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THE HOPF ALGEBRA OF GRAPH INVARIANTS

NICOLAS BORIE

Abstract. We propose an algebraic study of the simple graph isomorphism
problem. We define a Hopf algebra from an explicit realization of its elements
as formal power series. We show that these series can be evaluated on graphs
and count occurrences of subgraphs. We establish a criterion for the isomor-
phism test of two simple graphs by means of occurrence counting of subgraphs.
This criterion is deduced from algebraic relations between elements of our al-
gebra.

1. Introduction

Let G be a finite graph, drawn on a paper sheet. G is represented with dots for
the vertices and segments between some pairs of vertices. If n counts the number of
edges, if a counts the number of adjacent pairs of edges and d the number of pairs
of disjoint edges, obviously, we have a + d =

(

n
2

)

. Now, we want to play the same
game with more complicated patterns and investigate how these counting functions
are related. These motivations are not new: similar approaches can be found for
example in [9] or in [7] but these papers deal with finite cases where graphs have a
fixed number of vertices.

We will take care of two difficult points for giving an algebraic sense to these
counting functions. The first one is that one can describe (for example on a com-
puter) only labeled graphs, so we will have to deal with the symmetries consisting
in relabeling graphs. The second one is that we do not want to depend on the
size of graphs. Counting the number of occurrences of a pattern inside a graph
has a meaning whatever the size of the graph. To achieve this goal, we will make
sense of these counting function by means of elements of a Hopf algebra UGQSym

(Unlabeled Graph Quasi Symmetric functions) which is close to the combinatorial
Hopf algebra GTSym introduced by Novelli, Thibon and Thiéry [8].

We will first realize functions counting occurrences of subgraph, as power series
in an infinite number of variables. In Section 3, we investigate the Hopf structure
of the algebra UGQSym. We show how this algebra is connected to invariants of
graphs in Section 4 and give a sufficient criterion for two graphs to be isomorphic
by means of subgraph occurrences counting. Finally, we apply our results to the
reconstruction problem of finite graphs.

2. Subgraph enumeration functions as formal power series

Let A be an infinite set of variables xij indexed by pairs (i, j) of positive integers
such that i < j. An adapted presentation of this alphabet can be made as a triangle
as follows:

1

http://arxiv.org/abs/1511.05843v1


2 NICOLAS BORIE

1
x12 2
x13 x23 3
x14 x24 x34 4
x15 x25 x35 x45 5
x16 x26 x36 x46 x56 6
x17 x27 x37 x47 x57 x67 7
...

...
. . .

Definition 2.1. Let n be an integer and σ be a permutation of the symmetric
group Sn. We define an action of Sn over pairs (i, j) (variables xij) such that
1 6 i < j 6 n as follows

σ·(i, j) :=

{

(σ(i), σ(j)) if σ(i) < σ(j),
(σ(j), σ(i)) otherwise.

(

σ · xij :=

{

xσ(i)σ(j) if σ(i) < σ(j),
xσ(j)σ(i) otherwise.

)

For finite graphs over n vertices, this action corresponds exactly to the relabeling
action on graphs viewed on the lower triangular parts of their adjacency matrices.

Definition 2.2. Let n > 2 be an integer and G be a graph over n vertices without
isolated vertex. We denote by ((aij))16i<j6n the lower triangular part of the inci-
dence matrix of G when one has chosen any labeling of the vertices of G. We thus
define an invariant power series MG as

MG :=
∑

r1<···<rn





∑

σ∈OrbSn (G)





∏

16i<j6n

x
aσ·(i,j)
rirj







 ,

where OrbSn
(G) is a set of permutations of Sn required to deploy the orbit of the

graph G under the relabeling action. For the unique graph over 1 node (loops are
not allowed, this graph cannot contain any edge), we set M := 1.

Here are the first examples of functions MG.

M =
∑

0<i<j

xij = x12 + x13 + x23 + x14 + x24 + x34 + . . .

M =
∑

0<i<j<k

xijxik + xijxjk + xikxjk = x12x13 + x12x23 + x13x23 + . . .

M =
∑

0<i<j<k<l

xijxkl + xikxjl + xilxjk = x12x34 + x13x24 + x14x23 + . . .

For each finite labeled graph g with positive integers, we associate a monomial
m(g) with g as follows

m(g) :=
∏

0<i<j

i and j are linked

xij

Proposition 2.3. For n > 2 an integer and G a graph over n vertices without
isolated vertex, an alternative description of MG is given by

MG =
∑

g:labeling of G
using positive integers

m(g).
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Proof. Monomials are in bijection with labeled graphs. The MG are infinite sums
over some monomials and we can set a canonical representative for each MG using
two commutative congruence relations over the commutative monoid (xij |x

2
ij−xij)

∗.
As described in details in [2], a canonical monomial is the maximum in its orbit
under the relabeling action for the lexicographic order.

gsupport
pack

−−−−→ g1...n

canonical





y





y
canonical

Gsupport
pack

−−−−→ G1...n

For example, we take the monomial (or labeled graph) x25x57.

x25x57
(2,5,7)→(1,2,3)
−−−−−−−−−−→

pack
x12x23

(2,5,7)→(5,2,7)





y
canonical canonical





y
(1,2,3)→(2,1,3)

x25x27
(2,5,7)→(1,2,3)
−−−−−−−−−−→

pack
x12x13

�

Let H be a finite graph over n nodes. Let (aij)16i<j6n be the lower triangu-
lar part of its incidence matrix corresponding to any labeling of H with integers
{1, . . . , n}. Now complete the triangle aij with an infinite number of 0 for aij where
j > n. The evaluation of MG over the infinite sequence of boolean associated with
H counts the number of embeddings of G inside H .

MG(H) := MG((aij)) = #{G →֒ H} ∈ N

MG(G) = 1 ∀G graph without isolated vertex

The main motivation justifying the definition ofMG stand in the following result.

Theorem 2.4. MG can be seen as a maps, defined on every finite graph, counting
occurrences of subgraphs. For example, the function M counts the number of

triangles inside a graph.

M = x12x13x23+x12x14x24+x13x14x34+x23x24x34+x12x15x25+x13x15x35+

x23x25x35 + x14x15x45 + x24x25x45 + x34x35x45 + . . .

If H is the following graph over 5 nodes, we give it labels with integers from 1
to 5

2

1 3

4 5

2

1 3

4 5

incidence matrix(H) :

1 2 3 4 5

1 ·
2 1 ·
3 1 1 ·
4 1 1 0 ·
5 1 0 1 0 ·
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M (H) = 1 · 1 · 1 + 1 · 1 · 1 + 1 · 1 · 0 + 1 · 1 · 0 + 1 · 1 · 0 + 1 · 1 · 1 + 1 · 0 · 1 + 1 ·

1 · 0 + 1 · 0 · 0 + 0 · 1 · 0 + . . .

M (H) = 3 as the only three monomials contributing to H are x12x13x23,

x12x14x24 and x13x15x35. This number of triangles is independent of the way chosen
for labeling the graph since the functions MG are invariant under the relabeling
action.

3. The algebra UGQSym

We denote by UGQSym the subspace of K[xij |x
2
ij = xij , i < j] generated by the

MG. We will call this space the Unlabeled Graph Quasi Symmetric functions.
As we focus on simple graphs (unoriented, simple-edged), the variables, which

model edges, can take only two values: 0 if the edge is not present and 1 otherwise.
These two numbers are the roots of the polynomial x2 − x and choosing formal
variables xij satisfying x2

ij = xij allow us to describe things more combinatorically.

Theorem 3.1. UGQSym is a subalgebra of K[xij |i < j : x2
ij = xij ]. Precisely,

there exist non negative integers cGG′,G′′ such that

MG′ ·MG′′ =
∑

G

cGG′,G′′MG.

The cGG′,G′′ counts precisely the number of ways of embedding simultaneously G′ and

G′′ onto G.

Here are some examples of products obtained with Sage [4] using tools for com-
puting canonicals under relabeling action [2].

M ·M = M + 2M + 2M

(1) M ·M = 2M + 3M + 3M + 2M +M

M ·M = 2M +M + 2M + 3M

M ·M = M + 2M + 2M + 2M

As an exercise, the reader can check that the definition of functions MG realizes
the simple combinatorial fact: inside a graph, pairs of edges are adjacent or disjoint
(use x2

ij = xij).

(M

2

)

:=

(M )(M − 1)

2!
= M +M

More generally, it is possible to show that for any non negative integer n, we
have

(

M

n

)

:=

(M )(M − 1) . . . (M − (n− 1))

n!
=

∑

G has n edges

MG
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Proposition 3.2. The set of functions {MG} for a graph G without isolated vertex
forms a linear basis of the algebra UGQSym.

Proof. By definition, the family generates UGQSym. Defining leading terms as
canonical labeled graphs over packed support, we immediately see that elements of
this family are linearly independent. �

The products of functions {MG} establish algebraic relations between functions
counting occurrences of subgraphs. Finally, we can show that only connected pat-
terns are important.

Proposition 3.3. The functions {MG} for G connected graph generates the algebra
UGQSym.

Proof. By induction on the number of connected components. Any product MG1 ×
MG2 with respectively n1 and n2 connected components in G1 and G2 takes the
form

MG1 ×MG2 = MG1⊔G2 +
∑

G has n<n1+n2
connected components

MG

�

Filtered by number of nodes, the dimensions of ”pseudo” homogeneous compo-
nents is counted by graph node(n), the number of graphs over n nodes, Sequence
A000088 of the OEIS [11]. We recall the first values 1, 1, 2, 4, 11, 34, 156, 1044, . . . .
These graphs can be seen as monomials over connected graphs, for that, we take con-
nected components as variables and exponents are respectively the multiplicities of
isomorphic connected components appearing in the graph. Setting connected node(n)
as the number of connected graphs over n nodes beginning by 1, 1, 1, 2, 6, 21, 112, 853, . . .
also sequence A001349 of the OEIS [11]. We have the following relation with power
series:

∏

n>0

1

(1− qn)connected node(n)
=

∑

n>0

graph node(n)qn.

Therefore, the {MG} for G connected graphs are algebraically independent.
We can play the same game as before, counting, this time, graphs by number

of edges. The number graph edge(n) of graphs with n edges (and without isolated
vertex) is A000664 of the OEIS and begins with 1, 1, 2, 5, 11, 26, 68, 177, 497 and
the number of connected graphs connected edge(n) with n edges is A002905 of
the OEIS: 1, 1, 1, 3, 5, 12, 30, 79, 227, 710, . . . . Although the OEIS does not mention
that the first one is the Euler transform of the second, with the same argument as
before, we also have:

∏

n>0

1

(1− qn)connected edge(n)
=

∑

n>0

graph edge(n)qn.

We can realize a coproduct by means of doubling alphabet trick of [5]. Noting
A our infinite triangle of variables xij with 0 < i < j, we introduce another copy
of this alphabet, B composed of variables xi′j′ with i′ and j′ satisfying the same
constraints as i and j. We define A⊕B like A⊔B since we want to forbid variables
of the form xij′ or xj′i.
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MG(A⊕ B) :=
∑

g:labeling of G

using normal and prime letters

m(g)

=
∑

g1,g2:labeling of G1⊔G2=G

G1 labeled with normal letters, G2 labeled with prime letters

m(g1 ⊔ g2)

=
∑

G1⊔G2=G

(
∑

g1:labeling of G1
G1 labeled with normal letters

m(g1)) · (
∑

g2:labeling of G2
G2 labeled with prime letters

m(g2))

MG(A⊕ B) =
∑

G1⊔G2=G

MG1(A)⊗MG2(B)

Definition 3.4. Let G be a finite graph without isolated vertex. We define a co-
product ∆ on basis elements MG of UGQSym as follows:

∆(MG) :=
∑

G′⊔G′′=G

MG′ ⊗MG′′

The sum runs over ordered pairs (G′, G′′) of graphs without isolated vertex such
that G becomes the disjoint union of G′ and G′′. Recall that the graph reduced to a
single vertex (without any edge) has no isolated vertex.

We directly see that ∆ has for possible coefficients 0 and 1, that it is coassociative
and cocomutative, and that its primitive elements are connected graphs. Here are
some examples:

∆(M ) = M ⊗ 1 + 1⊗M

∆(M ) = M ⊗ 1 +M ⊗M + 1⊗M

∆(M ) = M ⊗ 1 +M ⊗M +M ⊗+M + 1⊗M

Proposition 3.5. (UGQSym, ·,∆) is a Hopf algebra. Moreover, it is filtered by
the number of edges or by the number of nodes.

Proof. The product and coproduct are compatible by induction on the number
of connected components of the operands. For G1 and G2 two non isomorphic
connected graphs, the product MG1 ·MG2 takes the form

(2) MG1 · MG2 = MG1⊔G2 +
∑

cHG1,G2
MH ,

where the sum runs over some connected graphs H (note that if G1 and G2 are
isomorphic, the coefficient ofMG1⊔G1 is 2 instead of 1). From this, as the coproduct
stays simple for connected graphs, we easily check that ∆(f · g) = ∆(f)(· ⊗ ·)∆(g).

Generally, Formula (2) shows that any product MG1 · MG2 contains a leading
term whose associated graph has as number of nodes the sum of the number of
nodes of the operands, as number of edges the sum of the number of edges of
the operands and as number of connected components the sum of the number of
connected components of the operands. Other terms of the product are associated
with graphs which are non trivial merges of G1 and G2 and for which at least one
edge has been joined (and thus at least two vertices from G1 and G2 has been
merged). �
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Being commutative, cocommutative and filtered, the antipode S is uniquely de-
termined by S(1) = 1 together with the induction formula:

S(MG) = −
∑

(G′,G′′)∈∆(MG)

G′′ 6=G

MG′ · S(MG′′)

Moreover S satisfies S2 = Id. We have naturally S(MG) = −MG for any G

connected graph. Here are some non trivial examples.

S(M ) = M + 2M +M

S(M ) = M + 6M + 6M + 4M + 4M

S(M ) = −M −2M −6M −6M −4M −6M −2M −M

4. Connection with algebraic invariant theory

The definition of the MG obviously shows that the algebra UGQSym is com-
posed of invariant functions under the relabeling action of the vertices. We now
show that UGQSym contains a sufficient number of invariants to separate finite
graphs.

The next experiment consists in keeping only variables indexed by small indices.
For a fixed integer n, in our triangle of variables, we will send to 0 all variables xij

for i > n (we thus keep only an upper triangular part). Applying this restriction on
the MG, we define polynomials Pn,G which are sums of monomials whose support
contains only

(

n

2

)

different variables and inside which variables can appear with
degree 1. These polynomials are the central objects of [7].

In the sequel, we insist on the fact that K is of characteristic 0 and that we do
not keep relations x2

ij = xij on remaining variables.
Let n be a positive integer. The group acting on edges of graphs over n nodes is

a permutation group (isomorphic to the symmetric group Sn), a subgroup of the
symmetric group S(n2)

. The following theorem exploits the combinatorial structure

of rings of invariants under the action of a permutation group.

Theorem 4.1. Let n be a positive integer and G be the permutation group acting
on bi-indexed variables x := (x12, x13, . . . , xn−1 n) as the relabeling action on graphs

over n nodes. There exists a finite family of
(n2)!
n! polynomials ηλi

which are linear

combinations of higher Specht polynomials such that the invariant ring K[x]G under
the action of G can be decomposed as

(3) K[x]G =
⊕

λ⊢(n2)

⊕

i

ηλi
K[e1, e2, . . . e(n2)

],

where the ek are the elementary symmetric polynomials in
(

n
2

)

variables and each

ηλi
is a linear combination of some higher Specht polynomials FS

T with S ant T

standard Young tableaux of shape the partition λ.
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Proof. Details are available in [3]. The algorithm presented in this paper shows
how to compute the secondary invariants ηλi

inside irreducible representations of
the ambient symmetric group of degree

(

n
2

)

. The slicing in Equation (3) is finer
than the one presented in classical Hironaka decomposition because the first direct
sum runs over partitions and not over possible degrees. As we can have several
G-stable subspaces at a given degree, secondary invariants are better partitioned
here. �

Remark 4.2. The family formed by {e1, e2, . . . e(n2)
}∪{ηλi

}
λ⊢(n2),i

can separate all

pairs of orbits of G (relabeling action) when acting on C(
n
2) (vectors of

(

n

2

)

complex
numbers).

The family generates the whole ring of invariants under the action of G and
there always exists an invariant separating two different orbits. Here, this huge
family separates non oriented multi-graphs with a complex number labeling each
edge (also symmetric complex matrices of size n with zeros on the diagonal).

Now, we go back to simple graphs in which, for each pair of nodes, either we
have an edge (when the label of the edge is 1) or either we do not have the link
(the label is then 0). Our goal is now to reduce the number of elements of the huge
separating family since simple graphs are vectors of

(

n
2

)

booleans.

Proposition 4.3. For any partition λ ⊢ n having at least three parts and any
pair (S, T ) of standard Young tableaux of shape λ, the evaluation of higher Specht
polynomials FS

T is zero on vectors of the type {0, 1}n.

Proof. Higher Specht polynomials are built with Young symmetrizers which intro-
duce some anti-symmetries. If the tableau has at least three boxes in the first
column, the associated higher Specht will be at least divisible by a Vandermonde
type factor over at least three variables. But a Vandermonde factor in k variables
needs at least k different values to be non zero ((x1 − x2)(x1 − x3)(x2 − x3) is non
zero if x1, x2 and x3 are pairwise different). �

Remark 4.4. Let v be a vector of booleans of length n and i(v) the number of 1 in
v. Then the evaluations of the elementary symmetric polynomials ek on v depend
only on e1(v) = i(v). Precisely, we have:

∀ 1 6 k 6 n, ek(v) =

(

i(v)

k

)

=

(

e1(v)

k

)

.

We deduce from Proposition 4.3 and Remark 4.4 that our separating family can
be largely reduced for simple graphs. We can keep only the first elementary sym-
metric polynomial (which counts the number of edges) and combinations of higher
Specht polynomials for the relabeling action associated with partitions having two
parts.

Moreover, as we just want to separate orbits (and not generate the whole ring of
invariants), we can use the fact that the action of a permutation σ over an higher
Specht polynomial FS

T depends only on the irreducible representation (tableau T )
and not on the degree scaling (tableau S for the multiplicity), on such polynomials,
we have σ · FS

T = FS
σ·T [1]. Therefore, Specht polynomials are sufficient and higher

Spechts bring only more copies of isomorphic G-stable subspaces which contribute
to generate the ring of invariants but do not contribute to separate orbits. More
details are available in [1, 3].
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Finally, noticing that a tableau of size
(

n

2

)

composed of two rows has at most

⌊
(n2)
2 ⌋ boxes at height 2, we have:

Theorem 4.5. Let H1 and H2 two graphs over n nodes. The following statements
are equivalents:

(i) H1 and H2 are isomorphic.

(ii) For all graphs G over at most n nodes and having at most ⌊
(n2)
2 ⌋ edges:

Pn,G(H1) = Pn,G(H2)

(iii) For all graphs G over at most n nodes and having at most ⌊
(n2)
2 ⌋ edges:

MG(H1) = MG(H2)

Proof. We take all monomials associated with tableaux with two rows. They corre-
spond to graphs over n nodes having as edges the labels in the upper row. Applying
the orbit sum operator (Reynold’s operator up to a scalar) over these monomials,
we obtain the required polynomials Pn,G, which are more than needed to separate
all orbits of booleans vectors. �

Using the multiplicative structure of the algebra UGQSym, we can formulate:

Corollary 4.6. Let H1 and H2 be two graphs over n nodes. H1 and H2 are
isomorphic if and only if MG(H1) = MG(H2) for all connected graph G over n

nodes having at most ⌊
(n2)
2 ⌋ edges.

5. Application to graph reconstruction

The reconstruction of finite graphs is an old problem [6, 12]. Given a finite graph
H over n > 3 nodes, we can build the multi-set of vertex deleted subgraphs of H :
{H1, H2, . . . , Hn} which is formed by all induced subgraphs ofH by deleting exactly
one vertex. This process forms a map. The reconstruction conjecture investigates if
this map is injective, therefore finite graphs may be determined by their subgraphs
and finite graphs would be reconstructibles.

Proposition 5.1 (Kelly’s lemma). Let n a positive integer, H a graph over n

nodes and G a graph over r < n nodes. Let {H1, H2, . . . , Hn} the (possibly multi-
)set of graphs obtained from H when deleting a single vertex. Thus, the number of
ways of embedding G in H can be deduced from the number of embedding G in each
Hi:

Pn,G(H) = (n− r)

n
∑

i=1

Pn,G(Hi)

Proposition 5.2. Finite graphs over n nodes are reconstructible if the values of

Pn,G for G finite connected graph over n nodes with at most ⌊
(n2)
2 ⌋ edges can be

deduced from the values of Pn,H for H finite graph over at most n− 1 nodes.

Proof. Use Corollary 4.6 and Kelly’s lemma 5.1. �
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Case n = 3: Graphs over 3 nodes are isomorphic if and only if evaluations

coincide on the single series M since ⌊
(32)
2 ⌋ = ⌊ 3

2⌋ = 1. Notice that the following

relations:

(M

2

)

= M +M

(4)

(M

3

)

= M +M +M +M +M

become for the finite case for three nodes:

(P

2

)

= P

(P

3

)

= P

Since other patterns have as support more than 3 nodes, they vanish in this finite
case.

Case n = 4: As ⌊
(42)
2 ⌋ = 3, graphs over 4 nodes are reconstructibles if P and

P can be deduced from counting function of graphs over at most 3 nodes. These

two functions correspond to the only two connected graphs over 4 nodes having at
most 3 edges.

Equation (4) and the product (1) give for graphs over four nodes the identities:















(
P

3

)

− P = P + P

P · (P − 2)− 3 P = 3 P + 2 P

Conjecture 5.3. Let n > 3 and G a connected graph over n nodes having at most

⌊
(n2)
2 ⌋ edges, then Pn,G is a polynomial over some Pn,H where H are graphs over

at most n− 1 nodes.

If this conjecture is true, it would imply Ulam’s conjecture. Note also that this
conjecture will not give information about the complexity of graph isomorphism
problem.



THE HOPF ALGEBRA OF GRAPH INVARIANTS 11

Here is the matrix MG(H) for (G,H) the 23 smallest graphs without isolated
nodes.

1 . . . . . . . . . . . . . . . . . . . . . .

2 1 . . . . . . . . . . . . . . . . . . . . .

3 3 1 . . . . . . . . . . . . . . . . . . . .

2 . . 1 . . . . . . . . . . . . . . . . . . .

3 3 . . 1 . . . . . . . . . . . . . . . . . .

3 2 . 1 . 1 . . . . . . . . . . . . . . . . .

4 5 1 1 1 2 1 . . . . . . . . . . . . . . . .

4 4 . 2 . 4 . 1 . . . . . . . . . . . . . . .

5 8 2 2 2 6 4 1 1 . . . . . . . . . . . . . .

6 12 4 3 4 12 12 3 6 1 . . . . . . . . . . . . .

3 1 . 2 . . . . . . 1 . . . . . . . . . . . .

4 3 1 3 . . . . . . 3 1 . . . . . . . . . . .

4 6 . . 4 . . . . . . . 1 . . . . . . . . . .

4 4 . 2 1 2 . . . . 1 . . 1 . . . . . . . . .

4 3 . 3 . 2 . . . . 2 . . . 1 . . . . . . . .

5 8 1 2 4 4 2 . . . 1 . 1 2 . 1 . . . . . . .

5 7 1 3 2 5 2 . . . 2 . . 2 1 . 1 . . . . . .

5 6 1 4 1 4 1 . . . 4 1 . 1 2 . . 1 . . . . .

5 6 . 4 1 6 . 1 . . 3 . . 2 2 . . . 1 . . . .

5 5 . 5 . 5 . . . . 5 . . . 5 . . . . 1 . . .

6 11 2 4 5 10 6 1 1 . 3 . 1 5 2 2 2 . 1 . 1 . .

6 10 2 5 3 10 5 1 1 . 5 1 . 4 4 . 2 2 1 . . 1 .

6 10 2 5 4 8 4 . . . 6 2 1 4 4 2 . 4 . . . . 1

Even if completed with the remaining graphs over five nodes, the last two graphs
are the algebraically closest pair of graphs over at most five nodes.
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