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Computerizing the Andrews-Fraenkel-Sellers Proofs on the Number

of m-ary partitions mod m (and doing MUCH more!)

By Shalosh B. EKHAD and Doron ZEILBERGER

VERY IMPORTANT

As in all our joint papers, the main point is not the article, but the accompanying Maple package,

that for the present article happens to be AFS.txt. It may be downloaded, free of charge, from the

webpage of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/afs.html ,

where the readers can also find sample input and output files, that they are welcome to extend

using their own computers.

A Concise Rendition of the Work of Andrews, Fraenkel, and Sellers on the number of

m-ary partitions mod m

In two delightful articles ([AFS1],[AFS2]), George Andrews, Aviezri Fraenkel, and Jim Sellers prove

two results that are trivially equivalent to the following two propositions.

Proposition A ([AFS1], Theorem 2.1) Fix a positive integer m larger than 1. Let

B(q) =
∞
∑

i=0

b(i) qi ,

be the unique formal power series satisfying the functional equation

B(q) =
1

1− q
B(qm) , (FE1)

and let

b0(n) := b(mn) .

Then b0(n)(mod m) can be computed in logarithmic time via the recurrence (recall that, thanks

to Euclid, every integer n can be written as n = mi+ j, where i is the quotient and j (0 ≤ j < m)

is the remainder)

b0(mi+ j) ≡ (j + 1) b0(i) (mod m) .

Proposition B ([AFS2], Theorem 2.1) Fix a positive integer m larger than 1. Let

C(q) =

∞
∑

i=0

c(i) qi ,

be the unique formal power series satisfying the functional equation

C(q) = 1 +
q

1− q
C(qm) , (FE2)
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and let

c1(n) := c(mn + 1) .

Then c1(n) (mod m) can be computed in logarithmic time via the recurrence (recall, that thanks

to Euclid, every integer n can be written as n = mi+ j, where i is the quotient and j (0 ≤ j < m)

is the remainder)

c1(mi+ j) ≡ 1 + j c1(i) (mod m) .

Comment: The original statement in [AFS2] regarded c0(n) = c(mn) (rather than c1(n) =

c(mn + 1)) and was rather complicated. Since it is readily seen that c0(n) = c1(n − 1), our

formulation is simpler.

The basic idea behind the proofs of these two propositions is brilliant, but the way the proofs are

presented there are unnecessarily long. We will first present new renditions of their nice proofs, in

a form that would make them amenable to formulate a general algorithm that can handle many

other cases.

Definition: The m-sections of a formal power series, f(q), are the unique formal power series

f0(q), . . . , fm−1(q) such that

f(q) =

m−1
∑

i=0

qi fi(q
m) .

Remark: It is an elementary exercise in Linear Algebra to prove that if f(q) is a rational function,

so are all the fi(q)’s and it is routine to find them. Of course, one can use “averaging” over roots

of unity, but it is not necessary.

Proof of Proposition A ([AFS1], streamlined by DZ) : Let us m-sect both sides of the defining

functional equation and extract the part consisting of powers that are multiples of m

B0(q
m) =

[(

1

1− q

)

0

(qm)

]

· B(qm) . (FE1′)

But
(

1

1− q

)

0

(qm) =
∞
∑

i=0

qim =
1

1− qm
.

Hence

B0(q
m) =

1

1− qm
B(qm) . (FE1′)

Replacing qm by q we get

B0(q) =
1

1− q
B(q) . (FE1′′)

Plugging B(q) = (1− q)B0(q) into (FE1), we get

(1− q)B0(q) =
1

1− q
(1− qm)B0(q

m) ,
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and we get a functional equation for B0(q)

B0(q) =
1− qm

(1− q)2
B0(q

m) .

Now take the partial fraction decomposition

1− qm

(1− q)2
=

m

1− q
+

m−1
∑

j=0

(j + 1−m)qj .

Hence

B0(q) ≡





m−1
∑

j=0

(j + 1)qj



 B0(q
m) (mod m) ,

that is equivalent to the stated recurrence, by extracting the coefficient of qmi+j = qj · (qm)i from

both sides.

Proof of Proposition B ([AFS2], streamlined by DZ) : Now we take the f1(q) part of both sides

of (FE2), getting

q C1(q
m) = (1)1 + q

[(

q

1− q

)

1

(qm)

]

· C(qm) . (FE2′)

Since (1)1 = 0 and
(

q

1−q

)

1
=

∑

∞

i=0 q
i = 1

1−q
, we get

C1(q
m) =

1

1− qm
C(qm) .

Replacing qm by q, we get

C1(q) =
1

1− q
C(q) ,

hence

C(q) = (1− q)C1(q) ,

that leads to the functional equation for C1(q):

C1(q) =
1

1− q
+

q(1− qm)

(1− q)2
C1(q

m) .

Now take the partial fraction decomposition

q(1− qm)

(1− q)2
=

m

1− q
+

m−1
∑

j=0

(j −m)qj .

Hence, taking it modulo m, we get,

C1(q) ≡
1

1− q
+





m−1
∑

j=0

j qj



 C1(q
m) (mod m) ,
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that is equivalent to the stated recurrence, by extracting the coefficient of qmi+j = qj · (qm)i from

both sides.

Let’s Generalize!

The Andrews-Fraenkel-Sellers method of proof (once compactified, as above) suggests an algo-

rithm that tries to find poly-logarithmic-time (i.e. polynomial in the bit-size) schemes for the

congruence class modulo m for the i-part in the m-section of any formal power series satisfying a

functional equation of the form

f(q) = S(q) +R(q)f(qm) ,

for any given rational functions S(q) and R(q) (whose denominators do not vanish at q = 0 so they

are bona-fide formal power series, and R(0)S(0) = 0, in order there to be a solution) and any i

between 0 and m− 1. Of course, now m, and i have to be specific, i.e. numeric, but if in luck, one

can easily detect the general pattern in m (that can be conjectured and proved automatically).

The reason that things worked out so well in Propositions A and B above was that after the partial

fraction decomposition, taking it modulo m, the rational function part disappeared and we were

left with a polynomial on the right side of the functional equation for B0(q) and C1(q) modulo

m. But why not try, and look for more miracles?

Algorithm

Inputs

• A positive integer m > 1 and a non-negative integer i, 0 ≤ i < m .

• Rational functions S(q) and R(q) whose denominators do not vanish at q = 0, and R(0)S(0) = 0.

Let F (q) be the unique formal power series that satisfies

F (q) = S(q) + R(q)F (qm) . (FE3)

Let Fi(q) be the i-th part in the m-section

F (q) =

m−1
∑

i=0

qiFi(q
m) .

Output: A rational function E(q) and polynomial P (q) such that Fi(q) satisfies the fast functional

equation, modulo m

Fi(q) ≡ E(q) + P (q)Fi(q
m) (mod m).

or else FAIL.
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[Note that one can compute the coefficients of rational functions, modulo m, in logarithmic time.]

Description

First m-sect the functional equation (FE3) and extract the i-part

qi Fi(q
m) = qiSi(q

m) + qiRi(q
m)F (qm) . (FE3′)

Note that the computer can easily compute the rational functions Si(q), Ri(q), by the m-section

procedure (implemented in procedure mSectR in BFF.txt).

Divide by qi and replace qm by q, getting

Fi(q) = Si(q) + Ri(q)F (q) .

Hence

F (q) =
Fi(q)− Si(q)

Ri(q)
.

Plug this into (FE3), and get a brand-new functional equation for Fi(q). Suppose it is

Fi(q) = A(q) + G(q)Fi(q
m) , (FE4)

for some rational functions A(q) and G(q) that the computer can easily find. To wit:

A(q) =
S (q)Ri (q)Ri (q

m)−R (q)Ri (q)Si (q
m) +Ri (q

m)Si (q)Ri (q
m)

Ri (qm)
,

G(q) =
R (q)Ri (q)

Ri (qm)
.

Next perform the partial fraction decomposition of G(q):

G(q) = PurelyRationalPart(q) + PolynomialPart(q) .

If a miracle does happen, in other words, PurelyRationalPart(q) is a multiple of m, then, we get

Fi(q) ≡ A(q) + PolynomialPart(q)Fi(q
m) (mod m) ,

and we get a poly-logarithmic time way to compute the coefficients of Fi(q) modulo m. If the

miracle does not happen, then we return FAIL.

Another Miracle

Proposition C

Let c(n) be the number of partitions of n into parts that are either powers of m or twice powers of

m, so the generating function

C(q) =

∞
∑

n=0

c(n)qn =

∞
∏

i=0

1

(1− qm
i)(1 − q2m

i)
,
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satisfies the functional equation

C(q) =
1

(1− q)(1 − q2)
C(qm) .

Let d(n) := c(mn + m − 1) = c(m(n + 1) − 1), and let D(q) =
∑

∞

n=0 d(n)q
n be its generating

function.

Then d(n) ( mod m ) can be computed in logarithmic time, via

D(q) ≡ Nes(q)D(qm) (mod m) ,

where, Nes(q) is the polynomial of q defined as follows. If m is odd, then

Nes(q) := (1 + q)

m−2
∑

j=0

(

j + 2

2

)

q2j (mod m) ,

while if m is divisible by 4, then

Nes(q) :=

m−3
∑

j=0

A002623(j)(qj + q2m−4−j)(mod m) ,

where (see [S]) A002623(j) = ⌊ (j+2)(j+4)(2j+3)
24 ⌋.

There are no miracles when m ≡ 2 (mod 4).

Infinitely more miracles

The reader can find a few more miracles in the sample output files given in the front of this article,

mentioned above:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/afs.html ,

and potentially infinitely more, by playing with the accompanying Maple package AFS.txt available

from the above page, or directly from

http://www.math.rutgers.edu/~zeilberg/tokhniot/AFS.txt .

Conclusion

Thomas Edison said that genius is %1 inspiration and %99 perspiration. Now that we have com-

puters, they can do the perspiration part for us, but we need meta-inspiration, meta-geniuses,

and meta-perspiration, to teach the human inspiration to our silicon colleagues. Sooner or later,

computers will also do the inspiration part, but let humans enjoy the remaining fifty (or whatever)

years left for them, and focus on inspiration, meta-inspiration, and meta-perspiration, and leave

the actual perspiration part to their much faster- and much more reliable- machine friends.
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