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Abstract. We present a new definition of non-ambiguous trees (NATs) as labelled binary trees. We thus get a differ-
ential equation whose solution can be described combinatorially. This yield a new formula for the number of NATs.
We also obtainq-versions of our formula. And we generalize NATs to higher dimension.

Résuḿe. Nous introduisons une nouvelle définition des arbres non ambigus (NATs) en terme d’arbres binaires
étiquetés. Nous en déduisons une équation différentielle, dont les solutions peuvent être décrites de manière combi-
natoire. Ceci conduit à une nouvelle formule pour le nombrede NATs. Nous démontrons aussi desq-versions des
formules obtenues. Enfin, nous généralisons la notion de NAT en dimension supérieure.

Keywords: Non-ambiguous trees, binary trees, ordered trees, q-analogues, permutations, hook-length formulas

Introduction
Non-ambiguous trees (NATs for short) were introduced in a previous paper [ABBS14]. We propose in the
present article a sequel to this work.

Tree-like tableaux [ABN13] are certain fillings of Ferrers diagram, in simple bijection with permu-
tations or alternative tableaux [Pos07, Vie08]. They are the subject of an intense research activity in
combinatorics, mainly because they appear as the key tools in the combinatorial interpretation of the
well-studied model of statistical mechanics called PASEP:they naturally encode the states of the PASEP,
together with the transition probabilities through simplestatistics [CW07].

Among tree-like tableaux, NATs were defined as rectangular-shaped objects in [ABBS14]. In this way,
they are in bijection with permutationσ = σ1 σ2 . . . σn such that the excedences (σi > i) are placed at
the beginning of the wordσ. Such permutations were studied by Ehrenborg and Steingrimsson [ES00],
who obtained an explicit enumeration formula. Thanks to NATs, a bijective proof of this formula was
described in [ABBS14].
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In the present work, we define NATs as labelled binary trees (see Definition 1.1, which is equivalent to
the original definition). This new presentation allows us toobtain many new results about these objects.
The plan of the article is the following.
In Section 1, we (re-)define NATs as binary trees whose right and left children are respectively labelled
with two sets of labels. We show how the generating series forthese objects satisfies differential equations
(Prop. 1.8), whose solution is quite simple and explicit (Prop. 1.9). A combinatorial interpretation of this
expression involves the (new) notion of hooks in binary trees, linked to the notion of leaves in ordered
trees. Moreover this expression yields a new formula for thenumber of NATs as a positive sum (see
Theorem 1.19), where Ehrenborg-Steingrimsson’s formula is alternating. To conclude with Section 1, we
obtainq-analogues of our formula, which are similar to those obtained for binary trees in [BW89, HNT08]
(see Theorem 1.22, the relevant statistics are either the number of inversions or the inverse major index).
Section 2 presents a generalisation of NATs in higher dimension. For anyk ≤ d, we consider NATs of
dimension(d, k), embedded inZd, and with edges of dimensionk (i) . The original case corresponds to
dimension(2, 1). Our main result on this question is a differential equationsatisfied by the generating
series of these new objects.

This version of our work is anextended abstract; most proofs are only sketched or purely omitted.

1 Non-ambiguous trees

1.1 Definitions

We recall that abinary treeis a rooted tree whose vertices may have no child, or one left child, or one right
child or both of them. The size of a binary tree is its number ofvertices. The empty binary tree, denoted
by ∅, is the unique binary tree with no vertices. Having no child in one direction (left or right) is the same
as having an empty subtree in this direction. We denote byBT the set of binary trees and byBT ∗ the set
BT \ {∅}. Given a binary treeB, we denote byVL(B) andVR(B) the set of left children (also called left
vertices) and the set of right children (also called right vertices). We shall extend this notation to NATs.

Definition 1.1 A non-ambiguous tree(NAT)T is a labelling of a binary treeB such that :

• the left (resp. right) children are labelled from1 to |VL(B)| (resp.|VR(B)|), such that different left
(resp. right) vertices have different labels. In other words, each left (right) label appears only once.

• if U andV are two left (resp. right) children in the tree, such thatU is an ancestor ofV , then the
label ofU in T is strictly greater than the label ofV .

The underlying tree of a non-ambiguous tree is called itsshape. The sizen(T ) of a NAT T is its number
of vertices. Clearlyn(T ) = 1 + |VL(T )| + |VR(T )|. It is sometimes useful to label the root as well.
In this case, it is considered as both a left and right child sothat it carries a pairs of labels, namely
(|VL(T )|+1, |VR(T )|+1). On pictures, to ease the reading, we color the labels of leftand right vertices
in red and blue respectively. Figure 1 shows an example of a NAT, and illustrates the correspondence
between the geometrical presentation of [ABBS14] and Definition 1.1. The rectangle which contains the
non-ambiguous treeT is of dimension(wL(T ), wR(T )) = (|VL(T )|+ 1, |VR(T )|+ 1).

(i) A definition in terms of labelled trees is given in Subsection2.1.
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Fig. 1: A non-ambiguous tree and its left and right subtrees

1.2 Differential equations on non-ambiguous trees
The goal of this section is to get (new) formulas for the number of NATs with prescribed shape. The
crucial argument is the following remark: LetT be a NAT of shape a non empty binary treeB =

L R
.

Restricting the labellings of the left and right children ofT to L andR gives non-decreasing labelling of
their respective left and right children. Note that the rootof L (resp.R) is a left (resp. right) child inT . By
renumbering the labels so that they are consecutive numbersstarting from1, we get two non-ambiguous
labellings forL andR, that is two non-ambiguous treesTL andTR. See Figure 1 for an example.

Conversely, knowing the labelling ofL andR, to recover the labelling ofT , one has to choose which
labels among1 . . .VL(T ) will be used forL (including its root) and the same for right labels. As a
consequence:

∣

∣

∣
NAT

(

L R

)∣

∣

∣
=

(

|VL(T )|

|VL(R)|

)(

|VR(T )|

|VR(L)|

)

|NAT (L) | |NAT (R) |. (1)

Our first step is to recover hook-length formula for the number of NATs of fixed shape ([ABBS14]). We
use the method from [HNT08], namely, applying recursively abilinear integro-differential operator called
here apumping functionalong a binary tree.

First of all, we consider the spaceQNAT of formal sums of non-ambiguous trees and identifies
NAT (B) with the formal sum of its elements. We consider the mapM : NAT × NAT 7→ QNAT
sending(T1, T2) to the formal sum of NATsT such thatTL = T1 andTR = T2. By linearity, we extend
M to a bilinear mapQNAT ×QNAT 7→ QNAT . The main remark is thatNAT (B) can be computed
by a simple recursion usingM:

Lemma 1.2 The setNAT (B) of non-ambiguous tree of shapeB satisfies the following recursion:

NAT (∅) = ∅ and NAT
(

L R

)

= M (NAT (L) ,NAT (R)) . (2)

To count non-ambiguous trees, and as suggested by the binomial coefficients in (1), we shall usedoubly
exponential generating functionsin two variablesx andy wherex andy count the size of the rectangle
in which the NAT is embedded: the weight of the NATT is Φ(T ) := xwL(T )

wL(T )!
xwR(T )

wR(T )! . We extendΦ(T )
by linearity to a mapQNAT 7→ Q[[x, y]]. Consequently,Φ(NAT (B)) is the generating series of the
non-ambiguous trees of shapeB. Thanks to (1) the image inQ[[x, y]] of the bilinear mapM under the
mapΦ is a simple differential operator:
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Definition 1.3 Thepumping functionB is the bilinear mapQ[[x, y]]×Q[[x, y]] 7→ Q[[x, y]] defined by

B(u, v) =

∫

x

∫

y

∂x(u) · ∂y(v). (3)

We further define recursively, for any binary treeB an elementB(B) ∈ Q[[x, y]] by

B(∅) = x+ y and B

(

L R

)

= B (B(L),B(R)) . (4)

Now (1) rewrites as

Proposition 1.4 For T1, T2 ∈ QNAT , one asΦ(M(T1, T2)) = B(Φ(T1),Φ(T2)). As a consequence,
for any non empty binary treeB, Φ(NAT (B)) = B(B).

By de-recursiving the expression forB(B), we recover the hook-length formula of [ABBS14] for non-
ambiguous trees of a given shape:

Proposition 1.5 Let B be a binary tree. For each left (resp. right) vertexU , we denoteEL(U) (resp.
ER(U)) the number of left (resp. right) vertices of the subtree with rootU (itself included in the count).
Then

|NAT (B)| =
|VL(B)|! · |VR(B)|!

∏

U :left child

EL(U) ·
∏

U :right child

ER(U)
. (5)

We consider now theexponential generating function of non-ambiguous treeswith weightΦ:

H :=
∑

T∈NAT

Φ(T ) =
∑

T∈NAT

xwL(T )

wL(T )!

xwR(T )

wR(T )!
. (6)

It turns out that we need to consider the two following slightmodifications to get nice algebraic properties
(because of the empty NAT).

G =
∑

B∈BT

B(B) and N =
∑

T∈NAT ∗

x|VL(T )| · y|VR(T )|

|VL(T )|! · |VR(T )|!
. (7)

The functionH, N, G are closely related. Each function is used in different situation. The first one is the
natural definition we want to give. The second one is convenient from a bijective point of view. The last
one is convenient from the algebraic and analytic point of view. They differ by their constant term and
shift in the degree. Precisely,N = ∂x∂yH so that

H = 1 +

∫

x

∫

y

N and G = x+ y +

∫

x

∫

y

N and G = H+ x+ y − 1 (8)

The two last relations are consequences of Proposition 1.4.

Proposition 1.6 The generating functionN andG can be computed by the following fixed point differen-
tial equations:

G = x+ y +

∫

x

∫

y

∂xG · ∂yG and N =

(

1 +

∫

x

N

)

·

(

1 +

∫

y

N

)

(9)
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Proof: The first equation is a just a consequence of the definition of the bilinear mapB:

G = x+ y +
∑

L,R∈BT

B

(

L R

)

= x+ y +
∑

L,R∈BT

B(B(L),B(R)) = x+ y + B(G,G).

To prove the second equation, remark that the first can be rewritten as∂x∂yG = ∂xG.∂yG. So that,
N = ∂x∂yH = ∂x∂yG. To conclude, it suffices to remark that∂xG = 1 +

∫

y
N ✷

Now, a closed formula can be computed forN andH.

Proposition 1.7 The exponential generating function for non-ambiguous trees are given by

N =
ex+y

(1− (ex − 1)(ey − 1))2
, and H = − log(1− (ex − 1)(ey − 1)).

Now, we will introduce two statistics : the number of right (resp. left) vertices in the rightmost (resp.
leftmost) branch of the root of a tree. For a binary treeB, we will denote byR0(B) (resp.L0(B)) the
two previous statistics. We define now an(α, β)-generating function for non-ambiguous trees:

N(α,β) =
∑

T∈NAT

x|VL(T )| · y|VR(T )| · αR0(T ) · βL0(T )

|VL(T )|! · |VR(T )|!
.

Proposition 1.8 A differential equation forN(α,β) is

N
(α,β) =

(

1 + α

∫

x

N
(α,1)

)

·

(

1 + β

∫

y

N
(1,β)

)

,

Proof: We just have to define a new pumping function by settingB(α,β)(B) = αR0(B)βL0(B) B(B) and
deduce the expected differential equation. ✷

The solution of the new differential equation is given by Proposition 1.9.

Proposition 1.9 The(α, β)-exponential generating function for non-ambiguous treesis equal to

N(α,β) =
eαx+βy

(1− (ex − 1)(ey − 1))α+β
.

1.3 Bijection with some labelled ordered trees
In what follows, we will userooted ordered trees. These are trees such that each node has an ordered
(possibly empty) list of children. We draw the children fromleft to right on the pictures.

Note that the solution of Proposition 1.9 can be rewritten as:

N
(α,β) = eαxeβye−α ln(1−(ex−1)(ey−1))e−β ln(1−(ex−1)(ey−1)). (10)

The purpose of this subsection is to explain this expressioncombinatorially. Let us first describe objects
“naturally” enumerated by the RHS of (10). We recall thatex is the exponential generating series of sets
and− ln(1 − x) is the exponential generating series of cycles. The objectscan be described as4-tuples
consisting of two sets of elements and two sets of cycles whose elements are pairs of non empty sets. Let
us denote byT4 the set of such4-tuples.

We first link non-ambiguous trees with ordered trees. We needthe following definition:
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Fig. 2: Hooks on a non-ambiguous tree and associated ordered tree

Definition 1.10 LetB be a binary tree andv one of his node. Thehookof a vertexv is the union of{v},
its leftmost branch and its rightmost branch. There is a unique way to partition the vertices in hooks. The
number of hooks in such a partition is thehook number of the tree.

Remark 1.11 We can obtain recursively the unique partition of the preceding definition by extracting the
root’s hook and iterating the process on each tree of the remaining forest.

Example 1.12 On the left part of Figure 2, we represented in red the hook of10. The partition of vertices
in hooks is obtained by removing the dotted edges. The hook number of the tree is8.

We denote byNOT the set of ordered treesO such that:

• Each vertex, except the root, is labelled and coloured (in red or blue). The root is labelled by a red
label and a blue label, both maximal.

• The root has red and blue children, the red children being on the left side of blue children. Blue
(resp. red) vertices have only red (resp. blue) children.

• The labels of red (resp. blue) descendants or right siblingsof a red (resp. blue) vertexv are smaller
than the label ofv.

Proposition 1.13 The set of non-ambiguous treesNAT onn nodes is in bijection with the set of trees of
NOT onn nodes. This bijection is denoted byξ.

Proof: Let us consider a non-ambiguous treeT and construct an ordered treeξ(T ) = O. The root of
T will be associated to the root ofO. Starting from the rootr of the ordered tree, the red (resp. blue)
children ofr are the set of left (resp. right) descendants of the root ofT . The expected ordered tree is then
obtained recursively by the following rule : if a nodev in the ordered tree is a left (resp. right) child inT ,
then its children in the ordered tree is the set of right (resp. left) descendants ofv in T , with every right
(resp. left) child on the right side of its parent.

We can reconstruct recursively the non-ambiguous tree associated to such an ordered tree, by reversing
the process from the children of the root to the leaves in the ordered tree. ✷

Remark 1.14 Let us remark that the hook of a vertexv, different from the root in the non-ambiguous tree,
can be read off from the ordered trees : it consists in the children ofv in the ordered tree and the siblings
of v on the right side ofv in the ordered tree.
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Example 1.15 The ordered tree associated to the non-ambiguous tree on theleft part of Figure 2 is
represented on the right part of the same figure.

Proposition 1.16 The set of non-ambiguous treesNAT is in bijection with pairs of 2-coloured words,
with blue letters on{1, . . . , |VR|} and red letters on{1, . . . , |VL|}, where each letter appear exactly once
(in the first word or in the second word), letters in blocks of the same colors are decreasing, the first (resp.
second) word ends by a red (resp. blue) letter andVR (resp.VL) is the set of right (resp. left) children in
the non-ambiguous tree. This bijection is denoted byξ ◦ Ω. Moreover, the pairs of 2-coloured words are
exactly described by the previous4-tuples.

Proof (sketch): FromT ∈ NOT , we obtain the two wordsΩ(T ) = (w1, w2) by a post-order traversal
visit of the descendant of the red (resp. blue) children of the root forw1 (resp.w2). The injectivity ofΩ
can be shownad absurdum.

From such a word, we can build back recursively the associated ordered trees by reading each word
from right to left and adding, for each new letterl, a node labelled byl to the left of the closest ancestor
of the current position whose label is of the same colour asl and smaller thanl.

The consecutive maximal red (rep. blue) elements from rightto left in the first (resp. second) word
correspond to the children of the root in the ordered tree. The first (resp. second) set of the4-tuple can
be defined as the set of blue (resp. red) children of the root inthe ordered tree. Then, each remaining
subword, corresponding to one child of the root and its descendants in the ordered tree, contains both
blue and red elements, the rightmost letter corresponding to the child of the root. Each of these subwords
can be viewed as a blue (resp. red) cycle, as the child of the root is the biggest blue (resp. red) element
in the subword and can be found again. This cycle is made of alternating sets of blue and red elements,
corresponding to right and left vertices in the non-ambiguous tree, which can be joined in pairs of non
empty sets, giving the two set of cycles of the4-tuple. ✷

Example 1.17 The pair of words associated with trees of Figure 2 is (48 366 110 910 2, 118597 47
253 1). The associated4-tuple is: ({2}, {1,4,11}, {({10 48}{36}{61109})}, {({85}{97}),({72}{53})).

Remark 1.18 The bijectionΩ is similar to the “zigzag” bijection of [SW07].

We may derive from our construction a bijective proof of the following enumeration formula.

Theorem 1.19 The(α, β)-analogue of the number of non empty non-ambiguous trees withw left vertices
andh right vertices is given by:

NAT w,h =
∑

p≥1

(p− 1)! · (p− 1)(α+β) · S2,α(w + 1, p)S2,β(h+ 1, p) (11)

wherep(q) is the rising factorial, andS2,q denotes theq-analogue of the Stirling numbers of the second
kind such that, if we consider a set partition,q counts the number of elements different from1 in the subset
containing1. In this positive summation expression, each summand corresponds to the number of NATs
with prescribed size, and whose number of hooks equalsp.

We conclude this subsection with following result on binarytrees. The corresponding integer series
appears as [Slo, A127157] in OEIS.
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Proposition 1.20 The set of binary trees onn vertices with hook numberp is in bijection with the number
of ordered trees onn+ 1 vertices havingp vertices being the parent of at least a leaf.

1.4 q-analogs of the hook formula
As for binary trees, there existsq-analogues of the hook formula for NATs of a given shape associated to
either the number of inversions or the major index. There aretwo ingredients: first we need to associate
two permutations to a non-ambiguous tree, and second we needto give aq-analogue of the bilinear map
B. It turns out that it is possible to use two differentq namelyqR andqL for the derivative and integral in
x andy.

The first step to formulate aq-hook formula is to associate to any non empty non-ambiguoustreeT a
pair of permutationsσ(T ) = (σL(T ), σR(T )) ∈ SVL(T ) ×SVR(T ).

Definition 1.21 Let T be a non-ambiguous tree. ThenσL(T ) is obtained by performing a left postfix
reading of the left labels: precisely we recursively read trees

L R
by reading the left labels ofL, then

the left labels ofR and finally the label of the root if it is a left child. The permutationσR(T ) is defined
similarly reading right labels, starting from the right subtree, then the left subtree and finally the root.

If we take back the example of Figure 1 we get the two permutationsσL(T ) = (2, 1, 4, 3, 6, 10, 8, 9, 5, 7)
andσR(T ) = (1, 2, 3, 4, 5, 7, 11, 9, 6, 8, 10).

Recall that thenumber of inversionsof a permutationσ ∈ Sn is the number ofi < j <= n such that
σ(i) > σ(j). A descent ofσ is ai < n such thatσ(i) > σ(i + 1) and theinverse major indexof σ is the
sum of the descents ofσ−1. Finally for a repetition free wordw of lengthl we writeStd(w) the permuta-
tions inSl obtained by renumberingw keeping the order of the letters. For exampleStd(36482) = 24351.
We define as usual theq-integer[n]q := 1−qn

1−q
, and theq-factorial[n]q! :=

∏n
i=1[i]q.

Theorem 1.22 For a non-ambiguous treeT and a statisticS ∈ {Inv, iMaj}, define

wS(T ) := q
S(σL(T ))
L q

S(σR(T ))
R . (12)

Then, for any non empty binary treeB

∑

T∈NAT (B)

wInv(T ) =
∑

T∈NAT (B)

wiMaj(T ) =
|VL(B)|qL ! · |VR(B)|qR !

∏

U :left child

[EL(U)]qL ·
∏

U :right child

[ER(U)]qR
. (13)

Going back to the non-ambiguous tree of Figure 1, the inversions numbers areInv(σL(T )) = 11 and,
Inv(σR(T )) = 7 so thatwInv(T ) = q11L q7R. For the inverse major index, we get the permutations
σL(T )

−1 = (2, 1, 4, 3, 9, 5, 10, 7, 8, 6) andσR(T )
−1 = (1, 2, 3, 4, 5, 9, 6, 10, 8, 11, 7). Consequently,

iMaj(σL(T )) = 1+3+5+7+9 = 25 andiMaj(σR(T )) = 6+8+10 = 24 so thatwiMaj(T ) = q25L q24R .
Note that it is possible to read directlywS(T ) onT . We do not give the precise statement here to keep

the presentation short.
The argument of the proof follows the same path as for the hookformula, using pumping functions:

recall that theq-derivative andq-integral are defined as∂x,qxn := [n]qx
n−1 and

∫

x,q
xn := xn+1

[n+1]q
. Then

the(qL, qR)-analogue of the pumping function is given by

Bq(u, v) =

∫

x,qL

∫

y,qR

∂x,qL(u) · ∂y,qR(v). (14)
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We also define recursivelyBq(B) byBq(∅) := x + y andBq

(

L R

)

= Bq (Bq(L),Bq(R)) . Then the

main idea is to go through a pumping function on pairs of permutations. We writeQS the vector space
of formal sums of permutations. For any permutationσ ∈ Sn we write

∫

σ = σ[n + 1] the permutation
in Sn+1 obtained by addingn+ 1 at the end. Again we extend

∫

by linearity.

Definition 1.23 Thepumping function on permutationis the bilinear mapBS : QS × QS 7→ QS

defined forσ ∈ Sm andµ ∈ Sn byBS(σ, µ) =
∑

uv∈Sm+n+1

Std(u)=
∫
σ

Std(v)=µ

uv .

We define also a pumping function on pairs of permutations

BS
2 ((σL, σR), (µL, µR)) := (BS(σL, µL),BS(µR, σR))

For exampleBS(21, 12) = 21345 + 21435 + 21534 + 31425 + 31524 + 41523 + 32415 + 32514 +
42513 + 43512. Note that for two non empty non-ambiguous treeC,D.

∑

T∈M(C,D)

σL(T ) = BS(σL(C), σL(D)) and
∑

T∈M(C,D)

σR(T ) = BS(σR(D), σR(C))

The central argument is the following commutation property:

Proposition 1.24 For a statisticS ∈ {Inv, iMaj}, and(σL, σR) ∈ Sm ×Sn, define

ΨS((σL, σR)) := q
S(σL)
L

xm+1

[m+ 1]qL !
q
S(σR)
R

yn+1

[n+ 1]qL !
. (15)

Then for any pairsσ = (σL, σR) andµ = (µL, µR), one hasΨS(BS
2(σ, µ)) = Bq(ΨS(σ),ΨS(µ))

As a consequence, noting thatwS(T ) = ΦS(σ(T )), one finds that for any non empty non-ambiguous
treesC andD,

∑

T∈M(C,D)

wS(T ) = ΦS

(

BS
2(σ(C), σ(D)

)

= Bq(wS(C), wS(D)) .

Applying this recursively on the structure of a binary treeB, we have that
∑

T∈NAT (B)wS(T ) = Bq(B) .

Unfolding the recursion forBq(B), gives finally Theorem 1.22.

We conclude this section by an example. LetB = . Then one finds that theq- hook

formula gives(qx3 + qx2+ qx+1)(qy2+ qy+1)(qx+1). Expanding this expression, one finds that the
coefficient ofqx2qy is 2. For theiMaj statistic it corresponds to the two following non-ambiguous trees
which are shown with their associated left and right permutations:

(4,5)

3 4

2 2 1 1

3

((2, 3, 1), (1, 3, 4, 2)) ,

(4,5)

3 4

2 2 1 3

1

((2, 3, 1), (3, 1, 4, 2))
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2 Non-ambiguous trees in higher dimension
In this section we give a generalisation of NATs to higher dimensions. NATs are defined as binary trees
whose vertices are embedded inZ2, and edges are objects of dimension 1 (segments). Letd ≥ k ≥ 1 be
two integers. In higher dimension, binary trees are replaced by

(

d
k

)

-ary trees embedded inZd and edges
are objects of dimensionk. As in Section 1.2 we obtain differential equations for these objects.

2.1 Definitions

We call (d, k)-direction a subset of cardinalityk of {1, . . . , d}. The set of(d, k)-directions is denoted
by Πd,k. A (d, k)-tuple is ad-tuple of (N ∪ {•})d, in whichk entries are integers andd − k are•. For
instance,(•, 1, •, 5, 2, •, •, 3, •) is a(9, 4)-tuple. The direction of a(d, k)-tupleU is the set indices
of U corresponding to entries different from•. For instance, the direction of our preceding example is
{2, 4, 5, 8}.

Definition 2.1 A
(

d
k

)

-ary treeM is a tree whose children of given vertex are indexed by a(d, k)-direction.

A (d, k)-ary tree has at most
(

d
k

)

children. A
(

d
k

)

-ary tree will be represented as an ordered tree where
the children of a vertexS are drawn from left to right with respect to the lexicographic order of their
indices. If a vertexS has no child associated to an indexπ, we draw an half edge in this direction. An
example is drawn on Figure 3.

Definition 2.2 A non-ambiguous tree of dimension(d, k) is a labelled
(

d
k

)

-ary tree such that:

1. a child of indexπ is labelled with a(d, k)-tuple of directionπ and the root is labelled with a
(d, d)-tuple;

2. for any descendantU of V , if the i-th component ofU andV are different from•, then thei-th
component ofV is strictly greater than thei-th component ofU ;

3. for eachi ∈ J1, dK, all the ith components, different from•, are pairwise distinct and the set ofith
components, different from•, of every vertices in the tree, is an interval, whose minimumis 1.

The set of non-ambiguous trees of dimensions(d, k) is denoted byNAT d,k.

We write NATd,k for a non-ambiguous tree (of dimensions(d, k)). Figure 3 gives an example of a
NAT3,1 and a NAT3,2.

(5,7,6)

(4,•,•)

(1,•,•) (•,•,5)

(•,5,•)

(•,3,•) (•,•,4)

(•,•,2)

(•,4,•)

(•,•,1)

(•,•,4)

(2,•,•) (•,6,•)

(3,•,•)

(•,2,•)

(•,1,•)

(6,5,4)

(5,3,•)

(3,1,•) (2,•,2)

(1,•,1) (•,4,3)

(4,2,•)

Fig. 3: A NAT of dimension(3, 1) and a NAT of dimension(3, 2).
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Definition 2.3 Thegeometric sizeof a NATd,k is thed-tuple of integers(w1, . . . , wd) which labels the
root of the NATd,k, it is denoted byw1 × · · · ×wd. Theπ-sizeof a NATd,k is the number of vertices in the
tree of directionπ, the set of such vertices is denoted byVπ.

Proposition 2.4 gives the relation between the geometric size and theπ-size of a non-ambiguous trees.

Proposition 2.4 LetM be a
(

d
k

)

-ary tree, the root label is constant onNAT d,ks of shapeM (NAT d,k(M)):

wi(M) := wi =
∑

π∈Πd,k | i∈π

|Vπ(M)|+ 1.

2.2 Associated differential equations

In this section, we denote byx{i1,...,ik} the productxi1×. . .×xik , by∂{i1,...,ik} the operator∂xi1
∂xi2

. . . ∂xik

and by
∫

{i1,...,ik}
the operator

∫

xi1

∫

xi2
. . .

∫

xik

. As for non-ambiguous trees (Proposition 1.5), there is

a hook formula for the number of non-ambiguous trees with fixed underlying tree. LetM be a
(

d
k

)

-ary
tree, for each vertexU we denote byEi(U) the number of vertices, of the subtree whose root isU (itself
included in the count), whose direction containsi.

|NAT d,k(M)| =
d
∏

i=1

(wi(M)− 1)!





∏

U : child of direction containingi

Ei(U)





−1

. (16)

There is a(d, k)-dimensional analogue of the fixed point differential Equation 9:

Proposition 2.5 The exponential generating functionNd,k of generalized non-ambiguous trees satisfies
the following differential equation

Nd,k :=
∑

T∈NAT ∗

d,k

d
∏

i=1

x
wi(T )−1
i

(wi(T )− 1)!
=

∏

π∈Πd,k

(

1 +

∫

π

Nd,k

)

(17)

Proof: The method is analogue to the method of Section 1.2, and goes through the use of a
(

d
k

)

-linear
map and a pumping function for

(

d
k

)

-ary trees. ✷

The family of differential equations defined by Equation 17 can be rewritten using differential operators
instead of primitives. We need to introduce the functionGd,k =

∫

{1,...,d}
Nd,k +

∑

π∈Πd,d−k
xπ . Then,

we show thatGd,k satisfies the following differential equations:

Proposition 2.6 The differential equation satisfied byGd,k is ∂1 . . . ∂dGd,k =
∏

π∈Πd,d−k
∂πGd,k.

In the generic case, we are not able to solve those differential equations. We know that setting a variable
xd to 0 gives the generating function of NATs of lower dimension.

Proposition 2.7 Letd > k ≥ 1, thenNd,k|xd=0 = Nd−1,k.

For some specific values ofd andk we have (at least partial) results.
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Proposition 2.8 Letk = d− 1, if we know a particular solutions(x1, . . . , xd) for

∂1 . . . ∂dGd,d−1 = ∂1Gd,d−1 × . . .× ∂dGd,d−1

then, for any functions1(x1), . . . , sd(xd), the functions(s1(x1), . . . , sd(xd)) is also a solution.

Proposition 2.9 Some non trivial rational functions are solutions of∂1 . . . ∂dGd,1 =
∏

π∈Πd,d−1
∂πGd,1.

Proof (sketch): We defineG(i) = ∂πGd,1 wherei ∈ J1, dK andπ = J1, dK \ {i}. We get the relation

∂iG(i) =
∏d

j=1 G(j) and then
∏d

i=1 ∂iG(i) =
∏d

i=1 G
d
(i). To obtain a particular solution, we just need

to identify, in the previous equation, the term∂iG(i) to the termGd
(i). We thus obtain some non trivial

solutions for our equation, which are rational functions. ✷

Since dimension(2, 1) is the unique case where Proposition 2.8 and Proposition 2.9can be applied at
the same time, and the computation ofNd,d is straightforward, we have the following proposition.

Proposition 2.10 We have the closed formulas:N2,1 = N andNd,d =
∑

n≥0
(x1·...·xd)

n

(n!)d
.

We seeNd,d as is a kind of generalized Bessel function becauseN2,2(x/2,−x/2) = J0(x) whereJα is
the classical Bessel function. This supports our feeling that the general case leads to serious difficulties.

2.3 Geometric interpretation

As for non-ambiguous trees, we can give a geometric definition of non-ambiguous trees of dimensions
(d, k) as follows. We denote by(e1, . . . , ed) the canonical basis ofRd and(X1, . . . , Xd) its dual basis,
i.e. Xi is R-linearXi(ei) = δi,j . Let P ∈ Rd andπ = {i1, . . . , ik} a (d, k)-direction, we callcone of
origin P and directionπ the set of pointsC(P, π) := {P + a1ei1 + · · ·+ akeik | (a1, . . . , ak) ∈ Nk}.

Definition 2.11 A geometric non-ambiguous treeof dimension(d, k) and boxw1 × · · · × wd is a non
empty setV of points ofNd such that:

1. J1, w1K × · · · × J1, wdK is the smallest box containingV ,

2. V contains the point(w1, . . . , wd), which is called theroot,

3. ForP ∈ V different from the root, there exists a unique(d, k)-directionπ = {i1, . . . , ik} such that
the conec(P, π) contains at least one point different fromP . We say thatP is of typeπ.

4. ForP andP ′ two points ofV belonging to a same affine space of directionVect(ei1 , . . . , eik), then,
either∀j ∈ J1, kK, Xij (P ) > Xij (P

′), or ∀j ∈ J1, kK, Xij (P
′) > Xij (P ).

5. For eachi ∈ J1, dK, for all l ∈ J1, wi − 1K, the affine hyperplane{xi = l} contains exactly one
point of typeπ such thati ∈ π.

Proposition 2.12 There is a simple bijection between the set of geometric non-ambiguous tree of box
w1 × · · · × wd and the set of non-ambiguous tree of geometric sizew1 × · · · × wd.
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