THE PASCAL RHOMBUS AND THE GENERALIZED GRAND MOTZKIN PATHS

JOSÉ L. RAMÍREZ

Abstract

In the present article, we find a closed expression for the entries of the Pascal rhombus. Moreover, we show a relation between the entries of the Pascal rhombus and a family of generalized grand Motzkin paths.

1. Introduction

The Pascal rhombus was introduced by Klostermeyer et al. [6] as a variation of the wellknown Pascal triangle. It is an infinite array $\mathcal{R}=\left[r_{i, j}\right]_{i=0, j=-\infty}^{\infty, \infty}$ defined by

$$
\begin{equation*}
r_{i, j}=r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}+r_{i-2, j}, \quad i \geq 2, \quad j \in \mathbb{Z}, \tag{1.1}
\end{equation*}
$$

with the initial conditions

$$
r_{0,0}=r_{1,-1}=r_{1,0}=r_{1,1}=1, \quad r_{0, j}=0(j \neq 0), \quad r_{1, j}=0, \quad(j \neq-1,0,1) .
$$

The first few rows of \mathcal{R} are

Klostermeyer et al. [6] studied several identities of the Pascal rhombus. Goldwasser et al. [4] proved that the limiting ratio of the number of ones to the number of zeros in \mathcal{R}, taken modulo 2, approaches zero. This result was generalized by Mosche 7. Recently, Stockmeyer [9] proved four conjectures about the Pascal rhombus modulo 2 given in [6].

The Pascal rhombus corresponds with the entry A059317 in the On-Line Encyclopedia of Integer Sequences (OEIS) [8], where it is possible to read: There does not seem to be a simple expression for $r_{i, j}$.

In the present article, we find an explicit expression for $r_{i, j}$. In particular, we prove that

$$
r_{i, j}=\sum_{m=0}^{i} \sum_{l=0}^{i-j-2 m}\binom{2 m+j}{m}\binom{l+j+2 m}{l}\binom{l}{i-j-2 m-l} .
$$

For this we show that $r_{i, j}$ is equal to the number of 2-generalized grand Motzkin paths.

THE FIBONACCI QUARTERLY

2. The Main Result

A Motzkin path of length n is a lattice path of $\mathbb{Z} \times \mathbb{Z}$ running from $(0,0)$ to $(n, 0)$ that never passes below the x-axis and whose permitted steps are the up diagonal step $U=(1,1)$, the down diagonal step $D=(1,-1)$ and the horizontal step $H=(1,0)$, called rise, fall and level step, respectively. The number of Motzkin paths of length n is the n-th Motzkin number m_{n}, (sequence A001006). Many other examples of bijections between Motzkin numbers and others combinatorial objects can be found in [1]. A grand Motzkin path of length n is a Motzkin path without the condition that never passes below the x-axis. The number of grand Motzkin paths of length n is the n-th grand Motzkin number g_{n}, sequence A002426. A 2-generalized Motzkin path is a Motzkin path with an additional step $H_{2}=(2,0)$. The number of 2-generalized Motzkin paths of length n is denoted by $m_{n}^{(2)}$. Analogously, we have 2-grand generalized Motzkin paths, and the number of these paths of length n is denoted by $g_{n}^{(2)}$.

Lemma 2.1. The generating function of the 2-generalized Motzkin numbers is given by

$$
\begin{align*}
B(x):=\sum_{i=0}^{\infty} m_{i}^{(2)} x^{i} & =\frac{1-x-x^{2}-\sqrt{1-2 x-5 x^{2}+2 x^{3}+x^{4}}}{2 x^{2}} \tag{2.1}\\
& =\frac{F(x)}{x} C\left(F(x)^{2}\right), \tag{2.2}
\end{align*}
$$

where $F(x)$ and $C(x)$ are the generating functions of the Fibonacci numbers and Catalan numbers, i.e.,

$$
F(x)=\frac{x}{1-x-x^{2}}, \quad C(x)=\frac{1-\sqrt{1-4 x}}{2 x} .
$$

Proof. From the first return decomposition any nonempty 2-generalized Motzkin path T may be decomposed as either $U T^{\prime} D T^{\prime \prime}, H T^{\prime}$, or $H_{2} T^{\prime}$, where $T^{\prime}, T^{\prime \prime}$ are 2-generalized Motzkin paths (possible empty). Making use of the Flajolet's symbolic method (cf. [3]) we obtain

$$
B(x)=1+\left(x+x^{2}\right) B(x)+x^{2} B(x)^{2} .
$$

Therefore Equation (2.1) follows. Moreover,

$$
\begin{aligned}
B(x) & =\frac{1-x-x^{2}-\sqrt{\left(1-x-x^{2}\right)^{2}-4 x^{2}}}{2 x^{2}}=\frac{1-\sqrt{1-4\left(\frac{x}{1-x-x^{2}}\right)^{2}}}{\frac{2 x^{2}}{1-x-x^{2}}} \\
& =\frac{1}{1-x-x^{2}} \frac{1-\sqrt{1-4 F(x)^{2}}}{2 F(x)^{2}}=\frac{F(x)}{x} C\left(F(x)^{2}\right) .
\end{aligned}
$$

The height of a 2-generalized grand Motzkin path is defined as the final height of the path, i.e., the stopping y-coordinate. The number of 2-generalized grand Motzkin paths of length n and height j is denoted by $g_{n, j}^{(2)}$.
Theorem 2.2. The generating function of the 2-generalized grand Motzkin paths of height j is

$$
M^{(j)}(x):=\sum_{i=0}^{\infty} g_{i, j}^{(2)} x^{i}=\frac{F(x)^{j+1} C\left(F(x)^{2}\right)^{j}}{x\left(1-2 F(x)^{2} C\left(F(x)^{2}\right)\right)},
$$

HYPERGEOMETRIC TEMPLATE

where $F(x)$ and $C(x)$ are the generating function of the Fibonacci numbers and Catalan numbers. Moreover,

$$
g_{i, j}^{(2)}=\sum_{m=0}^{i} \sum_{l=0}^{i-j-2 m}\binom{2 m+j}{m}\binom{l+j+2 m}{l}\binom{l}{i-j-2 m-l}, \quad(0 \leq j \leq i)
$$

Proof. Consider any 2-generalized grand Motzkin path P. Then any nonempty path P may be decomposed as either

$$
U M D P^{\prime}, \quad D M U P^{\prime}, \quad H P^{\prime}, \quad H_{2} P^{\prime}, \quad \text { or } \quad U M_{1} U M_{2} \cdots U M_{j}
$$

where M, M_{1}, \ldots, M_{j} are 2-generalized Motzkin paths (possible empty), P^{\prime} is a 2-generalized grand Motzkin path (possible empty).

Schematically,

Figure 1. Factorizations of any 2-generalized grand Motzkin path.

From the Flajolet's symbolic method we obtain

$$
M^{(j)}(x)=2 x^{2} B(x) M^{(j)}(x)+\left(x+x^{2}\right) M^{(j)}(x)+x^{j}(B(x))^{j}, \quad j \geq 0
$$

Therefore

$$
M^{(j)}(x)=\frac{x^{j} B(x)^{j}}{1-x-x^{2}-2 x^{2} B(x)}
$$

From Lemma 2.1 we get

$$
M^{(j)}(x)=\frac{x^{j}\left(\frac{F(x)}{x} C\left(F(x)^{2}\right)\right)^{j}}{1-x-x^{2}-2 x^{2} \frac{F(x)}{x} C\left(F(x)^{2}\right)}=\frac{F(x)^{j+1} C\left(F(x)^{2}\right)^{j}}{x\left(1-2 F(x)^{2} C\left(F(x)^{2}\right)\right)}
$$

On the other hand, from the following identity (see Ec. 2.5.15 of [10])

$$
\frac{1}{\sqrt{1-4 x}}\left(\frac{1-\sqrt{1-4 x}}{x}\right)^{k}=\sum_{m=0}^{\infty}\binom{2 m+k}{m} x^{m}
$$

THE FIBONACCI QUARTERLY

we obtain

$$
\frac{C\left(x^{2}\right)^{j}}{1-2 x^{2} C\left(x^{2}\right)}=\sum_{m=0}^{\infty}\binom{2 m+j}{m} x^{2 m}
$$

Therefore

$$
\begin{aligned}
M^{(j)}(x) & =\frac{F(x)^{j+1}(x)}{x} \sum_{m=0}^{\infty}\binom{2 m+j}{m} F(x)^{2 m}=\frac{1}{1-x-x^{2}} \sum_{m=0}^{\infty}\binom{2 m+j}{m} F(x)^{2 m+j} \\
& =\sum_{m=0}^{\infty}\binom{2 m+j}{m} \frac{x^{2 m+j}}{\left(1-x-x^{2}\right)^{2 m+j+1}}=\sum_{m=0}^{\infty} \sum_{l=0}^{\infty}\binom{2 m+j}{m}\binom{l+j+2 m}{l}(1+x)^{l} x^{2 m+j+l} \\
& =\sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{s=0}^{l}\binom{2 m+j}{m}\binom{l+j+2 m}{l}\binom{l}{s} x^{2 m+j+l+s},
\end{aligned}
$$

Put $t=2 m+j+l+s$

$$
M^{(j)}(x)=\sum_{m=0}^{\infty} \sum_{l=0}^{\infty} \sum_{t=2 m+j+l}^{2 m+j+2 l}\binom{2 m+j}{m}\binom{l+j+2 m}{l}\binom{l}{t-2 m-j-l} x^{t} .
$$

The result follows by comparing the coefficients.
Theorem 2.3. The number of 2-generalized grand Motzkin paths of length n and height j is equal to the entry (n, j) in the Pascal rhombus, i.e.,

$$
r_{n, j}=g_{n, j}^{(2)} .
$$

Proof. The sequence $g_{n, j}^{(2)}$ satisfies the recurrence (1.1) and the same initial values. It is clear, by considering the positions preceding to the last step of any 2-generalized grand Motzkin path.

Corollary 2.4. The generating function of the j th column of the Pascal rhombus is

$$
L_{j}(x)=\frac{F(x)^{j+1} C\left(F(x)^{2}\right)^{j}}{x\left(1-2 F(x)^{2} C\left(F(x)^{2}\right)\right)},
$$

where $F(x)$ and $C(x)$ are the generating function of the Fibonacci numbers and Catalan numbers. Moreover,

$$
r_{i, j}=\sum_{m=0}^{i} \sum_{l=0}^{i-j-2 m}\binom{2 m+j}{m}\binom{l+j+2 m}{l}\binom{l}{i-j-2 m-l} \quad(0 \leq j \leq i) .
$$

The convolved Fibonacci numbers $F_{j}^{(r)}$ are defined by

$$
\left(1-x-x^{2}\right)^{-r}=\sum_{j=0}^{\infty} F_{j+1}^{(r)} x^{j}, \quad r \in \mathbb{Z}^{+} .
$$

If $r=1$ we have the classical Fibonacci sequence.
Note that

$$
F_{m+1}^{(r)}=\sum_{j_{1}+j_{2}+\cdots+j_{r}=m} F_{j_{1}+1} F_{j_{2}+1} \cdots F_{j_{r}+1} .
$$

Moreover, using a result of Gould [5, p. 699] on Humbert polynomials (with $n=j, m=2, x=$ $1 / 2, y=-1, p=-r$ and $C=1$), we have

$$
F_{j+1}^{(r)}=\sum_{l=0}^{\lfloor j / 2\rfloor}\binom{j+r-l-1}{j-l}\binom{j-l}{l} .
$$

Corollary 2.5. The following equality holds

$$
\begin{equation*}
r_{i, j}=\sum_{m=0}^{\left\lfloor\frac{i-j}{2}\right\rfloor}\binom{2 m+j}{m} F_{i-j-2 m+1}^{(j+2 m+1)}, \tag{2.3}
\end{equation*}
$$

where $F_{l}^{(r)}$ are the convolved Fibonacci numbers.
Proof.

$$
L_{n}(x)=\sum_{m=0}^{\infty}\binom{2 m+n}{m} \frac{x^{2 m+n}}{\left(1-x-x^{2}\right)^{n+2 m+1}}=\sum_{m=0}^{\infty} \sum_{j=0}^{\infty}\binom{2 m+n}{m} F_{j+1}^{(n+2 m+1)} x^{2 m+n+j}
$$

Put $t=2 m+n+j$

$$
L_{n}(x)=\sum_{m=0}^{\infty} \sum_{t=2 m+n}^{\infty}\binom{2 m+n}{m} F_{t-2 m-n+1}^{(n+2 m+1)} x^{t} .
$$

The result follows by comparing the coefficients.
Example 2.6. The generating function of the central column of the Pascal rhombus (sequence A059345) is

$$
L_{0}(x)=\frac{1}{\sqrt{1-2 x-5 x^{2}+2 x^{3}+x^{4}}}=1+x+4 x^{2}+9 x^{3}+29 x^{4}+82 x^{5}+255 x^{6}+\cdots .
$$

The generating function of the first few columns $(j=1,2,3)$ of the Pascal rhombus are:

$$
\begin{align*}
& L_{1}(x)=x+2 x^{2}+8 x^{3}+22 x^{4}+72 x^{5}+218 x^{6}+691 x^{7}+2158 x^{8}+\cdots, \quad \text { (A106053) } \\
& L_{2}(x)=x^{2}+3 x^{3}+13 x^{4}+42 x^{5}+146 x^{6}+476 x^{7}+1574 x^{8}+\cdots, \quad \text { (A106050) } \tag{A106050}\\
& L_{3}(x)=x^{3}+4 x^{4}+19 x^{5}+70 x^{6}+261 x^{7}+914 x^{8}+3177 x^{9}+\cdots
\end{align*}
$$

Remark: The results of this article were discovered by using the Counting Automata Methodology, [2].

3. Acknowledgements

The author thanks the anonymous referee for his/her comments and remarks, which helped to improve the article.

References

[1] F. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math. 204(1999), 73-112.
[2] R. De Castro, A. Ramrez and J. Ramrez, Applications in enumerative combinatorics of infinite weighted automata and graphs, Sci. Ann. Comput. Sci., 24.1 (2014), 137-171.
[3] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Camdridge, 2009.
[4] J. Goldwasser, W. F. Klostermeyer, M. E. Mays and G. Trapp, The density of ones in Pascal's rhombus, Discrete Math. 204 (1999), 231-236.
[5] H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J. 32.4 (1965), 697-711.

THE FIBONACCI QUARTERLY

[6] W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus. The Fibonacci Quarterly, 35 (1997), 318-328.
[7] Y. Moshe. The density of 0 's in recurrence double sequences. J. Number Theory, 103 (2003), 109-121.
[8] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[9] P. K. Stockmeyer, The Pascal rhombus and the stealth configuration, http://arxiv.org/abs/1504.04404, (2015).
[10] H. S. Wilf, generatingfunctionology, Academic Press, Second Edition, 1994.
MSC2010: 05A19, 11B39, 11B37.
Departamento de Matemáticas, Universidad Sergio Arboleda, Bogotá, Colombia
E-mail address: josel.ramirez@ima.usergioarboleda.edu.co

