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Abstract

We provide a new succession rule (i.e. generating tree) associated with Schröder num-
bers, that interpolates between the known succession rules for Catalan and Baxter numbers.
We define Schröder and Baxter generalizations of parallelogram polyominoes (called slicings)
which grow according to these succession rules. We also exhibit Schröder subclasses of Bax-
ter classes, namely a Schröder subset of triples of non-intersecting lattice paths, and a new
Schröder subset of Baxter permutations.

Keywords: Parallelogram polyominoes, Generating trees, Baxter numbers, Schröder numbers,
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1 Introduction

The sequence of Catalan numbers (a000108 in [14]) is arguably the most well-know combinatorial
sequence. It is known to enumerate dozens of families of combinatorial objects, among which
Dyck paths, parallelogram polyominoes, or τ -avoiding permutations1, for any permutation τ of
size 3. In this paper, we are interested in Catalan numbers as well as in two larger combinatorial
sequences: the Schröder and Baxter numbers.

Baxter numbers (sequence a001181 in [14]) were first introduced in [9], where it is shown
that they count Baxter permutations. They also enumerate numerous families of combinatorial
objects, and their study has attracted significant attention, see for instance [4, 10]. Many such
Baxter families can be immediately seen to contain a Catalan subfamily. For instance, the set of
triples of non-intersecting lattice paths (NILPs from here on) contains all pairs of NILPs (that
are in essence parallelogram polyominoes, see Figure 1); and Baxter permutations, defined by
the avoidance of the vincular2 patterns 2 41 3 and 3 14 2, include τ -avoiding permutations, for any
τ ∈ {132, 213, 231, 312}.

On the other hand, the (large) Schröder numbers (sequence a006318) seem to be a bit less
popular. They also form a sequence point-wise larger than the Catalan sequence, and it is ad-
ditionally point-wise smaller than the Baxter sequence. This transpires easily on permutations,
where the Schröder numbers are counting the separable permutations [13, 16], defined by the
avoidance of 2413 and 3142.

The main purpose of this article is to explain and illustrate the inclusions “Catalan in Schröder
in Baxter”. Although these inclusions are obvious on pattern-avoiding permutations, they remain
quite obscure on other objects. Indeed, looking at several combinatorial objects, it appears that
the permutation example is a little miracle, and that the unclarity of these inclusions is rather
the rule here. To give only a few examples, consider for instance lattice paths: the Dyck paths

1Recall that a permutation σ = σ1σ2 . . . σn contains τ = τ1τ2 . . . τk if there exists i1 < i2 < . . . < ik such that
σia < σib if and only if τa < τb. Otherwise, σ avoids τ .

2Note that we do not represent vincular patterns with dashes, as it was done originally. We prefer the more
modern and more coherent notation that indicates by a symbol the elements of the pattern that are required to
be adjacent in an occurrence. The definition of avoidance of a vincular pattern will be reviewed in Section 3.
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generalize into Schröder paths, but have to our knowledge no natural Baxter analogue; on the
contrary, pairs of NILPs are counted by Catalan, whereas triples of NILPs are counted by Baxter,
leaving Schröder aside. Or, consider another well-known Catalan family: that of binary trees.
There are Schröder and Baxter objects generalizing binary trees (like Schröder trees, with an
additional sign on the root on one hand, or pairs of twin binary trees on the other), but they have
apparently nothing in common.

As these examples illustrate, the Baxter and Schröder generalizations of Catalan objects are
often independent and are not easily reconciled. This fact is also visible at a more abstract level,
i.e. without referring to specific combinatorial families: by considering the generating trees (with
their corresponding succession rules) associated with these sequences (we will review the basics of
generating trees in Section 2). As we demonstrate in this work, for the known generating trees
associated with the Schröder and Baxter numbers, when they can be seen as generalizations of the
generating tree of Catalan numbers, then these two generalizations go in two opposite directions.
Our main contribution is to provide a continuum from Catalan to Baxter via Schröder, that is
visible at the abstract level of succession rules. Specializing these on particular objects, it allows
us to define compatible Schröder and Baxter generalizations of Catalan objects. We will focus
mostly on generalizations of parallelogram polyominoes, that we call slicings of parallelogram
polyominoes. Section 3 defines our Baxter slicings (showing also their tight connection with
triples of NILPs). These new objects allow us to see that the usual Baxter succession rule does
nothing but symmetrize the Catalan succession rule. In Section 4, we introduce a new succession
rule associated with Schröder numbers, that interpolates between the Catalan and Baxter rules
of Sections 2 and 3. Letting our slicings grow with this rule allows us to define the family of
Schröder slicings. From there, the last two sections go in different directions. Section 5 presents
other Schröder subclasses of Baxter classes, obtained via our new Schröder succession rule: in
the case of triples of NILPs and of permutations. In Section 6, we introduce more intermediate
classes between Catalan and Baxter, refining our new Schröder succession rule with a parameter
that may vary.

2 Parallelogram polyominoes and their generating tree for
Catalan numbers

There are many ways of defining (or characterizing) parallelogram polyominoes in the literature,
and we only give one that fits our needs.

Definition 1. A parallelogram polyomino P (see an example on Figure 1(a)) is an (edge-
)connected set of unit cells in the Cartesian plane, that is the interior of a contour defined by
two paths, which are composed of (0, 1) and (1, 0) steps and which never meet except at their
beginning and end. Denoting (k, `) the dimension of the minimal bounding rectangle of P , the
semi-perimeter of P is k + `, and the size of P is k + `− 1.

(c)(a) (b)

Figure 1: (a) A parallelogram polyomino P of size 11, (b) a Baxter slicing of shape P , and (c) the
triples of NILPs associated with it.

We start by reviewing generating trees [2, 3, 16], and in particular the generating tree for
Catalan numbers associated with parallelogram polyominoes.
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A generating tree for a combinatorial class C is a infinite rooted tree, whose vertices are the
objects of C, each appearing exactly once in the tree, and such that objects of size n are at distance
n from the root (with the convention that the root is at distance 1 from itself, and is labeled by the
only object of size 1 in C). The children of some object c ∈ C are obtained adding an atom (i.e., a
piece of object that makes its size increase by 1) to c. Of course, since every object should appear
only once in the tree, not all additions are possible. We should ensure the unique appearance
property by considering only additions that follow some restricted rules. We will call the growth
of C the process of adding atoms following these prescribed rules.

, ., ,

Figure 2: The growth of parallelogram polyominoes.

A generating tree of parallelogram polyominoes was described in [3], and the corresponding
growth is illustrated on Figure 2. The atoms that may be inserted are rightmost columns (of any
possible height from 1 to the height of the current rightmost column), and topmost rows of width
1. Note that the restriction on the width of the new row added is here only to ensure that no
polyomino is produced several times. Note also that the symmetric growth, that allows rows of any
admissible width but columns of height 1 only, also describes a generating tree for parallelogram
polyominoes, which is isomorphic to the first one.

All that matters to us is the shape of a generating tree, forgetting the combinatorial objects on
the vertices. In what follows, we will use the phrase “generating tree” to denote this shape only,
referring instead to “full generating trees” when the nodes are carrying combinatorial objects.

Generating trees become substantially useful if they can be described in an abstract way,
without referring to the details of the combinatorial objects. More precisely, for a combinatorial
class C, assuming that there is a statistics on the objects of C, whose value determines the number
of children in the full generating tree, then the (shape of the) generating tree depends only on how
the value of the statistics evolves from a object to its children. When such a statistics exists, we
give labels to the objects of C, which indicate the value of the statistics. The associated succession
rule is then given by the label of the root and, for any label k, the labels of the children of an
object labeled by k. A succession rule characterizes completely a generating tree.

In the case of parallelogram polyominoes, the number of children is determined by the height
of the rightmost column (namely, it is this height +1), and it is easy to follow the height of
the rightmost column along their growth. It follows that the generating tree of parallelogram
polyominoes described above is completely determined by the following succession rule:

root labeled (1) and (k) (1), (2), . . . , (k), (k + 1). (Cat)

We will denote this generating tree by TCat. It is represented in Figure 4.
Note that, given a succession rule and its subsequent generating tree, we can associate with

it an enumeration sequence, whose n-th term cn is the number of vertices in the tree at distance
n from the root. Of course, (cn) is the enumeration sequence of any combinatorial class that
has a (full) generating tree encoded by the given succession rule. But our point, which will be
essential later on, is that the sequence may also be associated directly with the generating tree,
without reference to any combinatorial class. On our example, it follows that rule (Cat) (and the
corresponding tree TCat) is associated with the Catalan numbers, hence its name.
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3 Baxter slicings

3.1 A Baxter succession rule generalizing Catalan

There are several succession rules associated with Baxter numbers [5, 6, 7, 8]. We will be inter-
ested in one of these rules only which, in addition to being the most well-known, is the one that
generalizes the rule for Catalan number in the most natural way. The rule is:

root labeled (1, 1) and (h, k) 

{
(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), (h+ 1, 2), . . . , (h+ 1, k).
(Bax)

We denote by TBax the generating tree associated with this rule, and shown in Figure 4. A proof
that it corresponds to Baxter numbers can be found in [5, 11], where it is proved that the Baxter
permutations grow according to rule (Bax). Recall that Baxter permutations are those avoiding
the vincular patterns 2 41 3 and 3 14 2, i.e. permutations σ such that no subsequence σiσjσj+1σk
satisfies σj+1 < σi < σk < σj or σj < σk < σi < σj+1. From [5, 11], the growth of Baxter
permutations according to rule (Bax) consists, for any Baxter permutation σ, in inserting a new
maximum element either immediately to the left of a left-to-right maximum of σ, or immediately
to the right of a right-to-left maximum of σ. The label (h, k) of a permutation records the number
of its left-to-right maxima (for h) and right-to-left maxima (for k).

It is easily seen, however rarely noticed, that rule (Bax) generalizes rule (Cat) (so that TBax

contains a subtree isomorphic to TCat). Indeed, the production of label (h, k) in rule (Bax) includes
labels (h+1, i) for 1 ≤ i ≤ k and label (1, k+1), for instance3. Keeping track of the second element
of the label only gives back the Catalan rule (Cat). Moreover, for another subset of the labels
produced, the same holds keeping track of the first element only.

In some sense, rule (Bax) is just the symmetric version of rule (Cat). This is very well un-
derstood on the growth of parallelogram polyominoes according to rule (Cat). As we have seen,
with rule (Cat), a rightmost column may be added, of all possible heights; but only a topmost
row of width 1 is allowed. But the symmetric variant of this rule, allowing addition of a topmost
row of all possible widths, and of a rightmost column of height 1, also works. So we can think of
rule (Bax) as generating parallelogram polyominoes symmetrically, allowing at the same time the
insertion of a rightmost column of any possible height, or of a topmost row of any possible width.
Of course, this process generates the parallelogram polyominoes ambiguously.

3.2 Definition and growth of Baxter slicings

Our remark that rule (Bax) generates parallelogram polyominoes symmetrically but ambiguously
motivates the definition of new combinatorial objects, that generalize parallelogram polyominoes,
and grow unambiguously according to rule (Bax). From the discussion above, the natural gen-
eralization is to let parallelogram polyominoes grow according to rule (Bax) as we explain, but
to record the “building history” of the polyomino, that is, which columns and rows where added
by the growth process. The objects obtained are parallelogram polyominoes whose interior is
divided into blocks, of width or height 1. We call these objects Baxter slicings of parallelogram
polyominoes, or Baxter slicings for short.

Definition 2. A Baxter slicing (see an example on Figure 1(b)) of size n is a parallelogram
polyomino P of size n whose interior is divided into n blocks as follows: one block is the topmost
row (resp. rightmost column) of P – such blocks are called horizontal (resp. vertical) blocks –, and
the other n− 1 blocks form a Baxter slicing of the parallelogram polyomino of size n− 1 obtained
by deletion of the topmost row (resp. rightmost column) of P .

Theorem 3. Baxter slicings grow according to rule (Bax) and are enumerated by Baxter numbers.

3 Remark that, comparing the growth of Baxter slicings (defined later) with that of parallelogram polyominoes,
it is natural to consider label (1, k + 1). But choosing (h, k + 1) instead would of course also satisfy our purpose.
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Proof. It is clear that Baxter slicings grow according to rule (Bax): a Baxter slicing has label (h, k)
when the topmost row has width h and the rightmost column has height k, and the productions
of label (h, k) are immediately seen to correspond to the Baxter slicings obtained adding a new
horizontal block in a new topmost row, of any width between 1 and h, or a new vertical block in
a new rightmost columns, of any height between 1 and k. As a consequence, Baxter slicings are
enumerated by Baxter numbers.

The growth of Baxter slicings according to rule (Bax) is shown in Figure 3.

, ;

., ,

,

Figure 3: The growth of Baxter slicings following rule (Bax).

3.3 Bijection with triples of NILPs

Among the combinatorial families enumerated by Baxter numbers, one can be seen to be in
bijection with Baxter slicings in a very simple way, namely, the triples of NILPs.

Definition 4. A path of size n is a sequence of North (N = (0, 1)) and East (E = (1, 0)) steps,
containing n − 1 steps in total. Given three paths u, m, and d of the same size n, all containing
the same number of E (and N) steps, (u,m, d) is a triple of non-intersecting lattice paths (for
short, triple of NILPs) of size n when the embeddings of u, m and d in the plane never meet, with
u (resp. m, resp. d) starting at the point of coordinates (0, 2) (resp. (1, 1), resp. (2, 0)).

Theorem 5. The following construction, illustrated on Figure 1(c) provides a size-preserving
bijection between Baxter slicings and triples of NILPs:

Consider a Baxter slicing of a parallelogram polyomino P , whose bottom-left corner is
assumed to be placed at coordinates (0, 0). Define the paths

- u corresponding to the upper border of P , except the first and last steps,
- d corresponding to the lower border of P , except the first and last steps,
- and m going from (1, 1) to the top-right corner of P , following the lower border of
every horizontal block of the slicing, and the right border of every vertical block,

and associate the triple (u,m, d) to the original Baxter slicing.

Proof. Consider a Baxter slicing of a parallelogram polyomino P , and define u,m and d as above.
Shifting by one the path u (resp. d) upwards (resp. rightwards) so that the starting point is at (0, 2)
(resp. (2, 0)), we want to prove (u,m, d) is a triple of NILPs of size n. Note that by construction
each step of the path m is inside or on the border of the polyomino P ; this immediately ensures
the non-intersecting property. Moreover, by construction all paths u,m and d have n − 1 steps,
if n+ 1 denotes the semi-perimeter of P . Finally, we easily check that u,m and d have the same
number of E and N steps as follows. Since the path m separates the horizontal blocks, which
remain above it, from the vertical ones, which remain below it, each step of this path is either the
right edge of a horizontal block or the upper edge of a vertical block. Then, the paths u (resp. d)
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and m have the same number of N (resp. E) steps, as each N (resp. E) step of the path u (resp.
d) is the left (resp. lower) edge of a horizontal (resp. vertical) block.

To prove that this construction is a bijection, we describe its inverse. To any triple (u,m, d)
such as in Definition 4 corresponds a unique Baxter slicing of a parallelogram polyomino P , whose
contour is defined by u and d and the block division is obtained by m. More precisely, we obtain
the contour of P adding an initial and a final step to both the paths u and d and drawing them
starting at (0, 0). Let the starting point of the path m be in (1, 1). Then, the blocks inside P
are drawn according to the steps of m: for every E (resp. N) step s in m, draw a vertical (resp.
horizontal) block whose top (resp. right) edge is s and that extends downwards (resp. leftwards)
until the border of P ; and finally, add the initial block consisting of one cell extending from (0, 0)
to (1, 1).

Up to the simple bijective correspondence described in Theorem 5, our Theorem 3 can also be
seen as a description of the growth of triples of NILPs according to the generating tree TBax. To
our knowledge, this was never described, although both triples of NILPs [15] and the tree TBax [5]
are well-known to correspond to Baxter numbers.

3.4 Baxter slicings of a given shape

One of the most basic enumerative questions that one may ask about Baxter slicings is to determine
the number of Baxter slicing whose shape is a given parallelogram polyomino P . This is not the
main focus of our work, so we just give the extremal cases, where the answer to this question is
immediate, leaving more complicated cases as an open question.

Observation 6. Let P be the parallelogram polyomino of rectangular shape, whose bounding
rectangle has dimensions k × `. The number of Baxter slicings of P is

(
k+`−2
`−1

)
.

Proof. This follows from Theorem 5, since the number of Baxter slicings of P coincides with the
number of paths from (1, 1) to (k, `) using N and E steps.

Observation 7. Let P be a snake, that is, a parallelogram polyomino not containing four cells

placed as . There is only one Baxter slicing of P .

Proof. We prove that if P is a snake of size n, then its interior is unambiguously divided in n

blocks, each consisting of a single cell. Since P does not contain , then the topmost cell in
the rightmost column is the only cell in its row or the only cell in its column. In the former
(resp. latter) case, it forms a horizontal (resp. vertical) block. Removing this block from P , the
remaining cells form a snake of size n− 1, and the result follows by induction.

4 Schröder slicings

Our interest in defining Baxter slicings is to find a family of objects enumerated by the Schröder
numbers, that lie between parallelogram polyominoes and Baxter slicings, and which grow ac-
cording to a succession rule that generalizes (Cat) while specializing (Bax). Note that to our
knowledge, out of the many succession rules for Schröder numbers [12, 16], none has this property.

4.1 A new Schröder succession rule

Let us consider the following succession rule, whose associated generating tree is denoted TSch

(shown in Figure 4):

root labeled (1, 1) and (h, k) 

{
(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k − 1), (h+ 1, k).
(NewSch)
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Theorem 8. The enumeration sequence associated with rule (NewSch) is that of Schröder num-
bers.

Proof. From [16], we know that the following succession rule is associated with Schröder numbers:

root labeled (2) and (j) (3), (4), . . . , (j), (j + 1), (j + 1). (Sch)

We claim that rules (NewSch) and (Sch) produce the same generating tree. Indeed, replacing each
label (h, k) in rule (NewSch) by the sum h+ k of its elements immediately gives rule (Sch).

It is not obvious that rule (Sch) generalizes rule (Cat), ensuring that TSch contains a subtree
isomorphic to TCat. But this becomes clear with rule (NewSch), which can be immediately seen
to generalize rule (Cat), in the same fashion rule (Bax) does. Indeed, in rule (NewSch), looking
only at the productions (2, 1), (2, 2), . . . , (2, k − 1), (h + 1, k) and (1, k + 1) of a label (h, k), and
considering the second component of the labels, we recover rule (Cat).

What is further interesting with rule (NewSch) is that rule (Bax) for Baxter numbers generalizes
it. Indeed, the only difference between them is that labels (h + 1, i) for 1 ≤ i ≤ k − 1 in the
production of rule (Bax) are replaced by (2, i) in rule (NewSch). Moreover, induction shows that
the generating tree produced from root (h, k) in rule (NewSch) is (isomorphic to) a subtree of the
generating tree produced from root (h′, k) in rule (Bax), for all h′ ≥ h. All together this proves
our claim that TSch is (isomorphic to) a subtree of TBax.

To our knowledge, this is the first time three succession rules for Catalan, Schröder and Baxter
numbers are given, which are each a generalization of the previous one. The generating trees for
rules (Cat), (NewSch) and (Bax) are shown in Figure 4.

4.2 Definition of Schröder slicings, and their growth

We want to define Schröder slicings so that they form a subset of the Baxter slicings, that is
enumerated by the Schröder numbers, and whose growth is described by rule (NewSch). To do
that, recalling that TSch is (isomorphic to) a subtree of TBax, it is enough to label the vertices of
TBax by the corresponding Baxter slicings, and to keep only the objects which label a vertex of
its subtree TSch. With this global approach to the definition of Schröder slicings, the problem is
then to provide a characterization of these objects that would be local, i.e. that could be checked
on any given Baxter slicing without reconstructing the whole chain of productions according to
rule (Bax) that resulted in this object.

For the sake of clarity, we have chosen to reverse the order in the presentation of Schröder
slicings, that is to say, we will first give their “local characterization”, and then prove that they
grow according to rule (NewSch).

Definition 9. Let B be a Baxter slicing of a parallelogram polyomino P , and u be a horizontal
block of B. We denote by `(u) the width of u. The projection X(u) of u on the lower border of P
is the lower-most point of this border whose abscissa is that of the right edge of u. We now define
r(u) to be the number of horizontal steps on the lower border of P to the left of X(u) before a
vertical step (or the bottom-left corner of P ) is met.

Definition 10. A Schröder slicing is any Baxter slicing such that for any horizontal block u, the
following inequality holds:

`(u) ≤ r(u) + 1. (`r)

Figure 5(a,b) illustrates the definitions of `(u) and r(u), and shows an example of Schröder
slicing.

Theorem 11. A generating tree for Schröder slicings is TSch, associated with rule (NewSch).
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(3, 1)
(3, 2)
(3, 3)
(1, 4)
(2, 4)

(1, 3)

(2, 1)

(3, 1)
(1, 2)
(2, 2)

(2, 2)

(3, 1)
(3, 2)
(1, 3)
(2, 3)

(2, 3)

(3, 1)
(3, 2)
(3, 3)
(1, 4)
(2, 4)

(1, 4)

(2, 1)
(2, 2)
(2, 3)
(2, 4)
(1, 5)

Figure 4: The generating trees for rules (Cat), (NewSch) and (Bax). Bold characters are used to indicate the first vertices of TBax that do not appear
in TSch.
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u

m

N

E
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d

Figure 5: (a) Illustration of Definition 9, (b) example of Schröder slicing, and (c) illustration of
Definition 12 and Theorem 14.

Proof. Like Baxter slicings, Schröder slicings grow adding vertical blocks on the right and hori-
zontal blocks on top, but whose width is restricted, so that condition (`r) is always satisfied.

To any Schröder slicing P , let us associate the label (h, k) where h (resp. k) denotes the
maximal width (resp. height) of a horizontal (resp. vertical) block that may be added to P ,
without violating condition (`r). Note that if a horizontal block of width i may be added, then
for all i′ ≤ i, the addition of a horizontal block of width i′ is also allowed. Consequently, we may
add horizontal blocks of width 1 to h to P . Notice also that k denotes the height of the rightmost
column of P (since condition (`r) introduces no restriction on vertical blocks), and that columns
of any height from 1 to k may be added to P .

Figure 6 illustrates the three cases discussed below in the growth of Schröder slicings according
to rule (NewSch).

 h

kk

 h h

kk

 h
 j

k

 i

, ,

Figure 6: The productions of a Schröder slicing of label (h, k) following rule (NewSch).

For any i ≤ h, consider the Schröder slicing P ′ obtained adding a horizontal block u of width
`(u) = i. We claim that the label of P ′ is (i, k + 1). Obviously, the height of the last column of
P ′ is k + 1. Moreover, if we were to add a further horizontal block u′ of any width `(u′) = i′ ≤ i,
u′ would satisfy condition (`r), since X(u) = X(u′) and r(u) = r(u′).

Next, consider the Schröder slicing P ′ obtained adding a column of height k to P . We claim
that it has label (h + 1, k). Of course, the rightmost column of P ′ has height k. Moreover, the
horizontal blocks u′ that may be added to P ′ are of two types: either the block u′ is made of one
single cell on top of the rightmost column of P ′, or u′ is exactly the same as a horizontal block
that could be added to P , except that it is augmented of one cell on the right. In this latter case,
condition (`r) is indeed satisfied since both `(u′) and r(u′) increase by 1, when going from P to
P ′.

Finally, for any j < k, the Schröder slicing P ′ obtained adding a column of height j to P has
label (2, j). Indeed, the rightmost column of P ′ has height j, and only horizontal blocks u′ of
width 1 or 2 may be added to P ′ without violating condition (`r), since r(u′) = 1.
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5 Other Schröder restrictions of Baxter objects

For any Baxter class C, whose growth according to rule (Bax) is understood, it is immediate
to define a Schröder subclass of C. Indeed, we can consider the full generating tree of shape
TBax associated with C, its subtree isomorphic to TSch obtained by mapping the productions in
rules (Bax) and (NewSch) in the obvious way, and keep only the objects of C associated with a
vertex of TSch. This method has the advantage of being systematic, but it does not provide a
characterization of the objects in the Schröder subclass which does not refer to the generating
trees.

In this section, we give two examples of Schröder subclasses of Baxter classes, that are not
obtained with the above general method, but for which we provide a characterization of the
Schröder objects without reference to generating trees.

5.1 A Schröder family of NILPs

From Theorem 5, we have a simple bijection between triples of NILPs and Baxter slicings. And
in Section 4, we have seen a subset of Baxter slicings enumerated by the Schröder numbers. A
natural question, that we now solve, is then to give a characterization of the triples of NILPs
which correspond to Schröder slicings via the bijection of Theorem 5.

Definition 12. Let (u,m, d) be a triple of NILPs as in Definition 4.
A pair (Nu, Nm) of N steps of u and m is matched if there exists i such that Nu (resp. Nm)

is the i-th N step of u (resp. m). Similarly, a pair (Em, Ed) of E steps of m and d is matched if
there exists i such that Em (resp. Ed) is the i-th E step of m (resp. d).

Moreover, for any N step Nu in u (resp. Nm in m), we denote by hu(Nu) (resp. hm(Nm))
the number of E steps of u (resp. m) that occur before Nu (resp. Nm). And for any E step Ed in
d, we denote by kd(Ed) the largest k such that Ek is a factor of d ending in Ed.

Figure 5(c) should help understand these definitions.

Definition 13. A Schröder triple of NILPs is any triple (u,m, d) as in Definition 4 such that
for any N step Nu of the path u, denoting Nm the N step of m such that (Nu, Nm) is matched,
Em the last E step of m before Nm, and Ed the E step of d such that (Em, Ed) is matched, the
following inequality holds:

hu(Nu)− hm(Nm) ≤ kd(Ed). (?)

Theorem 14. Schröder slicings are in one-to-one correspondence with Schröder triples of NILPs
by means of the size-preserving bijection described in Theorem 5.

Proof. We prove that the image of the class of Schröder slicings under the bijection given in
Theorem 5 coincides with the class of Schröder triples of NILPs of Definition 13. This will follow
since condition (?) on triples of NILPs is equivalent to condition (`r) on Baxter slicings.

Let (u,m, d) be the image of a Baxter slicing P . By construction (see also Figure 5(c)), every
horizontal block w of P is associated with a pair (Nu, Nm) of matched N steps of u and m, which
correspond to the left (for Nu) and right (for Nm) edges of w. Similarly, every vertical block of
P is associated with a pair (Em, Ed) of matched E steps of m and d, corresponding to the upper
and lower edges of the block.

Consider a horizontal block w in P , and let (Nu, Nm) be the associated pair of matched steps.
Denote by Em the last E step of m before Nm, and by Ed the E step of d such that (Em, Ed) is
matched. This is the situation represented in Figure 5(c). We claim that w satisfies condition (`r)
if and only if Nu, Nm and Ed satisfy condition (?). On one hand, note that the width `(w) of
w is also expressed as hm(Nm) + 1 − hu(Nu). On the other hand, it is not hard to see that
r(w) = kd(Ed). Indeed, the projection X(w) of w on the lower border of P is the ending point of
the step Ed in d, so that both r(w) and kd(Ed) denote the maximal number of E (or horizontal)
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steps seen when reading d (that is to say, the lower border of P ) from right to left starting from
X(w). It follows that `(w) ≤ r(w) + 1 if and only if hu(Nu)−hm(Nm) ≤ kd(Ed), which concludes
the proof.

5.2 Another Schröder subset of Baxter permutations

The class Sep = Av(2413, 3142) of separable permutations is well-know to be a subset of the set Bax
of Baxter permutations enumerated by the Schröder numbers. A generating tree for Sep following
rule (Sch) has been described in [16], but we were not able to explain the growth of separable
permutations according to rule (NewSch). However, restricting the growth of Baxter permutations
according to rule (Bax), we were able to describe a new subset of Baxter permutations, enumerated
by the Schröder numbers, and whose growth is governed by rule (NewSch).

As explained at the beginning of this section, a Schröder subset of Baxter permutations can
be obtained by considering the obvious embedding of TSch in TBax. Doing so, the two Baxter per-
mutations of size 5 that are not obtained are 13254 and 23154, which correspond to the vertices
of TBax shown in bold characters on Figure 4. Although this subset of Baxter permutations is
easy to define from the generating tree perspective, we have not been able to characterize the
permutations it contains without referring to the generating trees, which is somewhat unsatisfac-
tory. On the other hand, the subset of Baxter permutations studied below is not as immediate to
define from the generating trees themselves, but has a nice characterization in terms of forbidden
patterns.

The definition (in a special case) of bivincular patterns is useful to define the subset of Baxter
permutations we are considering: a permutation σ avoids the pattern 41323+ (resp. 42313+) when
no subsequence σiσjσkσ`σm of σ satisfies σj < σ` < σk (resp. σ` < σj < σk), σm = σk + 1, and
σm < σi.

Theorem 15. Let S be the subset of Baxter permutations defined by avoidance of the (bi)vincular
pattern 2 41 3, 3 14 2, 41323+ and 42313+. The generating tree obtained letting permutations of S
grow by insertion of a maximal element is TSch, and consequently S is enumerated by the Schröder
numbers.

Note that the two Baxter permutations of size 5 that are not in S are 51324 and 52314.

Proof. First, note that if σ ∈ S, then the permutation obtained removing the maximal element of
σ also belongs to S. So we can make permutations of S grow by insertion of the maximum.

Second, remark that S is a subset of Bax. So the active sites (i.e., positions where the new
maximum can be inserted while remaining in the class) is a subset of the active sites in the growth
of Baxter permutations according to rule (Bax). These active sites are described in [4] and are:

• the sites immediately to the right of right-to-left maxima, and

• the sites immediately to the left of left-to-right maxima.

In particular, the two sites surrounding the current maximum are always active.

We claim that the active sites of σ ∈ S are the followings, where n denotes the size of σ:

• the sites immediately to the right of right-to-left maxima, and

• for any left-to-right maximum σi, the site immediately to the left of σi, provided that the
sequence σi+1 . . . σn contains no pattern 212+ where 2 is mapped to a value larger than σi.

More formally, the condition above on σi+1 . . . σn is expressed as follows: there is no subsequence
σaσbσc of σi+1 . . . σn such that σa > σi, σb < σa and σc = σa + 1.

For the first item, it is enough to notice that the insertion of n + 1 to the right of n cannot
create a 41323+ or 42313+ pattern (if it would, then n instead of n + 1 would give a forbidden
pattern in σ).

For the second item, consider a left-to-right maximum σi. The insertion of n+ 1 immediately
to the left of σi creates a 41323+ or 42313+ pattern if and only if it creates such a pattern where
n+ 1 is used as the 4.
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Assume first that the sequence σi+1 . . . σn contains a pattern 212+ where 2 is mapped to a
value larger than σi. Then together with n+ 1 and σi, we get a 41323+ or 42313+ pattern: such
insertions do not produce a permutation in S.

On the other hand, assume that the sequence σi+1 . . . σn contains no pattern 212+ where 2 is
mapped to a value larger than σi. If the insertion of n + 1 immediately to the left of σi creates
a 41323+ or 42313+ pattern, say (n + 1)σaσbσcσd, then σbσcσd is a 212+ pattern in σi+1 . . . σn,
and by assumption σb < σi. This implies that σi is larger than all of σa, σb, σc and σd, so that
σiσaσbσcσd is a 41323+ or 42313+ pattern in σ, contradicting that σ ∈ S. In conclusion, under the
hypothesis that the sequence σi+1 . . . σn contains no pattern 212+ where 2 is mapped to a value
larger than σi, then the insertion of n+ 1 immediately to the left of σi produces a permutation in
S.

To any permutation σ of S, associate the label (h, k) where h (resp. k) denotes the number of
active sites to the left (resp. right) of its maximum. Of course, the permutation 1 has label (1, 1).
We shall now see that the permutations produced inserting a new maximum in σ have the labels
indicated by rule (NewSch), concluding our proof of Theorem 15.

Denote by n the size of σ. When inserting n + 1 in the i-th active site (from the left) on the
left of n, this increases by 1 the number of right-to-left maxima. Moreover, no pattern 212+ is
created, so that all sites to the left of n that were active remain so, provided they remain left-
to-right maxima. The permutations so produced therefore have labels (i, k + 1) for 1 ≤ i ≤ h.
Similarly, when inserting n+1 immediately to the right of n, no 212+ is created, and the subsequent
permutation has label (h + 1, k). On the contrary, when inserting n + 1 to the right of a right-
to-left maximum σj 6= n, a pattern 212+ is created (as nσj(n + 1)). Consequently, there are
only two left-to-right maxima such that there is no pattern 212+ after them with a 2 of a larger
value: namely, those are n and n+ 1. If σj was the i-th right-to-left maximum of σ, starting their
numbering from the right, then the resulting permutation has label (2, i).

6 More families of restricted slicings

6.1 Catalan slicings

Similarly to the path followed to define Schröder slicings, we can consider the generating tree
TBax of Baxter slicings, and its subtree isomorphic to TCat discussed in Subsection 3.1, to define
“Catalan slicings” of parallelogram polyominoes. As expected, we find exactly one Catalan slicing
C for every parallelogram polyomino P , namely, the Baxter slicing of shape P whose horizontal
blocks all have width 1. Alternatively, C can be recursively described as follows: if the top row
of P contains just one cell, then this cell constitutes a horizontal block of C, and we proceed
computing the Catalan slicing of P minus this top row; otherwise, the rightmost column of P
constitutes a vertical block of C, and we proceed computing the Catalan slicing of P minus this
rightmost column.

6.2 Skinny slicings

We have seen in Definition 10 that Schröder slicings are defined by the condition `(u) ≤ r(u) + 1,
for any horizontal block u. This condition (`r) can be naturally generalized for any non-negative
integer m as follows: for any horizontal block u,

`(u) ≤ r(u) +m. (`rm)

Definition 16. An m-skinny slicing is a Baxter slicing such that for any horizontal block u, the
inequality (`rm) holds.

Theorem 17. A generating tree for m-skinny slicings is described by the following succession
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rule:

root labeled (1, 1) and (h, k) 


(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), . . . , (h+ 1, k − 1), (h+ 1, k), if h < m,

(m+ 1, 1), . . . , (m+ 1, k − 1), (h+ 1, k). if h ≥ m.
(Ωm)

Proof. The proof follows the exact same steps as the proof of Theorem 11, which corresponds to
m = 1. The only difference is that the maximal width of the horizontal block that may be added
in the third case is max(h+ 1,m+ 1) instead of 2.

Considering the case m = 0, we obtain a family of Baxter slicings which is intermediate
between Catalan slicings (for which `(u) = 1, for all horizontal blocks u) and Schröder slicings
(i.e. 1-skinny slicings). The first few terms of the enumeration sequence of 0-skinny slicings are
1, 2, 6, 21, 80, 322, .... We give below a functional equation characterizing the generating function
of 0-skinny slicings, therefore proving that this sequence is (up to the first term) the same as
sequence a106228 in [14]. Indeed, the generating function S of sequence a106228 is characterized
by 1 + (x − 1)S − xS2 + xS3 [1], and it is immediate to check that F + 1 is a solution of this
equation as soon as F satisfies equation (GF) below.

Theorem 18. The generating function of 0-skinny slicing satisfies the functional equation

F (x) =
x(F (x) + 1)

1− x(F (x) + 1)2
. (GF)

Proof. From Theorem 17, 0-skinny slicings grow according to rule (Ω0):

root labeled (1, 1) and (h, k) 

{
(1, k + 1), (2, k + 1) . . . , (h, k + 1),

(1, 1), (1, 2), . . . , (1, k − 1), (h+ 1, k).
(Ω0)

We denote by TΩ0
the set of 0-skinny slicings. Let F (x;u, v) ≡ F (u, v) =

∑
α∈TΩ0

uh(α)vk(α)xn(α)

be the generating function of 0-skinny slicings, where the variable x takes into account the size
n(·) of the slicing, while u and v correspond to the labels h and k of the object. The rule (Ω0)
can be translated into the following functional equation

F (u, v) = uvx+
∑
α∈TΩ0

(u+ . . .+ uh)vk+1xn+1 +
∑
α∈TΩ0

u(v + . . .+ vk−1)xn+1 +
∑
α∈TΩ0

uh+1vkxn+1

= uvx+
uvx

1− u
(F (1, v)− F (u, v)) +

ux

1− v
(vF (1, 1)− F (1, v)) + uxF (u, v)

Applying twice the kernel method [2, 5], we can obtain the generating function F (1, 1). Note that
our case is simpler than the case of Baxter permutations studied in [5], since our two applications
of the kernel method are consecutive (isolating first F (u, v) and then F (1, v)). We have performed
these computations in Maple, and checked again with Maple that F (1, 1) satisfies equation (GF).

We point out that D. Callan indicates in [14] that F is also the generating function of Schröder
paths with no triple descents, i.e. having no occurrences of the factor DDD, where D encodes the
down step. It would be interesting to provide a bijection between Schröder slicings and Schröder
paths whose restriction to 0-skinny slicings yields a bijection with Schröder paths having no triple
descents.

For any m, we can apply the same method as in the proof of Theorem 18, obtaining from
the succession rule (Ωm) a system of functional equations satisfied by the generating function of
m-skinny slicings.
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More precisely, let us fix some m ≥ 2. For any i < m (resp. for i = m), denoting Fi(x;u, v) ≡
Fi(u, v) =

∑
α u

h(α)vk(α)xn(α) the trivariate generating function of m-skinny slicings whose label
according to rule (Ωm) is of the form (i, ·) (resp. (j, ·) for any j ≥ m), the rule (Ωm) translates
into the following system:



F1(u, v) = xuv + xuv(F1(1, v) + F2(1, v) + . . .+ Fm(1, v))

F2(u, v) = xu2v
1−v (F1(1, 1)− F1(1, v)) + xu2v(F2(1, v) + . . .+ Fm(1, v))

...

Fi(u, v) = xuiv
1−v (Fi−1(1, 1)− Fi−1(1, v)) + xuiv(Fi(1, v) + . . .+ Fm(1, v))

...

Fm(u, v) = xumv
1−v (Fm−1(1, 1)− Fm−1(1, v)) + xum+1v

1−v (vFm(1, 1)− Fm(1, v)) + xuFm(u, v)

+ xuv
1−u (um−1Fm(1, v)− Fm(u, v))

We leave open the question of solving these systems for some m ≥ 2 or for general m. Even
without solving them explicitly, we believe it would be interesting to derive from these systems
some information on the nature of the generating function

∑m
i=1 Fi(1, 1) of m-skinny slicings.

More specifically, we ask the question of whether for all values of m, m-skinny slicings have an
algebraic generating function, like in the cases m = 0 and 1. Note that letting m go to infinity,
we recover all Baxter slicings, whose generating function is D-finite but not algebraic.

6.3 Row-restricted slicings

Conditions (`rm) naturally generalize the condition that defines Schröder slicings, but it is not
the most natural restriction on horizontal blocks of Baxter slicings one may think of. Indeed, for
some parameter m ≥ 1, we could simply impose that horizontal blocks have width no larger than
m. In what follows, we study these objects under the name of m-row-restricted slicings.

Note that, taking m = 1, we recover Catalan slicings, and that the case m = 0 is degenerate,
since there is only one 0-row-restricted slicing of any given size: the horizontal bar of height 1 and
width n divided in (vertical) blocks made of one cell only.

Theorem 19. A generating tree for m-row-restricted slicings is described by the succession rule:

root labeled (1, 1) and (h, k) 


(1, k + 1), (2, k + 1), . . . , (h, k + 1),

(h+ 1, 1), (h+ 1, 2), . . . , (h+ 1, k), if h < m

(m, 1), (m, 2), . . . , (m, k). if h = m

(Υm)

Proof. Again, the proof is similar to those of Theorem 3 and 17, and when a slicing has label
(h, k), h (resp. k) indicates the maximal width of a horizontal block that may be added (resp. the
maximal height of a vertical block that may be added). In the case of m-row-restricted slicings,
when a vertical block is added to the right, the maximal width of a horizontal block that may be
added afterward increases by 1, except if it was m already, in which case it stays at m.

Like in the case of m-skinny slicings, the succession rule (Υm) yields a system of functional
equations satisfied by the generating function of m-row-restricted slicings.

We fix some m ≥ 2. For any i ≤ m, denote Gi(x;u, v) ≡ Gi(u, v) =
∑
α u

h(α)vk(α)xn(α) the
trivariate generating function of m-row-restricted slicings whose label according to rule (Υm) is of
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the form (i, ·). Note that Gi(u, v) = uiGi(1, v). Rule (Υm) translates into the following system:

G1(u, v) = xuv + xuv(G1(1, v) +G2(1, v) + . . .+Gm(1, v))
...

Gi(u, v) = xuiv
1−v (Gi−1(1, 1)−Gi−1(1, v)) + xuiv(Gi(1, v) + . . .+Gm(1, v))

...

Gm(u, v) = xumv
1−v (Gm(1, 1)−Gm(1, v) +Gm−1(1, 1)−Gm−1(1, v)) + xumvGm(1, v).

Solving this system for m = 2 gives a surprising enumeration coincidence, for which we have
no bijective explanation at the moment.

Theorem 20. The number of 2-row-restricted slicings is equal to the number of 0-skinny slicings,
for any fixed size.

Proof. We prove that the generating function of 2-row-restricted slicings satisfies equation (GF),
following the same steps as in the proof of Theorem 18. Again, we have performed all computations
with Maple.

We start by considering the succession rule (Υ2) for 2-row-restricted slicings. In this case, it
simplifies into:

root labeled (1, 1) and (h, k) 

{
(1, k + 1), . . . , (h, k + 1),

(2, 1), (2, 2), . . . , (2, k).
(Υ2)

Note that it is not the same as rule (Ω0). We translate rule (Υ2) into a system of functional
equations as explained above, and substitute u = 1, obtaining:{

G1(1, v) = xv + xv(G1(1, v) +G2(1, v))

G2(1, v) = xv
1−v (G2(1, 1)−G2(1, v) +G1(1, 1)−G1(1, v)) + xvG2(1, v).

To solve this system, we express G1(1, v) in terms of G2(1, v) using the first equation, and replace
G1(1, v) and G1(1, 1) in the second equation by their expressions so obtained. We can then solve
the second equation for G2(1, 1) using the kernel method, and deduce G1(1, 1) from the first
equation. The generating function of 2-row-restricted slicings is just the sum G1(1, 1) +G2(1, 1).
And we check that it satisfies equation (GF).

When it comes to m-row-restricted slicings for general m, the same questions as for m-skinny
slicings can be asked: can their generating functions be computed from the system of functional
equations derived from rule (Υm)? or can the nature of these generating functions be derived?

6.4 Other extensions

We believe our results and the questions left open demonstrate that slicings of parallelogram
polyominoes have a rich combinatorics yet to explore. We hope to contribute to this study in
future work. We also ask whether similar interesting phenomena may happen when “slicing”
other families of polyominoes.
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