is reproduced unchanged in the new citadel.

The process starts with a sequence of numbers Gin, which may be finite or not, which are placed
in a row of cells. This sequence is called the initial generation and the Z-rule is applied sequentially
on each two consecutive terms of Gin. Whence, a new generation is born and its cells are placed
in the following row. Usually, in graphic representations, we slightly shift to the right the new
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generation such that any new cell is placed in the middle under its parents. Repeating the process,
we obtain a matrix TGin with infinitely many rows if Gin is infinite. As the reproducing rule remains
unchanged, the results depend only on the initial generations and we shall see that in this way a
large variety of outcomes are produced.

The matrices of numbers TGin have lots of features of which some are similar to the objects created
by the abelian sandpile model proposed by Bak, Tang and Wiesenfeld [BTW’87]. The intensely
studied model, also called the chip-firing game, was surveyed by Levine and Propp [LPro’10]. Our
Z-model also captures features of other evolutionary systems such as the Ducci-type game [CM’37],
[CCZ’00], [CGVZ’02], [CT’04], [GVZ’05], [CZZ’11], [HKSW’14], [BGS’15], the numerical ensembles
created by median insertions, such as those related to Pascal triangle [Gra’92] [Gra’97], [Pru’11a],
[Pru’11b], [Pru’12], [Pru’13], [CZ’13] or the Farey sequences [CZ’03], [CZ’06]. For many initial
generations Gin, the matrices TGin show complex self-similar structures, like those of some particular
abelian sandpile states [LKG’90],[BR’02], [CPS’08],[SD’10] or the outcomes produced in the related
rotor-router model [PDK’96], [LP’08], [Pro’10].

A special feature of matrices TGin is the fact that they can be localized. For any prime p, the
p-tomography is the matrix of citadels of TGin in which all towers, except the towers associated to p,
are deleted. Then TGin is the superposition (the element-wise multiplication) of the p-tomographies
for all primes p, since the evolution according to the Z-rule is independent to one another.

We have already proved in [CZ’14] that the Z-rule produces objects with a fractal aspect if Gin
is the sequence of prime numbers or its localized slice, the sequence of zeros except one term that
is equal to a prime p. In this article we show that this also happens if the initial generation is the
p-spaced sequence Ap = {pn}n≥1, where

pn =

{
p if p | n,

0 else,
(1.2)

or Vp = {qn}n≥1, the p-section of positive integers,

qn =

{
pvp(n) if p | n,

0 else,
(1.3)

where vp(n) is the p-valuation of n, which is, the power of p into the prime decomposition of n.
The classic Sierpinski fractal appears if p = 2 (a finite fragment is shown in Figure 3), while more
complex self-similar patterns are typical for larger primes (see Figures 5–7). Always, in a graphical
representation, we present only a triangular region of TGin , the one composed by the cells born in
future generations from the part of Gin shown on the first row.

A fundamental problem raised by the Z-model concerns the shape and properties of the matrix
grown from the first generation N∗. Its north-west corner is shown in Figure 1. The p-tomographies
of TN∗ can be grown individually, by starting in the first row with the sequence Vp. Of particular
interest are questions related to the geometrical figures propagated from the cell pg, g ≥ 2. For
any prime p and integer g ≥ 2, we denote by S(p, g) the collection of connected cells that starts
from pg and contains only powers of p larger than two. We call these figures Z-solitons and present
two of them in Figure 2. Unlike the set of cells containing powers of p less than two, which forms
a continuous texture all over the infinite matrix TN∗ , the solitons are larger and larger with the
power g, but finite.

Conjecture 1. Two distinct solitons S(p, g1), S(p, g2), neither overlap nor touch each other.

The characterization problem of the evolution of shape and size of the solitons for different p
and growing g is the analog of the limiting shape problems studied in [GQ’00], [FR’08], [LP’08],
[LPer’10], [BR’11]. The solitons S(2, g) verify Conjecture 1, as follows from their complete de-
scription presented in Section 3. For odd primes, S(p, g) are more complex, with an aspect of
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1 2 3 4 5 6 7 8 9 10 11 12 · · ·
2 6 12 20 30 42 56 72 90 110 132 · · ·

3 2 15 6 35 12 63 20 99 30 · · ·
6 30 10 210 420 84 1260 1980 330 · · ·

5 3 21 2 5 15 77 6 · · ·
15 7 42 10 3 1155 462 · · ·

105 6 105 30 385 10 · · ·
70 70 14 462 154 · · ·

1 5 33 3 · · ·
5 165 11 · · ·

33 15 · · ·
55 · · ·

· · ·

Figure 1. The matrix TN∗ . After the first generation, the rows are shifted to the
right so that any child is placed in the middle, under its parents.

Figure 2. The solitons S(p, n) generated by the cells p14 with p = 13 and p = 17.

Code of colors for the cells containing the powers of p from 0 to 14:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

certain fringed parts of Sierpinski triangles. For a fixed prime p, the series of solitons S(p, g), as
g increases, offers an intriguing spectacle and their growth appears to be proportional, as in the
analog case of the abelian sandpiles [Ost’03], [DS’12], [DS’13], [DD’14].

Another zone of interest is the first column or the west edge of matrix TGin . We denote this
sequence by WGin . The western edge can be viewed as the projection of Gin through the entire
Z-process. Notice that the value of the m-th citadel on WGin is influenced by the values of all first
m citadels of Gin and by neither of the others. An example is the western frontier of the triangle
in Figure 1:

WN∗ : 1, 2, 3, 6, 5, 15, 105, 70, 1, 5, 33, 55, 65, 273, 1001, . . .
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Various evidence obtained by computer verifications suggest that no square of any prime divides a
term of this sequence. In other words, no soliton grows as large as to touch the western edge WN∗ .
Corollary 2 shows that this is true for solitons S(2, g), g ≥ 2.

At the exponents level, this is the counterpart of the Gilbreath’s Conjecture [Guy’04, A10],
[Odl’93], which refers to the similar process that starts with the sequence of primes as Gin and
grows the future generations with children born by taking the absolute difference of their parents.
The Gilbreath’s Conjecture says that the west edge of the triangle composed of these rows of
successive gaps of gaps, contains only ones.

Another example extending this widespread property [Odl’93] is the matrix that starts with the
sequence of Sophie Germain primes† and is generated in the same way, listing successively the gaps
from the previous row of gaps. For this matrix, John W. Layman [OEIS, A080209] observed and
conjectured that the left edge consists only of 1s and 3s.

In our multiplicative setting, we conjecture that the maximal power of any prime that appears
in the decomposition of the numbers situated on the left edge of TN∗ is one.

Conjecture 2 (Section 9 [CZ’13]). The left edge of the infinite triangle generated by the iterated
application of the Z-rule to the set of positive integers contain only square free numbers.

The object of Sections 4–6 is to compare and analyze the similarities between TN∗ and an analogue
matrix that has no solitons. The p-tomographies of this new matrix are generated by sequence Ap
and in Theorem 2 we show that these tomographies are eventually periodic for all p. Furthermore,
we observe the closeness of the citadels on the western side of the two matrices and in Theorem 3
we characterize the structure of the sinuous series of extreme values of the western edge of the
matrix with no solitons.

Theorem 1 gives a complete characterization of the 2-tomography of matrix TN∗ . In particular,
it shows that there are no fours on the western edge of TN∗ , solving a problem raised by N.
J. A. Sloane [OEIS, A222313]. Our analysis in Sections 4–6 allows us to formulate the precise
Conjecture 3 regarding another problem raised by Sloane[OEIS, A222313], [CZ’14, Question 3].

2. Notations

Starting with a sequence of integers S = {s1, s2, . . . }, we consider the matrix whose first row is
S and the following ones are generated with the Z-rule. We denote this matrix by TS = (tj,k)1≤j,k,
where t1,1 = s1, t1,2 = s2, . . . and

tj,k = Z(tj−1,k, tj−1,k+1), for 2 ≤ j, 1 ≤ k.
If the initial sequence is a finite ordered set S = {s1, . . . , sK}, we obtain the numerical triangle

TS(K) =
{
tj,k : 1 ≤ j ≤ K, 1 ≤ k ≤ K − j + 1

}
,

whose first row is t1,1 = s1, t1,2 = s2, . . . , t1,K = sK , and following ones are generated recursively
by

tj,k = Z(tj−1,k, tj−1,k+1), for 2 ≤ j ≤ K and 1 ≤ k ≤ K − j + 1.

We say that tj,k = Z(tj−1,k, tj−1,k+1), for j ≥ 2, is the child of its parents tj−1,k and tj−1,k+1 and
in pictures we usually place the child in the middle, below its parents.

The j-th row of the matrix is called the j-th generation and we denote it by

GS(j) =
{
tj,k : 1 ≤ k

}
and GS(j;K) =

{
tj,k : 1 ≤ k ≤ K

}
, for j ≥ 1 .

We denote the west-side of the triangle by

WS =
{
tj,1 : 1 ≤ j

}
and WS(K) =

{
tj,1 : 1 ≤ j ≤ K

}
.

†A positive integer p is a Sophie Germain prime if p and 2p + 1 are primes at the same time.
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The evolution at the exponents level is presented into the following tables:

vp(TS) =
{
vp(tj,k) : 1 ≤ j, k

}
,

vp(TS(K)) =
{
vp(tj,k) : 1 ≤ j ≤ K, 1 ≤ k ≤ K − j + 1

}
.

Given an infinite matrix TS or a bounded triangle TS(K), we denote their p-tomography (also
called the p-slice or the p-section) by

TS,p =
{
pvp(tj,k) : 1 ≤ j, k

}
,

TS,p(K) =
{
pvp(tj,k) : 1 ≤ j ≤ K, 1 ≤ k ≤ K − j + 1

}
.

Thus, the superposition of all p-slices recovers the full matrix:

TS =
∏
p

TS,p and TS(K) =
∏
p

TS,p(K),

where the product over all primes p is taken component-wise.
For any positive integer n, we denote by p(n) the largest square free number that divides n, and

by P the sequence of these numbers:

p(n) =
∏
p|n

p, P = {p(n) : n ∈ N} . (2.1)

We denote by F2[[X]] the ring of meromorphic series of variable X and coefficients in the field
with two elements F2 and by F2[[X]]∗ ⊂ F2[[X]] the collection of series that are sums of monomials
Xk with k ≥ 1, only.

As usual, the number of distinct prime factors of n is denoted by ω(n) and the notation for the
multiplicative order of a modulo p is indp(a).

3. The 2-tomography of TN∗

The real action on TN∗,2 is on the exponents level and, to understand its result, we need to
formalize it. Let N+ denote the collection of nonempty finite words over the infinite alphabet N.
We introduce the following sequence of words in N+, defined recursively:

x1 = 0, xn = xn−1 ++ (n− 1) ++ xn−1, for n ≥ 2,

where “++” denotes the concatenation of integers. Note that xn is the concatenation of 2n − 1
integers. Since xn is an initial sub-word of xn+1, for all n ≥ 1, there exists a limit sequence
w0 : N∗ → N, whose first 2n − 1 terms coincides with the letters of xn, for n ≥ 1. We write:
w0 = lim−→xn.

Similarly, starting with 1 instead of 0, we define the sequence of words

y1 = 1, yn = yn−1 ++ n++ yn−1, for n ≥ 2

and obtain the limit sequence w1 = lim−→ yn, whose first 2n − 1 terms coincides with the letters of
yn, for n ≥ 1.

The first terms of w0 and w1 are:

w0 : 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . .

w1 : 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . .

For a given sequence a : N∗ → N, we denote by α(a) = {αn}n≥1 the sequence of absolute
differences between consecutive terms:

αn = |an+1 − an|, for n ≥ 1

and by β(a) = {βn}n≥1 the bubbled sequence, defined by

β2n−1 = β2n = an, for n ≥ 1 .
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We use the same notations for the similar operations applied on words, where the action is on the
the sequences of their letters. For example: α(x2) = α(010) = 11 and β(y2) = β(121) = 112211.

Figure 3. The tomography of TN∗(129) for p = 2. Notice that the larger solitons
are further and further away from the western edge of TN∗ .
Code of colors for the cells containing the powers of 2 from 0, . . . , 7:

0 1 2 3 4 5 6 7

The next lemma shows how w0 and w1 relates to one another through these operations.

Lemma 1. The following properties hold true:

(1) w1 = w0 + 1, with element-wise addition;
(2) w0 = v2(N∗), with term-wise application of the valuation v2;
(3) w1 = v2(2N∗);
(4) α(w0) = α(w1) = β(w1).

Proof. (1) The equality w1 = w0 + 1 follows directly from the definitions.
(2) We prove the equality by induction. The initial step: w0(1) = 0 = v2(1). Now, suppose that

w0(n) = v2(n) for all n ∈ {1, 2, . . . , 2k − 1}. Then v2(2
k) = k and v2(2

k + m) = v2(m), for all
m ∈ {1, 2, . . . , 2k − 1}, by the definition of the valuation. Using the definition of w0, this means
that w0(n) = v2(n), for n ∈ {1, 2, . . . , 2k+1 − 1}, as needed.

(3) w1 = v2(2N∗) follows from (1) and (2).
(4) The equality α(w0) = α(w1) also follows directly from (1) and the definition of α(·). So it

remains to prove that α(w1) = β(w1). We proceed by induction.
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The initial step: applying α(·) to the finite sequence 1, 2, 1 (which are the letters of y2, the
beginning of w1), we get 1, 1, the beginning of β(w1) or, with the notation on words, α(y2) =
α(121) = 11 = β(y1).

The induction step: suppose that α(yn) = β(yn−1). Then

α(yn+1) = α(yn ++ (n+ 1) ++ yn) = β(yn−1) ++ n++ n++ β(yn−1) = β(yn),

since the last and the first letters of yn−1 are equal to 1. This completes the proof of the lemma. �

Thus, by Lemma 1 we see that the sequences of gaps between consecutive terms of w0 and w1

both coincide with the bubbled sequence

β(w1) : 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, . . .

With the above notations, we see that the sequence of exponents of 2 on the first row of TN∗,2
coincides with w0. Then, by Lemma 1, it follows that the subsequent sequences of exponents of 2
on the following rows of TN∗,2 are: α(w0), α

(2)(w0), α
(3)(w0), . . . In general, the mth row of TN∗,2 is

2α
(m−1)(w0)(1), 2α

(m−1)(w0)(2), 2α
(m−1)(w0)(3), . . . , for m ≥ 1.

Now we can describe the structure of the matrix of the exponents v2(TN∗), which corresponds ex-
plicitly to the explicit description of the 2-tomography of TN∗ . Its initial cut-off triangle TN∗,2(129),
composed of 129 rows, is shown in Figure 3. We see that, geometrically, it is part of an infinite
Sierpinski triangle. Notice that the horizontal rows are grouped naturally in slices containing se-
quences of pairs of triangles. The couple of triangles in each pair is colored with the same color
and the change of colors from a pair to another corresponds to the change of numbers in the
sequence β(w1).

The sequence of slices {Sk}k≥0 in which v2(TN∗) is partitioned are larger and larger in size. The
slice S0 is just the first row and it is exceptional. The next slice, S1, is the second row. Then, for
any k ≥ 2, the slice Sk groups 2k−1 rows, those from the (2k−1 + 1)th till the 2kth.

In any slice, the largest triangles formed by cells of the same color are the top rows of the Pascal
arithmetic triangle modulo 2, with the odd entries replaced by a certain positive integer. Such
a triangle depends on two parameters: the height h and the weight t, which is the value of the
non-zero entries. We denote it by P2(h, t) (see the left triangle in Figure 4 for such an example).

Triangle P2(h, t) is generated as Pascal’s classic triangle, by starting from the top with a symbolic
variable t, which satisfies the rule t + t = 0. The same result is obtained if the top is placed
somewhere in a row of zeros (see the matrix from the right-side of Figure 4).

10
10 10

10 0 10
10 10 10 10

10 0 0 0 10
10 10 0 0 10 10

10 0 10 0 10 0 10

··· 0 0 0 0 t 0 0 0 0 ···
··· 0 0 0 t t 0 0 0 ···
··· 0 0 t 0 t 0 0 ···
··· 0 t t t t 0 ···
··· t 0 0 0 t ···

Figure 4. Left: The triangle P2(7, 10) of height 7 and weight 10.
Right: A triangle P2(5, t) generated by a single non-zero cell of weight t placed in
the center of a string of zeros of length at least 4 + 1 + 4 = 9.

Lemma 2. Let h be a positive integer and let t be a formal variable. Let u = {uk}k≥1 be a
sequence of zeros, except one term un = t and suppose that n ≥ h. Then, the matrix with rows
u, α(u), α(2)(u) . . . , α(h−1)(u) contains triangle P2(h, t).
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Proof. It suffices to note that condition h ≤ n ensures that the object that develops from un = t is
not influenced by external obstacles and the operation of taking the absolute value of the difference
acts on {0, t} exactly as the operation that grows a Pascal triangle with entries in F2.

�

We summarize the complete description of v2(TN∗) (respectively TN∗,2) in the next theorem.

Theorem 1. (1) Slice S0 of the matrix v2(TN∗) is sequence w0. The next rows of v2(TN∗) are
grouped in slices Sk, such that, for any k ≥ 1, slice Sk is formed by rows from the (2k−1 + 1)th till
the 2kth. (2) The single row of S1 is sequence α(w0) = β(w1). (3) For any k ≥ 1, the collection of
non-zero elements in slice Sk is the union of triangles P2(2

k−1, t) and the sequence of their weights
(from left to right) coincides with β(w1). The top vertices of these triangles are on the first row of
the slice and their bases are adjacent and partition the bottom row.

Proof. (1) follows by the definitions. (2) is proved in Lemma 1. (3) The proof is by induction. The
initial step, k = 1, coincides with (2).

Suppose now that the stated description is valid for slice Sk and let as look on Sk+1. We begin
with the first row of Sk+1. Here, the first 2 · 2k−1 − 1 cells are zeros, because, by the induction
hypothesis, on the previous row, the first 2 · 2k−1 cells where the adjacent bases of two triangles
P2(2

k−1, 1). The next element, the 2 · 2k−1th, is 1 = |1− 2|, since on the previous slice, the weight
of the second triangle was 1 and the weight of the third triangle is 2. Continuing in the same way,
we see that the next non-zero cell on the first row of slice Sk+1 is the 4 ·2k−1th and its value is equal
with 1 = |2− 1|. In this way we see that the non-zero cells on the first row of slice Sk+1 are those
obtained as absolute differences of the parent cells that are vertices of neighbor triangles P2(2

k−1, t)
with different weights from the previous slice. These are the 2kth, the 2 · 2kth, the 3 · 2kth, and
so on. Moreover, by the induction hypothesis, the values of integers occupying these cells are the
integers in the sequence β(w1).

Now, using Lemma 2, we find that from each of these cells, grows a triangle P2(2
k, t). Moreover,

the weights of these triangles coincides with the integers on the non-zero cells in the first row of
Sk+1. Also, the size of the slice assures that the bases of these triangles are adjacent. This concludes
the proof of the induction step and of the theorem. �

In particular, Theorem 1 describes the western edge of the matrix TN∗,2.

Corollary 1. The 2-valuation of the elements of the west sequence WN∗ are:

v2
(
t(m, 1)

)
=

{
1, m = 2k, k ≥ 1

0, else.

Also, Theorem 1 answers to a question of N. J. A. Sloane, who asks whether there is a proof
that 4 cannot appear on the western edge of the matrix TN∗ [OEIS, A222313].

Corollary 2. There is no 4 on W (TN∗).

4. The description of TP

The powers of all primes in the decomposition of the terms in the sequence

P = {1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, . . . }

defined in (2.1) are equal to one. This allows us to employ operations in the the ring of meromorphic
series F2[[X]] to understand the structure of the p-tomographies of TP. Thus the initial generation of
any p-tomography is sequence Ap = {pn}n≥1 defined by (1.2). The superposition (component-wise
multiplication) of the p-tomographies for all p gives the full description of matrix TP.
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For any prime p, we look at matrix vp(TP). Always, the first row is filled with zeros except the
cells in the arithmetic progression kp, k ≥ 1, which are equal to 1. Again, the prime p = 2 is
exceptional. The second row of v2(TP) has all cells equal to 1 and from the third row on, matrix
v2(TP) is filled with zeros only.

We show that if p is odd, the rows can be grouped in periodic slices. The number of rows in
such a slice is a period of vp(TP) and we denote by πp the length of the smallest period. If p = 2,
the periodic slices contain just one row, which repeats from the third on. If p is odd, the first row
of the first periodic slice is always the second row of vp(TP).

One can check the small periods for some primes: π2 = 1, π3 = 3, π5 = 15, π7 = 7, π31 = 31,
π127 = 127. As p increases, the size of πp becomes large: π11 = 341, π13 = 819, π17 = 255,
π19 = 9709. This fact produces the general aspect of randomness of vp(TP), for p ≥ 11. Also, in
some areas this phenomenon is more pronounced than in others (see Figure 5).

Figure 5. The tomographies vp(TP(100)), for p = 13 and p = 19.

Any sequence e = {ek}k≥1 ⊂ {0, 1}N can be identified uniquely with a series in F2[[X]]∗. We use
this identifications for the rows of the matrix vp(TP,p) and write

e = {ek}k≥1
θ←→ θe(X) =

∑
k≥1

ekX
k .

The operation of passing from one generation to the next by applying the Z(·, ·)-rule (1.1) transfers
on the side of the series to multiplication by 1+X

X . This may produce a series in F2[[X]] \ F2[[X]]∗

and we need to bring it back by dropping the meromorphic part and the constant term through
the ∆ operation:

∆(S(X)) :=
∑
k≥1

ckX
k ∈ F2[[X]] , for S(X) =

∑
ckX

k ∈ F2[[X]] .
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Then, to pass from the jth generation to the (j + m)th, we have to multiply repeatedly m times
by 1+X

X , so the general correspondence is

(4.1)

where α is the absolute value of the differences (which, in this case, coincides with addition in F2),
taken component wise.

Next we show that this association is well defined.

Proposition 1. The above association between the rows of the matrix vp(TP) and the series in
F2[[X]]∗ and the operation of passing from one generation to the next is well defined, and diagram
(4.1) is commutative.

Proof. Well defining is due to the correspondence between the absence of columns to the left of the
first column of vp(TP), so there is no influence from the left when α is applied, and from ignoring
of the meromorphic and constant terms of the series using the dropping function ∆ .

It remains to prove that diagram (4.1) is commutative by induction. The initial step: Suppose
ej = (e1, e2, e3, . . . ). Then, on the one hand, we have:

α(ej) = ej+1 = (e1 + e2, e2 + e3, e3 + e4 . . . ) ,

θej+1(X) =
∑
k≥1

(ek + ek+1)X
k, (4.2)

and on the other hand

θej (X) =
∑
k≥1

ekX
k,

1+X
X ·

∑
k≥1

ekX
k = e1 +

∑
k≥1

(ek + ek+1)X
k,

∆
(
e1 +

∑
k≥1

(ek + ek+1)X
k
)

=
∑
k≥1

(ek + ek+1)X
k .

(4.3)

The outcomes of (4.2) and (4.3) are identical, so the initial step is completed.
The induction step follows by using the associative property of the composition of functions ∆

and multiplication by 1+X
X and the fact that ∆(2) = ∆. This completes the proof of the proposition.

�

Let us see the periodicity of the matrix vp(TP) in two particular cases.

4.1. Periodicity of v3(TP). The first row of v3(TP) contains only zeros, except the cells with ones
in the columns with ranks in the arithmetic progression {3n}n≥1. The series that corresponds to
the second row is

∆
(
1+X
X ·

∑
k≥1

X3k
)

= (X2 +X3)
∑
k≥0

X3k. (4.4)
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Then the series that corresponds to the 5th row is

∆
( (

1+X
X

)5−2
(X2 +X3)

∑
k≥0

X3k
)

= ∆
(

(1 +X +X2 +X3)
(
1+X
X

)∑
k≥0

X3k
)

= ∆
(
1+X4

X ·
∑
k≥0

X3k
)

= (X2 +X3)
∑
k≥0

X3k.

(4.5)

Comparing (4.4) and (4.5), we see that the 2nd and the 5th rows coincide. Therefore, the matrix
v3(TP) is eventually periodic and 3 is the length of a period.

4.2. Periodicity of v5(TP). The series that corresponds to the second row of v5(TP) is

∆
(
1+X
X ·

∑
k≥1

X5k
)

= (X4 +X5)
∑
k≥0

X5k. (4.6)

We take advantage of the fact that 15 is a special number and all the binomial coefficients
(
15
k

)
,

0 ≤ k ≤ 15, are odd. Then(
1+X
X

)15
(X4 +X5)

∑
k≥0

X5k = (1 +X + · · ·+X15) · 1+X
X11 ·

∑
k≥0

X5k

= 1+X16

X11 ·
∑
k≥0

X5k.

Dropping the meromorphic and the constant term, we find that

∆
( (

1+X
X

)15
(X4 +X5)

∑
k≥0

X5k
)

= ∆
(
1+X16

X11 ·
∑
k≥0

X5k
)

= (X4 +X5)
∑
k≥0

X5k,

which, compared with (4.6) shows that the 2nd row coincides with the 16th. Thus the matrix v5(TP)
is eventually periodic and 15 is the length of a period. One can check that there is no shorter period.
For this, it suffices to calculate the terms from the first column of the matrix v5(TP). The first 16
of them are:

v5(WP(16)) = {0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1︸ ︷︷ ︸
the west-period

} .

4.3. Periodicity of vp(TP), p odd. For a general p, we can also take advantage of the fact that

there are integers M for which all the binomial coefficients
(
M
k

)
, 0 ≤ k ≤M are odd. Such integers

do exist, as follows from the next simple lemma.

Lemma 3. For any integer n ≥ 1, we have

v2(u) = v2(v), for 1 ≤ u, v ≤ 2n−1, with u+ v = 2n.

Then, by Lemma 3 and the definition of the binomial coefficients , we see that(
2n − 1

k

)
≡ 1 (mod 2), for 0 ≤ k ≤ n . (4.7)

Another requirement for M is to be divisible by p. A minimal value of n for which M = 2n − 1
is divisible by p is indp(2). (We denote by indp(a) the smallest integer 1 ≤ n ≤ p − 1 for which
an ≡ 1 (mod p).)
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Now let M = dp for some integer d ≥ 1. The series associated to the second row of vp(TP) is

S2(X) = (Xp−1 +Xp)
∑
k≥0

Xpk . (4.8)

To get the series SM+1(X) corresponding to the (M + 1)th row, we have to multiply S2(X) by
(1+X)dp

Xdp . First, let us see that

(Xp−1 +Xp)
(1 +X)dp

Xdp
=

1 +X

Xdp−p+1
(1 +X + · · ·+Xdp) =

1 +Xdp+1

Xdp−p+1
.

Then

S2(X) · (1 +X)dp

Xdp
=

1 +Xdp+1

Xdp−p+1
·
∑
k≥0

Xpk

=
∑
k≥0

Xpk−dp+p−1 +
∑
k≥0

Xpk+p.

Here the meromorphic and constant terms occur only in the first sum. Dropping them, we arrive
at

SM+1(X) = ∆
(∑
k≥0

Xpk−dp+p−1 +
∑
k≥0

Xpk+p
)

= S2(X) .

In conclusion, we have proved the following theorem.

Theorem 2. For any prime p ≥ 3, the rows of the matrix vp(TP) are eventually periodic. The
pre-period contains only the first row of the matrix and the length of the smallest period is a divisor
of 2indp(2) − 1.

We remark that 2indp(2) − 1 is not always the size of the smallest period. For example, if
p = 11, ind11(2) = 10 and 210 − 1 = 1023 = 3 · 11 · 31, but the length of the smallest period is
π11 = 11 · 31 = 341. Also, if p = 13, ind13(2) = 12 and 212 − 1 = 4095 = 32 · 5 · 7 · 13, but the
length of the smallest period is π13 = 32 · 7 · 13 = 819. As well, if p = 19, ind19(2) = 18 and
218 − 1 = 262143 = 33 · 7 · 19 · 73. In this case, again, the length of the smallest period is shorter,
π19 = (218 − 1)/33 = 9709.

There are two classes of primes: the first one, for which the length of the period of vp(TP) is

maximal (that is, 2indp(2) − 1) and the second one, for which the length of the period is strictly

smaller than 2indp(2) − 1. We do not know if either one or both of these classes contain infinitely
many primes.

The reason for the shorter periods in these cases are the arithmetic properties that produce
favorable patterns in the series of binomial coefficients. Thus, writing the binomial coefficients(
H
k

)
(mod 2), 0 ≤ k ≤ H, as concatenated letters of a word and the repeated letters as powers, for

H = 341, they are:

1202120101202120421202120101202120170120212010120212042120212010120212

and for H = 819, they are:

14012140121401214020414012140121401214020414012140121401214020414012140121401214.

A related pattern appears if p = 19. In this case H = 9709 and the word defined by the binomial
coefficients is

(AB)160512(AB)1606638(BA)160512(BA)16,

where A = 12021202120212 and B = 018.
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5. Extreme values on the West Side of WP

Calculations using power series from F2[[X]] allows us to quickly find a particular element of
matrix TP. In particular, we can find the “extreme values” of WP(m), m ≥ 1. They emerge
on the mth row of TP in places where number m, when written in base two, has either few or
many ones, compared with the rank of rows in its neighborhood. One can notice this property in
the augmented oscillations of both graphs in Figure 8. In the following, we present the concrete
structure of the most pronounced extremes, the values of WP(m), with m around powers of two.
We have to consider only the influence of odd primes, since p = 2 is involved only on the first two
rows of TP.

5.1. The size of WP(2g). Let m = 2g−1. By (4.7) we know that
(
m
j

)
≡ 1 (mod 2), for 0 ≤ j ≤ m.

To find the series associated to the (m+ 1)th row of the p-topography of TP, we have to multiply:(
1+X
X

)m∑
k≥1

Xkp = 1
Xm (1 +X + · · ·+Xm)

∑
k≥1

Xkp

=(Xp−m +Xp−m+1 + · · ·+Xp) + (X2p−m +X2p−m+1 + · · ·+X2p)+

+ (X3p−m +X3p−m+1 + · · ·+X3p) + · · ·

(5.1)

Then, p divides WP(2g) if and only if the coefficient of X in series (5.1) is odd. We see that primes
p ≥ m+ 2 are not involved and p = m+ 1 is impossible.

For any small primes 3 ≤ p ≤ m, denote by λ = λ(p,m) ≥ 1 the largest integer for which there
exist integers 0 ≤ s1, s2, . . . , sλ ≤ m, such that

1 = p+ s1 −m,
1 = 2p+ s2 −m,

...
1 = λp+ sλ −m.

(5.2)

Note that λ(p,m) exists and λ(p,m) ≤ (m+ 1)/p. Then, monomial X appears in the F2[[X]] series
(5.1) if and only if λ(p,m) is odd.

For example, if m = 15, by a simple investigation we find that λ(7, 15) is even and λ(p, 15) is
odd for p = 3, 5, 11, 13, so WP(16) = 3 · 5 · 11 · 13 = 2145. In the same way, if m = 31, we see that
λ(p, 31) is even only for p = 3, 5, 7, 11, 13, so WP(32) = 17 · 19 · 23 · 29 · 31 = 6678671.

5.2. The maximum WP(2g − 1). Let m = 2g − 2 with g ≥ 2. Then, in F2[[X]] we have

(1 +X)m = 1 +X2 +X4 + · · ·+Xm .

Finding the series that corresponds to the (2g − 1)th row of TP implicates the calculation:(
1+X
X

)m∑
k≥1

Xkp = 1
Xm (1 +X2 + · · ·+Xm)

∑
k≥1

Xkp

=(Xp−m +Xp−m+2 + · · ·+Xp) + (X2p−m +X2p−m+2 + · · ·+X2p)+

+ (X3p−m +X3p−m+2 + · · ·+X3p) + · · ·

(5.3)

Again, we have to look for terms whose power of X is equal to one. In series (5.3), the terms
corresponding to primes p ≥ m + 2 do not contribute to the coefficient of X. Also, p can not be
equal to m, because m is even.

If 2g − 1 is a Mersenne prime, then p = m+ 1 is equal with this prime. Then Xp−m = X, so p
divides WP(2g − 1).
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For the remaining primes 3 ≤ p < m, let µ = µ(p,m) be the the maximal number of equalities

1 = p+ t1 −m,
1 = 2p+ t2 −m,

...
1 = µp+ tµ −m,

(5.4)

where t1, t2, . . . , tµ are even numbers that belong to {0, 2, . . . ,m}. Notice that µ(p,m) ≤ (m+1)/p.
Then monomial X effectively appears in series (5.3) if and only if µ(p,m) ≡ 1 (mod 2). Therefore
p |WP(2g − 1) if and only if µ(p,m) is odd.

Examples: If m = 14, we find that µ(3, 14) = 3; µ(5, 14) = 2; and µ(7, 14) = µ(11, 14) =
µ(13, 14) = 1, so WP(15) = 3 · 7 · 11 · 13 = 3003.

If m = 30, p = m + 1 is a Mersenne prime. For the smaller primes, we find that µ(3, 30) = 5;
µ(5, 30) = 3; µ(7, 30) = 2; and µ(11, 30) = µ(13, 30) = µ(19, 30) = µ(23, 30) = µ(29, 30) = 1. This
implies that WP(31) = 3 · 5 · 11 · 13 · 17 · 19 · 23 · 29 · 31 = 14325749295.

5.3. The minimum WP(2g + 1). Let m = 2g. The smaller numbers on the west side of TP appear
on the rows of rank 2g + 1. This is due to the fact that (1 +X)m = 1 +Xm in F2[[X]], that is, the
binomial (1 + X)m has fewest possible terms. Then, the series that correspond to the (2g + 1)th
row sums the terms of positive powers of X from the following(

1+X
X

)m∑
k≥1

Xkp = 1
Xm (1 +Xm)

∑
k≥1

Xkp

=(Xp−m +Xp) + (X2p−m +X2p) + (X3p−m +X3p) + · · ·
(5.5)

For a given p ≥ 3, on the right-hand side of (5.5) may appear a single monomial X, and this
happens whenever there exists an integer d ≥ 1, such that dp−m = 1. This implies that the only
prime divisors p of WP(2g + 1) are those for which if p | (m+ 1).

For example, WP(9) = 3; WP(17) = 17; WP(33) = 33 and WP(1025) = 5 · 41 = 205 (because
1025 = 52 · 41); WP(32769) = 3 · 11 · 331 = 10923 (because 32769 = 215 + 1 = 32 · 11 · 331).

Other terms of sequence WP may be calculated in the same way. A few more examples are listed
in Table 1.

We collect the results from Sections 5.1-5.3 into the next theorem.

Theorem 3. Let g ≥ 2 and let λ = λ(p, 2g − 1) and µ = µ(p, 2g − 2) be the integers defined by
(5.2) and (5.4). Then

WP(2g − 1) =
∏

0≤p≤2g−3
µ(p,2g−2) odd

p; WP(2g) =
∏

0≤p≤2g−1
λ(p,2g−1) odd

p; WP(2g + 1) =
∏

p|2g+1

p .

Paradox Problem 1. Explain why WP(2g − 1) is larger than WP(2g), even if in the definition of
µ(p,m), in equalities (5.4), an extra parity restriction on numbers tj is imposed (condition that is
absent for the existence of numbers sj in (5.2)).

Removing duplicates and ordering WP, we obtain sequence

UO(WP) : 1, 2, 3, 5, 11, 15, 17, 33, 35, 51, 57, 65, 91, 105, 129, 165, 195, 205, 221,

255, 257, 385, 451, 561, 861, 897, 969, 1615, . . .
(5.6)
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Table 1. The size of WP(m) for m around 2g

power m WP(m) decomposition of WP(m) ω(WP(m))

g = 6

62 3.49 · 109 23 · 31 · 37 · 41 · 53 · 61 6
63 2.79 · 1018 3 · 7 · 11 · · · 59 · 61 13
64 4.36 · 1016 3 · 7 · 11 · · · 59 · 61 12
65 65 5 · 13 2
66 2145 3 · 5 · 11 · 13 4

g = 7

126 2.42 · 1021 3 · 5 · 7 · · · 109 · 113 14
127 7.87 · 1039 3 · 5 · 7 · · · 113 · 127 24
128 1.45 · 1034 5 · 11 · 13 · · · 113 · 127 20
129 129 3 · 43 2
130 8385 3 · 5 · 13 · 43 4

g = 8

254 6.86 · 1028 103 · 107 · 127 · · · 233 · 241 13
255 4.20 · 1076 3 · 19 · 37 · · · 241 · 251 37
256 1.17 · 1072 3 · 5 · 11 · · · 241 · 251 37
257 257 257 1
258 33153 3 · 43 · 257 3

g = 9

510 5.17 · 1092 3 · 11 · 19 · · · 461 · 509 42
511 4.35 · 10168 3 · 5 · 7 · · · 503 · 509 74
512 8.03 · 10147 7 · 13 · 29 · · · 503 · 509 63
513 57 3 · 19 2
514 14649 3 · 19 · 257 3

g = 10

1022 9.32 · 10173 7 · 71 · 109 · · · 1013 · 1021 65
1023 2.53 · 10344 3 · 7 · 11 · · · 1019 · 1021 132
1024 4.72 · 10298 3 · 11 · 19 · · · 1019 · 1021 115
1025 205 5 · 41 2
1026 11685 3 · 5 · 19 · 41 4

This is related and has terms close to those of the analogues sequence [OEIS, A222313], [CZ’14,
Question 3] obtained by starting with the initial generation N∗ instead of P. A complete discussion
based on the previous analysis might give a complete argument for the certainty of the ranks of
terms in list (5.6).

6. The West-Side of TP and TN∗

By Theorem 2 it follows that sequence vp(WP), the west edge of the matrix vp(TP), is also
periodic, for any odd prime and the pre-period contains only the first term of the sequence. We do
not know whether there is a prime p for which the length of the period of vp(WP) is strictly smaller
than the length of the period of vp(TP). If there is such a prime, then it should be larger than 23.

Comparing the general aspect of the p-tomographies of TN∗ and TP, one can observe both sim-
ilarities and significant differences. Thus, on the one hand, although there are more and more
irregularities in vp(TP) as p increases, it is still eventually periodic. On the other hand, a big noise
grows under the cells with larger and larger powers of p, if the initial generation is N∗. The most
noticeable difference is if p = 2, since v2(TP) has only zero-cells from the third row on, while v2(TN∗)
sprouts the triangles in Figure 3. For small powers of p = 3 and p = 5, the results are shown side
by side in Figures 6 and 7.

Although the noise is transmitted till the west edge, it does not cover it completely. The beginning
of sequences WN∗ and WP are:

WN∗(35) = {1, 2, 3, 6, 5, 15, 105, 70, 1, 5, 33, 55, 65, 273, 1001, 1430, 17, 17,

969, 4845, 1785, 6545, 37145, 81719, 17, 1105, 3553,

969969, 672945, 81345, 955049953, 66786710, 33, 561, 385}

and

WP(35) = {1, 2, 3, 3, 5, 15, 105, 35, 3, 15, 11, 165, 195, 91, 3003, 2145, 17, 51,

969, 1615, 1785, 19635, 37145, 245157, 255, 221, 53295,

4849845, 44863, 16269, 14325749295, 6678671, 33, 561, 385} .
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Figure 6. The tomographies of TN∗(60) (left) and TP(60) (right), for p = 3.

Code of colors for the cells containing the powers of p, from 0, 1, 2, 3:
0 1 2 3

Figure 7. The tomographies of TN∗(60) (left) and TP(60) (right) for p = 5.

Code of colors for the cells containing the powers of p, from 0, 1, 2, 3:
0 1 2 3

They are equal in 13 places, at terms of indices 1, 2, 3, 5, 6, 7, 17, 19, 21, 23, 33, 34, 35. As far as we
can check, this semblance remains valid, suggesting a general behavior. Even in places where they
differ, the terms are very close, both in size and in arithmetic structure. Compare Figures 9 and 8
to see more similarities of sequences WN and WP.

More precisely, the closeness between the two sequences can be measured by the surplus num-
ber of prime factors between WN∗(m) or WP(m) and their greatest common divisor, G(m) :=
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Figure 8. Comparison of the size and structure of the sequence WP(m),m ≥ 1:
Left: the graph of log(WP(m)); Right: the graph of ω(WP(m)).
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Figure 9. Comparison of the size and structure of the sequence WN∗(m),m ≥ 1:
Left: the graph of log(WN∗(m)); Right: the graph of ω(WN∗(m)).

gcd(WN∗(m),WP(m)), m ≥ 1. For this, the appropriate counting functions are

sN∗(f ;K) = #{1 ≤ m ≤ K : ω
(
WN∗(m)/G(m)

)
= f} ,

sP(f ;K) = #{1 ≤ m ≤ K : ω
(
WP(m)/G(m)

)
= f} .

In Table 2 we counted the number of integers m for which the surplus occurs. Notice that if m ≤
1024, the largest surplus is 7. This is small when compared with the maximum values of ω(WN∗(m))
and ω(WP(m)) in this range, which are equal to ω(WN∗(1023)) = 130 and ω(WP(1023)) = 132.

Table 2. The surplus counting functions of WN∗ and WP.

f 0 1 2 3 4 5 6 7 8 9

sN∗(f ; 1024) 391 311 183 77 41 14 5 2 0 0
sP(f ; 1024) 353 391 186 74 11 6 3 0 0 0
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Equality between WN∗(m) and WP(m) for m ≤ 1024 occurs 149 times. We also mention that
even in a larger range, integers m for which WN∗(m) = WP(m) tend to appear in clusters, often
grouping a varying number of consecutive numbers.

6.1. Primes dividing the maximal values ofWN∗(m). An intricate pattern of the sets of primes
that divide the larger values of WN∗(m) around m = 2g develops as g increases. Let us see a typical
example, the case g = 8. To emphasize the presence or absence and the position of prime divisors
in the list all primes ≤ m, we have listed them all, but in two distinguished ways. Thus WN∗(m)
is the product of primes written in normal font, while the primes that do not divide WN∗(m) are
shown in red color (in the electronic form) smaller font. Thus, we have:

WN∗(255) : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,

173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251;

WN∗(256) : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,

173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251 ,

so ω(WN∗(255)) = 40 and ω(WN∗(256)) = 37.

6.2. A problem of Sloane. N. J. A. Sloane [OEIS, A222313], [CZ’14, Question 3] orders increas-
ingly and eliminates duplicates from the terms of WN∗ and obtains sequence‡

UO(WN∗) : 1, 2, 3, 5, 6, 15, 17, 33, 41, 55, 57, 65, 70, 105, 129,

257, 273, 385, 561, 897, 969, 1001, . . .
(6.1)

He asks if the first part of the list contains all numbers ≤ 100 that appear in this sequence. The
numbers from (6.1) are obtained from the first 8200 terms of WN∗ .

Examining the terms, we observed a general formula for a numbers that make a big jump in the
beginning, during the process of ordering.

Conjecture 3. For any integer g ≥ 0, we have:

WN∗(2
g + 1) =

{
2g + 1, if 2g + 1 is square free

(2g + 1)/Dg, else,

where Dg is the largest square that divides 2g + 1.

For small ranks, if g ≤ 13, Conjecture 3 verifies, since 2g + 1 is prime, for g = 1, 2, 4, 8, or a
product of two distinct primes, for g = 5, 6, 7, 11, 12, 13, and WN∗(2

g + 1) = 2g + 1 in these cases.
For the remaining values, we have: WN∗(2

3 + 1) = WN∗(3
2) = 1; WN∗(2

8 + 1) = WN∗(3
3 · 19) = 57;

WN∗(2
10 + 1) = WN∗(5

2 · 41) = 41.
Verifying the decomposition of a few hundred more numbers of the form 2g + 1 and assuming,

confer the above discussion, that the smallest local minimums of WN∗ are attained at these ranks,
we should expect a positive answer to Sloane’s question.

Paradox Problem 2. Explain the peculiarity: why, given that the towers of the p-tomographies
are higher when starting with the initial generation N∗ instead of P, more non-zero cells appear on
the western edge in the second case. For example, counting only terms less than 1000, we find 27
terms in OU(WP) and 21 terms in OU(WN∗).

‡Considering only the first five hundred terms, Sloane missed WN∗(1025) = 41 and WN∗(513) = 57 from the list of
terms of size smaller than 100.
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