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Abstract. In this paper, we confirm conjectures of Laborde-Zubieta on the enumeration of
corners in tree-like tableaux and in symmetric tree-like tableaux. In the process, we also enu-
merate corners in (type B) permutation tableaux and (symmetric) alternative tableaux. The
proof is based on Corteel and Nadeau’s bijection between permutation tableaux and permuta-
tions. It allows us to interpret the number of corners as a statistic over permutations that is
easier to count. The type B case uses the bijection of Corteel and Kim between type B per-
mutation tableaux and signed permutations. Moreover, we give a bijection between corners and
runs of size 1 in permutations, which gives an alternative proof of the enumeration of corners.
Finally, we introduce conjectural polynomial analogues of these enumerations, and explain the
implications on the PASEP.
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1 Introduction

The partially asymmetric exclusion process (PASEP) is a model from statistical mechanics,
in which particles jump stochastically to the left or to the right, the probability of hopping
left is q times the probability of hopping right. Moreover, particles can enter from the left with
probability α and exit at the right with probability β. We can describe ([8]) the equilibrium state
of the PASEP using permutation tableaux [18], alternative tableaux [24] or tree-like tableaux [4].
These combinatorially equivalent objects have been the focus of intense research in the recent
years [5, 6, 17, 15]. One of the main reasons being that they are in bijection with permutations.
For each of these three tableaux, a type B version was also defined ([22, 17, 4]), and the previous
bijections with permutations were extended to bijections with signed permutations.

In [15], the third author showed that the corners in tree-like tableaux are interpreted in the
PASEP as the locations where a jump of particle is possible. He started with the enumeration
of occupied corners and obtained the following results.

†Corresponding author.
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Proposition 1.1 ([15, Theorem 3.2]). The number of occupied corners in the set of tree-like
tableaux of size n is n!.

Proposition 1.2 ([15, Theorem 3.7]). The number of occupied corners in the set of symmetric
tree-like tableaux of size 2n+ 1 is 2n · n!.

Regarding the unrestricted corners, he gave the following two conjectures.

Conjecture 1.3 ([15, Conjecture 4.1]). The number of corners in the set of tree-like tableaux
of size n is n!× n+4

6 .

Conjecture 1.4 ([15, Conjecture 4.2]). The number of corners in the set of symmetric tree-like
tableaux of size 2n+ 1 is 2n × n!× 4n+13

12 .

In this work, we give a proof of these conjectures. For the first one, through bijections, we give
relations between the number of corners in permutation tableaux, alternative tableaux and tree-
like tableaux. Then, using a bijection due to Corteel and Nadeau [6], we interpret the number
of corners in permutation tableaux as a statistic in permutations. By computing this statistic
in permutations of fixed size, we deduce the enumeration of corners in each of the three kind of
tableaux (Theorem 4.1). The second conjecture is proven in the same way, which also gives us
the enumeration of corners in type B permutation tableaux, in symmetric alternative tableaux
(Theorem 4.3). It should be noted that Hitczenko and Lohss ([14, Theorem 1 and Theorem 3])
proved both conjectures in a different way, using a probabilistic approach. Additionally, we
present a bijection between corners in tree-like tableaux and runs of size 1 in permutations,
which answers to a question raised in [12]. Counting corners in tree-like tableaux gives an
information about the average number of locations where a jump of particle is possible in the
PASEP, if we set q = α = β = 1. We give a conjectural (a, b)-analogue of this enumeration
which would generalise the result to the case where only q is equal to 1. We also conjecture an
x-analogue for the enumeration of corners in symmetric tree-like tableaux.

The paper is organised in the following way. In Section 2 we give several definitions, in
particular we recall the definitions of the tableaux we will be considering. Section 3 presents
the different bijections we need to relate corners in tree-like tableaux with permutations. In
parallel, we also deal with the type B case. Then (Section 4), we prove the two conjectures and
enumerate corners in the other types of tableaux. Moreover we give a bijection between corners
in tree-like tableaux and runs of size 1 in permutations. Finally we give polynomial analogues
of Conjecture 1.3 and Conjecture 1.4, and partially prove them.

2 Preliminaries

First of all, to be self-contained in this paper, let us recall some necessary basic notions and
introduce some notations in this section.

2.1 (k, n)-diagrams

Here we mainly adopt Cho and Park’s terminologies in [9]. For two nonnegative integers n and
k with n > k, a (k, n)-diagram D (left subfigure of Figure 1) is a left-justified diagram of boxes
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in a k × (n − k) rectangle with λi boxes in the i-th row, where λ1 > λ2 > · · · > λk > 0. The
integer n is called the length of D, it is equal to the number of rows plus the number of columns.
Note that a (k, n)-diagram may have empty rows or columns. A shifted (k, n)-diagram is a
(k, n)-diagram together with a stair-shaped array of boxes added above, where the j-th column
(from the left) has (n−k+1−j) additional boxes for j ∈ [n−k]. We denote D∗ the shifted (k, n)-
diagram obtained from a (k, n)-diagram D. In terms of the definitions in [9], D is called the
(k, n)-subdiagram of D∗. The length of D∗ is defined to be the length of its (k, n)-subdiagram.
Among the cells we added, the ones at the top of a column are called diagonals. An example of
a shifted (4, 8)-diagram is shown in the middle of Figure 1, its diagonals are pointed out in the
right Figure 1.
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Figure 1: A (4, 8)-diagram D (left), the shifted (4, 8)-diagram D∗ (middle) and the labeling of
the rows and the columns of D∗ (right).

Let us now introduce some definitions and notations about those diagrams. A (k, n)-diagram
D is uniquely determined by its southeast border, which is the lattice path starting at the
North-East corner of the rectangle k × (n − k), going along D’s border and finishing at the
South-West corner. Following the same direction, we label the steps of the southeast border
with [n] = {1, . . . , n}. We extend the labelling to shifted (k, n)-diagrams. An example of both
cases is given respectively in the left and the middle subfigures of Figure 1. The steps of the
southeast border are called, border edges. We label the rows and the columns of a (k, n)-diagram
with the label of their corresponding vertical and horizontal border edge respectively. Moreover,
in the case of a shifted (k, n)-diagram, we label the added rows as follows: if the diagonal cell
of an added row is in column i, then the row is labeled by −i. The right subfigure of Figure 1
shows an example of the labelling of the rows and columns of a shifted (k, n)-diagram. From
now on, we will say row i or column j when we actually refer to the row with the label i or to
the column with the label j. The cell (i, j) is the cell at the intersection of the ith row starting
from top and the jth column starting from left, this notation is independent from the previous
labelling of rows and columns. The cells we will be looking at are the followings.

Definition 2.1. In a (shifted) (k, n)-diagram, a corner is a cell such that its bottom and right
edges are border edges.

For example, the (4, 8)-diagram in the left subfigure of Figure 1 has two corners, (1, 4) and
(3, 3). Its shifted (4, 8)-diagram has also two corners, (5, 4) and (7, 3), as we can see in the
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middle subfigure of Figure 1. The last definition we need, about (k, n)-diagrams, is the main
diagonal. As we can see in the Figure 2, it is the line going through the North-West and the
South-East corners of the top left cell.

@
@
@
@@ main diagonal line

Figure 2: A diagram with its main diagonal line.

In this article we study alternative tableaux, permutation tableaux, tree-like tableaux and
their corresponding type B versions. Tableaux should be understood in the following way.

Definition 2.2. Let D be a (shifted) (k, n)-diagram, a tableaux of underlying diagram D, is a
certain filling of the cells of D with some symbols. The underlying diagram of T is denoted by
D(T ). The previous definitions about (shifted) (k, n)-diagrams are extended to tableaux.

A corner of tableaux T is called an occupied corner if it is filled with a symbol, otherwise, a
corner cell is called a non-occupied corner. Let us denote by C(T ) the set of corners of a given
tableau T and C(X) the set corners of a given set X of tableaux, i.e.,

C(X) =
⋃
T∈X
C(T ).

Similarly, denote by c(T ) the number of corners of T and let c(X) = |C(X)|.

2.2 Tableaux

In what follows, we shall introduce the main combinatorial objects of our work: permutation
tableaux, alternative tableaux, tree-like tableaux and their type B versions.

2.2.1 Permutation tableaux

Permutation tableaux arose in the study of totally nonnegative Grassmanian, see Postnikov
[18]. There have been a lot of work on the subject in many different directions since they were
formally introduced by Steingŕımsson and Williams in [22], see [5, 6, 7, 8].

Definition 2.3. A permutation tableau, is a (k, n)-diagram with no empty columns together
with a 0,1-filling of the cells such that

(1) each column has at least one 1;

(2) there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the
same row.
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We denote by PT n the set of permutation tableaux of length n. An example of permutation
tableau of length 8 is given in the left subfigure of Figure 3. We need to introduced some
definitions about permutation tableaux that will be needed in the description of the bijection
between alternative tableaux and permutation tableaux (Section 3.2). In a permutation tableau,
a topmost 1 is a highest 1 of a column. A restricted 0, is a 0 with a 1 above it in the same
column. Finally, a rightmost restricted 0, is a restricted 0 with no restricted 0 to its right.

The type B version of these tableaux, were introduced by Lam and Williams in [16].

Definition 2.4. A type B permutation tableau is a shifted (k, n)-diagram D∗ together with a
0, 1-filling of D∗ satisfying the following conditions:

(1) each column has at least one 1;

(2) there is no 0 which has a 1 above it in the same column and a 1 to the left of it in the
same row;

(3) if a 0 is in a diagonal cell, then it does not have a 1 to the left of it in the same row.

We denote by PT Bn the set of type B permutation tableaux of length n. An example of a
permutation tableau of length 7 is given in right subfigure of Figure 3. We extend the definition
of topmost 1, restricted 0 and rightmost restricted 0, adding that a 0 in a diagonal is restricted.
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Figure 3: A permutation tableau (left) and a type B permutation tableau (right).

2.2.2 Alternative tableaux

Alternative tableaux, were introduced by Viennot [24] as follows.

Definition 2.5. An alternative tableau is a (k, n)-diagram with a partial filling of the cells with
left arrows “←” and up arrows “↑”, such that all cells left of a left arrow “←”, or above an up
arrow “↑” are empty. In other words, all cells pointed by an arrow must be empty.

We denote by AT n the set of alternative tableaux of length n. An example of an alternative
tableau of length 8 is given in the left subfigure of Figure 4.

The type B version of alternative tableau are called symmetric alternative tableaux, they
were defined by Nadeau in [17].
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Definition 2.6. A symmetric alternative tableau is an alternative tableau unchanged by the
reflection with respect to its main diagonal.

The set of symmetric alternative tableaux of length 2n will be denoted AT sym2n . A symmetric
alternative tableau of size 8 is given in the right subfigure of Figure 4.

←

↑ @
@
@
@@ main diagonal line←

←
↑

↑

Figure 4: An alternative tableau (left) and a symmetric alternative tableau (right).

2.2.3 Tree-like tableaux

The last kind of tableaux we will consider are the tree-like tableaux. They were introduced by
Aval, Boussicault and Nadeau in [4]. They have a nice recursive structure, given by an insertion
algorithm, which simplified some of the previous main results.

Definition 2.7. A tree-like tableau is a filling of (k, n)-diagram (without empty rows or empty
columns) with points inside some cells, such that the resulting diagram satisfies the following
three rules,

(1) the top left cell of the diagram contains a point, called the root point;

(2) for every non-root pointed cell c, there exists either a pointed cell above c in the same
column, or a pointed cell to its left in the same row, but not both;

(3) every column and every row possess at least one pointed cell.

The size of a tree-like tableau is defined to be its number of points. It is not difficult to see
that the length of a tree-like tableau is equal to its size plus one. In the sequel, we denote by Tn
the set of the tree-like tableaux of size n. An example of a tree-like tableau of size 8 is shown in
the left subfigure of Figure 5.

Definition 2.8. A symmetric tree-like tableau is a tree-like tableau unchanged by the reflection
with respect to its main diagonal.

The size of a symmetric tree-like tableau is necessarily odd, we denote by T sym2n+1 the set of
symmetric tree-like tableaux of size 2n+ 1. An example of a symmetric tree-like tableau of size
9 is given in the right subfigure of Figure 5.
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Figure 5: A tree-like tableau (left) and a symmetric tree-like tableau (right).

2.3 Permutations

A permutation π of length n is a bijection from [n] to [n], we use the notation πi := π(i) for
1 6 i 6 n. We can represent a permutation with the word π1 . . . πn. The group of permutations
of length n is denoted by Sn. We consider the following non usual definitions for ascents and
descents given in [6].

Definition 2.9. Given a permutation π = π1 · · ·πn ∈ Sn with the convention that πn+1 = n+1,
we say that πi is a descent if πi > πi+1 and call πi an ascent if πi < πi+1 for 1 6 i 6 n.

For example, the descents of the permutation 57631284 are 7, 6, 3 and 8.

A signed permutation (also called permutation of type B) π of length n is a bijection on
{−n,−(n − 1), . . . ,−1, 1 . . . , n} satisfying π(−i) = −π(i) for i ∈ [n]. We also use the notation
πi := π(i) and represent a signed permutation with the word π1 . . . πn. The group of type B
permutations is denoted by SB

n . In [7], Corteel and Kim gave the following definitions of an
ascent and a descent of a signed permutation.

Definition 2.10. Let π = (π1, π2, · · · , πn) ∈ SB
n with convention that πn+1 = n + 1. For

i ∈ [n], πi is a signed descent if πi < 0 or πi > |πi+1|, otherwise πi is a signed ascent and
satisfies 0 < πi < |πi+1|.

For π = (3,−1,−4, 2, 6, 5, 7) ∈ SB
7 , the signed descents of π are {−1,−4, 3, 6}.

3 Bijections

In this section we give bijections between the different kinds of tableaux and we deduce equalities
between the number of corners in each type of tableaux.

3.1 A bijection α between tree-like tableaux and alternative tableaux com-
patible with the type B case

Recall that Tn denote the set of tree-like tableaux of size n and AT n denote the set of alternative
tableaux of length n.

Theorem 3.1 ([4]). There is a bijection α : Tn → AT n−1 such that for any T ∈ Tn, the
underlying diagram of α(T ) is obtained from D(T ) by deleting its topmost row and its leftmost
column.
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We give a description of the bijection α and its inverse α−1 in detail without proof. Figure 6
gives an example of the bijection.

Given a tree-like tableau T ∈ Tn of size n we construct α(T ) in two steps. First replace every
non-root point p with a left arrow “←” if there is no point to its left in the same row and an up
arrow “↑” if there is no point above it in the same column. Then, simply delete the topmost row
and the leftmost column. One can verify that the tableau we obtain is an alternative tableau of
length n− 1.

Let T ′ be an alternative tableau of length n − 1 with underlying diagram D′. Suppose D′
has k rows and n− 1− k columns. We construct the underlying diagram D of α−1(T ′) from D′

by adding a column of k cells at the left of its leftmost column, a row of n − 1 − k cells above
its topmost row and a cell at its top left corner. Note that D′ is a (k, n− 1)-diagram and D is
a (k + 1, n + 1)-diagram. Next, for any cell c = (i, j) in D′, if there is an up arrow “ ↑ ” in c
and there is no arrows (both “ ← ” and “ ↑ ” ) to its left in the same row, add a point in the
cell (i + 1, 1) in D. If there is a left arrow “ ← ” in c and there is no arrows above c in the
same column, add a point in the cell (1, j + 1) in D. Then add a point in (1, 1) and (1, j + 1) or
(i+ 1, 1) in D if column j or row i has no arrows in D′. Lastly, add a point in (i+ 1, j+ 1) in D
if there is an arrow in (i, j) in D′, the resulting tableau is a tree-like tableau of size n, denoted
by T = α−1(T ′).

On the basis of the bijection, we can conclude the following result.

Corollary 3.2. The number of corners in Tn and in AT n−1 satisfy the relation:

c(Tn) = c(AT n−1) + 2(n− 1)!.

Proof. The underlying diagram of α(T ) is obtained from D(T ) by removing the topmost row
and the leftmost column. Hence, the bijection α doesn’t create any new corner, but it removes
the corners at the right of the topmost row (corners of type 1) or the corners at the bottom
of the leftmost column (corners of type 2). Corners of type 1 in Tn are in easy bijection with
tree-like tableaux of size n−1, which are counted by (n−1)!. To a corner of type 1 c in a tree-like
tableau T of size n, we associate the tree-like tableau obtained from T by removing c. With a
similar argument, we can also prove that corners of type 2 in Tn are counted by (n− 1)!.

Furthermore, the bijection α can be restricted to symmetric tree-like tableaux and symmetric
alternative tableaux. As an example, see Figure 6.

Theorem 3.3. If α is restricted to the set of symmetric tree-like tableaux T sym2n+1. Then it is
also a bijection between the set of symmetric tree-like tableaux T sym2n+1 and the set of symmetric
alternative tableaux AT sym2n .
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Figure 6: The bijection α between symmetric tree-like tableaux and symmetric alternative
tableaux.

With Theorem 3.3, it is natural to deduce the following corollary.

Corollary 3.4. The number of corners in T sym2n+1 is equal to the number of corners in AT sym2n

plus 2n(n− 1)!, i.e.,
c(T sym2n+1) = c(AT sym2n ) + 2n(n− 1)!.

Proof. As in Corollary 3.2, the bijection α doesn’t create any new corner, but it removes the
corners at the right of the topmost row (type 1) and the corners at the bottom of the leftmost
column (type 2). A symmetric tree-like tableau has a corner of type 1 if and only if it has a
corner of type 2. Hence we will enumerate pairs of corners of type 1 and 2 belonging to the
same symmetric tree-like tableaux of size n. Such pairs are in easy bijection with symmetric
tree-like tableaux of size n−1, which are counted by 2n−1(n−1)!. The bijection simply consists
in removing the two corners.

3.2 A bijection γ between alternative tableaux and permutation tableaux

In this subsection, we give a simple description of the bijection γ, the reader can refer to [24]
for more details about its proof.

Theorem 3.5 ([24]). There exists a bijection γ : PT n → AT n−1 such that for any permutation
tableau PT ∈ PT n, the underlying diagram of alternative tableau γ(PT ) is obtained from D(PT )
by removing its first row.

Given a permutation tableau PT , γ(PT ) is computed in the following way. First, change
the topmost 1 in every column to “ ↑ ”. Then, transform every rightmost restricted 0 to “← ”.
Finally, delete all other 0s and 1s, and erase the first row. See Figure 7 as an example.

Conversely, let AT be an alternative tableau of size n − 1 with underlying diagram D′.
Suppose D′ has k rows and n − 1 − k columns. The underlying diagram D of γ−1(AT ) is
obtained by adding to D′ a row of n− 1− k cells above its first row . We change the filling, in
the following way. For any cell c = (i, j) in D′, if there is an up arrow “ ↑ ” (resp. “← ”) in c,
add a 1 (resp. 0) in the cell (i + 1, j) in D. Then, if there is no 1 in some column j of D, we
add a 1 in the cell (1, j). Lastly, fill with 0s the empty cells to the left of a 0 in the same row,
or above a 1 in the same column, and then, fill the rest of empty cells with 1s.

9
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Figure 7: The bijection γ from a permutation tableau to an alternative tableau.

Based on Theorem 3.5, we can deduce the following corollary.

Corollary 3.6. The number of corners in AT n−1 and in PT n satisfy the relation:

c(AT n−1) = c(PT n)− (n− 1)!.

Proof. The bijection γ doesn’t remove any corner, but if the step 1 is a west step, a new corner
is constructed. The alternative tableau of size n − 1 such that the step 1 is a west step, are in
easy bijection with alternative tableaux of length n − 2, which are counted by (n − 1)!. The
bijection simply consist in removing the west step.

3.3 A bijection ζ between symmetric alternative tableaux and type B per-
mutation tableaux

The alternative representation of a permutation tableau of type B was introduced by Corteel
and Kim in [7].

Definition 3.7. The alternative representation of PTB ∈ PT Bn is a tableau obtained from PTB

according to the following operations, denoted by R. First, we replace the topmost 1s with “ ↑ ”s
and the rightmost restricted 0s with “ ← ”s and remove the remaining 0s and 1s. Second, we
remove the “ ↑ ”s in the diagonal and cut off the diagonal cells as shown in Figure 8. We call
the resulting tableau, denoted by R(PTB), the alternative representation of PTB.

7
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-3

-4

-6

6 4 3 1

1

0

0

0

0

0

1

0

0

1

1

1

0

1
−→R

@
@
@
@
@
@

7

5

2

-1

-3

-4

-6

6 4 3 1

↑

← ↑

Figure 8: A type B permutation tableau of length 7 (left) and its alternative representation
(right).

It is not difficult to see that R is a bijection, see [7] for details. We note that the alterna-
tive representation of a type B permutation tableau can be obtained by cutting a symmetric
alternative tableau across its main diagonal line. Hence we can construct a bijection ζ between
permutation tableaux of type B and symmetric alternative tableaux via the bijection R.

Theorem 3.8. There is a bijection ζ : PT Bn → AT
sym
2n .
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Proof. We denote by F the reflection of an alternative representation across all its diagonal
cells (or main diagonal line). It is bijection between alternative representations and symmetric
alternative tableaux. Then ζ := F ◦ R, is a bijection from PT Bn to AT sym2n .

As a corollary of Theorem 3.8, we have the following result.

Corollary 3.9. The number of corners in the set of symmetric alternative tableaux of length
2n is equal to twice the number of corners in the set of type B permutation tableaux of length n
plus 2n−1n!, i.e.,

c(AT sym2n ) = 2c(PT Bn ) + 2n−1n!.

Proof. The bijection ζ doesn’t remove any corner, but it creates new ones. Let PT be a type
B permutation tableau. All the corners of PT appears twice in ζ(PT ) and if the step 1 of PT
is a west step, an additional corner appears in ζ(PT ). To prove the Corollary, we just need to
enumerate the number of type B permutation tableaux of size n such that step 1 is a west step, we
denote PT Wn the set of those tableaux. In fact, they are in bijection with type B permutation
tableaux of size n such that step 1 is a south step (PT Sn). The bijection consist simply in
removing the rightmost diagonal, i.e., the cell above the step 1. Since the set of permutation
tableaux of size n is the disjoint union of PT Wn and PT Sn , hence, |PT Wn | = 1

2 |PT n| = 2n−1n!.

3.4 A bijection ϕ from permutation tableaux to permutations

To begin with, it is worthy to mention that there have been several bijections from permutation
tableaux to permutations up to now, see [5, 6, 7, 22]. Here we only introduce the one due to
Corteel and Nadeau. We give the following theorem without describing the bijection, the reader
can refer [6] for details.

Theorem 3.10 ([6, Theorem 1. (1)]). There exists a bijection ϕ : PT n → Sn such that for
any permutation tableau PT ∈ PT n and 1 6 i 6 n, i is a label of a column in PT if and only
if i is a descent in π; and i is a label of a row in PT if and only if i is an ascent in π, where
π = ϕ(PT ).

By Theorem 3.10, we can easily find the following result.

Corollary 3.11. For a permutation tableau PT ∈ PT n and 1 6 i < n, the consecutive border
edges labeled with i and i+ 1 in the southeast border in its underlying diagram form a corner if
and only if i is an ascent and i+ 1 is a descent in π = ϕ(PT ).

Remark 3.12. It should be noted that, since ascent and descent are not defined in the usual
way, the property such that i is an ascent and i+ 1 is a descent, does not correspond to a peak.

3.5 A bijection ξ between type B permutation tableaux and type B permu-
tations

Corteel and Kim [7] built a bijection between type B permutation tableaux and signed permu-
tations.

11



Theorem 3.13 ([7, Proposition 4.1]). There exists a bijection ξ : SB
n → PT Bn such that for any

σ ∈ SB
n and 1 6 i 6 n, i is a signed descent if any only if i is a label of a column; and i is a

signed ascent if any only if i is a row label.

By Theorem 3.13, we deduce the following corollary easily.

Corollary 3.14. For a signed permutation σ ∈ SB
n and PTB = ξ(σ), the consecutive border

edges labeled with i and i+ 1 in the underlying shifted (k, n)-diagram of PTB form a corner if,
and only if, i is a signed ascent and i+ 1 is a signed descent in σ.

4 Enumeration of Corners

4.1 Enumeration of Corners

In this subsection, from the enumeration of the statistics on permutations and signed permuta-
tions that arose in Corollary 3.11 and Corollary 3.14, we deduce the enumeration of corners in
each kind of tableau.

Theorem 4.1. At fixed size, the number of corners in each of the three kind of type A tableaux,
is counted by

c(PT n) =

{
0, if n = 1,

(n− 1)!× n2+4n−6
6 , if n > 2.

c(AT n−1) =

{
0, if n = 1,

(n− 1)!× n2+4n−12
6 , if n > 2.

c(Tn) =

{
1, if n = 1,

n!× n+4
6 , if n > 2.

Proof. For n = 1, there is only one tableau for each kind, and only the tree-like tableau of size
1 has a corner.

For general n, using Corollary 3.2, Corollary 3.6 and Corollary 3.11, we just need to compute
the number of i′s in permutations of size n such that i is an ascent and i+1 is a descent. Suppose
ai(π) means that i is an ascent and i+ 1 is a descent in a permutation π and

χ(ai) =

{
1, if ai is true,
0, otherwise,

then,

c(PT n) =
∑

PT∈PT n

c(PT ) =
∑
π∈Sn

n−1∑
i=1

χ(ai(π)) =

n−1∑
i=1

∑
π∈Sn

χ(ai(π)).

For 1 6 i < n, let Ai denote the set of permutations in Sn such that i is an ascent and i+ 1
is a descent in π ∈ Sn, and |Ai| the cardinality of Ai. It is clear that

|Ai| =
∑
π∈Sn

χ(ai(π)).
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So, it is sufficient to compute |Ai| in order to count c(PT n).

For any permutation π = (π1, . . . , πn) ∈ Ai, suppose there exist 1 6 t1, t2 6 n such that
πt1 = i and πt2 = i+ 1. By the definition of ascents and descents, we know that πt1 < πt1+1 and
πt2 > πt2+1. There are three cases to consider.

(1) If t2 = t1 + 1, it means that there is a subsequence πt1 , πt2 , πt2+1 = i, i+ 1, πt2+1 such that
i+ 1 > πt2+1 in π. It is easy to see that the number of such permutations is (i−1)(n−2)!.

(2) If t1 = t2 + 1, similarly there is a subsequence πt2 , πt1 , πt1+1 = i + 1, i, πt1+1 such that
i < πt1+1 in π. It is clear that the number of such permutations is (n − 2)! + (n − i −
1)(n− 2)! = (n− i)(n− 2)!, where (n− 2)! counts the number of permutations such that
πt1+1 = n+ 1.

(3) For |t1 − t2| > 1, there are two subcases to consider.

(3.1) if πt1+1 6 n, the number of such permutations is (n− i− 1)(i− 1)(n− 2)!.

(3.2) if πt1+1 = n+ 1, the number of such permutations is (i− 1)(n− 2)!.

Therefore, in total there are (n− i)(i− 1)(n− 2)! such permutations in Sn.

So, the number of corners in the set of permutation tableaux of length n > 2 is

c(PT n) =
n−1∑
i=1

|Ai|

=

n−1∑
i=1

[(i− 1)(n− 2)! + (n− i)(n− 2)! + (n− i)(i− 1)(n− 2)!]

= (n− 2)!

n−1∑
i=1

[(i− 1) + (n− i) + (n− i)(i− 1)]

= (n− 2)!
n−1∑
i=1

[(n+ 1)i− i2 − 1]

= (n− 1)!× n2 + 4n− 6

6
.

This completes the proof.

As the third author gave the number of occupied corners, see Proposition 1.1, we can give
an enumerative result for non-occupied corners in Tn.

Corollary 4.2. The number of non-occupied corners in Tn is n! × n−2
6 for n > 3 and zero for

n = 1, 2.

We also obtain analogues results with type B tableaux.
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Theorem 4.3. At fixed size, the number of corners in each of the three kind of type B tableaux,
is counted by

c(PT Bn ) =

{
0, if n = 1,

2n−1(n− 1)!× 4n2+7n−12
12 , if n > 2.

c(AT sym2n ) =

{
1, if n = 1,

2n(n− 1)!× 4n2+13n−12
12 , if n > 2.

c(T sym2n+1) =

{
3, if n = 1,

2nn!× 4n+13
12 , if n > 2.

Proof. For n = 1, there are two tableaux for each kind. The two permutations tableaux have
no corners, only one of the two alternative tableaux has a corner and the two tree-like tableaux
have respectively one and two corners.

For general n, using Corollary 3.4, Corollary 3.9 and Corollary 3.14, we can compute the
number of corners in each kind of typeB tableaux, from the enumeration of i′s in the permutation
σ such that i(1 6 i < n) is a signed ascent and i + 1 is a signed descent in σ. Suppose, bi(π)
means that i is a signed ascent and i+ 1 is a signed descent in σ and

χ(bi) =

{
1, if bi is true,
0, otherwise,

then,

c(PT Bn ) =
∑

PTB∈PT B
n

c(PTB) =
∑
σ∈SB

n

n−1∑
i=1

χ(bi) =
n−1∑
i=1

∑
σ∈SB

n

χ(bi).

For 1 6 i < n, let Bi denote the set of type B permutations in SB
n such that i is a signed

ascent and i+ 1 is a signed descent in σ ∈ SB
n , and |Bi| the cardinality of Bi. It is clear that

|Bi| =
∑
σ∈SB

n

χ(bi).

So, it is sufficient to compute |Bi| in order to count c(PT Bn ).

For 1 6 i < n and σ = (σ1, σ2, · · · , σn) ∈ Bi. Suppose there exist 1 6 t1, t2 6 n such that
|σt1 | = i and |σt2 | = i + 1. It is worthy to mention that 1 6 t1, t2 6 n and t1 6= t2. By the
definition of Bi we know that |σt1 | is a signed ascent and |σt2 | is a signed descent in σ, which
implies that 0 < σt1 < |σt1+1| and σt2 < 0 or σt2 > |σt2+1|. So there are two cases to consider
for a given integer i.

(1) If σt1 = i < |σt1+1| and σt2 = −(i+ 1), we can divide it into two subcases:

(1.1) t2 = t1+1, which means that there is a subsequence σt1 , σt2 = i,−(i+1) in σ. By the
definition of signed permutations, it is not difficult to compute the number of such
signed permutations is 2n−2(n− 1)!.

(1.2) t2 6= t1 + 1, then there are two subcases to consider.
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(a1) if |σt1+1| 6 n, the number of such type B permutations is 2n−2(n− i−1)(n−1)!;

(a2) if σt1+1 = n+ 1, the number of such type B permutations is 2n−2(n− 1)!.

Hence there are 2n−2(n− i)(n− 1)! such signed permutations in SB
n .

(2) If σt1 = i < |σt1+1| and σt2 = i + 1 > |σt2+1|. Similarly, there are three subcases to
consider:

(2.1) if t2 = t1 + 1, this implies that there is a subsequence σt1 , σt2 , σt2+1 = i, i + 1, σt2+1

such that i + 1 > |σt2+1| in σ. By the definition of permutations of type B, the
number of such permutations is 2n−2(i− 1)(n− 2)!.

(2.2) if t1 = t2+1. That is to say, there is a subsequence σt2 , σt1 , σt1+1 = i+1, i, σt1+1 such
that i < |σt1+1| in σ. Analogously, the number of such permutations is 2n−2(n−2)!+
2n−2(n− i− 1)(n− 2)!, where 2n−2(n− 2)! counts the number of permutations such
that σt1+1 = n+1. Thus such type B permutations are counted by 2n−2(n−i)(n−2)!.

(2.3) if |t1 − t2| > 1, there are two subcases to consider:

(b1) if |σt1+1| 6 n, the number of such permutations is 2n−2(n− i− 1)(i− 1)(n− 2)!.

(b2) if σt1+1 = n+ 1, the number of such permutations is 2n−2(i− 1)(n− 2)!.

In total, there are 2n−2(n− i)(i− 1)(n− 2)! such type B permutations.

All in all, the number of elements in c(PT Bn ) is given by

n−1∑
i=1

2n−2
{

(n− 1)! + (n− i)(n− 1)! + (i− 1)(n− 2)! + (n− i)(n− 2)! + (n− i)(i− 1)(n− 2)!
}

= 2n−2(n− 1)!

n−1∑
i=1

{
1 + (n− i)

}
+ 2n−2(n− 2)!

n−1∑
i=1

{
(i− 1) + (n− i) + (n− i)(i− 1)

}
= 2n−1 × (n− 1)!× 4n2 + 7n− 12

12
.

This completes the proof.

By Proposition 1.2 and Theorem 4.3, we can enumerate the non-occupied corners in sym-
metric tree-like tableaux of size 2n+ 1.

Corollary 4.4. The number of non-occupied corners in symmetric tree-like tableaux T sym2n+1 of
size 2n+ 1 is given by

2n × n!× 4n+ 1

12
.

4.2 Bijection between corners and runs of size 1

In this subsection, we give an alternative proof of the enumeration of corners, by constructing
a bijection between corners in tree-like tableaux and ascending runs of size 1 in permutations.
This answers to a question raised in [12]. Ascending run is also called increasing run, which was
first studied deeply by Gessel [13]. Recently, Zhuang studied further on runs and generalized
Gessel’s results to allow for a much wider variety of restrictions on increasing run lengths, for
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more details, see [25]. There is a closed formula counting the number of ascending runs of size
r in permutations of size n [19, A122843], for 0 < r < n we have

n! · [(n(r(r + 1)− 1)− r(r − 2)(r + 2) + 1]

(r + 2)!
(1)

In particular, for r = 1, we get the sequence enumerating corners in tree-like tableaux.

An ascending run of length r of a permutation σ = σ1 · · ·σn, is a sequence (σm, . . . , σm+r−1)
such that

σm−1 > σm < σm+1 < · · · < σm+r−2 < σm+r−1 > σm+r,

with the convention that σ0 = n + 1 and σn+1 = 0. In particular, σ has a run of size 1 means
that there exists i ∈ [n] such that σi−1 > σi > σi+1.

In order to build the bijection, we need a preliminary result about non-ambiguous trees [1].
They correspond to rectangular shaped tree-like tableaux. The height (resp. width) of a non-
ambiguous tree is its number of row (resp. column) minus 1. We have the following result about
these objects (it is a reformulation of [3, Proposition 1.16]).

Proposition 4.5. Non-ambiguous trees of height h and width w are in bijection with permuta-
tions σ of {1, 2, . . . , w, 0̇, 1̇, . . . , ḣ}, finishing by a pointed element and such that if two consecutive
elements σi and σi+1 are both pointed or not pointed, then σi < σi+1.

Proof. The initial result is that, non-ambiguous trees of height h and width w are in bijection
with pairs (u, v) of 2-colored words, with blue letters on [w] and red letters on [h], where each
letter appear exactly once (in u or in v), letters in blocks of the same colors are decreasing, u
(resp. v) ends by a red (resp. blue) letter.

In order to obtain the Proposition 4.5, we turn pairs (u, v) into the desired permutations
σ. Let us consider a non-ambiguous tree nat and its corresponding pair (u, v). We start by
constructing a pair (u′, v′) by replacing the blue (resp. red) letters i of u and v by the uncolored
(resp. uncolored pointed) letters w − i+ 1 (resp. h− i+ 1). The permutation σ corresponding
to nat is v′0̇u′.

The bijection between corners and ascending runs of size 1 is decomposed into two steps:
Lemma 4.6 and Lemma 4.7.

Lemma 4.6. For n > 1, there is a bijection between corners in Tn and triplets (Tl, Tr, nat) such
that

• Tl is a tree-like tableau of size nl,

• Tr is a tree-like tableau of size nr,

• nl + nr + 1 = n,

• nat is a non-ambiguous tree of height left(Tr) + 1 and width top(Tl) + 1.

Proof. The proof is based on the l-cut procedure define in [1, Lemma 4]. Let T be in Tn and c
one of its corners. We start by cutting T along the lines corresponding to the bottom and the
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right edges of c, as shown in Figure 9a. We denote by L the bottom part, M the middle part
and R the right part. In order to obtain Tl we add to L a first row whose length is equal to the
number of columns of M minus 1. There is exactly one way to add dots in this first row for Tl
to be a tree-like tableau: we put them inside the cells corresponding to non empty columns in
M . In a similar way, we obtain Tr from R by adding a dotted first column. Tl and Tr are two
tree-like tableaux, and the sum of their length is equal to the length of T , hence nl +nr + 1 = n.
Finally, removing the empty rows and columns of M we obtain nat. This procedure is illustrated
in Figure 9b. It should be clear that the construction can be reversed and that Tl, Tr and nat
verifies the desired conditions.

c

(a) The cutting of T defined by the
corner c.

Tl

nat

Tr

(b) The three parts obtained from T .
(To obtain nat, the gray cells should
be removed.)

Figure 9: An example of the bijection of Lemma 4.6.

Lemma 4.7. The triplets (Tl, Tr, nat) satisfying all the conditions in Lemma 4.6 are in bijection
with runs of size 1 in permutations of size n.

Proof. The idea of the proof is the following: from a triplet (Tl, Tr, nat) we construct a permu-
tation σ of size n which have a run of size 1 (σk) such that σk = nl + 1 for some k. Tl gives the
ordering of the values smaller than σk, Tr the ordering of the values bigger than σk, and nat
tells us how we mix them and where we put σk.

Tree-like tableaux of size n with k points in the first column are in bijection with permutations
of size n with exactly k cycles. Indeed, by [4, Proposition 1.3], they are in bijection with
permutation tableaux of size n with k unrestricted rows. Moreover, by [6][Theorem 1], they
are in bijection with permutations of size n with k right-to-left minimum. Finally, the statistic
of right-to-left minimum is equi-distributed with the statistic left-to-right maximum, which is
itself equi-distributed with the statistic of the number of cycles as shown by the “transformation
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fondamentale” of Foata-Schützenberger ([20, Proposition 1.3.1] or [10, Section 1.3]). Using an
axial symmetry with respect to the main diagonal of the underlying diagram of T , we deduce
the same result for tree-like tableaux of size n with k points in the first row. We denote by
h and w the height and the width of nat respectively. Let lσ (resp. rσ) be the permutation
associated to Tl (resp. Tr) by this bijection. We denote by L1, · · · , Lw (resp. R1, · · · , Rh) the
disjoint cycles of lσ (resp. rσ), such that if i < j, then the maximum of Li (resp. Ri) is smaller
than the maximum of Lj (resp.Rj). In addition, we shift the values of the Ri by nl + 1. We
will write a cycle without parenthesis and with its biggest element at the first position. For
example, suppose lσ = (6)(7523)(9184) and rσ = (423)(5)(716)(98), then L1 = 6, L2 = 7 5 2 3,
L3 = 9 1 8 4, R1 = 14 12 13, R2 = 15, R3 = 17 11 16 and R4 = 19 18. Let m be the word
corresponding to nat. If 0̇ is not the last letter of m and if the letter after 0̇ is not pointed, we
can uniquely represent m as

m = u0̇a1ḃ1a2ḃ2 · · · apḃp,

where u can be empty, and the words ḃi (resp. ai) consist of a non empty increasing sequence
of pointed (resp. non pointed) letter. In this case, we replace m by swapping subwords ai and
ḃi for all i (1 6 i 6 p), i.e.,

m∗ = u0̇ḃ1a1ḃ2a2 · · · ḃpap.

Obviously, this operation is bijective.

We finish the general construction by substituting nl + 1 for 0̇, Li for i̇ and Ri for i. For
example, if

m = 232̇3̇140̇1̇

then we obtain the run of size one

15 17 11 16 7 5 2 3 9 1 8 4 14 12 13 19 18 10 6.

Another example, if
m = 1̇40̇122̇33̇

then
m∗ = 1̇40̇2̇123̇3

and thus we get
6 19 18 10 7 5 2 3 14 12 13 15 9 1 8 4 17 11 16.

In order to reverse the construction from a run of size one (σk), we use the “transformation
fondamentale” in each maximal sequence of integers smaller (resp. larger) than σk. This way,
we are able to identify the Li (resp. Ri), so that we can recover lσ, rσ and nat. For example,
if we consider the run

4 2 6 11 9 12 8 3 7 1 5 10,

we obtain
4 2︸︷︷︸
L2̇

6︸︷︷︸
L3̇

11 9︸︷︷︸
R2

12︸︷︷︸
R3

8︸︷︷︸
0̇

3︸︷︷︸
L1̇

7 1 5︸ ︷︷ ︸
L4̇

10︸︷︷︸
R1

,

hence
lσ = (3)(4 2)(6)(7 1 5), rσ = (2)(3 1)(4), m∗ = 2̇3̇230̇1̇4̇1,m = 2̇3̇230̇11̇4̇.
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As a consequence of Lemma 4.6 and Lemma 4.7, we have the following theorem.

Theorem 4.8. For n > 1, corners in Tn are in bijection with runs of size 1 in Sn.

Even if we send corners to runs of size 1, the two statistics does not have the same distribution.
For example, the permutation 321 have 3 runs of size 1 while a tree-like tableau of size 3 cannot
have 3 corners.

From Theorem 4.8 and Equation 1 we deduce the enumeration of corners.

Corollary 4.9. The number of corners in Tn is n! · n+4
6 for n > 2 and 1 for n = 1.

4.3 Polynomial analogues

In this subsection, we present two conjectures that generalise the enumeration of corners in
tree-like tableaux and in symmetric tree-like tableaux, by giving polynomial analogues.

4.3.1 (a,b)-analogue of the average number of non-occupied corners in tree-like
tableaux

To refine the enumeration of corners, the two statistics over tree-like tableaux we consider are:
top and left, that were defined in [4]. They count the number of non-root points in the first
row and in the first column, respectively. They are interesting statistics since they correspond
to the parameters α and β respectively in the PASEP.

As explained in [15, Section 4], computing the average number of corners gives us the average
number of locations where a particle may jump to the left or to the right in the PASEP model,
in the case α = β = q = 1 and δ = γ = 0. Computing the (a,b)-analogue of average number of
corners

cn(a, b) :=
∑
T∈Tn

c(T ) · w(T ),

where w(T ) = atop(T )bleft(T ), would extend the result to the case q = 1 and δ = γ = 0, if we
replace a by α−1 and b by β−1.

The (a,b)-analogue of the average number of tree-like tableaux, was computed in [4], it is
equal to

Tn(a, b) :=
∑
T∈Tn

w(T ) = (a+ b)(a+ b+ 1) · · · (a+ b+ n− 2).

It turns out that the (a,b)-analogue of the average number of occupied corners is also Tn(a, b).
In order to prove this, we just need to redo the short proof of [15, Section 3.2] keeping track of
left and top points. As a consequence of this result, computing the (a,b)-analogue for corners
or for non-occupied corners, is equivalent. In this section, we focus on non-occupied corners,
because their study seems easier. We denote by nocn(a, b) the (a,b)-analogue of the average
number of non-occupied corners, i.e.,

nocn(a, b) :=
∑
T∈Tn

noc(T )w(T ),
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where noc(T ) is the number of non-occupied corners of T . In particular, Corollary 4.2 implies
that nocn(1, 1) = n! · n−26 . Using an implementation of tree-like tableaux in Sage [S+15], the
following conjecture has been experimentally confirmed until n = 10.

Conjecture 4.10. For n > 3, the (a,b)-analogue of the enumeration of non-occupied corners is

nocn(a, b) =

(
(n− 2)ab+

(
n− 2

2

)
(a+ b) +

(
n− 2

3

))
· Tn−2(a, b)

In order to obtain the conjecture about corners, we just have to add Tn(a, b) to nocn(a, b).
So, cn(a, b) can be rewritten as follows:

cn(a, b) =

(
a2 + b2 + nab+

(n2 − n− 4)(a+ b)

2
+

(n+ 2)(n− 2)(n− 3)

6

)
· Tn−2(a, b).

Let X(s) be the random variable counting the number of locations of a state s of size n of the
PASEP, where a particle may jump to the right or to the left. We can compute the conjectural
expected value of X by using the formula of [15, Section 4],

E(X) =
1

Tn+1(a, b)

∑
T∈Tn+1

w(T )(2c(T )− 1).

=
2 · (a2 + b2 + (n+ 1)ab+ (n2+n−4)(a+b)

2 + (n+3)(n−1)(n−2)
6 )

(a+ b+ n− 1)(a+ b+ n− 2)
− 1

=
6[a2 + b2 + (n+ 1)ab] + 3(n2 + n− 4)(a+ b) + (n+ 3)(n− 1)(n− 2)

3(a+ b+ n− 1)(a+ b+ n− 2)
− 1

=
3(a2 + b2) + 6nab+ 3(n2 − n− 1)(a+ b) + n(n− 1)(n− 2)

(a+ b+ n− 1)(a+ b+ n− 2)
.

Instead of studying nocn(a, b) as a sum over tree-like tableaux, we will study it as a sum
over non-occupied corners in Tn. Let noc be a non-occupied corner of a tree-like tableau T , we
define the weight of noc as

w(noc) := w(T ).

Let NOC(Tn) be the set of non-occupied corners in Tn, we can rewrite nocn(a, b) as

nocn(a, b) =
∑

noc∈NOC(Tn)

w(noc).

The study of this conjecture brings a partitioning of non-occupied corners. We denote by
NOCa,b(Tn) the set of non-occupied corners with no point above them, in the same column,
except in the first row and no point at their left, in the same row, except in the first column. The
set of non-occupied corners with no point above them, except in the first row, or no point at their
left, except in the first column, but not both in the same time, are denoted by NOCa,1(Tn) and
NOC1,b(Tn) respectively. The remaining corners are regrouped in NOC1,1(Tn). The different
types of non-occupied corners are illustrated in Figure 10.
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not empty
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(d) NOC1,1(Tn)

Figure 10: Partitioning of non-occupied corners in Tn. ( means that the cell can be either
empty or occupied.)

Proposition 4.11. For n > 3, the (a, b)-analogue of the enumeration of NOCa,b(Tn) is∑
noc∈NOCa,b(Tn)

w(noc) = (n− 2) · ab · Tn−2(a, b).

Proof. In order to show that, we put in bijection non-occupied corners of Tn of this shape and
the set of pairs (T, i) where T is a tree-like tableau of size n − 2 and i is an interstice between
two consecutive border edges of T . Let noc ∈ NOCa,b(Tn) and T ′ be its tree-like tableau of size
n. Let j be the integer such that noc is the cell at the intersection of row j and column j + 1.
We obtain a tree-like tableau T of size n− 2 by removing the row j and the column j + 1. The
north-west corner i of noc corresponds to an interstice between two consecutive border edges of
T , we associate to noc the pair (T, i). Conversely, let us consider a pair (T, i). We construct a
tree-like tableau T ′ as follows, we add to T a row and a column ending a common cell c with i
as its north-west corner, and we had a point to the left-most (resp. highest) cell of the new row
(resp. column). In particular, c is in NOCa,b(Tn). The bijection is illustrated in Figure 11a.

i

T

noc

(a) Bijection between NOCa,b(Tn)
and pairs (T, i).

nocr

T

(b) Bijection between pairs (T, r) and
NOCa,b(Tn)

⋃
NOCa,1(Tn) .

Figure 11

For each tree-like tableau T of size n− 2, there are n− 2 choices of interstice i, in addition,
the weight of noc is equal to ab · w(T ). As a result,∑
noc∈NOCa,b(Tn)

w(noc) =
∑

T∈Tn−2
i interstice of T

ab ·w(T ) = (n−2) ·ab
∑

T∈Tn−2

w(T ) = (n−2) ·ab ·Tn−2(a, b).
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We are also able to give an (a, b)-analogue of the enumeration ofNOCa,1(Tn) andNOC1,b(Tn).
In order to do that, we need an (a, b)-analogue of the enumeration of tree-like tableaux of size
n with a fixed number of rows k,

Aa,b(n, k) =
∑
T∈Tn

T has k rows

atop(T )bleft(T ).

From [4, Proposition 3.4] we already know that A1,1(n, k) is the Eulerian number and satisfies

A1,1(n+ 1, k) = kA1,1(n, k) + (n+ 2− k)A1,1(n, k − 1).

In the general case, the linear recurrence satisfied by Aa,b(n, k) is

Aa,b(n+ 1, k) = (a− 1 + k)Aa,b(n, k) + (b+ n+ 1− k)Aa,b(n, k − 1). (2)

As in [4], we consider the Eulerian polynomial:

An(t) :=

n∑
k=1

Aa,b(n, k)tk.

Lemma 4.12. For n > 2,

An(1) = Tn(a, b) and A′n(1) = (a+ bn+

(
n

2

)
− 1)Tn−1(a, b).

Proof. The first identity is a consequence of the definition of An(t). For the second one, we
deduce from (2) that An(t) satisfies the recurrence relation

An(t) = (a− 1)An−1(t) + tA′n−1(t) + (b+ n− 1)tAn−1(t)− t2A′n−1(t)
= (a− 1)An−1(t) + (b+ n− 1)tAn−1(t) + t(1− t)A′n−1(t),

with initial condition A1(t) = t. Hence, by differentiating and evaluating at t = 1, we get the
following recurrence relation for A′n(1)

A′n(1) = (a− 1)A′n−1(1) + (b+ n− 1)(A′n−1(1) +An−1(1))−A′n−1(1)

= (a+ b+ n− 3)A′n−1(1) + (b+ n− 1)An−1(1).

For n > 3, dividing by Tn−1(a, b), we get

A′n(1)

Tn−1(a, b)
=

A′n−1(1)

Tn−2(a, b)
+ (b+ n− 1).

Since A′2(1) = a+ 2b, for n > 2,

A′n(1) = (a+ bn+

(
n

2

)
− 1)(a+ b+ n− 3) · · · (a+ b).
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We can now prove the following result,

Proposition 4.13. For n > 3, the (a, b)-analogue of the enumeration of NOCa,1(Tn) is

fn(a, b) :=
∑

noc∈NOCa,1(Tn)

w(noc) =

(
n− 2

2

)
· a · Tn−2(a, b),

and the (a, b)-analogue of the enumeration of NOC1,b(Tn) is

gn(a, b) :=
∑

noc∈NOC1,b(Tn)

w(noc) =

(
n− 2

2

)
· b · Tn−2(a, b).

Proof. In order to compute fn(a, b) we put in bijection elements of NOCa,1(Tn)
⋃
NOCa,b(Tn)

with pairs (T, r) where T is a tree-like tableaux of size n− 1 and r is a row of T , different from
the first one. Let noc ∈ NOCa,1(Tn) and T ′ its tree-like tableau of size n. Let j be the integer
such that noc is the cell at the intersection of row j and column j+1. We obtain T by removing
the column j+ 1, r corresponds to the row j. It should be clear that this operation is revertible.
The bijection is illustrated in Figure 11b. Using the previous notations, w(noc) = a · w(T ). As
a result,

fn(a, b) =
∑

T∈Tn−1
r a row of T

a · w(T )−
∑

noc∈NOCa,b(Tn)

w(noc)

= a ·
n−1∑
k=1

(k − 1) ·Aa,b(n− 1, k)− (n− 2) · ab · Tn−2(a, b)

= a · (A′n−1(1)−An−1(1))− (n− 2) · ab · Tn−2(a, b)

= a

[
(a+ (n− 1)b+

(
n− 1

2

)
− 1)− (a+ b+ n− 3)− (n− 2)b

]
· Tn−2(a, b)

= a

(
n− 2

2

)
· Tn−2(a, b)

The axial symmetry with respect to the main diagonal of the underlying diagram gives a
bijection between NOCa,1(Tn) and NOC1,b(Tn), a top point becomes a left point and conversely.
Hence, gn(a, b) can be deduced from fn(a, b) by the identity gn(a, b) = fn(b, a). Since Tn−2(a, b)
is a symmetric polynomial, gn(a, b) = b

(
n−2
2

)
· Tn−2(a, b).

To prove the conjecture, we miss the (a, b)-analogue of the enumeration of NOC1,1(Tn). The
main issue is how to link these non-occupied corners with tree-like tableaux of smaller size.

4.3.2 A conjectural x-analogue for symmetric tree-like tableaux

In the case of symmetric tree-like tableaux, top and left are always equal, moreover, there is
always a non-root point in the first row and in the first column, therefore we will consider
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left∗(T ) = left(T ) − 1. It gives a nice x-analogue of the enumeration of symmetric tree-like
tableaux. Indeed, [4, Section 2.4] tells us that

T sym2n+1(x) :=
∑

T∈T sym
2n+1

xleft
∗(T ) = 2n · (x+ 1) · · · (x+ n− 1)

(We believe that there is a mistake in [4, Section 2.4], we should take the definition

T sym2n+1(x, y, z) :=
∑

T∈T sym
2n+1

xleft
∗(T )ytop

∗(T )zdiag(T ),

in order to get,

T sym2n+1(x, y, z) = (1 + z)n(x+ y)(x+ y + 1) · · · (x+ y + n− 2).)

It turns out that in the case of the enumeration of corners in symmetric tree-like tableaux,
the x-analogue might be nice as well. As in the non-symmetric case, the x-analogue of the
enumeration of occupied corners is equal to TSym2n+1(x). Thus conjecturing an x-analogue for
non-occupied corners and unrestricted corner is equivalent. A computer exploration using Sage
[S+15], gives us the following expression:

Conjecture 4.14. The x-analogue of the enumeration of non-occupied corners in symmetric
tree-like tableaux is

∑
T∈T sym

2n+1

noc(T )xleft
∗(T ) =

[
2nx2 + 2(2n2 − 4n+ 1)x+

(n− 2)(n− 1)(4n− 3)

3

]
· T sym2n−3(x).

Using Sage [S+15], we can confirm this x-analogue until n = 7:

n = 2, 4x+ 2
n = 3, (6x2 + 14x+ 6) ∗ 2
n = 4, (8x2 + 34x+ 26) ∗ 4(x+ 1)
n = 5, (10x2 + 62x+ 68) ∗ 8(x+ 2)(x+ 1)
n = 6, (12x2 + 98x+ 140) ∗ 16(x+ 3)(x+ 2)(x+ 1)
n = 7, (14x2 + 142x+ 250) ∗ 32(x+ 4)(x+ 3)(x+ 2)(x+ 1)

In the non-symmetric case, we were only able to prove the coefficients of x2. It also corre-
sponds to the empty corners such that the only point above them is in the first row and only
point to their left is in the first column.

5 Conclusion and Remarks

We computed the number of corners in (type B) permutation tableaux, (symmetric) alternative
tableaux and (symmetric) tree-like tableaux, by interpreting the number of corners as a statistic
on (signed) permutations. Moreover, we gave a bijection between corners in tree-like tableaux
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and ascending runs of size one in permutations. Finally, we partially proved a conjectural (a,b)-
analogue and x-analogue of the enumeration of corners, in tree-like tableaux and symmetric
tree-like tableaux respectively.

It is worthy noting that the number of non-occupied corners in tree-like tableaux of size n+1
occurs in [19, A005990], which enumerates the total positive displacement of all letters in all
permutations on [n], i.e, ∑

π∈Sn

n∑
i=1

max{πi − i, 0},

the number of double descents in all permutations of [n− 1] and also the sum of the excedances
of all permutations of [n]. We say that i is a double descent of a permutation π = π1π2 · · ·πn if
πi > πi+1 > πi+2, with 1 6 i 6 n − 2 and an excedance if πi > i, with 1 6 i 6 n − 1. Besides,
they are also related to coefficients of Gandhi polynomials, see [23]. To find the relationship
between both of them is also an interesting problem.
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