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The problem of entanglement detection for arbitrary spin systems is analyzed. We demonstrate
how a single measurement of the squared total spin can probabilistically discern separable from
entangled many-particle states. For achieving this goal, we construct a tripartite analogy between
the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and
classical lattice walks with special constraints. Within this framework, degeneracies are naturally
given by generalized Catalan numbers and determine the fraction of states that are decidedly entan-
gled and also known to be somewhat protected against decoherence. In addition, we introduce the
concept of a “sterile entanglement witness”, which for large enough systems detects entanglement
without affecting much the system’s state. We discuss when our proposed entanglement witness can
be regarded as a sterile one.

INTRODUCTION

It is clear by now, that the phenomenon of quantum
entanglement lies at the heart of quantum mechanics.
Entanglement is recognized as an important resource for
quantum computation [1], quantum cryptography [2],
quantum teleportation [3], quantum black holes [4] and
many other quantum tasks. It was also demonstrated
experimentally that entanglement can affect macroscopic
properties of solids, albeit at very low (critical) temper-
ature (below 1 Kelvin) [5].

Any quantum state ρ, has an ensemble decomposition,
i.e. there exist quantum states ρi with a probability dis-
tribution pi such that ρ =

∑
piρi. If there exists an en-

semble decomposition where every ρi is a separable state,
then ρ is called a separable state; otherwise, it is called
an entangled state.

Detecting entanglement of a given state, however,
is known to be a hard computational problem (NP)
[6]. Several methods of detecting entanglement are Bell
and spin squeezing inequalities [7, 8], measurement of
nonlinear properties of the state [9], approximation of
positive maps [10]. We shall focus in this paper on a
method known as entanglement witnesses [11]. This
method is unique because it is valid for any quantum
system, regardless of the number and dimensions of its
subsystems [12]. An entanglement witness (EW) is an
Hermitian (non-positive) operator, whose expectation
value is positive for any separable state. Therefore, when
applied to a state of interest, a negative expectation
value directly indicates the entanglement in this state.
Based on the theorem below [11], the EW is a necessary
and sufficient condition for entangled states:

Theorem (Horodecki96) : A density matrix ρ on HA⊗
HB is entangled if and only if there exists a Hermitian

operator W , an entanglement witness, such that

TrWρ < 0, (1)

and for all separable states ρsep,

TrWρsep ≥ 0. (2)

Furthermore, for every entangled state, there exists an
EW to detect it [11]. However, a specific EW can have a
positive expectation value also when evaluated on entan-
gled states. In fact, no entanglement witness can discern
separable states from entangled ones with 100% success
rate. That is, there are always undecideable states with
respect to any entanglement witness (hopefully, not too
many, because this will render the EW ineffective). We
do not consider in this work the optimality property of
the EW, but for the sake of completeness we note that
an entanglement witness is said to be optimal if there
exists no other EW which is finer, i.e. has a larger set of
decideable states [13].

A drawback of this EW method is that we change the
system’s state when measuring the witness (unless the
system is in some particular eigenstate). We shall further
analyze this feature and see how to overcome it in Sec.
1 using what we term a “sterile” entanglement witness.
We will show that for many decideable states, one can
evaluate the witness while negligibly changing the state
of the system.

We will focus on spin systems having nearest-neighbors
interactions, with an EW corresponding to a Heisenberg
model without an external magnetic field. This EW de-
scribes fully coupled N spin s particles in the form of a
complete graph [14].

The outline of the work is as follows. We begin by
presenting in Sec. 1 the proposed EW and show it is a
“sterile” one. In Sec. 2, a tripartite analogy is discussed
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between degeneracies of the witness eigenstates, ten-
sor products of SO(3) representations and lattice paths
which generalize the Catalan numbers. A few examples
are analyzed. We then derive the fraction of decideable
states for various s and N values in Sec. 3 and show that
it remains finite when N →∞.

1. A STERILE ENTANGLEMENT WITNESS

The proposed EW is given by the square of the total
spin operator, or Casimir operator

W = J2 = J2
x + J2

y + J2
z , (3)

where Jx/y/z =
∑N

k=1 sk,x/y/z is the total spin in each
direction. The eigenvalues Wj are given by the familiar
eigenvalues of J2

Wj = j(j + 1), j ∈ {n2 , n ∈ N0}. (4)

This EW was previously studied by Tóth [15], who used
the above model for the case of spin s = 1

2 particles.
The existence of undecideable states can be most eas-

ily demonstrated in a simple system of two spins. The
states | ↑↓〉 and | ↓↑〉 are both separable. The proposed
EW is a linear operator, hence we may consider their su-
perposition. On the one hand, these states construct the
spin-0 singlet state 1√

2
(| ↑↓〉 − | ↓↑〉), which is maximally

entangled. It has the lowest possible W value, and hence
will be identified by it. On the other hand, a different
superposition 1√

2
(| ↑↓〉 + | ↓↑〉), having spin 1, will not

be recognized as an entangled state since | ↑↑〉 and | ↓↓〉
have j = 1 too.

For a spin 1
2 system, the spin operator is given in terms

of the three Pauli matrices Jx/y/z =
∑N

k=1
1
2σk,x/y/z.

The expectation value of separable spin 1/2 states is
bounded

〈W 〉 ≥W (1/2)
sep = N/2. (5)

Hence, if the measured value of the EW is small enough,
the N -particle state is understood to be entangled, while
if the EW is high, we cannot tell with certainty if the
state is entangled or separable. However, by knowing the
degeneracy of the witness eigenstates, we can determine
the fraction of all states which are decideable.

The degeneracy of states with eigenvalue Wj for even
N were analytically found in [15, 16]

d 1
2
(N, j) =

 (2j+1)2

N/2+j+1

(
N

N/2 + j

)
, j ∈ N0,

0, else.
(6)

As will be described in Sec. 2, d 1
2
(N, j) are strictly related

to the so-called Catalan triangle [17]. Moreover, we will
derive in Sec. 2 the above formula from the structure of

SO(3) tensor products and generalize it to systems of
arbitrary spins. We will also relate this problem to a
classical problem of enumerative combinatorics - finding
the number of constrained lattice paths in 2D.

The question now is whether we can detect entangle-
ment using the above operator W without disturbing
much the local dynamics of the system given by some
Hamiltonian HL. In other words, we would like to verify
that

[HL,W ] = o(N), (7)

when evaluated in some subspace of entangled states, i.e.
the commutation relation, being a sub-extensive quan-
tity, is asymptotically dominated by the size of the sys-
tem. This is, of course, not the usual notion of commuta-
tion (which evidently is not satisfied by our EW), but we
find it more appropriate for describing weak operations
on large systems as will be shown below.

To demonstrate (7) we shall use the quite general
nearest-neighbors interactions within a 3D homogenous
Heisenberg lattice:

HL =
1

2
J

N∑
k=1

sksk+1, (8)

where sk is the vector (sx, sy, sz) of the kth particle, and
the coupling constant J > 0 (corresponding to the anti-
ferromagnetic case) is not necessarily small.

Using the well-known commutation relations between
angular momentum operators, we find:

[HL,W ] = iJ

N∑
i=1

{[Jx, siysi+1
z ]+[Jy, s

i
zs

i+1
x ]+[Jz, s

i
xs

i+1
y ]}.

(9)
Anti-parallel spins are obviously preferred by this local

Hamiltonian. When the EW is evaluated, for instance,
in the ground state of HL, we have Jx/y/z = O(

√
N) (the

total J along each axis is low because only a few spins
do not cancel), and hence (7) follows. This can be easily
seen also in the first eigenstates of HL, where both HL

and W remain small. Recall that Wj grows as j2, so if

j = o(
√
N) and 〈HL〉 = O(1), (7) will be satisfied. This

relation between HL and W maintains its meaning until
〈HL〉 ≈ −3N , which is the minimal energy of separable
states in this Heisenberg lattice model [15]. Intuitively,
it is clear that when having a large system in one of its
lower, highly entangled states, Jx/y/z would be negligibly
affected if evaluated on this state or this state with two
altered spins, as in (9). This means that an entangled
state, as well as the system’s energy corresponding to it,
are likely to change only slightly after the entanglement
witness W has been applied. The same does not hold
though, for a separable state. In the limit of N → ∞,
the asymptotic relation in (7) implies an approximate
notion (in the macroscopic sense) of commutation. In
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this limit, the fraction of non-parallel spins goes to zero,
while the fraction of entangled states that are decideable
stays finite, as we shall see in Sec. 3. Hence, the relative
change in energy due to the application of the EW gets
very small.

These arguments can be straightforwardly applied also
to other forms of local dynamics such as the XY model
and the Bose-Hubbard model using the suitable bounds
which were calculated in [15].

2. THE TRIPARTITE ANALOGY

Eq. (6) follows from a general relation between ten-
sor products of SO(3) representations and degeneracies
of witness eigenstates. This relation is based on the fact
that the eigenvalue Wj only depends on the overall spin
j of the eigenstate, which specifies the irreducible rep-
resentation (irrep) [j] of SO(3) according to which it
transforms under rotations [31]. As a consequence the
degeneracy of states with eigenvalue Wj is given by the
number of distinct states of spin j. The number of states
of spin j that can be created from N spin s irreps is given
by the multiplicity of the irrep [j] in the tensor product

[s]⊗N = [s]⊗ [s]⊗ . . .⊗ [s]︸ ︷︷ ︸
N times

, (10)

multiplied by the dimension of this irrep dim([j]) = 2j+1

ds(N, j) = dim([j]) mult[j]([s]
⊗N ). (11)

The direct sum decomposition of the SO(3) tensor prod-
uct can be formulated conveniently in terms of tensor
product coefficients bj1j2j3 [32]

[j1]⊗ [j2] =
⊕

j3∈N0/2

bj1j2j3 [j3], (12)

given by the numbers [18]

bj1j2j3 =


1, j1 + j2 + j3 ∈ N0

∧ |j1 − j2| ≤ j3 ≤ j1 + j2,

0, otherwise.

(13)

These constraints are familiar from the well-known
Clebsch-Gordan coefficients. The coefficients bj1j2j3 have
the property b 0j1j2 = δj1j2 and are symmetric under any
permutation of the three indices, a consequence of the
self-duality of representations of the SO(d) groups. The
multiplicity of a given irrep in a twofold tensor product
is trivially given by (12)

mult[j3]([j1]⊗ [j2]) = bj1j2j3 . (14)

Similarly the multiplicity in (11) is derived by repeated
application of (12) on [s]⊗N

mult[j]([s]
⊗N ) = (15)∑

j1,j2,...,jN−1∈N0/2

b0sj1bj1sj2 . . . bjN−2sjN−1
bjN−1sj .

A connection to the formula (6) can be made by visual-
izing each term in the sum (15) as a path on a 2D lattice
connecting the points

(0, 0)→ (1, j1)→ . . .→ (N − 1, jN−1)→ (N, j). (16)

The paths that contribute to the sum are the ones where
every step (say at position (x, y)) is according to (13) in
the set

{(1, s), (1, s− 1), . . . , (1,max(−s, s− 2y))} . (17)

These lattice paths are discussed below with the aid of a
few examples and allow us to obtain recursion relations
for the multiplicities ms(N, j) ≡ mult[j]([s]

⊗N ). The
number of lattice paths up to y = N can be expressed in
terms of paths ending at y = N − 1

ms(N, j) =


1, N = j = 0,
min(j+s,(N−1)s)∑

k=|j−s|
ms(N − 1, k), 0 ≤ j ≤ Ns,

0, else,

(18)
where k increases in integer steps, i.e. it takes only integer
or half-integer values depending on whether |j − s| is an
integer or half-integer. With these recursion relations it
is possible to efficiently calculate the multiplicities for
high values of N .

Spin 1/2 particles

Let us now give further insight into the lattice paths de-
fined above by discussing the first few examples. Where
available, we will make connections to the mathemati-
cal literature regarding the lattice paths. For s = 1

2 the
paths are given by the allowed steps{

(1, 12 ), (1,− 1
2 )
}
, y > 0,{

(1, 12 )
}
, y = 0.

(19)

Two examples are given in Fig. 1. These directed lattice
paths, which do not go below the x-axis and end at a
point (N, j) after N steps are known to be counted by
the Catalan triangle C(N/2 + j,N/2 − j) [17], which is
given for any n ≥ k ≥ 0 by

C(n, k) =
(n+ k)!(n− k + 1)

k!(n+ 1)!
. (20)

Using this formula it is easy to see that (6) and (11)
match. For the special case of the ground state in (6) the
degeneracy is given by the N/2 Catalan number CN/2.
This degenerate ground state (macroscopic singlet state)
is particularly interesting, e.g. for magnetometry [19]
and black hole entropy calculations [20]. In the next two
subsections its degeneracy is stated for some higher spin
systems.
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FIG. 1: Lattice paths in the x-y plane illustrating
mult[0]([

1
2
]⊗6) = 5 (left) and mult[1]([

1
2
]⊗6) = 9 (right).

Spin 1 particles

Next we consider a system of s = 1 particles. When
increasing s, the lattice paths become less standard due
to additional constraints from (17). For s = 1 the paths
can only reach integer values of y and the allowed steps
are

{(1, 1), (1, 0), (1,−1)} , y ≥ 1,

{(1, 1)} , y = 0.
(21)

An example is given in Fig. 2. The paths with such con-

2

2 40 6 x
0

1

y

FIG. 2: Lattice paths illustrating mult[0]([1]⊗6) = 15.

straints and j = 0 are known in mathematical literature
as Riordan paths (and their multiplicity as Riordan num-
bers [21–23]. For j ≥ 0 these are Riordan arrays [24],
whose generating functions are known to be [24]

(
1 + x−

√
1− 2x− 3x2

2x(1 + x)
,

1− x−
√

1− 2x− 3x2

2x

)
,

(22)
from which the degeneracies d1(N, j) can be derived. For
instance, d1(N, 0) is given by the Riordan numbers:

d1(N, 0) =
1

N + 1

N−1∑
k=1

(
N + 1

k

)(
N − k − 1

k − 1

)
. (23)

The recursion relation for the multiplicities (18) becomes
in this case

m1(N, j) =


1, N = j = 0,
min(j+1,N−1)∑

k=|j−1|
m1(N − 1, k), 0 ≤ j ≤ N,

0, else.

(24)

Higher spin particles

For s = 3
2 the allowed steps are{

(1, 32 ), (1, 12 ), (1,− 1
2 ), (1,− 3

2 )
}
, y ≥ 3

2 ,{
(1, 32 ), (1, 12 ), (1,− 1

2 )
}
, y = 1,{

(1, 32 ), (1, 12 )
}
, y = 1

2 ,{
(1, 32 )

}
, y = 0.

(25)

For example, the degeneracies for the case of j = 0 are:
0, 1, 0, 4, 0, 34, 0, 364, 0, 4269, 0, 52844, 0, 679172, 0,
8976188, 0, 121223668.
As required, all the odd multiplicities vanish. This se-
quence of integers (with or without the zeroes) is not
known in mathematical literature but can explicitly solve
the s = 3/2 case as was done above for lower spin sys-
tems.

Continuing according to the same logic, the allowed
steps for s = 2 are

{(1, 2), (1, 1), (1, 0), (1,−1), (1,−2)} , y ≥ 2,

{(1, 2), (1, 1), (1, 0)} , y = 1,

{(1, 2)} , y = 0.

(26)

For instance, the degeneracies for the case of j = 0 are:
0, 1, 1, 5, 16, 65, 260, 1085, 4600, 19845, 86725, 383251,
1709566.
These degeneracies, and also the ones for j > 0, are
known in literature [25, 26], but not in the context of
2D lattice paths.

We end this subsection by describing the degeneracies
for the s = 3, j = 0 case:
0, 1, 1, 7, 31, 175, 981, 5719, 33922, 204687, 1251460,
7737807, 48297536.
These again, are not known in mathematical literature.
We elaborate in the next section on the fraction of de-
cideable states in all the above cases.

3. THE FRACTION OF DECIDABLE STATES

To generalize (5), we employ the theory of entan-
glement detection with uncertainty relations [27, 28].
For every N particle separable state it was shown that
[28, 29]:

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ Ns. (27)
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Therefore, if we define in a system of N spin-s particles
the EW as the total magnetization (4), then for separable
states it is bounded from below by Ns:

〈W 〉 ≥W (s)
sep = Ns. (28)

All states with witness eigenvalues below this bound are
entangled, so using the witness levels (4) one finds the
fraction of decidable states to be

fs(N) =

∑
{j∈N0/2|j(j+1)<Ns}

ds(N, j)∑
j∈N0/2

ds(N, j)
. (29)

In Figures 3–6 this fraction is plotted for s = 1
2 , 1,

3
2 , 2,

respectively, where systems comprised of up to 10,000
spins were analyzed. Computing the tensor products to
such high orders was possible only owing to the recursion
relation (18). Interestingly, the points lie on curves that
are constrained to a certain range. For half-integer s
the points for even and odd N (the case of odd N is
studied here for the first time) lie on different curves,
while for integer s they lie on the same curves. It seems
that fs(N) converges for large N , meaning that all points
lie between two curves which monotonically approach the
same constant fs(∞). A good approximation of these
constants can be made based on the rightmost jump in
fs(N) in a given graph. For example, the last jump in
f 1

2
(N) below N =10,000 is at

f 1
2
(9940) ≈ 0.42169,

f 1
2
(9942) ≈ 0.43338,

(30)

hence fs(∞) must lie in between these values

f 1
2
(∞) =

f 1
2
(9942) + f 1

2
(9940)

2
±
f 1

2
(9942)− f 1

2
(9940)

2
= 0.4275± 0.0058.

(31)
The corresponding values fs(∞) for s up to 5 are given
in Table I. They are plotted in Figure 7, together with a
fitted curve given by

fs(∞) ≈ 1

asb + c
, (32)

where

a = 1.36273, b = 1.26448, c = 1.7738. (33)

The sum of squared residuals of the fit is∑
i

ε2i = 3.6 · 10−6. (34)

The results of the graphs below suggest that for vari-
ous spin systems of arbitrary size, there is a considerable

amount of many-body entangled states that can be de-
tected by the proposed EW. Even though this (quite nat-
ural) EW may not be the optimal one, it enables to iden-
tify a considerable sub-space of the multi-particle Hilbert
space, comprised only of entangled states. These states,
which are known to be more protected against decoher-
ence than other states corresponding to large values ofW ,
can be used as a resource for measurement based quan-
tum computation and for quantum information storage
[29]. For any N and s, the j = 0 states are especially
important in that aspect, being “decoherence free” [30].

s fs(∞)
1
2

0.4275 ± 0.0058

1 0.3177 ± 0.0035
3
2

0.2470 ± 0.0023

2 0.1987 ± 0.0017
5
2

0.1642 ± 0.0013

3 0.1386 ± 0.0010
7
2

0.11897 ± 0.00082

4 0.10356 ± 0.00068
9
2

0.09119 ± 0.00056

5 0.08110 ± 0.00049

TABLE I: Approximate values for fs(∞) based on the last
jump appearing below N =10,000.

0 2000 4000 6000 8000 10000
N

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f1
2
(N)

0 2000 4000 6000 8000 10000
N

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

f1
2
(N)

FIG. 3: f 1
2
(N) for N up to 10,000.

4. CONCLUSIONS

We have introduced in this work a tripartite analogy
between the degeneracy of witness eigenstates, tensor
products of SO(3) representations and classical lattice
walks with special constraints. Furthermore, we found
that the solution to the above problems is given by
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0 2000 4000 6000 8000 10000
N

0.15
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0.35

f1(N)

0 2000 4000 6000 8000 10000
N

0.15

0.2

0.25

0.3

0.35

f1(N)

FIG. 4: f1(N) for N up to 10,000.

0 2000 4000 6000 8000 10000
N

0.15

0.2

0.25

0.3

f3
2
(N)

FIG. 5: f 3
2
(N) for N up to 10,000.

0 2000 4000 6000 8000 10000
N0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

f2(N)

FIG. 6: f2(N) for N up to 10,000.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5

fs (∞)

s

fs (∞)

(a sb + c)-1

FIG. 7: fs(∞) from Table I with fit (parameters given in
(33)).

generalized Catalan numbers. This analogy enabled us
to construct a “sterile” entanglement witness for arbi-
trary spin systems, which marginally changes them upon
measuring highly entangled states. Being an important
resource for various quantum information processing
tasks, we have derived the fraction of decideable states
for such a witness and examined its dependency on the
spin s and the number of particles N . It was found
to be a decreasing function in s and an asymptotically
constant function in N .
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