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Abstract: We give a new proof of an old identity of Dixon (1865-1936) that

uses tools from topological combinatorics. Dixon’s identity is re-established by

constructing an infinite family of non-pure simplicial complexes ∆(n), indexed

by the positive integers, such that the alternating sum of the numbers of faces

of ∆(n) of each dimension is the left-hand side of the identity. We show that

∆(n) is shellable for all n. Then, using the fact that a shellable simplicial

complex is homotopy equivalent to a wedge of spheres, we compute the Betti

numbers of ∆(n) by counting (via a generating function) the number of facets

of ∆(n) of each dimension that attach along their entire boundary in the

shelling order. In other words, Dixon’s identity is re-established by using the

Euler-Poincaré relation.

1. Introduction

In this manuscript we give a new proof of the identity

n∑
s=0

(−1)s
(
n

s

)3

=

{
0 if n is odd, and

(−1)n/2
(

3n/2
n/2,n/2,n/2

)
, if n is even.

}
(1)

using tools from topological combinatorics. To our knowledge, this is the first

instance of using such tools to study an identity involving alternating sums of

binomial coefficients. We hope this approach may illuminate past difficulties that

have arisen in resolving “closed-form” descriptions of identities involving powers

of binomial coefficients in other enumerative disciplines (see Sections 8 and 9 for a

discussion of these issues).
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The identity (1) is first attributed to Alfred Cardew Dixon (1865-1936). Dixon

originally proved (1) in the paper “On the sum of the cubes of the coefficients in a

certain expansion by the binomial theorem” in Messenger of Mathematics Volume

20 [12], which is a journal that ceased to publish in 1929. See page 121 [16] for an

early application of (1) that establishes the earlier reference.

The identity (1) is actually a special case of a more general identity. Let n1, n2,

and n3 be nonnegative integers and let N = n1 + n2 + n3. Then

min(n1,n3,n1+n3−n2)∑
s=max(0,n1−n2,n3−n2)

(
n3

s

)(
n2

n1 − s

)(
n1

n2 − n3 + s

)
(−1)s =

0 if N is odd,

(−1)N/2−n2
(

N/2
N/2−n1,N/2−n2,N/2−n3

)
if N is even.

(2)

The identity (1) is the case n1 = n2 = n3 = n. The general case (2) is called the

well-poised 3F2 transformation, and so is an example of a hypergeometric identity

(see page 97 of [3]). See the proof of Lemma 4.2 in the paper [20] for an example of

an application of the identity (2) in topological combinatorics. We have not found a

topological interpretation of the identity 2, but we note the generalization because

we believe the merit of studying (1) arises from the connection it represents between

enumeration techniques in number-theoretic algebraic combinatorics, topological

combinatorics, and the general study of identities.

2. Background and Definitions

Establishing (1) using a generating function is a relatively simple exercise (see,

for example, page 23 of [26]). The novel contribution of this manuscript is the

connection between (1) and the combinatorial properties of a topological space, in

particular a shellable simplicial complex. Therefore, we begin with a brief introduc-

tion to shellability and the necessary background for shellable simplicial complexes.

The notion of shellability originated in polyhedral theory via the study of bound-

ary complexes of convex polytopes:

Theorem 2.1. The boundary complex of a convex polytope is shellable.

Shläfli assumed Theorem 2.1 in the nineteenth century when he computed the

Euler characteristic of a convex polytope [23] (see Lecture 3 of [25] for a nice
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historical discussion of this), but Theorem 2.1 was not proved until 1970 [8], and

was soon used in important results such as the proof of the Upper Bound Theorem

for simplicial polytopes [17]. In this manuscript, we will only define shellability for

simplicial complexes.

Shellability helps one to understand the structure of a simplicial complex via

its topological and combinatorial qualities. However, there are other properties of

simplicial complexes with similar utility that have a long history in the literature

and remain active areas of study. These include partitionability [21], collapsibility

[22], and contractibility [2]. Furthermore, relationships between such properties

are still being resolved in recent papers such as [13]. Topological properties of

simplicial complexes also play a role in many fields of applied mathematics, notably

topological data analysis.

Definition 2.2. An (abstract) simplicial complex on a vertex set V is a collection

∆ of subsets of V satisfying

1. if v ∈ V then {v} ∈ ∆, and

2. if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

The subsets of V comprising ∆ are called faces or simplices. The dimension

dimF of a face F is |F |−1, and dim ∆ is simply max{dimF : F ∈ ∆}. A face F is

a facet if F is not properly contained in any other face of ∆. We say ∆ is pure if all

the facets of ∆ have the same dimension. We write F to denote the sub-complex

of ∆ generated by F , or in other words F = {G ∈ ∆ : G ⊆ F}.

Definition 2.3. A simplicial complex ∆ is shellable if its facets can be arranged

in a linear order F1, . . . , Ft so that the subcomplex
(⋃k−1

i=1 F i

)
∩ Fk is pure and

(dimFk − 1)- dimensional for k = 2, . . . , t. Such an ordering is called a shelling.

Any geometric realization of an abstract simplicial complex is a topological

space, and we can often understand the topology of these spaces combinatorially.

As we see in the next section, this is possible for shellable simplicial complexes

in way that is convenient for our approach to the new proof we present. First,

we review some more combinatorial properties of simplicial complexes. One use-

ful combinatorial invariant simply counts the faces of each dimension of a finite

simplicial complex ∆:

Definition 2.4. The f -vector f∆ = (f0, f1, . . . , fd) is the integer vector with
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entries fi counting the number of faces of dimension i. The maximal entry fd

counts the number of facets of ∆, and dim ∆ = d. If we consider the empty set to

be a face of a simplicial complex ∆, we say ∅ is a face with dimension equal to −1,

and f∆ = (f−1, f0, f1, . . . , fd), where f−1 = 1.

Another combinatorial invariant arises as the alternating sum of the entries in

the f -vector f∆:

Definition 2.5. The reduced Euler characteristic of the simplicial complex ∆ is

the alternating sum

χ̃(∆) =

d∑
i=−1

(−1)ifi

where f∆ = (f−1, f0, . . . , fd).

Note that the alternating sum in Definition 2.5 of the f -vector where ∅ is not

included as a face is simply called the Euler characteristic. So, the modifier reduced

in this context specifically indicates the inclusion of ∅ as a face.

A very useful set of topological invariants of a simplicial complex is the set of

Betti numbers. To define Betti numbers we must first understand the notion of

the (simplicial) homology groups of a simplicial complex. For an introduction to

simplicial homology, see, for example, Section 2.1 [14]. For a simplicial complex ∆,

let ∆k denote the set of all k-dimensional simplices in ∆, i.e. the set of all simplices

in ∆ with k + 1 vertices.

A simplicial k-chain is a formal sum of k-simplices
∑j
i=1 ciσi where σi ∈ ∆k and

ci ∈ Z. Let Ck denote the free abelian group with the basis given by the elements of

∆k. The group Ck is often called a chain group. Let σ = {v1, . . . , vk+1} ∈ ∆k. The

kth boundary map dk : Ck → Ck−1 between chain groups is the function defined

by

∂k(σ) =

k+1∑
m=1

(−1)m{v1, . . . , v̂m, . . . , vk+1}

where {v1, . . . , v̂m, . . . , vk+1} is the (k−1)-simplex obtained by omitting the vertex

vm. The elements of the subgroup ker ∂k of Ck are called cycles and the elements

of the subgroup Im ∂k+1 of Ck are called boundaries. It is simple to verify that

Im ∂k+1 ⊂ ker ∂k, so that the quotient group Hk = ker ∂k/ Im ∂k+1 is defined. We

call the group Hk the kth homology group of ∆, and also write Hk(∆) when the

specific simplicial complex under discussion must be made clear.
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Definition 2.6. The number βk(∆) = rank(Hk(∆)) is the kth Betti number of ∆.

As we obtain the reduced Euler characteristic by considering the f -vector with

∅ as a face, we can obtain the reduced Betti numbers, which, abusing notation we

will also refer to as βk(∆), by including −1 in their index set. We will work with the

reduced Betti numbers for the remainder of this manuscript. The most useful way

for our purposes to think of the numbers βk(∆) is as the number of k-dimensional

holes that ∆ has as a topological space, along with the fact that in the reduced

context β0(∆) is one less than the number of connected components of the space

∆.

3. Approach to the New Proof

We now explain the approach to the new proof of the identity (1) presented in

this manuscript. First we must state the next theorem, which was stated for pure

simplicial complexes in [5] and first appears for general, i.e. not necessarily pure,

simplicial complexes, in [6]; this is mentioned because as we will soon see, we study

a family of non-pure simplicial complexes. Theorem 3.1 is a fundamental example

of the attractive topological properties that shellable simplicial complexes have.

Theorem 3.1. A shellable simplicial complex has the homotopy type of a wedge of

spheres in varying dimensions. For each dimension r, the number of r-spheres is

the number of r-facets whose entire boundary is contained in the union of earlier

facets in the shelling order.

By Theorem 3.1, when a simplicial complex ∆ is shellable (Definition 2.3), the

Betti numbers βi(∆) can be interpreted as counting the number of i-dimensional

faces attaching to ∆ along their entire boundary in a shelling order. Our approach

to reestablishing (1) is to present, for each n, a shellable simplicial complex ∆(n)

with face numbers fs−1 =
(
n
s

)3
and then calculate the Betti numbers of ∆(n). Fix

d as the maximum dimension of the simplicial complex ∆. Then the Euler-Poincaré

relation (attributed [4] to Henri Poincaré:)

d∑
i=−1

(−1)ifi =

d∑
i=−1

(−1)iβi (3)

provides a new way of understanding and proving (1). Our suitable family of

simplicial complexes {∆(n)|n ≥ 1} was given to us by Patricia Hersh [15]; this
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project began as a chapter in the first author’s Ph. D. Thesis [10]. We define a

simplicial complex for each n as follows:

Definition 3.2 (Hersh). Fix n ≥ 1. Let ∆(n) be the simplicial complex with

vertices given by 3-tuples (is, js, ks) for is, js, ks ∈ [n] and faces given by collections

of vertices

{(i1, j1, k1), . . . , (ir, jr, kr)}

satisfying

i1 < i2 < · · · < ir and j1 < j2 < · · · < jr and k1 < k2 < · · · < kr.

The number of r-faces of ∆(n) is counted by the product
(
n
r+1

)3
. So

χ(∆(n)) =

n∑
s=0

(−1)s+1

(
n

s

)3

= (−1)×
n∑
s=0

(−1)s
(
n

s

)3

.

3.1. Shellability and Homology Calculations

We can calculate the Betti numbers (Definition 2.6) βk(∆) of a simplicial complex

∆ by understanding how a shelling order puts ∆ together in a fashion that lets us

explicitly understand the topology of ∆.

Definition 3.3. An r-dimensional facet Fk of ∆ is a homology r-facet if Fk satisfies

∂Fk = Fk ∩
⋃
i<k

Fi.

So Fk is a homology r-facet when Fk attaches to ∆ along its whole boundary

in a shelling order. The Betti numbers of any shellable simplicial complex have a

natural interpretation in terms of homology facets: the number of r-spheres in the

homotopy type of ∆ is the number of homology r-facets, as described in Theorem

3.1. In other words, βr(∆) is equal to the number of r-spheres in the homotopy

type of ∆.

4. Some Facts About ∆(n)

When n = 1, the only nonempty face of ∆(n) is {(1, 1, 1)}. Figures 1 and 2 show the

simplicial complexes ∆(2) and ∆(3), respectively. It is immediately apparent that
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∆(n) is non-pure for all n > 1, and always has precisely one (n − 1)-dimensional

facet given by the collection of vertices

{(1, 1, 1), (2, 2, 2), . . . , (n, n, n)}.

This is the maximum possible dimension of a face of ∆(n), so the Euler-Poincaré

relation becomes

n−1∑
i=−1

(−1)ifi =

n−1∑
i=−1

(−1)iβi. (4)

Note that each of ∆(1), ∆(2), and ∆(3) contain isolated vertices. Since ∆(1) is a

point, it is pure and connected, but ∆(2) and ∆(3) are disconnected and non-pure.

Fig 1. The simplicial complex ∆(2).

Before establishing a shelling order for ∆(n), we must understand which faces

are facets:

Lemma 4.1. Let F = {v1, . . . , vr} = {(i1, j1, k1), . . . , (ir, jr, kr)} be a face of ∆(n).

Then F is a facet if and only if F satisfies the following three properties:

(P1) max{ir, jr, kr} = n.

(P2) min{i1, j1, k1} = 1.

(P3) If r ≥ 2, min{i`+1 − i`, j`+1 − j`, k`+1 − k`} = 1 for all ` ∈ [r − 1].

Proof. Let F = {v1, . . . , vr} be a facet of ∆(n). Properties P1 and P2 clearly must

hold for F : If P1 does not hold F ⊂ F ∪{vr+1}, where vr+1 = (ir+1, jr+1, kr+1)-

or one could just add (n, n, n) as a vertex to obtain a facet. If P2 does not hold,

then F ⊂ {v0}∪F where v0 = (i1−1, j1−1, k1−1) or one could simply add (1, 1, 1)
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Fig 2. The simplicial complex ∆(3).

as v0 to obtain a facet. If P3 does not hold, there exists an index ` ∈ [r− 1] where

min{i`+1−i`, j`+1−j`, k`+1−k`} > 1 and we can construct a vertex vs = (is, js, ks)

satisfying

i` < is < i(`+1), j` < js < j(`+1), and k` < ks < k(`+1).

Then F ′ = {v1, v2, . . . , v`, vs, v`+1, . . . , vr} properly contains F and F cannot be a

facet. So each condition is necessary and sufficient for F to be a facet. Informally,

a vertex “filling in the index difference in one of the positions” could result in a

facet.

From this characterization of the facets of ∆(n), we immediately obtain the next

lemma:

Lemma 4.2. For n ≥ 2, the simplicial complex ∆(n) is non-pure and disconnected.

Proof. Any vertex vs = (is, js, ks) satisfying {1, n} ⊂ {is, js, ks} must be an iso-

lated vertex, as vs cannot be contained in any other face in this case. If n > 1

there is more than one vertex in ∆(n), so ∆(n) contains isolated vertices and

is disconnected for all n ≥ 2. For all n there is an (n − 1)-dimensional facet
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F (n) = {(1, 1, 1), (2, 2, 2), . . . , (n, n, n)}, and for n ≥ 2, dimF (n) > 0. So ∆(n)

is not pure for n ≥ 2.

It is also useful to obtain new faces of ∆(n) from old, and understand how to

obtain a new facet from an old facet. To make these actions possible, we now define

operations on the faces of ∆(n) in Definitions 4.3, 4.4, and 4.6.

Definition 4.3. Let F = {v1, v2, . . . , vr} be a face of ∆(n). For ` ∈ [r − 1], let

A` = {a` ∈ {i`, j`, k`} : a`+1 − a` > 1}

and let

Ar = {ar ∈ {ir, jr, kr} : ar < n}.

For ` such that A` 6= ∅, define a up-twist G about the vertex v` as the face of

∆(n) obtained by replacing v` in F with the new vertex v′` of ∆(n) obtained by

increasing an index of v` in A` by 1.

Definition 4.4. Let F = {v1, . . . , vr} be a face of ∆(n). For ` ∈ {2, . . . , r}, let

B` = {b` ∈ {i`, j`, k`} : b` − b`−1 > 1}

and let

B1 = {b1 ∈ {i1, j1, k1} : b1 > 1}

For ` such that B` 6= ∅, define a down-twist G about the vertex v` as the face

of ∆(n) obtained by replacing v` in F with the new vertex v′` of ∆(n) obtained by

decreasing an index of v` in B` by 1.

Example 4.5. In this example, we consider faces of ∆(5). In the face F =

{(1, 1, 2), (2, 5, 5)} with v1 = (1, 1, 2), and v2 = (2, 5, 5) the set A1 = {j1, k1} =

{1, 2}, and B2 = {j2, k2} = {5, 5}. An up-twist of F about v1 is the new face

{(1, 2, 2), (2, 5, 5)}. A down-twist of F about v2 is the new face {(1, 2, 2), (2, 4, 5)}.

Definition 4.6. Recall conditions P1, P2, and P3 from Lemma 4.1, and let F be

a facet. We say an up-twist G of a facet F = {v1, v2, . . . , vr} is safe if either ` > 1

and condition P3 is conserved, or ` = 1 and condition P2 is conserved. We say a

down-twist G of a facet F is safe if either ` < r and condition P3 is conserved, or

` = r and condition P1 is conserved.
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Example 4.7. In this example, we again consider faces of ∆(5). The down-twist

{(1, 2, 2), (2, 4, 4)}

of

{(1, 2, 2), (2, 4, 5)}

about the vertex (2, 4, 5) is not safe, because condition P1 is not conserved. The

down-twist

{(1, 2, 2), (2, 3, 5)}

of

{(1, 2, 2), (2, 4, 5)}

about the vertex (2, 4, 5) is safe, because P1 is conserved.

Lemma 4.8. Let F1 = {v1, . . . , vr} be a facet of ∆(n). If F2 is a safe up-twist or

a safe down-twist of F1, then F2 is a facet of ∆(n).

Proof. First we consider the case where F1 is a facet {v1, . . . , vr} of ∆(n) and

F2 = {v`′} ∪ {vj : j ∈ [r] \ {`}}

is a safe up-twist of F1 about the vertex v`. By Lemma 4.1, it is sufficient to show

that F2 satisfies P1, P2, and P3. If ` < r, then vr is unaffected by the vertex change

and P1 holds for F2. If ` = r, then the maximum element of v′r will not decrease

and P1 is satisfied by F2. If ` > 1, then P2 is trivially satisfied by F2. If ` = 1, then

since F2 is a safe up-twist, min{i1, j1, k1} = min{i′1, j′1, k′1} = 1, where (i′1, j
′
1, k
′
1)

is the new vertex in v′1 ∈ F2. So P2 holds.

Now, since F1 is a facet, min{i`+1 − i`, j`+1 − j`, k`+1 − k`} = 1. Without loss

of generality, we can say min{i`+1 − i`, j`+1 − j`, k`+1 − k`} = i`+1 − i`, so that

i` /∈ A` and v′` = (i`, j
′
`, k
′
`). Therefore min{i`+1 − i`, j`+1 − j′`, k`+1 − k′`} = 1 and

P3 holds.

A similar argument shows that if F2 is a safe down-twist of F1, then F2 is also

a facet of ∆(n).

5. A Shelling Order for ∆(n)

In this section we construct a shelling order for ∆(n). Recall that by Lemma 4.2,

∆(n) is not pure. To set up the shelling order, we first partition ∆(n) into sets of
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facets according to dimension. For 0 ≤ m ≤ n − 1, let Sm be the set of facets of

dimension m. For example, Sn−1 is the set containing the single (n−1)-dimensional

facet F (n) = {(1, 1, 1), (2, 2, 2), (3, 3, 3), ..., (n, n, n)}, and S0 contains the facets

comprised solely of isolated vertices such as the facet F = {(1, n, 1)}. It is intuitive

that such our shelling order would require respecting the dimension of facets of

∆(n) due to elementary facts about non-pure shellable complexes (see Lemma 2.2

in [6]).

Non-pure shellable simplicial complexes were not studied in detail before the

work in [6], and we highlight the fact that our main object is not a simplicial

complex in order to (1) build on this body of research by providing additional

motivating examples and (2) providing a fundamental cross-disciplinary (within

the partitioned field of combinatorics) application of an existing, fully-developed

toolkit. The next definition allows us to order the facets in Sm for a fixed m using

the lexicographic order.

Definition 5.1. The σ-word σ(F ) of the face F = {v1, . . . , vr} is the sequence

(i1, j1, k1, i2, j2, k2, i3, . . . , kr−1, ir, jr, kr).

Informally, we can see that the σ-word of a face is obtained by simply ignoring

all the parentheses in the listing of the vertices of the face.

Example 5.2. The σ-word of the vertices of the facet

F = {(1, 2, 1), (3, 3, 3), (4, 4, 5)}

of ∆(5) is

σ(F ) = (1, 2, 1, 3, 3, 3, 4, 4, 5).

The σ-word of the vertices of the facet

G = {(1, 2, 2), (2, 3, 3), (4, 4, 5)}

of ∆(5) is

σ(G) = (1, 2, 2, 2, 3, 3, 4, 4, 5).

In the lexicographic order we have σ(F ) < σ(G).

Now we define the order on the facets of ∆(n) that we will show is a shelling

order.
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Definition 5.3. Define an order O on the facets of ∆(n) as follows: Fi < Fj in

the order O if

1. Fi ∈ Sm and Fj ∈ S` for ` < m or

2. ` = m and σ(Fi) is lexicographically smaller than σ(Fj).

Theorem 5.4. The order O is a shelling order for the facets of ∆(n).

The remainder of this section will be devoted to showing that O is a shelling

order. We need the following well-known lemma, which provides a useful working

definition of a shelling, in our proof of Theorem 5.4. This lemma is explicitly stated

for non-pure simplicial complexes as Lemma 2.3 in [6], but as we have see for other

facts about non simplicial complexes, a earlier version for pure simplicial complexes

appears in [5].

Lemma 5.5. An order F1, F2, . . . , Ft of the facets of a simplicial complex ∆ is a

shelling if and only if for every i and k satisfying 1 ≤ i < k ≤ t there is a j with

1 ≤ j < k and a vertex v ∈ Fk such that Fi ∩ Fk ⊂ Fj ∩ Fk = Fk \ {v}.

We will follow the notation of Lemma 5.5 and let [t] denote the index set for the

order O. To work with Lemma 5.5 in the proof of Theorem 5.4, we will be fixing

two facets Fi and Fk and constructing a facet Fj satisfying the conditions of the

lemma. To make this easier, we now develop some notation for vertex subsets of

Fi and Fk.

Let Fk, for k > 1, be a facet of ∆(n). Let i be an index satisfying 1 ≤ i < k ≤ t.
Let Vi,k denote the (possibly empty) set of vertices in Fi ∩ Fk, let Vk = Fk \ Fi,
and let Vi = Fi \ Fk. Write Vi,k = {vc,1, . . . , vc,s}, Vk = {vk,1, . . . , vk,e}, and

Vi = {vi,1, . . . , vi,u}. We write the vertex sets so that as positive integers, (c, 1) <

· · · < (c, s), (k, 1) < · · · < (k, e), and (i, 1) < · · · < (i, u). Also, we write the indices

of Vi,k, Vk, and Vi in the same order they appear in Fk and Fi, and we do not

rename the indices when considering the subsets Vi,k,Vi, and Vk.

Example 5.6. Let

Fi = {(1, 2, 1), (3, 3, 3), (4, 4, 4), (5, 5, 5)}

and

Fk = {(1, 2, 1), (2, 3, 3), (5, 4, 5)}.
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Then Vi,k = {(1, 2, 1)},

Vk = (2, 3, 3), (5, 4, 5)}

, and

Vi = {(3, 3, 3), (4, 4, 4), (5, 5, 5)}.

Also, {(c, 1)} = {1}, {(k, 1), (k, 2)} = {2, 3} and {(i, 1), (i, 2), (i, 3)} = {2, 3, 4}.

The next lemma will make it easier to work with the sets Vi,k, Vi, and Vk.

Lemma 5.7. Let Fi and Fk be facets of 4(n) such that i < k ∈ [t]. There exist

ordered partitions of Vi,k,Vi, and Vk into blocks of ordered vertices

Vi,k = C1| · · · |CN ,

Vi = I1| · · · |IM ,

and

Vk = K1| · · · |KM

such that each ordered block of the ordered partitions corresponds to a consecutive

subsequence of vertices in a facet.

Proof. We can generate the required partitions of the vertices of Vi, Vk, and Vi,k
using an algorithmic approach. We will explain the algorithm Vi,k = C1| · · · |CN ;

the algorithms for Vi and Vk are similar.

Let Fi = {v1, . . . , vr}. If Vi,k = ∅, then the partition is empty, and there is

nothing to compute. So, assume Vi,k 6= ∅. We use the following algorithm to build

the blocks of the ordered partition C1| · · · |CN .

Algorithm 5.8. • Input: The vertices {v1, . . . , vr} of Fi and the vertex subset

Vi,k.

• Output: An ordered partition of Vi,k of ordered blocks of vertices in Vi,k, in

which each block is a set of vertices that are both consecutive in {v1, . . . , vr}
and written in the order that they appear in {v1, . . . , vr}.

• Initialize `(1) = min{` ∈ [r] : v` ∈ Vi,k}, set C1 = {v`(1)} .

• While `(i) < r:

– If v`(i)+1 ∈ Vi,k, set Ci = Ci ∪ {v`(i)+1}, update `(i) = `(i) + 1.
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– Else if v`(i)+1 /∈ Vi,k, set v`(i) as the last vertex in Ci.

∗ If the set {m ∈ [r] : m > `(i) and vm ∈ Vi,k} is empty, Ci = CN

and the algorithm terminates.

∗ Else update `(i + 1) = min{m ∈ [r] : m > `(i) and vm ∈ Vi,k} and

set Ci+1 = {v`(i+1)}.

• Return the partition Vi,k = C1| · · · |CN .

We explain why the partitions of Vi and Vk both have the same number of blocks

M : assume by way of contradiction that the partition of Fi has more blocks than

the partition of Fk. Then either (i) there is at least one vertex in the sequence

{v1, . . . , vr} that is between two vertices of Fk, (ii) there is a vertex of Fi greater

than the last vertex of Fk, or (iii) there is a vertex smaller than the first vertex

of Fk. Case (i) implies Fk does not satisfy P3, Case (ii) implies that Fk does not

satisfy P1, and Case (iii) implies Fk does not satisfy P2. So, all three cases are

impossible by Lemma 4.1. So Fi cannot have more blocks in the ordered partition

than Fk. The argument is symmetric in Fi and Fk, so the ordered partitions of Fi

and Fk have the same number of blocks.

Example 5.9. Here is an example of the ordered partitions with ordered blocks

described in Lemma 5.7. Define the facet Fi as

{(1, 2, 1), (2, 3, 3), (3, 4, 4), (5, 5, 5), (6, 6, 6), (7, 8, 8), (9, 9, 9), (10, 10, 10)}

and let

Fk = {(1, 2, 1), (2, 3, 5), (6, 6, 6), (7, 8, 9), (10, 10, 10)}.

Note that Fi and Fk are both facets of ∆(10). Then

Vi,k = {(1, 2, 1), (6, 6, 6), (10, 10, 10)},

Vi = {(2, 3, 3), (3, 4, 4), (5, 5, 5), (7, 8, 8), (9, 9, 9)},

and

Vk = {(2, 3, 5), (7, 8, 9)}.

We have

Vi,k = C1|C2|C3 = {(1, 2, 1)}|{(6, 6, 6)|{(10, 10, 10)},

Vi = I1|I2 = {(2, 3, 3), (3, 4, 4), (5, 5, 5), }|{(7, 8, 8), (9, 9, 9)},
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and

Vk = K1|K2 = {(2, 3, 5)}|{(7, 8, 9)}.

The next lemma is useful in our proof of Theorem 5.4. Recall that we write

Vk = {vk,1, . . . , vk,e}.

Lemma 5.10. Let i < k be indices in the order O. There exists ` ∈ {(k, 1) . . . , (k, e)}
such that B` 6= ∅.

Proof. First we handle the case where dimFi = dimFk. In this case Fi and Fk each

have r vertices, and the sequences σ(Fi) and σ(Fk) are both of length 3r. By our

construction of the shelling order O in Definition 5.3 this implies σ(Fi) < σ(Fk) in

the lexicographic order which means the first place the two sequences differ, call

this index b ∈ [3r], is larger in σ(Fk).

In other words, we have

σ(Fi) = (p1, . . . , p3r)

and

σ(Fk) = (q1, . . . , q3r)

where pa = qa for a ∈ [3r] satisfying a < b, and qb > pb as integers.

The first place the sequences differ occurs in the vertex of smallest index not

present in both Fi and Fk. So qb ∈ {ik,1, jk,1, kk,1} as vk,1 is the vertex of smallest

index in Vk. Without loss of generality, we can say b designates the position of

ik,1. Recall that we write Vi = {vi,1, . . . , vi,u}. Then we have ik,1 > ii,1. If (k, 1) =

(i, 1) = 1, then ik,1 ≥ 2 and Bk,1 6= ∅. If (k, 1) > 1, i(k,1)−1 must appear in a vertex

in Vi,k by our choice of b, and we can write ik,1 − i(k,1)−1 > ii,1 − i(k,1)−1 ≥ 1. So

Bk,1 6= ∅ in this case.

Next we handle the case where dimFi > dimFk. We can write Fi and Fk as the

disjoint unions

Fk = Vi,k t Vk, Fi = Vi,k t Vi.

We know that |Vi| > |Vk| because dimFi > dimFk. By Lemma 5.7 there exist

partitions of Vi,k,Vi, and Vk

Vi,k = C1| · · · |CN , Vi = I1| · · · |IM ,

and

Vk = K1| · · · |KM
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such that each block in each partition corresponds to an uninterrupted sequence of

vertices in a facet. Since |Vi| > |Vk| and the ordered partitions of Vi and Vk have

the same number of blocks, there must exist A ∈ [M ] such that |IA| > |KA|. For

indices x ∈ [u] and y ∈ [e] we can write

IA = {vi,x, . . . , vi,(x+|IA|)}, and KA = {vk,y, . . . , vk,(y+|KA|)}.

Recall that the σ-word σ(KA) (Definition 5.1) is the ordered set of indices of all

vertices appearing in the face KA. We divide the proof for dimFi > dimFk into

two cases

n ∈ σ(KA), (5)

and

n /∈ σ(KA). (6)

Consider first the case (5). This case implies

n ∈ {ik,(y+|KM |), jk,(y+|KM |), kk,(y+|KM |)},

the index set of the last vertex in the last block of the partition K1| · · · |KM of

Vk. We can assume without loss of generality that n = ik,(y+|KM |). Then n ap-

pears as an element of vi,(x+|IM |) also. Because of this, we know that in Fi, the

vertices in IM immediately follow the vertices in CN , and in Fk, the vertices

in KM immediately follow the vertices in CN . For some z ∈ [s], we can write

CN = {vc,z, . . . , vc,(z+|CN |)}.
Then n − ic,(z+|CN |) ≥ |IM |, and the net change in the i index in the vertices

of KM is bounded below by |IM | > |KM |, and there are only |KM | vertices to

accomplish this change. Therefore there must exist an index ` ∈ {(k, y), . . . , (k, y+

|KM |)} such that i` − i`−1 > 1. So, for this v` ∈ Vk, B` 6= ∅.
Now we consider the case (6). This implies that for some w ∈ [s] there exists a

vertex vc,w ∈ Vi,k where (c, w) = (k, (y+ |KA|)) + 1 in the vertex numbering in Fk.

Since Fk is a facet, it satisfies P3 from Lemma 4.1, which means that min{ic,w −
ik,(y+|KA|), jc,w − jk,(y+|KA|), kc,w − kk,(y+|KA|)} = 1. Without loss of generality we

can say ic,w− ik,(y+|KA|) = 1. If 1 ∈ σ(KA) then A = 1 and ik,(y+|K1|) ≥ |I1| where

|I1| > |K1|, but we only have |K1| vertices to accomplish this index change and so

there exists ` ∈ {1, . . . , (1 + |K1|)} such that B` 6= ∅.
If 1 /∈ σ(KA), there exists x ∈ [s] and vc,x ∈ Vi,k such that (c, x) + 1 = (k, y)

in the label sequence of the vertices of Fk. Then ik,(y+|KA|) − ic,x ≥ |IA| where
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|IA| > |KA|. But we only have |KA| vertices to accomplish this index change and

so there exists ` ∈ {(k, y), . . . , (k, (y + |KA|))} such that B` 6= ∅. This completes

the proof of the Lemma for the case dimFi > dimFk.

Now we prove Theorem 5.4. The essence of the proof is that given any pair of

facets Fi and Fk such that i < k in O, we may use Lemma 5.10 to construct a facet

Fj such that the hypotheses of Lemma 5.5 is satisfied, which will show that O is a

shelling order.

Proof. Let Fi and Fk be such that i and k satisfy 1 ≤ i < k ≤ t in the order O.

Recall we write Vi,k = Fi∩Fk and Vk = {vk,1, . . . , vk,e}, where Vk = Fk \Fi. Write

Fk = {v1, . . . , vr}. We will find a vertex v ∈ Fk and construct a facet Fj such that

1 ≤ j < k and such that Vi,k ⊂ Fj ∩ Fk = Fk \ {v}. This will show that O is a

shelling order by Lemma 5.5.

By Lemma 5.10 there exists ` ∈ {(k, 1), . . . , (k, e)} such that B` 6= ∅. We will

divide the proof into two cases: ` = r and ` < r. For now assume that ` < r. If

such an ` exists we choose ` that is minimal.

Then choose the “left-most” vertex element in B`: for example if B` = {i`, k`}
we choose i`. Without loss of generality we can say that i` is the left-most element

of the set B`. Let w = (i`− 1, j`, k`). Since Fk is a facet, we know that min{i`+1−
i`, j`+1−j`, k`+1−k`} = 1. We now have two sub-cases to consider: (i): min{j`+1−
j`, k`+1 − k`} = 1 and (ii): min{j`+1 − j`, k`+1 − k`} > 1. In the case (i), the

down-twist (Definition 4.4) about v`

Fj = Fk \ {v`} ∪ {w}

is safe and Fj is a facet.

In this instance dimFj = dimFk. The only place σ(Fj) and σ(Fk) differ is the

position of i` − 1 from the new vertex w. So σ(Fj) < σ(Fk) and we know j < k in

the order O. Also, Vi,k ⊂ Fj ∩ Fk = Fk \ {v`}, so v` and Fj satisfy the conditions

of Lemma 5.5.

Next, consider the sub-case (ii): min{j`+1 − j`, k`+1 − k`} > 1. Since Fk is a

facet, P3 is satisfied and i`+1 − i` = 1 must hold. In this case the face

Fj = Fk \ {v`} ∪ {w, (i`, j` + 1, k` + 1)}

satisfies P3 and is a facet. Since dimFj > dimFk, j < k in O. Clearly Vi,k ⊂
Fj ∩ Fk = Fk \ {v`}.
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Next we consider the case where the only ` ∈ {(k, 1), . . . , (k, e)} satisfying B` 6= ∅
is ` = r. Again without loss of generality we can say that ir is the left-most index

in Br. Let w = (ir − 1, jr, kr). There are two sub-cases to consider: (i) n ∈ {jr, kr}
and (ii) n /∈ {jr, kr}.

If (i) n ∈ {jr, kr}, then the down-twist about vr

Fj = Fk \ {vr} ∪ {w}

is safe and Fj is a facet of the same dimension as Fk satisfying σ(Fj) < σ(Fk) and

so j < k in O. For the sub-case (ii) when n /∈ {jr, kr}, let

Fj = Fk \ {vr} ∪ {w, (n, n, n)}.

Since dimFj > dimFk, we have j < k in O. In both sub-cases Vi,k ⊂ Fj ∩ Fk =

Fk \ {vr}. This completes the proof.

6. The Homology Facets of ∆(n)

Recall that our approach to our new proof (Section 3) is to calculate the Betti

numbers (Definition 2.6) of ∆(n) using shelling order O in which puts ∆(n) to-

gether as a topological space. The next lemma characterizes the homology facets

(Definition 3.3) of ∆(n) for dimension 1 and greater:

Lemma 6.1. Let r ≥ 2. A facet Fk = {v1, . . . , vr} is a homology (r − 1)-facet of

∆(n) if and only if B` 6= ∅ for all ` ∈ [r].

Proof. First let B` 6= ∅ for all ` ∈ [r]. It suffices to show that for all `, Fk \ {v`} ⊂
Fj(`) for some j(`) < k. First, let ` = r. If at least two of the elements of the set

{ir, jr, kr} are equal to n, then since Br 6= ∅, we can say without loss of generality

that ir − ir−1 > 1. Then the facet

Fj(`) = Fk \ {vr} ∪ {(ir − 1, jr, kr)}

satisfies dimFj(`) = dimFk and σ(Fj(`)) < σ(Fk), so j(`) < k and we have the

desired containment Fk \ {v`} ⊂ Fj(`). If Br = {n}, without loss of generality we

can say that Br = {ir}. Then min{jr, kr} = n − p for some p ≥ 1. Let Fj(`) be

defined as

Fk \ {vr} ∪ {(n− p, n− p, n− p), (n− p+ 1, n− p+ 1, n− p+ 1), . . . , (n, n, n)}.
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Then dimFj(`) > dimFk, so j(`) < k and Fk \ {vr} ⊂ Fj(`).
Now, let ` < r. Either |B`| = 1 or |B`| = 2. (Since Fk is a facet and satisfies P3,

|B`| < 3). If |B`| = 2 we can assume B` = {i`, j`}. If min{j`+1− j`, k`+1− k`} = 1,

then let

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j`, k`)}.

Then σ(Fj(`)) < σ(Fk), with Fk \ {v`} ⊂ Fj(`) and dimFk = dimFj(`), so j(`) < k.

If min{j`+1−j`, k`+1−k`} > 1 then i`+1− i` = 1 because Fk is a facet and satisfies

P3. Then let

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j`, k`), (i`, j` + 1, k` + 1)}

and again dimFj(`) > dimFk, so j(`) < k and Fk \ {v`} ⊂ Fj(`).
If |B`| = 1, then we can assume B` = {i`}. If i`+1 − i` > 1, then

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j`, k`)}

satisfies P3 (because Fk does), dimFk = dimFj(`) and σ(Fj(`)) < σ(Fk), so j(`) < k

and Fk \ {v`} ⊂ Fj(`). If i`+1 − i` = 1 and min{j`+1 − j`, k`+1 − k`} > 1, then

Fj(`) = Fk \ {v`} ∪ {(i` − 1, j` − 1, k` − 1), (i`, j`, k`)}

satisfies dimFk < dimFj(`) so j(`) < k and Fk \ {v`} ⊂ Fj(`). So whenever B` 6= ∅
for all ` ∈ [r], Fk attaches along its entire boundary in the shelling order O and is

a homology facet.

For the converse, assume that Fk = {v1, . . . , vr} is a homology facet. We wish to

show that B` 6= ∅ for all ` ∈ [r]. Assume by way of contradiction that there exists

` ∈ [r] where B` = ∅. Since Fk is a homology facet, Fk \ {v`} ⊂ Fj(`) for some

j(`) < k. If dimFk = dimFj(`), then

Fj(`) = Fk \ {v`} ∪ {v′`}

for some v′` 6= v`, and σ(Fj(`)) < σ(Fk). Then since the only entries in the sequences

σ(Fj(`)) and σ(Fk) that are different come from v` and v′`, one of the three inequal-

ities (i) i′` < i`, (ii) j′` < j`, or (iii) k′` < k` must be true. If i′` < i` = i`−1 + 1,

then this is a contradiction because i′` > i`−1. The same contradiction arises if

inequalities (ii) or (iii) hold.

If dimFj(`) > dimFk, then

Fj(`) = Fk \ {v`} ∪ {va,1, . . . , va,d}
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where d ≥ 2. First consider the sub-case where ` = r. In this instance, n ∈
{ir, jr, kr}. Without loss of generality we can say n = ir. Since Br = ∅, ir−1 = n−1.

Then we must have n − 1 < ia,1 < ia,2 and ia,1 = n, but since n is the maximum

index allowed, this is a contradiction. Next, consider the sub-case where ` < r.

Then since Fk satisfies P3, min{i`+1− i`, j`+1− j`, k`+1− k`} = 1. Without loss of

generality, we assume i`+1 − i` = 1. Since B` = ∅, i` − i`−1 = 1. But we must have

i`−1 < ia,1 < ia,2 < i` + 1, which is impossible. Therefore we have also arrived at

a contradiction when dimFj(`) > dimFk. So when Fk is a homology facet, B` 6= ∅
for all ` ∈ [r].

7. Generating Functions that Count the Homology Facets

In this section we complete our new proof of (1) by showing the homology facets of

∆(n) can be counted using generating functions and an application of MacMahon’s

Master Theorem (Theorem 7.5). For our argument, is useful to consider two families

of homology facets, which we now define.

Denote the homology facets of dimension d in ∆(n) as Hd(∆(n)). We can divide

Hd(∆(n)) into two families Xd(n) and Yd(n), where Xd(n) is the set

{F = {v1, . . . , vd+1}|ad+1 < n for some ad+1 ∈ {id+1, jd+1, kd+1}}

and

Yd(n) = {F = {v1, . . . , vd+1}|F = G ∈ Xd−1(∆(n− 1))} ∪ {(n, n, n)}}.

We let X(n) (respectively Y (n)) denote the set
⋃n
d=0Xd(n) and X (respectively

Y ) denote the set
⋃∞
n=1X(n).

Lemma 7.1. For 0 ≤ d ≤ n− 1, Hd(∆(n)) = Xd(n) t Yd(n).

Proof. The facets in Xd(n) all satisfy B` 6= ∅ (see Definition 4.4 for a reminder of

this notation) for 0 ≤ ` ≤ d+ 1 by assumption, and by adding the vertex (n, n, n)

to a face in Xd−1(n), we see that Bd+1 6= ∅. Therefore every facet in Xd(n) and

Yd(n) is a homology facet (Lemma 6.1). The two sets are disjoint because no face

in Xd−1(n− 1) has (id, jd, kd) = (n− 1, n− 1, n− 1) by definition.

To complete our new proof of (1), we must count Hd(∆(n)) for d ≤ n− 1, and

show that their alternating sum gives the required right hand side of Equation (1).
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Definition 7.2. Given a facet F ∈ ∆(n) with r vertices, fix λi, λj , and λk to

represent the collections of indices sorted by position (i, j, k). With the collection

λi we identify the shift vector λi as (i1, i2 − i1, . . . , ir − ir−1, n + 1 − ir), with λj

and λk defined similarly.

Example 7.3. The facet {(1, 2, 2), (2, 4, 4)} in ∆(5) has shift vectors λi = (1, 1, 3),

λj = λk = (2, 2, 1).

Remark. It is clear that every facet is uniquely identified by its shift vectors,

and that the shift vectors for a facet with r − 1 vertices have r entries: the facet

{(1, 2, 2), (2, 4, 4)} in X1(4) has shift vectors λi = (1, 1, 3), λj = λk = (2, 2, 1).

Lemma 7.4. The generating function for a collection {λi, λj , λk} of shift vectors

derived from facets in the family X with r − 1 vertices satisfying∑
s`∈λi

s` = n1,
∑
s`∈λj

s` = n2 and
∑
s`∈λk

s` = n3

is

gr(x, y, z) =

∞∑
n1,n2,n3=1

X(n1, n2, n3)xn1yn2zn3 =

(
xyz

(
1− xyz

(1− x)(1− y)(1− z)
− 1

))r
.

Proof. In the statement of Lemma 7.4 we allow for the fact that any given col-

lection C of {λi, λj , λk} of shift vectors may come from different complexes in

the infinite family {∆(n)}∞n=1. Note that for all indices ` ∈ [r], it follows (1)

from Lemma 4.1 that 1 = min{λi,`, λj,`, λk,`} , and (2) from Lemma 6.1 that

1 < max{λi,`, λj,`, λk,`}.
First we employ a sub-generating function which generates all possibilities for a

single index ` in the collection {λi, λj , λk}, identified as the vector (λi,`, λj,`, λk,`)

Suppose that λi,` and λj,` and λk,` are both not one: then, we can generate all

possibilities for the vector (λi,`, λj,`, λk,`) with the function

f(x, y, z) = x

∞∑
λj,`=2

∞∑
λj,`=2

yλj,`zλk,` =
xy2z2

(1− y)(1− z)
. (7)

If λj,` = λk,` = 1 then all possible vectors (λi,`, λj,`, λk,`) are generated by

h(x, y, z) = xy

∞∑
λk,`=2

zλk,` =
xyz2

1− z
. (8)
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Add the permutations of the functions in (7) and (8) to obtain

P (x, y, z) = f(x, y, z) + f(y, x, z) + f(z, y, x) + h(x, y, z) + h(x, z, y) + h(z, y, x)

=
xyz(1− xyz − (1− x)(1− y)(1− z))

(1− x)(1− y)(1− z)

= xyz

(
1− xyz

(1− x)(1− y)(1− z)
− 1

)
.

Since there are exactly r vectors (λi,`, λj,`, λk,`) generated independently, we

obtain

gr(x, y, z) =

(
xyz

(
1− xyz

(1− x)(1− y)(1− z)
− 1

))r
.

From the generating function we derived in Lemma 7.4 for shift vector collections

from homology facets in X to we derive the generating function (X t Y )(x, y, z)

for the alternating sum of all shift vectors corresponding to all homology facets -

the set X ∪ Y (Lemma 7.1)- as follows:

(X t Y )(x, y, z) =
∑
r=1

P (x, y, z)r(−1)r−1 + xyz
∑
r=1

P (x, y, z)r−1(−1)r−1 =

(P (x, y, z) + xyz)

∞∑
r=1

P (x, y, z)r−1(−1)r−1 =

xyz(1− xyz)
(1− x)(1− y)(1− z)

∞∑
r=1

P (x, y, z)r−1(−1)r−1 =

xyz(1− xyz)
(1− x)(1− y)(1− z)

 1

1− xyz +
xyz(1− xyz)

(1− x)(1− y)(1− z)

 =

xyz

(1− x)(1− y)(1− z) + xyz
.

Dixon’s identity follows by the usual application of the following theorem:

Theorem 7.5 (Master Theorem [16]). Let A = (ai,j)m×m and let X = diag(x1, . . . , xm).

Then

[xk11 · · ·xkmm ]

m∏
i=1

(ai,1x1 + · · ·+ ai,mxm)ki = [xk11 · · ·xkmm ]
1

Det(I −XA)
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To obtain the identity, set n1 = n2 = n3 = n, so we are only considering the

diagonal. We apply Theorem 7.5 twice, both times setting m = 3 and (x1, x2, x3) =

(x, y, z). Let

A =


1 −1 0

0 1 −1

−1 0 1

 and B =


0 1 −1

−1 0 1

1 −1 0


which gives us Det(I −XA) = (1− x)(1− y)(1− z) + xyz and so

[xnynzn](x− y)n(y − z)n(x− z)n =

[xn−1yn−1zn−1]
xyz

(1− x)(1− y)(1− z) + xyz
.

Then we transfer the diagonal by using Det(I −XB) = 1 + xy+ xz+ yz giving us

(1), as required.

8. Discussion

The construction of ∆(n) generalizes as follows: define a simplicial complex Γp(n)

with vertices given by sequences in [n]p for p ≥ 1, and faces given by collections of

vertices

{(i1,1, . . . , i1,p), (i2,1, . . . , i2,p), . . . , (ir,1, . . . , ir,p)}

satisfying i`,a ∈ [n] for all ` ∈ [r] and all a ∈ [p], and i`,a < i(`+1),a for all ` ∈ [r−1]

and all a ∈ [p]. Then Γp(n) has face numbers given by

fs−1 =

(
n

s

)p
for 0 ≤ s ≤ n.

Note that for p = 1, Γp(n) corresponds to the identity

n∑
k=0

(−1)k
(
n

k

)
= 0, n ≥ 1 (9)

which appears as Exercise 1.3-(f) in Enumerative Combinatorics Volume I by

Richard Stanley [24]. Γ1(n) is the traditional n-simplex ∆n−1 with vertices la-

beled with the labels {1, . . . , n} and therefore has the homotopy type of point: so

by our technique the fact that the left-hand side of (9) is (−1)χ̃(∆n−1) is equal to

zero is trivial.
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For p = 2, Γp(n) corresponds to the identity

n∑
k=0

(−1)k
(
n

k

)2

=

 0 if n is odd,

(−1)n/2
(
n
n/2

)
, if n is even.

. (10)

Determining the value of the right-hand side of (10) appears as Exercise 5.48 [1],

and can be established easily using either generating functions or a sign-reversing

involution.

We also note that we can view the simplicial complex ∆(n) as the order complex

of the poset P∆(n) where the elements of P∆(n) are integer triples in [n]3 and

(i, j, k) < (i′, j′, k′) in P∆(n) if and only if i < i′, j < j′, and k < k′. Our proof of

the shellability of the complex ∆(n) does not directly use the fact that ∆(n) is an

order complex of a poset, but we may incorporate this view into future work on this

problem. This perspective has been used to study the poset of proper divisibility

in the recent paper [7]. By adding or removing minimal and maximal elements

to the poset in hand, one can establish a bijection between Γp(n) and a subset

of the posets studied in [7]. The shelling order in [7] uses techniques of shelling

order complexes that generalize sufficiently to show that Γp(n) will be shellable,

non-pure, and disconnected for all p and all n.

9. Future Work

A curious fact is that the results in [7] demonstrate that not only is Γp(n) shellable

for all p and for all n, but also that identifying the homology facets for any fixed p

and n for Γp(n) is possible via techniques from [6]. It is also interesting that while

the order complexes in [7] that are in bijection with the members of the family Γp(n)

have distinct and interesting topological properties that hold for some ordered pairs

(p, n) and not for others, there are no results given relating the number of homology

facets to any identities such as (1).

This is actually not surprising as counting the homology facets in a “closed-

form” fashion is known to be impossible for arbitrary n and p from past studies of

families of identities in other enumerative disciplines.

For example, in [11], it is shown that for p ≥ 4, the alternating sum of the face

numbers of Γp(n) does not have a “closed form” for general n-which in this case

simply means that there is no general formula as a function of n and p. In [9], citing
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a personal communication with H. Wilf, N. Calkin mentions that it is not possible

to write the unsigned sum
n∑
k=0

(
n

k

)p
as a fixed number of hypergeometric terms (recall that we pointed out in the

introduction that the identity (1) belongs to a much more general family of hyper-

geometric identities).

To finalize the new proof, we appealed to Theorem 7.5, tying topological combi-

natorics back to familiar generating function techniques. We believe this connection

may deserve further study and may lead to a deeper understanding of how differ-

ent types of enumeration are connected via topological and geometric objects. In

particular:

• Studying Γp(n) for p ≥ 4 may shed light on the interplay of the mechanics

underlying

– techniques for studying hypergeometric series,

– generating function techniques, and

– asymptotic counting techniques, which are used in the analysis of alter-

nating sums of powers of binomial coefficients in [11].

• It is possible that the combinatorics of the homology facets for dimension

r ≥ 1 as n is allowed to vary may also lead to interesting formulae or allow

us to observe interesting asymptotic behavior. Again, we hope this may lead

to a greater understanding of the failure of the aforementioned enumerative

techniques to find closed formulae for many alternating sums of binomial

coefficients in past efforts. We note that we computed the number of homology

facets of ∆(n) for each dimension r for n ≤ 7, and neither the sequence of

the number of homology facets for increasing r and fixed n nor the sequence

generated by fixing r and incrementing n appear in the OEIS [18].
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