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ABSTRACT

In a recent paper we showed that the correlators of free scalar field theory in four dimen-

sions can be constructed from a two dimensional topological field theory based on so(4, 2)

equivariant maps (intertwiners). The free field result, along with results of Frenkel and Li-

bine on equivariance properties of Feynman integrals, are developed further in this paper.

We show that the coefficient of the log term in the 1-loop 4-point conformal integral is a

projector in the tensor product of so(4, 2) representations. We also show that the 1-loop

4-point integral can be written as a sum of four terms, each associated with the quantum

equation of motion for one of the four external legs. The quantum equation of motion is

shown to be related to equivariant maps involving indecomposable representations of so(4, 2),

a phenomenon which illuminates multiplet recombination. The harmonic expansion method

for Feynman integrals is a powerful tool for arriving at these results. The generalization to

other interactions and higher loops is discussed.
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1 Introduction

Many aspects of the combinatorics of N = 4 super-Yang-Mills theories have been shown

to be captured by two-dimensional topological field theories (TFT2s) based on permutation

groups [1, 2, 3, 4, 6, 7, 8, 9, 10]. Specifically these topological field theories were found in the

1



computation of correlators in the free limit of gauge theories, the enumeration of states for

open strings connecting branes and the construction of their wavefunctions diagonalizing the

1-loop dilatation operator [11, 12], the enumeration of Feynman diagrams and tensor model

observables. In the context of N = 4 SYM correlators, this leads naturally to the question of

whether the space-time dependences of correlators (as well as the combinatoric dependences

on the operator insertions) can be captured by an appropriate TFT2. As a simple test case

to explore this question, we showed that free scalar field correlators in four dimensions can be

reproduced by a TFT2 with so(4, 2) invariance [13]. We used Atiyah’s axiomatic framework

for TFT2s, where tensor products of a state space are associated with disjoint unions of

circles and linear homomorphisms are associated with interpolating surfaces (cobordisms)

[14]. The properties of cobordisms in two dimensions are reflected in the algebraic structure

of a Frobenius algebra : an associative algebra with a non-degenerate pairing. The notion

of a TFT2 with global G symmetry was given in [15] : The state spaces are representations

of the group G and the linear maps are equivariant with respect to the G-action.

In the construction of [13], the basic two-point function in scalar field theory is related

to the invariant map (V ⊗ V ) → C, where V is a direct sum of two irreducible represen-

tations of so(4, 2). The irreducible representation (irrep) V+ contains a lowest weight state

corresponding to the basic scalar field via the operator-state correspondence

v+ = Lim
|x|→0

φ(x)|0 > (1)

Translation operators ( Pµ ) act on the lowest weight state to generate a tower of states.

They can be viewed as raising operators since

[D,Pµ] = Pµ (2)

The state PµPµv
+ is set to zero to correspond to the equation of motion of the scalar. The

general state in this representation is

Y l
m(P )v+ (3)

where Y l
m(P ) is a symmetric traceless tensor of so(4) contracted with a product of P ’s. The

integer l gives the degree of the polynomial in P and m labels a state in the symmetric

traceless tensor representation. We will refer to V+ as a positive energy representation, a

terminology inspired by AdS/CFT where the scaling dimension in CFT is energy for global

time translations in AdS [16, 17, 18]. The irrep V− is dual to V+. It contains a dual

state v− of dimension −1 and other states are generated by acting with symmetric traceless

combinations of Kµ

Y l
m(K)v− (4)

There is a non-degenerate invariant pairing η : V+ ⊗ V− → C. We refer to V− as a negative

energy representation, since it contains states with negative dimension.
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The foundation of the TFT2 approach to free CFT4 correlators is to consider the local

quantum field at x as a state in V+ ⊕ V−

Φ(x) =
1√
2

(
e−iP ·xv+ + (x′)2eiK·x

′
v−
)
≡ Φ+ + Φ− (5)

Here x′µ = xµ

x2
. It is found that

η(Φ(x1),Φ(x2)) =
1

(x1 − x2)2
(6)

We can think of e−iP ·x and eiK·x
′

as four dimensional analogs of the two dimensional vertex

operators familiar from string theory and 2D conformal field theory. In 2D CFT physical

states of the string are constructed from exponentials of the coordinate quantum fields Xµ

which have an expansion in oscillators coming from quantizing string motions. In the case

of CFT4/TFT2 at hand, the exponential is in the momentum operators (and the special

conformal translations which are related to the momenta by inversion), which are among

the generators of so(4, 2). Other developments in CFT4 inspired by vertex operators include

[19, 20, 21, 22]. It is intriguing that the 2D CFT vertex operators have the coordinate as

an operator in the exponential, whereas here we are using the momenta as operators in

the exponential. Conceivably there is some form of x − p duality between these different

types of vertex operators. Clarifying this could be useful in understanding the role of Born

reciprocity (a theme revived recently in [23, 24]) in strings and QFT. It is also worth pointing

out other earlier developments on higher dimensional generalizations of 2D vertex operators

[25, 26, 27].

The realization of CFT4 correlators in terms of TFT2 means that we are writing quantum

field theory correlators in terms of standard representation theory constructions. CFT4/TFT2

builds on but goes beyond the standard use of representation theory as a tool to calculate

quantities defined by a path integral. Rather it is a reformulation of correlators of a quan-

tum field theory in terms of standard constructions of representation theory, notably linear

representations and equivariant maps between them. The appearance of both positive and

negative energy representations in (5) is an important part of this reformulation. For exam-

ple, while the free field OPE

φ2 × φ2 → φ4 (7)

could be understood by using an expression for φ in terms of strictly positive energy repre-

sentations, this is not the case for

φ2 × φ2 → φ2 (8)

The latter involves the invariant map η contracting a positive and a negative energy repre-

sentation. This linearizes the CFT4 by relating correlators to linear equivariant maps. The

construction achieves this by passing from the space of operators built on the primary at
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x = 0 to the “doubled space” of operators, built on the primary at x = 0 (positive energy)

and x =∞ (negative energy).

This paper addresses the natural question of whether the free field construction of [13]

is relevant to perturbative quantum field theory. We explain this question in more techni-

cal terms in section 2 and show how it leads to the expectation that conformal integrals

should be related to intertwiners involving representations of so(4, 2). These integrals are

important building blocks in perturbation theory [29] and have been shown recently to have

remarkable properties, called magic identities [30, 31]. Interestingly, equivariance proper-

ties of the kind suggested by CFT4/TFT2 have already been found in work of Frenkel and

Libine[32], who were approaching Feynman integrals from the point of view of quaternionic

analysis. Group-theoretic interpretations of relativistic holography have also been suggested,

through the explicit construction of the boundary-to-bulk operators for arbitrary integer spin

as intertwining operators[33]. The physics literature on higher dimensional conformal blocks

suggests equivariance properties of these integrals, notably the works of [34, 35, 36] which

approach the conformal blocks in terms of Casimir differential equations and subsequent

reformulation in terms of the shadow formalism. As indicated by the discussion of OPEs

above, the QFT discussions of conformal blocks do not immediately imply an interpretation

in terms of linear representations and associated equivariant maps. However, the use of

Casimir differential equations is a powerful tool in arriving at the equivariant map inter-

pretation of QFT quantities. The exponential vertex operators play an important role in

what follows because they allow us to map algebraic generators of the so(4, 2) Lie algebra to

differential operators acting on function spaces. In particular, the Casimirs in the (universal

enveloping) so(4, 2) algebra become Casimir differential operators.

Section 2 reviews some aspects of the work of Frenkel-Libine which we will find useful

in developing the vertex operator approach to these equivariant maps. We also review here

some basic facts about indecomposable representations which will be useful for section 5. In

this paper, our primary focus is on the conformal 4-point integral, whose exact answer is

known [37, 38]. Our first main result is that the coefficient of the log-term in the 4-point

answer is given by the matrix elements of an equivariant map V+⊗V+⊗V−⊗V− → C. Section

3 reviews the harmonic expansion method which is used to arrive at this result. This method

involves the expansion of the propagator in terms of so(4) harmonics. For a given order of

the external points in the conformal integral (|x1| < |x2| < |x3| < |x4|), we separate the

integral into regions according to the range of integration of |x|. One region |x2| < |x| < |x3|
leads to the logarithmic term. The result that the coefficient of the logarithmic term is an

intertwiner is derived in Section 4. This section contains our first main result, equation (66).

Appendix B explains how the above result leads to an identity for an infinite sum of products

of su(2) Clebsch-Gordan coefficients.

In section 5 we will consider the other regions of integration and show they can be

collected into four different terms associated with the quantum equation of motion for each

of the external variables xi. On each of the terms, the action of Laplacians gives so(4, 2)

4



invariant equivariant maps involving a submodule of these indecomposable representations.

For two of the four terms, the equivariant maps employ the standard co-product and we

show how they can be lifted from the sub-module to the full indecomposable representation.

The remaining two terms make use of a twisted co-product. In these cases, we believe the

lift to the full indecomposable representation is possible but there are technical subtleties

which remain to be clarified. These results show that the full integral can be viewed as

an equivariant map obtained by lifting from the sub-module to the full indecomposable

representation. Equation (96) is the second main result of this paper. It links a beautiful

structure in representation theory to quantum equations of motion arising from the collision

of interaction point with external points, the source of many deep aspects of quantum field

theory. The appearance of indecomposable representations is closely related to multiplet

recombination. This phenomenon, in connection with quantum equations of motion and

the Wilson-Fischer fixed point, has also recently been discussed [39]. Recombination of

superconformal multiplets has also been extensively discussed in the context of N = 4 and

N = 2 theories (see for example [40, 41, 42] and refs therein), the breaking of higher spin

symmetry in AdS/CFT being one of the motivations.

In the final section, we outline how our results extend to higher loops and describe other

future directions of research.

2 Background and motivations

2.1 CFT4/TFT2 suggests equivariant interpretation of perturba-

tive Feynman integrals

Once we have a formulation of all the correlators in free CFT4 in terms of TFT2 of equivariant

maps, the natural question is : Can we describe perturbation theory away from free CFT4 in

the language of the TFT2 ? Since perturbation theory involves the integration of correlators

in the free field theory, weighted with appropriate powers of coupling constants, once we

have a TFT2 description of all the free field correlators, we are part of the way there. The

important new ingredient is integration of the interaction vertices whose consistency with

equivariant maps remains to be established. A natural place to start this investigation is

the case of conformal integrals [30, 31] involving scalar fields. It is known that general

perturbative integrals in four dimensions at one-loop can be reduced to a basis of scalar

integrals, involving the box, the triangle and bubble diagrams (see [29] and refs therein).

The momentum space box diagram becomes, after Fourier transformation to coordinate

space, a diagram related by graph duality to the original graph. The integral of interest in

coordinate space is

I(x1, x2, x3, x4) =

∫
d4x

2π2

1

(x1 − x)2(x2 − x)2(x3 − x)2(x4 − x)2
(9)
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This integral (9), viewed as the kernel of an integral operator, acting on appropriate test

functions, has been shown to be related to equivariant maps in [32]. There are two distinct

equivariant interpretations developed there : one involves the Minkowski space integral, and

the other involves integration over a U(2) in complexified space-time. Subsequent higher

loop generalizations have been given [43, 44].

Here we give a qualitative explanation of how the TFT2 way of thinking about per-

turbation theory suggests an equivariant interpretation for integrals. Subsequently we will

investigate the expectations directly.

We can choose all the external vertex operators to be

(x′1)
2eiK·x

′
1v− ⊗ (x′2)

2eiK·x
′
2v− ⊗ (x′3)

2eiK·x
′
3v− ⊗ (x′4)

2eiK·x
′
4v− (10)

Take a tensor product with

e−iP ·xv+ ⊗ e−iP ·xv+ ⊗ e−iP ·xv+ ⊗ e−iP ·xv+ (11)

Take a product of η pairings between the first factor in (10) with the first factor in (11), the

second with second etc. This produces the product of propagators in (9). In another way to

set up the correlator, use as external states

e−iP ·x1v+ ⊗ e−iP ·x2v+ ⊗ x′23 eiK·x
′
3v− ⊗ x′24 eiK·x

′
4v− (12)

To this we tensor

(x′)2e−iK·x
′
v+ ⊗ (x′)2e−iK·x

′
v+ ⊗ e−iP ·xv+ ⊗ e−iP ·xv+ (13)

Again we pair the i’th factor in (12) with the corresponding factor in (13). All the in-

ternal vertex operators have a common space-time position, which is integrated over. The

integrands can be reproduced by the TFT2 method.

The different choices for external vertex operators should correspond to expansions in

positive powers of xi or of x′i = xi
|x2i |

. A method of integration which connects with the above

vertex operator method of thinking about the integral is known as the Harmonic Polynomial

Expansion Method (HPEM), which give formulae that can be simplified using Gegenbauer

polynomials [45]. We will choose an ordering of the external points |x1| < |x2| < |x3| < |x4|
and do the integral in Euclidean space, separating it into five parts depending on the range

of |x|. For each range we will apply the HPEM.

The choice (12) corresponds to the region |x2| < |x| < |x3|, where we will find a log-

arithmic term. There are no logs from any of the other regions. This follows from basic

group theoretic properties of so(4) = su(2) × su(2) tensor products, when these are used

in conjunction with the HPEM. We will describe this in more detail in Section 3. For now

we notice that the natural quantity to look at in search of an equivariant interpretation is

x23x
2
4I(x1, x2, x3, x4). In section 4 we will establish that the coefficient of the log term in
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x23x
2
4I(x1, x2, x3, x4) can indeed be interpreted in terms of an equivariant map. In arriving at

this we will make contact with the results of [32], in particular their discussion of a version

of the integral where the contour of integration is taken to be a copy of U(2) instead of

Minkowski space.

In section 5 we will consider the other regions of integration and show they can be

collected into four different terms associated with the quantum equation of motion for each

of the external variables xi. This separation will be used to give an interpretation in terms

of equivariant maps for the full integral.

2.2 Conformal integral : Exact answer and an expansion

The integral (9) belongs to a class of conformal integrals which have been exactly solved. In

momentum space, the integral is a 1-loop box. The result is [37, 38]

I(x1, x2, x3, x4) =
1

2x213x
2
24

Φ(s, t) (14)

where

Φ(s, t) =
1

λ

(
2(Li2(−ρs) + Li2(−ρt)) + ln(ρs) ln(ρt) + ln

(
t

s

)
ln

(
1 + ρt

1 + ρs

)
+
π2

3

)
(15)

and

ρ =
2

1− s− t+ λ
λ =

√
(1− s− t)2 − 4st

s =
x212x

2
34

x213x
2
24

t =
x214x

2
23

x213x
2
24

(16)

We will need the expansion of Φ about s = 0 and t = 1. Towards this end we introduce

t = 1 + u and take the limit s→ 0 first and then u→ 0. In this limit

λ ∼ u+ s(−1− 2

u
) + s2(− 2

u3
− 2

u2
) ∼ u+ s(−1− 2

u
)

ρ ∼ s2
(

2

u5
+

1

u4

)
+

s

u3
+
u2 − u
s
− u2 + u+

1

u
− 1 ∼ u2 − u

s
(17)

In the limit we consider, since ρ→∞, we need to apply the identity

Li2(z) = −Li2(1/z)− π2

6
− 1

2
log2(−z) (18)

to rewrite Li2(ρt). After this transformation

Φ(s, t) =
1

λ

{
2Li2(−ρs)− 2Li2(−ρ−1t−1)− log

(s
t

)
log

(
(1 + ρ−1t−1)

(1 + ρs)

)}
(19)
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Since we will discuss the coefficient of the log extensively in what follows, we introduce the

notation

Φ(s, u) = F0(s, u) + log(s)F1(s, u)

F0(s, u) =
1

λ

{
2Li2(−ρs)− 2Li2(−ρ−1(1 + u)−1) + log(1 + u) log

(
(1 + ρ−1t−1)

(1 + ρs)

)}
F1(s, u) = −1

λ
log

(
(1 + ρ−1t−1)

(1 + ρs)

)
We are interested in the limit |x2| > |x1| → 0 with |x4| > |x3| → ∞. This means that

x1, x2 → 0, x′3, x
′
4 → 0. In this limit

s =
(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2

=
(x1 − x2)2(x′3 − x′4)2

f(x1, x′3)f(x2, x′4)

t =
(x1 − x4)2(x2 − x3)2

(x1 − x3)2(x2 − x4)2

=
f(x1, x

′
4)f(x2, x

′
3)

f(x1, x′3)f(x2, x′4)

where

f(x, y′) = 1 + 2x · y′ + x2y′2 (20)

These equations show that u and s are real-analytic in the limit, admitting expansions in

x1, x2, x
′
3, x
′
4. While λ, ρ do not have an expansion in positive powers of s, u as s, u →

0, the quantity F1(s, u) does have such an expansion. This leads to an expansion of

F1(s(x1, x2, x
′
3, x
′
4), u(x1, x2, x

′
3, x
′
4)) in powers of x1, x2, x

′
3, x
′
4 will be related to a projector

in section 4.

2.3 Indecomposable representations and multiplet recombination

We will review the notion of indecomposable representations and explain their relevance to

the recombination of multiplets when interactions are turned on.

As a simple example, consider the Lie algebra su(2) with generators J3, J±.

[J3, J±] = ±J±
[J+, J−] = 2J3 (21)

With this normalization of the generators, irreducible representations have J3 eigenvalues in

the range {j, j − 1, · · · ,−j} for j ∈ {0, 1
2
, 1, 3

2
, · · · }. Consider a lowest weight representation

built by starting with a state | − 1
2
〉 satisfying

J3| −
1

2
〉 = −1

2
| − 1

2
〉
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J−| −
1

2
〉 = 0 (22)

Now consider the infinite dimensional representation spanned by Jn+|− 1
2
〉 for n ∈ {0, 1, 2, · · · }.

Denote this representation by Ṽ− 1
2
. The state J2

+|− 1
2
〉 has the property that it is annihilated

by J−

J−J
2
+|
−1

2
〉 = 0 (23)

This has the consequence that the vector subspace of Ṽ− 1
2

spanned by Jn+| − 1/2 > for n ≥ 2

is an invariant subspace of Ṽ− 1
2
. Denote this subspace as V

(2)

− 1
2

. The quotient space Ṽ− 1
2
/V

(2)

− 1
2

is the standard two-dimensional representation of su(2). We have an exact sequence

0→ V
(2)

− 1
2

→ Ṽ− 1
2
→ Ṽ− 1

2
/V

(2)

− 1
2

→ 0 (24)

The quotient space admits a positive definite inner product. If we choose an inner product

where |− 1
2
〉 has unit norm, then J2

+|− 1
2
〉 has zero norm. Setting this null state to zero gives

the quotient space which is a unitary representation of su(2).

In four dimensional free scalar quantum field theory, we encounter the representation V+
containing a lowest weight state v+ of dimension 1. There are additional states of higher

dimension of the form

T µ1µ2···µnI Pµ1 · · ·Pµnv+ (25)

where the TI are symmetric traceless tensors. This is a unitary representation of so(4, 2).

By direct analogy to the above discussion, V+ is obtained as a quotient space of a larger

representation Ṽ+ spanned by

Sµ1···µnI Pµ1 · · ·Pµnv+ (26)

where the SI are symmetric tensors (not necessarily traceless). To get to V+, we quotient

Ṽ+ by the subspace spanned by

Sµ1···µnI Pµ1 · · ·PµnPµPµv+ (27)

Denoting this subspace by V
(p2)
+ we have the exact sequence

0→ V
(p2)
+ → Ṽ+ → V+ = Ṽ+/V

(p2)
+ → 0 (28)

The representation V+ is generated by acting with derivatives on the elementary scalar

field, and using the operator-state correspondence. The representation V
(p2)
+ is isomorphic

to the representation obtained by taking all derivatives of φ3 in free scalar field theory and

applying the operator-state correspondence. When we perturb the free theory with a φ4

interaction, we have the quantum equation of motion

∂µ∂µφ = gφ3 (29)

9



This quantum equation of motion, and its relation to the indecomposable representation

Ṽ+, is reflected in the properties of the integral (9). This will be the subject of Section 5.

Indecomposable representations have appeared in discussions of 2D CFT, see for example

[46, 47, 48]. Our observations draw some elements from this work e.g. in the use we make

of twisted co-products in connection with OPEs, but they are not a direct translation of

the 2D story which relies on the use of the complex coodinates (z, z̄) and the corresponding

chiral-anti-chiral factorization.

3 Harmonic expansion method and the logarithmic term

The harmonic expansion method expands the two point function in terms of products of

spherical harmonics. In this way the action of so(4, 2) on any of the four external coordinates

is manifest. The form of the expansion is dictated by the relative sizes of the integration

variable and the external coordinates. Consequently, this expansion method breaks the

integration region down into a set of 5 regions. The main result of this section is an explicit

answer for each of these regions. This allows us to isolate the logarithmic term to be discussed

further in Section 4. It also gives a neat separation of the integral into terms which are

homogeneous and inhomogeneous terms for each of the Laplacians �i, which will be useful

for the equivariant interpretation of the quantum equations of motion in section 5.

Let |x1| < |x2| < |x3| < |x4|. First consider the region where |x| is less than all the |xi|.

I1 =
∑
l,li,mi

∏4
i=1 Y

li
mi

(x′i)

|x1|2|x2|2|x3|2|x4|2

∫ |x1|
0

drr3rl1+l2+l3+l4
∫
d3x̂

4∏
i=1

Y mi
li

(x̂) (30)

where d3x̂ = 1
2π2dS

3 with dS3 the standard measure on the unit sphere. The last factor is a

group theoretic factor which will appear in all of the five integration regions. We can write

it as

Cm1,m2,m3,m4

l1,l2,l3,l4
=

∑
l5,m5,m6

Cm1,m2;l5
l1,l2;m5

1

(l5 + 1)
Cm3,m4;l5
l3,l4;m6

δ(m1 +m2,m5)δ(m3 +m4,m6)g
m5,m6 (31)

where

Y m1
l1
Y m2
l2

=
∑
l5,m5

Cm1,m2;l5
l1,l2;m5

Y m5
l5

(32)

This is the Clebsch-Gordan coefficient for multiplication of spherical harmonics on S3. Se-

lection rules for C l1,l2;l5
m1,m2;m5

imply that

max(l1, l2)−min(l1, l2) ≤ l5 ≤ l1 + l2 (33)

or, equivalently

|l1 − l2| ≤ l5 ≤ l1 + l2 (34)
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If we multiply two symmetric traceless tensors T1, T2 of ranks l1 and l2, we can get something

symmetric and traceless of rank l1 + l2. If we contract two indices, one from each, we can

reduce the rank by 2. Further such contractions reduce the rank by multiples of 2. And

the maximum number of contractions is min(l1, l2). For the 4-point coupling of spherical

harmonics to be non zero, we need

l4 ∈ {l1 + l2 + l3, l1 + l2 + l3 − 2, l1 + l2 + l3 − 4, · · · } (35)

Alternatively, a convenient way to parametrize the possibilities is given by

l1 + l2 − 2k12 = l3 + l4 − 2k34 (36)

where 0 ≤ k12 ≤ min(l1, l2) and 0 ≤ k34 ≤ min(l3, l4).

After doing the integral

I1 =
∑
li,mi

∏
i Y

li
mi

(x′i)

|x1|2|x2|2|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

|x1|4+l1+l2+l3+l4
4 + l1 + l2 + l3 + l4

(37)

We will write I1 = IS1;1, which indicates that the radial position of the interaction point

coincides with the radial position of |x| as we evaluate this integral. The superscript indicates

that the answer is a power series in the x′µi .

Next consider the region |x1| < |x| < |x2|. The contribution to the integral from this

region is

I2 =
∑
li,mi

Y l1
m1

(x1)
∏

i=2 Y
li
mi

(x′i)

|x2|2|x3|2|x4|2

∫ |x2|
|x1|

dr r3 r−2
∫
d3x̂Y m1

l1
(x′)Y m2

l2
(x)Y m3

l3
(x)Y m4

l4
(x)

=
∑
li,mi

Y l1
m1

(x1)
∏

i=2 Y
li
mi

(x′i)

|x2|2|x3|2|x4|2

∫ |x2|
|x1|

dr r3 r−2r−l1+l2+l3+l4Cm1,m2,m3,m4

l1,l2,l3,l4

=
∑
li,mi

Y l1
m1

(x1)
Y l2
m2

(x′2)

|x2|2
Y l3
m3

(x′3)

|x3|2
Y l4
m4

(x′4)

|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

(−l1 + l2 + l3 + l4 + 2)

(
r−l1+l2+l3+l4+2
2 − r−l1+l2+l3+l4+2

1

)
(38)

We used x̂ = x̂′, Y l
m(x′) = r−lY l

m(x̂) and Y l
m(x) = rlY l

m(x̂). Note that −l1 + l2 + l3 + l4 ≥ 0

follows from the selection rules for su(2) tensor products. Define IS2;1, I
S
2;2

IS2;1 =
∑
li,mi

Y l1
m1

(x1)
Y l2
m2

(x′2)

|x2|2
Y l3
m3

(x′3)

|x3|2
Y l4
m4

(x′4)

|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

(−l1 + l2 + l3 + l4 + 2)

(
−r−l1+l2+l3+l4+2

1

)
IS2;2 =

∑
li,mi

Y l1
m1

(x1)
Y l2
m2

(x′2)

|x2|2
Y l3
m3

(x′3)

|x3|2
Y l4
m4

(x′4)

|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

(−l1 + l2 + l3 + l4 + 2)

(
r−l1+l2+l3+l4+2
2

)
(39)

IS2;1 is obtained from the limit where the radial position of the integrated interaction point

coincides with the radial position of the external leg x1, i.e. where |x| = |x1|. The superscript

11



indicates that this is a power series in the xµ1 , x
′µ
2 , x

′µ
3 , x

′µ
4 variables. IS2;2 is analogously defined

in terms of |x| = |x2|. We have

I2 = IS2;1 + IR2;1 (40)

Now consider the third region where |x| is in the middle

I3 =
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

∫ |x3|
|x2|

dr r3−4+l3+l4−l1−l2

=
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4
log

(
|x3|
|x2|

)
δ(l1 + l2, l3 + l4)

+
∑

li,mi;l 6=0

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2

(
|x3|l − |x2|l

l

)
δ(l,−l1 − l2 + l3 + l4)

(41)

It is convenient to define

IL3;2 = −
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4
log (|x2|) δ(l1 + l2, l3 + l4)

IS3;2 =
∑

li,mi;l 6=0

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

(
−|x2|l

l

)
δ(l,−l1 − l2 + l3 + l4)

IL3;3 =
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4
log (|x3|) δ(l1 + l2, l3 + l4)

IS3;3 =
∑

li,mi;l 6=0

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

(
|x3|l

l

)
δ(l,−l1 − l2 + l3 + l4)

(42)

IL3;2 is the logarithmic term coming from the |x| = |x2| end of the integral, where the radial

position of the interaction point coincides with the radius of the external point x2. IS3;2 is

the series term from the same limit. IL3;3, I
S
3;3 have been defined analogously. Again,

I3 = IL3;2 + IS3;2 + IL3;3 + IS3;3 (43)

The integer l appearing in (41) can be positive or negative. If we assume x1, x2 are small

and x3, x4 large - we can specialize the known answers to the integral. In that case, we know

that

|x2| = max(r1, r2) =
1

2
(r1 + r2 + |r1 − r2|)

|x3| = min(r3, r4) =
1

2
(r3 + r4 − |r3 − r4|) (44)

It is also useful to express the result in terms of r′3 = 1/r3, which gives

log (r2/r3) = log ((r1 + r2 + |r1 − r2|)(r′3 + r′4 + |r′3 − r′4|)) (45)
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Note that in the limit of r1, r2 ∼ ε → 0, r′3, r
′
4 ∼ ε → 0, this goes like log(ε2) just like log s.

In Section 4 we will give the precise relation between the coefficient of log s in the exact

answer (what we call F1(s, t)) and the coefficient of log (r2/r3) computed above.

In the fourth region |x| is between |x3| and |x4|.

I4 =
∑
li,mi

Y l4
m4

(x′4)
∏3

i=1 Y
li
mi

(xi)

|x4|2
C l1,l2,l3,l4
m1,m2,m3,m4

∫ |x4|
|x3|

dr r3−6r−l1−l2−l3+l4

=
∑

li,mi;l≤0

Y l4
m4

(x′4)
∏3

i=1 Y
li
mi

(xi)

|x4|2

(
|x4|l−2 − |x3|l−2

l − 2

)
δ(l,−l1 − l2 − l3 + l4) (46)

Note that there are no log terms here since l is never equal to 2. It is useful to define

I4;3 =
∑

li,mi;l≤0

Y l4
m4

(x′4)
∏3

i=1 Y
li
mi

(xi)

|x4|2

(
−|x3|l−2

l − 2

)
δ(l,−l1 − l2 − l3 + l4)

I4;4 =
∑

li,mi;l≤0

Y l4
m4

(x′4)
∏3

i=1 Y
li
mi

(xi)

|x4|2

(
|x4|l−2

l − 2

)
(47)

I4;3 is obtained from the lower limit where |x| = |x3|, with the radial position of the inter-

action point coinciding with the radial position of x3. I4;4 is obtained from the upper limit

|x| = |x4| and

I4 = I4;3 + I4;4 (48)

The fifth region is given by |x| > |xi|.

I5 =
∑
li,mi

Cm1,m2,m3,m4

l1,l2,l3,l4

∏
i

Y li
mi

(xi)

∫ ∞
|x4|

drr3−8r−l1−l2−l3−l4

=
∑
li,mi;l

Cm1,m2,m3,m4

l1,l2,l3,l4

∏
i

Y li
mi

(xi)

(
|x4|−4−l

4 + l

)
δ(l, l1 + l2 + l3 + l4) (49)

In this case there is no log term as the li are all integers greater than or equal to zero. We

write I5 = IS5;4 to indicate that this is a power series expansion and arises from the integral

at the limit |x| = |x4|.
The integral I = I1 + I2 + I3 + I4 + I + 5 is a contribution to the four point function

of free scalar fields, at points x1, x2, x3, x4. Each field has dimension ∆ = 1 and spin zero.

Consequently, acting with the quadratic Casimir on any field must give

C2 = ∆(∆− 4) + l(l + 2) = −3 (50)

In Appendix A we explain how to translate C2 into a differential operator. Using the resulting

differential operator (C2)i in any of the coordinates xi, we verify that

(C2)iI
(j) = −3I(j) i, j ∈ {1, 2, 3, 4} (51)

13



4 Coefficient of the log term and the projector

We are computing I(x1, x2, x3, x4) with specified ordering |x1| < |x2| < |x3| < |x4|. Applying

the HPEM, there is a logarithmic term coming from the range |x2| ≤ x ≤ |x3|. In this

section we want to argue that the coefficient of the logarithmic term has a representation

theory interpretation as an invariant map built from a projection operator P++;++ that we

define below. The projection operator P++;++ featured prominently in the work of Frenkel

and Libine[32].

The logarithmic term coming from the HPEM was computed in the last section. The

result is

log(
r3
r2

)
∑
li,mi

(
Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

)
δ(l1 + l2, l3 + l4) (52)

The exact result for I was given in (14) in terms of

Φ(s, t) = F0(s, t) + log(s)F1(s, t) (53)

Consider the Casimir

C2 = −1

2
ηACηBD(L(1)

AB + L(2)
AB)(L(1)

CD + L(2)
CD) (54)

of so(4, 2) acting on the coordinates x1, x2. For any function H(s, t) of the conformal cross

ratios the quadratic Casimir C2 of so(4, 2) becomes the differential operator[49]

C2H = 2(1 + s− t)st ∂
2H

∂s∂t
−
(
1− s+ t

)
s
∂

∂s

(
s
∂H

∂s

)
−
(

(1− t)2 − s(1 + t)
) ∂
∂t

(
t
∂H

∂t

)
+ 4s

∂H

∂s
(55)

Using the above differential operator, we find

C2 sΦ = −4 sΦ C2 sF1 = −4 sF1 (56)

Thus the Casimir equation obeyed by the full integral is also obeyed by the coefficient of the

log term. From (14) we see that the coefficient of log(s) in the known exact answer for the

integral is

1

2x213x
2
24

F1(s, t) (57)

The log(s) appearing in (14) is the only possible source of log r3
r2

dependence, which implies

that

2
∑
li,mi

(
Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

|x3|2|x4|2
Cm1,m2,m3,m4

l1,l2,l3,l4

)
δ(l1 + l2, l3 + l4) =

1

x213x
2
24

F1(s, t) (58)

14



The representation V+ has lowest weight state of dimension 1, written as V+. In the

notation of Dolan [50] it is D[1,0,0]. The tensor product V+ ⊗ V+ can be decomposed into a

direct sum of irreducible representations [50, 51]

V+ ⊗ V+ = A[200] +
∞⊕
k=1

D[k+2, k
2
, k
2
] (59)

Given such a decomposition of a tensor product into a direct sum, there are projectors for

each of the terms. These projectors commute with the so(4, 2) actions and hence describe

equivariant maps. The representation A[2,0,0] will henceforth be called V++ and corresponds

to the CFT primary operator φ2 and its descendants. There are Clebsch-Gordan maps

M : V+ ⊗ V+ → V++

M† : V++ → V+ ⊗ V+ (60)

which are equivariant maps between the tensor product and the irrep. There is a projector

P++;++ defined by

P++;++ : V+ ⊗ V+ → V+ ⊗ V+
P++;++ =M◦M† (61)

There is a closely related projector P++−−

P++−− : V+ ⊗ V+ ⊗ V− ⊗ V− → C (62)

This is obtained by tensoring both sides of (61) with V− ⊗ V−,

P̃ : V+ ⊗ V+ ⊗ V− ⊗ V− → V+ ⊗ V+ ⊗ V− ⊗ V−
P̃ = P ◦ 1V−⊗V− (63)

The RHS of the first line of (63) can be equivariantly mapped to C by using the invariant

pairing between the first V+ and first V− and the invariant pairing between second V+ and

second V−. Composing P̃ with these invariant pairings gives P++;−−. We can evaluate this

projector on position eigenstates

P++−−(e−iP ·x1v+ ⊗ e−iP ·x2v+ ⊗ eiK·x′3v− ⊗ eiK·x′4v−) ≡ P(x1, x2, x
′
3, x
′
4) (64)

We can also evaluate it on spherical harmonics

P++−−(Y l1
m1

(P )v+ ⊗ Y l2
m2

(P )v+ ⊗ Y l3
m3

(K)v− ⊗ Y l4
m4

(K)v−) ≡ P l1,l2,l3,l4m1,m2,m3,m4
(65)

Our claim is that the power series expansion of 1
2x213x

2
24
F1 at small x1, x2, x

′
3, x
′
4 coincides

with that of P(x1, x2, x
′
3, x
′
4)

1

2x213x
2
24

F1(u(x1, x2, x
′
3, x
′
4), s(x1, x2, x

′
3, x
′
4)) = x′23 x

′2
4 P(x1, x2, x

′
3, x
′
4) (66)
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Figure 1: The construction of P++−−, follows by composing P and two invariant pairings

(η).

This is the main result of this section. This power series expansion can be conveniently

organised in terms of the coefficients P l1,l2,l3,l4m1,m2,m3,m4
.

Consider the coefficient of the product of harmonics in the log term (52). The spherical

harmonics Y l
m(x) are a basis for harmonic functions regular at x = 0 and carry a represen-

tation of so(4, 2). Denote the corresponding function space H+. Similarly, (x′)2Y l
m(x′) are

a basis for harmonic functions regular at x′ = 0, i.e. x = ∞. They also carry a represen-

tation of so(4, 2). Denote the corresponding function space H−. Picking up the coefficient

of the harmonics is mapping H+ ⊗H+ ⊗H− ⊗H− → C. This coefficient is just the tensor

Cm1,m2,m3,m4

l1,l2,l3,l4
defined in equations (31) and (32) in terms of the structure constants for mul-

tiplication of spherical harmonics. The 3-point structure constants involve the integration∫
d3x̂ Y l1

m1
(x̂)Y l2

m2
(x̂)Y l5

m5
(x̂) (67)

Thus picking up the coefficient of Y l1
m1

(x1)Y
l2
m2

(x2) involves mapping

Y l1
m1

(x1)⊗ Y l2
m2

(x2)→ rl1+l2Y l1
m1

(x̂)Y l2
m2

(x̂)
Y l3
m3

(x′3)

|x3|2
⊗
Y l4
m4

(x′4)

|x4|2
→

Y l3
m3

(x′)

|x|2
⊗
Y l4
m4

(x′)

|x|2
(68)

These are applications of the equivariant mapsM : H+⊗H+ → H++ andM : H−⊗H− →
H−− as explained in section 5.2 of [32]. From a physical perspective, this corresponds to the

fact that the free scalar field φ(x) has modes transforming in H+ (and H−) while the field

φ2(x) has modes transforming in H++ ( and H−−). After these maps are applied, the HPEM
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sets l1+l2 = l+3+l4 when we do the radial integral and pick up the log term. There remains

an integral over S3 which gives the factor (l5 + 1)−1. This corresponds, in the discussion

of [32] (proposition 84) (see also equation (12) of [43]), to an integral over U(2). Thus we

have a direct link between the integration over a modified contour in complexified space-time

(where we are integrating over U(2) instead of MInkowski space) and the coefficient of the

log term. This is likely to be an example of a general story that should hold for more general

Feynman integrals.

We can use the vertex operators of TFT2 to further clarify the discussion. The natural

language for the above discussion is in terms of a map H+⊗H+⊗H−⊗H− → C. Using the

vertex operators we will see that it is equally natural to employ a map V+⊗V+⊗V−⊗V− → C.

Start with (64) and expand the exponentials in Y l
m(P )Y m

l (x) or Y l
m(K)Y m

l (x′).∑
li,mi

(−i)l1
2l1l1!

Y l1
m1

(x1)
(−i)l2
2l2l2!

Y l2
m2

(x2)
(i)l3

2l3l3!
Y l3
m3

(x′3)
(i)l4

2l4l4!
Y l4
m4

(x′4)

P++−−
(
Y m1
l1

(P )v+ ⊗ Y m2
l2

(P )v+ ⊗ Y m3
l3

(K)v− ⊗ Y m4
l4

(K)v−
)

=
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

P++−−

(
Y m1
l1

(P )

2l1l1!
v+ ⊗

Y m2
l2

(P )

2l2l2!
v+ ⊗

Y m3
l3

(K)

2l3l3!
v− ⊗

Y m4
l4

(K)

2l4l4!
v−
)

(69)

The vertex operators of TFT2 provide equivariant maps between the algebraic state spaces

and the polynomial state spaces which makes it possible to express the projector in terms of

these state spaces. Indeed, the above argument makes it clear that
∏
Y li
mi

(xi) multiplies a

projector acting on states in V+ ⊗ V+ ⊗ V− ⊗ V−. This shows that the claim that the series

expansion multiplying the log is the evaluation of an so(4, 2) invariant projection on states

created from the v± by vertex operators, is equivalent to saying that the coefficient of the

product of spherical harmonics has to be an equivariant map.

4.1 Analytic consequences

We have seen that the coefficient of the log term in the HPEM has an expansion in powers

of x1, x2, x
′
3, x
′
4. We will now see how the same expansion arises from the exact answer.

We want to consider the limit s → 0, t → 1, for the conformal cross ratios. It proves to

be useful to set t = 1 + u and then consider u→ 0. The coefficient of log s is

F1 =
1

λ
log

(
(1 + ρs)

(1 + ρ−1t−1)

)
(70)

We can expand this to low powers of s, u using Mathematica, and analysing the results, we

arrive at

F1(s, u) =
∞∑
k=0

sk

u2k+1
[Qk(u) log(1 + u)]+ (71)
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Here Qk(u) is a polynomial in u and [Qk(u) log(1 +u)]+ is the truncation of the power series

in u to powers un with n ≥ 2k + 1. Qk(u) is order k

Qk(u) =
k∑
l=0

bl(k)ul (72)

where

bl(k) =

(
k

k − l

)(
2k + l

k − l

)
(73)

Note that the existence of such an expansion is non-trivial. The individual factors such

as ρ, λ, when expanded in positive powers of s contain, at each order, a finite number of

negative powers of u. Nevertheless, the combination of terms appearing in F1 is analytic in

u, s at u, s ∼ 0. Appendix B explains how we arrived at the above formula, with the help of

Mathematica. The Appendix also explains how the discussion implies a summation formula

for products of su(2) Clebsch-Gordan coefficients in terms of F1.

5 Quantum Equation of motion, Indecomposable Rep-

resentations and Equivariant maps

Using the harmonic expansion method, we have found

I = I1 + I2 + I3 + I4 + I5
I = (IS1;1 + IS2;1) + (IS2;2 + IS3;2 + IL3;2) + (IL3;3 + IS3;3 + IS4;3) + (IS4;5 + IS5;5) (74)

Rearrange these contributions by defining

I(1) = (IS1;1 + IS2;1)

I(2) = (IS2;2 + IS3;2 + IL3;2)

I(3) = (IL3;3 + IS3;3 + IS4;3)

I(4) = (IS4;5 + IS5;5) (75)

This reorganization is such that I(i) arises from integration limits where the radial position of

the interaction point coincides with the i’th external coordinate. In terms of the quantities

just introduced, we have

I = I(1) + I(2) + I(3) + I(4) (76)

Due to radial ordering, the order of the fields within the correlator swaps when moving from

one term to the next. As a consequence of these discontinuities we expect that

�jI
(i) = −2δij

∏
k 6=j

1

(xk − xi)2
(77)
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We will demonstrate, using the explicit formulae from the HPEM, that this is indeed the

case. The I(i) are also used to develop equivariant map interpretations for the full integral

I. Each I(i) is the starting point for one equivariant map interpretation. We exhibit the

complete story for I(1), while the discussion for I(4) is related by inversion. We outline the

story for I(2) (and by inversion for I(3)). It has an additional intricacy involving the use of

a twisted co-product. This raises some technical problems which we leave for the future.

5.1 Quantum equations of motion

Consider the term I(1), which is given by

I(1) =
∑
li,mi

Y l1
m1

(x1)
Y l2
m2

(x′2)

r22

Y l3
m3

(x′3)

r23

Y l4
m4

(x′4)

r24
Cm1m2m3m4
l1l2l3l4

(−2)(l1 + 1)r2+l2+l3+l4−l11

(l1 + l2 + l3 + l4 + 4)(−l1 + l2 + l3 + l4 + 2)

(78)

We have written the above formula in terms of a product of harmonic functions in x1, x
′
2, x
′
3, x
′
4

so that it has a smooth x1 → 0 limit as well as a smooth x2, x3, x4 →∞ limit. To apply the

Laplacian, to the above result the formulas

∂2

∂xµ1∂x
µ
1

(r21)
A = 4A(A+ 1)(r21)

A−1

∂

∂xµ1
(r21)

A = 2A(r21)
A−1xµ1

∂

∂xµ1
Y l1
m1

(x1)
∂

∂xµ1
(r21)

A = 2Al1(r
2
1)
A−1Y l1

m1
(x1) (79)

are useful. It is now simple to obtain

∂2

∂xµ1∂x
µ
1

I(1) =
∑
li,mi

−2(l1 + 1)(r1)
l2+l3+l4−l1+2

r22r
2
3r

2
4

Y l1
m1

(x1)Y
l2
m2

(x′2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)C
m1m2m3m4
l1l2l3l4

(80)

To recognize the right hand side, note that

1

|x1 − x2|2|x1 − x3|2|x1 − x4|2
=

1

r22r
2
3r

2
4

∑
li,mi

Y l2
m2

(x1)Y
l3
m3

(x1)Y
l4
m4

(x1)Y
l2
m2

(x′2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)

=
(l1 + 1)rl2+l3+l41

r22r
2
3r

2
4

∑
li,mi

Cm1m2m3m4
l1l2l3l4

Y l1
m1

(x)Y l2
m2

(x′2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)(81)

The (l1 +1) in the numerator arises because of the normalization of the spherical harmonics.

Clearly then, we have demonstrated (77).

The harmonic expansion method expands the propagators in spherical harmonics which

solve Laplace’s equation. How then did we get a non-zero answer? The point is that when

19



|x| < |x1| we are expanding in positive powers of x′1, and when |x| > |x1|, we are expanding

in positive powers of x1. In each case although the x1 dependent functions are harmonics,

the integration produces an additional dependence on x1 from the integration limits. In

the operator formalism where we compute a radially ordered correlator the ordering of the

interaction vertex changes relative to the external point x1 when we move from the region

|x| < |x1| to the region |x| > |x1|. So, as expected the violation of the free equation has to

do with collision of the integration point with an external coordinate.

The contribution I(1) did not include a log dependence. We will consider one more

example, I(2), chosen because this term does include a log dependence

I(2) =
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)C
m1m2m3m4
l1l2l3l4

1

l2 + l3 + l4 − l1 + 2

δ(l1 + l2, l3 + l4)

r23r
2
4

+
∑
li,mi

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)C
m1m2m3m4
l1l2l3l4

1

r23r
2
4

×
[
− r−l1−l2+l3+l42 2(l2 + 1)

(l2 + l3 + l4 − l1 + 2)(l3 + l4 − l1 − l2)
(1− δ(l1 + l2, l3 + l4))− δ(l1 + l2, l3 + l4)log(r2)

]
We will again make use of the formulas above in (79) as well as

∂

∂xµ2
Y l2
m2

(x2)
∂

∂xµ2
(r22)

A = 2Al2(r
2
2)
A−1Y l2

m2
(x2)

∂

∂xµ2
logr2 =

xµ2
r22

∂

∂xµ2

∂

∂xµ2
logr2 =

2

r22
(82)

We find

∂2

∂xµ2∂x
µ
2

I(2) = −2
∑
li,mi

(l2 + 1)
r−l1−l2+l3+l4−22

r23r
2
4

Y l1
m1

(x1)Y
l2
m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)C
m1m2m3m4
l1l2l3l4

(83)

The right hand side can again be identified with

− 2

|x1 − x2|2|x2 − x3|2|x2 − x4|2
(84)

The log contributes the term with l1 + l2 = l3 + l4 in (83).

The discussion for the terms I(3) and I(4) is now straight forward.

5.2 QEOM, equivariant maps and their lifts

As we discussed there is an equivariant map between V
(p2)
+ and the irrep generated by the

field φ3, i.e. the irrep V+++ obtained by acting with (P · · ·P ) on v+ ⊗ v+ ⊗ v+. Given the

TFT2 construction of free field correlators [13], we know that there is an so(4, 2) equivariant

map

F1 : V+++ ⊗ V− ⊗ V− ⊗ V− → C (85)
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such that

F1(e
−iP ·x1v+++ ⊗ eiK·x

′
2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−) =

x22x
2
3x

2
4

(x1 − x2)2(x1 − x3)2(x1 − x4)2
(86)

For completeness,we give a derivation in Appendix C. Given the isomorphism between V
(p2)
+

and V+++, we have a map

F1 : V
(p2)
+ ⊗ V− ⊗ V− ⊗ V− → C (87)

It is given similarly by

F1(e
−iP ·x1PµPµv

+ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−) =
x22x

2
3x

2
4

(x1 − x2)2(x1 − x3)2(x1 − x4)2
= f(x1, x

′
2)f(x1, x

′
3)f(x1, x

′
4)

(88)

The function f(x1, x
′
2) is the series in positive powers of x1, x

′
2 which sums to

1

(1− 2x1 · x′2 + x21x
′2
2 )

(89)

A consistency check of this interpretation is that the Casimirs for each of the four

so(4, 2)’s, one for each coordinate xi, gives the value (−3) appropriate for V±, Ṽ± (51).

This map F1 can be lifted from the subspace V
(p2)
+ to the larger space Ṽ+

F̃1 : Ṽ+ ⊗ V− ⊗ V− ⊗ V− → C (90)

Using the relation between algebraic generators Pµ and derivatives in the presence of the

vertex operators, this implies

∂2

∂xµ1∂x
µ
1

F̃1(e
−iP ·x1v+ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−) = f(x1, x

′
2)f(x1, x

′
3)f(x1, x

′
4) (91)

F̃1 is determined by F1 up to terms harmonic in x1. We know that x22x
2
3x

2
4I

(1)(x1, x2, x3, x4)

solves this differential equation, so we can identify

x22x
2
3x

2
4 I(1)(x1, x2, x3, x4)→ F̃1(e

−iP ·x1v+ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−) (92)

While x23x
2
4I

(1) is an so(4)-equivariant map, it is not so(4, 2) equivariant, even though the

Laplacian in x1 acting on it gives the so(4, 2) equivariant map F1. The equivariance condition

under the action of the momentum operator

F̃1(Pµe
−iP ·x1v+ ⊗ eiK·x2v− ⊗ eiK·x3v− ⊗ eiK·x4v−)

+F̃1(e
−iP ·x1v+ ⊗ PµeiK·x2v− ⊗ eiK·x3v− ⊗ eiK·x4v−)

+F̃1(e
−iP ·x1v+ ⊗ eiK·x2v− ⊗ PµeiK·x3v− ⊗ eiK·x4v−)
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+F̃1(e
−iP ·x1v+ ⊗ eiK·x2v− ⊗ eiK·x3v− ⊗ PµeiK·x4v−) = 0 (93)

implies that (
∂

∂xµ1
+ x22

∂

∂xµ2

1

x22
+ x23

∂

∂xµ3

1

x23
+ x24

∂

∂xµ4

1

x24

)
F̃1 = 0 (94)

This condition is not satisfied if we identify F̃1 → x22x
2
3x

2
4I

(1). We can add homogeneous

terms, annihilated by �1 to get x22x
2
3x

2
4(I

(1) + I(2) + I(3) + I(4)) = x22x
2
3x

2
4I. Now equivariance

under Pµ action of F̃1 follows from the standard translation invariance of the integral I(
∂

∂xµ1
+

∂

∂xµ2
+

∂

∂xµ3
+

∂

∂xµ4

)
I = 0 (95)

Similar remarks hold for invariance under the special conformal transformations Kµ and the

dilatation operator D. Hence the quantum equation of motion along with the requirement

of so(4, 2) equivariance condition identifies the lift F̃1 as

F̃1(e
−iP ·x1v+ ⊗ eiK·x2v− ⊗ eiK·x3v− ⊗ eiK·x4v−) = x22x

2
3x

2
4I(x1, x2, x3, x4) =

x22x
2
3x

2
4

x213x
2
24

Φ(s, t)

(96)

By inversion, a similar discussion holds for I(4) and the QEOM for x4.

F4 : V+ ⊗ V+ ⊗ V+ ⊗ Ṽ− → C (97)

with

F4(e
−iP ·x1v+ ⊗ e−iP ·x2v+ ⊗ e−iP ·x3v+ ⊗ eiK·x′4KµKµv

−) =
x′21 x

′2
2 x
′2
3

(x′1 − x′3)2(x′2 − x′3)2(x′3 − x′4)2
(98)

The x21x
2
2x

2
3I

(4) integral is an so(4) invariant lift of F4.

F4(e
−iP ·x1v+ ⊗ e−iP ·x2v+ ⊗ e−iP ·x3v+ ⊗ eiK·x′4v−)→ x′21 x

′2
2 x
′2
3 I(4)(x1, x2, x3, x4) (99)

The so(4, 2) equivariant lift is again given by adding homogeneous terms

F4(e
−iP ·x1v+ ⊗ e−iP ·x2v+ ⊗ e−iP ·x3v+ ⊗ eiK·x′4v−) = x′21 x

′2
2 x
′2
3 I(x1, x2, x3, x4) (100)

5.3 QEOM and twisted equivariant map

In the above discussion the solution I(1) to the QEOM is not logarithmic. Logarithmic

contributions are added to ensure so(4, 2) equivariance of the lift from V
(p2)
+ to Ṽ+. It is

interesting to see how things are modified when we consider the case of I(2), which is a
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logarithmic solution to the quantum equation of motion. It is instructive to consider the free

field correlator

〈φ(x1)φ
3(x2)φ(x3)φ(x4)〉 (101)

In the range |x1| < |x2| < |x3| < |x4| relevant to I(2), this free-field correlator, with the cor-

rect series expansion, is constructed by taking φ−(x′2)⊗ φ+(x2)⊗ φ+(x2) at x2 and applying

invariant pairings with φ+(x1) and φ−(x′3)⊗φ−(x′4). In the free field CFT4/TFT2 construc-

tion we used φ = φ+ +φ− and the composite field φ⊗3 involved sums including φ+⊗φ+⊗φ+

and φ−⊗φ+⊗φ+. For such sums to be so(4, 2) covariant we must use a twisted co-product.

There is a family of automorphisms of so(4, 2) parametrized by a number λ

αλ(Pµ) =
Kµ

λ
αλ(Kµ) = λPµ

αλ(Mµν) = Mµν αλ(D) = −D (102)

A homomorphism between so(4, 2) and so(4, 2)⊗4 is given by the twisted co-product

∆λ(La) = αλ(La)⊗ 1⊗ 1⊗ 1 + 1⊗ La ⊗ 1⊗ 1 + 1⊗ 1⊗ La ⊗ 1 + 1⊗ 1⊗ 1⊗ La (103)

We can write a new version of (88)

F2(e
iP ·x1v+ ⊗ e−iP ·x2(PµPµv+)⊗ eiK·x′3v− ⊗ eiK·x′4v−) =

x22x
2
3x

2
4

(x1 − x2)2(x2 − x3)2(x2 − x4)2
(104)

where the so(4, 2) acts on the tensor product via the above twisted homomorphism, with

the choice λ = x22. We will express this as

F2 : V ′+ ⊕ V
(p2)
+ ⊗ V− ⊗ V− → C (105)

The first factor is written as V ′+ because the twist αλ is being applied. In the appendix

C.2, we show that (104) indeed follows from the equivariance with respect to the twisted

co-product. As in the discussion of the x1 QEOM above, consider lifts of this map to

F̃2 : V ′+ ⊕ Ṽ+ ⊗ V− ⊗ V− → C (106)

In this case converting P · P into a differential operator is quite subtle. This is because

there is x2 dependence in the vertex operator being inserted at the second slot, but also

x2 dependence in the twist which determines the map F̃2. We will leave the problem of

resolving this subtlety as an imporant techincal exercise for the future.

A similar discussion applies to I(3). There is an so(4, 2) equivariant map

F3 : V+ ⊗ V+ ⊗ Ṽ (p2)
− ⊗ V ′− → C (107)

which gives the RHS of the quantum equation of motion for x3. In this case we use a

coproduct twisted on the last factor by the automorphism αx′23 .

F3(e
−iP ·x1v+ ⊗ e−iP ·x2v+ ⊗KµKµe

iK·x′3v− ⊗ e−iK·x′4v−) =
x′21 x

′2
2 x
′2
3

(x′1 − x′3)2(x′2 − x′3)2(x′3 − x′4)2
(108)
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6 Conclusions and Future Directions

Much of our discussion of the four-point integral in four dimensions should generalize to

the case of the three-point integral in six dimensions and the six-point integral in three

dimensions, when we use the appropriate coordinate space propagators.

6.1 Towards higher loops

We have focused attention on the case of the 1-loop conformal integral. We outline how

some key aspects of the discussion generalizes to 2-loops. The 2-loop integral is

I2 =

∫
d4x5d

4x6
x−256

x215x
2
25x

2
45x

2
26x

2
46x

2
36

(109)

where x2ij = (xi − xj)
2. The exact answer is known. It has a term (log(s))2F2(s, t). The

term F2(s, t) can be recovered from the HPEM of integration. Consider the order |x1| <
|x2| < |x3| < |x4|. This term arises from the integration range |x2| < |x5| < |x6| < |x3|.
The expansion of the function F2(s, t) has an interpretation in terms of so(4, 2) equivariant

maps indicated by the diagram in Figure 2. It is an equivariant map acting on e−iP ·x1v+ ⊗

Figure 2: 2-loop conformal integral

e−iP ·x2v+⊗ e−iP ·x2v+⊗ eiK·x′3v−⊗ eiK·x′3v−⊗ eiK·x′4v−. The map is constructed by composing

two projectors, one for each integration variable. There is an invariant map pairing two

of their indices, corresponding to the internal line. The projectors are the same ones we

encountered in the 1-loop discussion V+ ⊗ V+ → V++ → V+ ⊗ V+. It is also possible to

modify the diagram, by attaching two external legs to each of x2, x4 respectively (see Figure

3). In that case, the x2, x4 become integrated internal vertices. The resulting integral has
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a fourth power of log which can be recovered from the HPEM method. The coefficient of

this logarithmic term is interpreted in terms of a composition of four of the projectors, one

for each internal vertex, and is closely related to the coefficient of the log-squared in I2. We

Figure 3: Closely-related-integral

leave a more careful exposition of the 2-loop and higher loop cases to a forthcoming paper,

but the above statements should be fairly plausible to the attentive reader based on the

discussion in this paper so far.

6.2 TFT2 and renormalization

The original motivation for this work was to extend free CFT4/TFT2 to interacting theo-

ries. The discussion in this paper, developing the relation between Feynman integrals and

equivariant maps, gives some useful clues in this direction for the case of perturbative in-

teracting CFTs. Concrete cases to consider are N = 4 SYM and the Wilson-Fischer fixed

point. The connection between quantum equations of motion and indecomposable repre-

sentations we have described should play a role. In the free CFT4/TFT2, we worked with

a state space
⊕

Symn(V+ ⊕ V−), where V+ is the irreducible representation obtained from

Ṽ+ by quotienting out the V
(p2)
+ . For the interacting CFT4, the state space should involve

tensor products involving Ṽ+ and Ṽ−. There will be a coupling dependent quotient given by

the quantum equations of motion. Once the correlators are computed at a given order in

the perturbation expansion, we know that there is a renormalized formulation where these

correlators are reproduced from local operators having dimensions shifted away from their

values in the free limit. A TFT2 formulation of perturbative CFT will presumably incorpo-

rate this renormalization in a sequence of TFT2s, one for each order of perturbation theory,

such that the correlators computed at any stage of the sequence agree with each other. This

will embed the renormalization for CFT4s in a TFT2 set-up: the benefit would be to keep,

as much as possible, the conformal equivariance properties manifest in the process.
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6.3 Conformal blocks and CFT4/TFT2

The existence of a TFT2 approach to CFT4 is made plausible by several known facts about

CFT4. CFT4 (and in fact more generally CFT in any dimension) has a distinctively alge-

braic flavour. By the operator-state correspondence, local operators correspond to definite

representations of so(4, 2). The spectrum of dimensions in the CFT4 along with the structure

constants of the OPE determine the conformal field theory. The description of conformal

blocks, which exploits Casimirs in a central way, has a distinct similarity to projectors in

representation theory (see for example [34, 35, 36] and more recently in a superconformal

setting [52]). While these facts strongly suggest the existence of a TFT2 formulation, the

latter is not a trivial consequence. For example, to understand, from a purely representation

theoretic point of view (as required in a TFT2 which by definition is about equivariant maps),

the fact that the OPE of φ2 with φ2 in the free theory contains φ2 [13] exploits, in an impor-

tant way, the representation in TFT2 of the quantum field as a linear combination involving

both V+ and V−. The ordinary tensor product of V++⊗V++ does not contain V++. An inter-

esting project in the CFT4/TFT2 programme is to understand in terms of equivariant maps,

examples in perturbative CFT4 of 4-point functions where factorization involves analogous

OPEs, with both the positive dimension representations and their negative dimension duals

playing a role.

In special cases of OPEs of the type φ2 ⊗ φ2 → φ4, where the total number of fields

in the intermediate operator is the same as in the external operators, which have a direct

analog in the tensor products of positive representations without requiring negative energy

representations in a crucial way, there should be a close relation between discussions of

conformal blocks in the physics literature [34, 35, 36] and the equivariant map interpretation

of integrals developed in [32] .

6.4 HPEM and the interaction/intertwiner connection

The HPEM has been an important tool in our discussion of conformal integrals. It has en-

abled us to make the connection between so(4, 2) equivariant maps involving indecomposable

representations and the quantum equations of motion. This connection links a subtle aspect

of representation theory with a consequence of the collision of interaction point with exter-

nal vertex, a deep and generic property of interactions in quantum field theory. Using the

HPEM the full integral was decomposed as a sum of terms I(a), each involving the collision

of the interaction point with one of the external legs, and each associated with one of the

QEOM. It will be very interesting to develop this physical picture for more general Feyn-

man integrals (not necessarily conformal), uncovering the interplay between the collision of

interaction points, quantum equations of motion, and equivariance.

As an example of a simple non-conformal integral consider in four dimensions an inte-

gration in coordinate space of an n-point scalar interaction (with n 6= 4). To interpet in
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terms of so(4, 2) equivariance, we would need to combine the scaling in spacetime, with a

scaling of the coupling constant. In other words the equivariance would involve a “twisted”

so(4, 2)′ which combines the space-time so(4, 2) with an so(2) scaling the coupling constant.

Twistings which combine space-time symmetries with other symmetries are known to be

useful in topological field theories. The idea of employing a scaling of the coupling constant

to arrive at a generalized conformal symmetry was developed in [53].
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A Basic formulae for HPEM (harmonic polynomial

expansion method)

This Appendix summarizes the formulae used in the harmonic expansion method for inte-

grals. This is also called the Gegenbauer Polynomial expansion technique.

so(4) harmonics : Notation

We will expand the propagators using so(4) spherical harmonics Y l
m(x). x is a 4-vector xi

in Euclidean space. The positive integer l specifies a symmetric traceless so(4) tensor with

rank l. We will work with normalization

1

2π2

∫
dS3Y l1

m1
(x)Y l2

m2
(x) = gm1m2

δl1,l2

(l1 + 1)
(110)

where dS3 is the standard metric on the unit sphere. We could work with more general bases

where the g factor depends on l1, but we won’t use this freedom. One convenient basis is a

real orthogonal basis for which

gm1,m2 = δm1,m2

Y m1
l (x) = gm1m2Y l

m2
(x) = Y l

m1
(x)

Y m
l (x) = Y l

m(x) (111)
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Another convenient basis uses the isomorphism so(4) = su(2)× su(2). A rank l symmetric

tensor specifies a representation of spins ( l
2
, l
2
). The so(4) state label m is equivalent to a

pair of su(2) state labels (mL,mR) each ranging from − l
2

to l
2
. If we work with a basis which

diagonalize the JL3 , J
R
3 , then the state label is equivalent to a pair of su(2) labels (mL,mR)

gm1,m2 = δm1,−m2

Y m
l (x) = Y l

−m(x) (112)

Using the explicit generators JLi , J
R
i given in [13], the charges (JL3 , J

R
3 ) for the basic variables

are

z = x1 + ix2 ↔ (
1

2
,
1

2
)

z̄ = x1 − ix2 ↔ (−1

2
,−1

2
)

w = x3 + ix4 ↔ (
1

2
,−1

2
)

w̄ = x3 − ix4 ↔ (−1

2
,
1

2
) (113)

We find that

Y l
(l/2,l/2) = (x1 + ix2)

l = zl (114)

has normalization

1

2π2

∫
dS3(Y l

( l
2
, l
2
)
)∗ Y l

( l
2
, l
2
)

=
1

(l + 1)
(115)

The remaining spherical harmonics are easily generated using the su(2) lowering operators.

Expansion of the exponential vertex operator

The expansion of the exponential in terms of spherical harmonics is

e−iP ·xv+ =
∑
l,m

(−i)l

2ll!
Y l
m(x)Y m

l (P )v+ (116)

The invariant pairing η : V+ ⊗ V− → C described in terms of harmonics in P,K is

η
(
Y l1
m1

(P )v+, Y m2
l2

(K)v−
)

= δl1,l2δm1,m22
2l1(l1!)

2 (117)

The invariant pairing in terms of spherical harmonics in x i.e. η̃ : H+ ⊗H− → C is

η̃

(
Y l1
m1

(x),
Y m2
l2

(x′)

x′2

)
= δl1,l2δm1,m2 (118)

This can be written in terms of integration on the unit 3-sphere [32]

η̃

(
Y l1
m1

(x),
Y m2
l2

(x′)

x′2

)
=

1

2π2

∫
S3

Y m2
l2

(x′)

x′2
(x · ∂x + 1)Y l1

m1
(x)) (119)
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There are so(4, 2) equivariant maps

f+ : V+ → H−
f− : V− → H+ (120)

which can be read off from the expansion of the exponential

f+ : Y l
m(P )v+ → 2ll!(i)l

Y l
m(x′)

x′2
f− : Y l

m(K)v− → 2ll!(−i)lY l
m(x) (121)

Combining the two maps f+ ⊗ f− = f gives a map f : V+ ⊗ V− → H− ⊗ H+. We have

η = f ◦ η̃.

Expansion of the 2-point function

1

|~x− ~y|2
=
∞∑
l=0

∑
m

1

y2
Y l
m(x)Y m

l (y′) if |y| > |x|

=
∞∑
l=0

∑
m

1

x2
Y l
m(x′)Y m

l (y) if |x| > |y| (122)

Using the addition theorem for spherical harmonics, the RHS can be written in terms of

Gegenbauer polynomials of x · y. This is a well-known way of doing complicated integrals

[45]. We will not be writing expansions in terms of Gegenbauer polynomials, since our main

purpose is to keep all four so(4, 2)’s associated with the external legs manifest, rather than

finding an efficient way to do the integrals.

Action of the quadratic so(4, 2) Casimir

C2 = −1

2
LMNL

MN = D2 − 4D + ~P · ~K +
1

2
MpqMqp (123)

We will use the differential operator representation of the generators to compute the value of

C2 when acting on a product of a function of r and a spherical harmonic. As usual, we use

vertex operators to obtain the differential opetator corresponding to a particular generator.

For example,

~P · ~Ke−iP ·xv+ = Pp

(
2ixpx ·

∂

∂x
− ix2 ∂

∂xp
+ 2ixp

)
e−iP ·xv+

=

(
2ixpx ·

∂

∂x
− ix2 ∂

∂xp
+ 2ixp

)
i
∂

∂xp
e−iP ·xv+ (124)

To obtain the first equality for example, commute Kµ past the vertex operator e−iP ·x using

the so(4, 2) algebra and then use the fact that Kµv
+ = 0. Finally, express the result as a

differential operator acting on the vertex operator. Similarly, we find

Mpq = xp
∂

∂xq
− xq

∂

∂xp
(125)
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so that when acting on a power of r times a spherical harmonic we have

1

2
MpqMqp(r

AY l
m(x)) =

rA

2
MpqMqpY

l
m(x) = l(l + 2) rAY l

m(x) (126)

We also have (D = x · ∂
∂x

+ 1 is shifted by 1 to account for the dimension of v+)

(D2 − 4D) rAY (x) = [(A+ l − 2)(A+ l)− 3] rAY l
m(x) (127)

Finally, consider ~P · ~K

~P · ~KrAY l
m(x) = (A(A+ 2) + 2Al − 2(A+ l)2) rAY l

m(x) (128)

Thus we have

C2 r
AY l

m(x) = −3 rAY l
m(x) (129)

A very similar argument shows that

C2 log(r)Y l
m(x) = −3 log(r)Y l

m(x) (130)

B Expansion of projector using the exact answer

This section extends the discussion of section 2.2 by providing some of the details behind

the expansion. We want to study the limit s→ 0, t→ 1, i.e. u→ 0 where t = 1 + u. In this

limit λ→ 0 and ρ→∞. The coefficient of the log s is

F1 =
1

λ
log

(
(1 + ρs)

(1 + ρ−1t−1)

)
(131)

Using Mathematica, we expand in s and simplify the function of u appearing at each order

of s, to obtain

F1 =
log(1 + u)

u
+

s

u3
(2u− (2 + u) log(1 + u)) +

s2

u5
(
3u(2 + u)− 6 + 6u+ u2) log(1 + u)

)
+
s3

3u7
(
u(60 + 60u+ 11u2)− 3(20 + 30u+ 12u2 + u3) log(1 + u)

)
(132)

After subsequently expanding in powers of u, we have

F1 =

(
−1 +

u

2
− u2

3
+
u3

4
− · · ·

)
+ s

(
−1

6
+
u

6
− 3u2

20
+ · · ·

)
+ s2

(
−1

30
+

u

20
− 2u2

35
+ · · ·

)
+s3

(
−1

140
+

u

70
− 5u2

252
+ · · ·

)
+ · · · (133)

The term at sk is

sk

u2k+1
(uPk(u)−Qk(u) log(1 + u)) (134)
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where Pk(u) is a polynomial of degree k−1 and Qk(u) is a polynomial of degree k, both with

positive coefficients. The polynomials have the property that the expansion at sk is regular

at u = 0. In other words

uPk(u)−Qk(u) log(1 + u) (135)

only contains powers un with n > 2k. This gives 2k + 1 equations constraining the (2k + 1)

unknown coefficients in Pk and Qk. These equations do not determine the overall normal-

ization of the two polynomials. This is determined by observing that the leading coefficient

in Pk(u) is

(2k)!

(k!)2
(136)

which is (k + 1) times the k’th Catalan number. Writing

Qk(u) =
k∑
l=0

blu
l (137)

we find the linear system of equations

k∑
l=0

bl
(−1)l

(i− l)
= 0 (138)

as i ranges from k + 1 to 2k. These come from the requirement that the coefficient of xi

vanishes in (135). These equations allow us to solve b1, b2, · · · , bk in terms of b0. For example,

when k = 5 we have

b1 =
5b0
2
, b2 =

20b0
9
, b3 =

5b0
6
, b4 =

5b0
42
, b5 =

b0
252

(139)

Interestingly the Catalan number 252 comes from solving this system of linear equations.

To solve (138) for any k, define I = i− k, where the range of I is 1 ≤ I ≤ k and we have

k∑
l=0

MIlbl = 0 (140)

where

MIl =
(−1)l

(I + k − l)
(141)

The index l ranges over k + 1 values. We can rewrite (140) as

MI0b0 = −
k∑
l=1

MIlbl (142)
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Define M̂ab = Mab with a, b = 1, ..., k. Using Mathematica to study a few examples, we have

verified that M̂ is invertible, so that we can write

bl =
∑
I

M̂−1
JI MI0b0 (143)

For a specific choice of k, it is easy to generate the inverses of M̂ in Mathematica and hence

to generate the bI/b0. For k = 2...7, we find

bI/b0 = {1, 1/6}
bI/b0 = {3/2, 3/5, 1/20}
bI/b0 = {2, 9/7, 2/7, 1/70}

bI/b0 =

{
5

2
,
20

9
,
5

6
,

5

42
,

1

252

}
bI/b0 =

{
3,

75

22
,
20

11
,

5

11
,

1

22
,

1

924

}
bI/b0 =

{
7

2
,
63

13
,
175

52
,
175

143
,

63

286
,

7

429
,

1

3432

}
(144)

Using these numerical results from Mathematica and the Online Encyclopaedia of Integer

Sequences[54], we find

b1(k)/b0 = k/2

bk(k)/b0 =
k!2

(2k)!

bk−1(k)/b0 =
k!2

(2k)!
k(k + 1)

bk−2(k)/b0 =
k!2

(2k)!

(k − 1)k(k + 1)(k + 2)

4

bk−3(k)/b0 =
k!2

(2k)!

(
k

3

)(
k + 3

3

)
bk−m(k)/b0 =

k!2

(2k)!

(
k

m

)(
k +m

m

)
(145)

This gives the general formula for the b-coefficients. We also know b0 = (2k)!
k!2

, so that we have

b1(k) = k/2
(2k)!

k!2
bk(k) = 1

bk−1(k) = k(k + 1)

bk−2(k) =
(k − 1)k(k + 1)(k + 2)

4

bk−3(k) =

(
k

3

)(
k + 3

3

)
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bk−m(k) =

(
k

m

)(
k +m

m

)
(146)

Lets us now consider the polynomial Pk(u)

Pk(u) =
k∑
i=1

aiu
i−1 (147)

By looking at powers ui in (135) for 1 ≤ i ≤ k, we obtain the linear equations

ai −
i−1∑
l=0

bl
(−1)i−l

(i− l)
= 0 (148)

This gives the ai as sums of binomial coefficients, using the formula for b above. We can

again numerically work out the a-coefficients for small values of k and then read off the

analytic formulas from the patterns we find. For the first few values of k we find

k = 2 : ~a = {a1, ...ak} = {6, 3}
k = 3 : ~a =

1

3
× {60, 60, 11}

k = 4 : ~a =
5

6
× {84, 126, 52, 5}

k = 5 : ~a =
1

30
× {7560, 15120, 9870, 2310, 137}

k = 6 : ~a =
7

10
× {13720, 3300, 2960, 1140, 174, 7} (149)

which leads to

a1(k) =
(2k)!

(k!)2

ak(k) = 2h(k) = 2
k∑
l=1

1

l
(150)

h(k) is the k-th harmonic number. Thus, the ai(k) interpolate between Catalan numbers

and harmonic numbers. In this way, the Catalan numbers, along with the form (134), has

determined all the coefficients in the double Taylor expansion around s, u = 0.

B.1 A summation formula for products of su(2) Clebschs from

Feynman Integrals

Our discussion implies a summation formula for products of su(2)-Clebsh Gordan coefficients,

since these coefficients appear in the multiplication of spherical harmonics which enter the

definition of the so(4, 2) equivariant map M. Indeed, equating the result for the coefficient
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of the log obtained from HPEM to the coefficient of the same log appearing in the exact

result, we have

∞∑
li=0

∑
mi

∞∑
t=0

∑
p

δl1+l2,l3+l4Y
l1
−m1

(x1)Y
l2
−m2

(x2)Y
l3
m3

(x′3)Y
l4
m4

(x′4)×
C l1,l2;t
m1,m2;p

C l3,l4;t
−m3,−m4;−p

t+ 1

=
x23x

2
4

x213x
2
24

1

λ
log

(
(1 + ρs)

(1 + ρ−1t−1)

)
(151)

Noting that the structure constants of the multiplication of so(4)-covariant harmonics on S3

can be written in terms of Clebsch-Gordan coefficients of su(2)

C l1, l2 ; l
m1,m2 ; m1+m2

=

〈
l1
2

l2
2

mL1
2

mL2
2

∣∣∣∣∣ l
2

mL1 +m
L
2

2

〉〈
l1
2

l2
2

mR1
2

mR2
2

∣∣∣∣∣ l
2

mR1 +mR2
2

〉
we see that (151) is a highly nontrivial sum rule for su(2)-Clebsh Gordan coefficients.

To check this sum rule, it is useful to use the basis which diagonalizes the (JL3 , J
R
3 ) sub-

algebra of su(2) × su(2), described in (113). Using this basis we can easily determine the

coefficients of monomials of a specific form appearing on both side of (151). The simplest

monomial arises from the terms in the sum with t = 0 and

Y
n1
2

n1
2
,
n1
2

(x1)Y
n2
2

n2
2
,
n2
2

(x2)Y
n3
2
−n3
2
,
−n3
2

(x1)Y
n4
2
−n4
2
,
−n4
2

(x4) = zn1
1 z

n2
2 z̄

n3
3 z̄

n4
4 (152)

In this extremal case, the Clebsch Gordan coefficients are 1, so that the monomial zn1
1 z

n2
2 z̄

n3
3 z̄

n4
4

has coefficient 1
n1+n2+1

. To recover this coefficient from the RHS of (151), note that

(xi − xj)2 = 1− 2xi · xj + x2ix
2
j

= 1− ziz̄j − z̄izj − wiw̄j − w̄iwj + (ziz̄i + wiw̄i)(zj z̄j + wjw̄j) (153)

Inserting this into the RHS of (151) and expanding as described at the start of this Appendix,

we can obtain the coefficient of any given monomial. In particular, we verify that zn1
1 z

n2
2 z̄

n3
3 z̄

n4
4

has coefficient 1
n1+n2+1

. Next consider

Y
n1
2

n1
2
,
n1−2

2

(x1)Y
n2
2

n2−2
2

,
n2
2

(x2)Y
n3
2

−n3
2
,−n3−2

2

(x3)Y
n4
2

−n4−2
2

,−n4
2

(x4)

=
√
n1n2n3n4z

n1−1
1 w̄1z

n2−1
2 w2z̄

n3−1
3 w3z̄

n4−1
4 w̄4 (154)

which invloves terms in the sum with t = 0 and t = 1. We need two Clebsch Gordan

coefficients

C
n1
2
,
n2
2
,
n1+n2

2

(n12 ,
n1−2

2 ),(n2−2
2

,
n2
2 ),(n1+n2−2

2
,
n1+n2−2

2 )
=

√
n1n2

n1 + n2

(155)

C
n1
2
,
n2
2
,
n1+n2−2

2

(n12 ,
n1−2

2 ),(n2−2
2

,
n2
2 ),(n1+n2−2

2
,
n1+n2−2

2 )
=

√
n1n2

n1 + n2

(156)
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which easily follow from the following su(2) coefficients

C
n1
2
,
n2
2
,
n1+n2

2
n1
2
,
n2−2

2
,
n1+n2−2

2

=

√
n2

n1 + n2

(157)

C
n1
2
,
n2
2
,
n1+n2−2

2
n1
2
,
n2−2

2
,
n1+n2−2

2

= −
√

n1

n1 + n2

(158)

Explicit formulae for the su(2) Clebsch Gordan coefficients are available in [55]. Thus, the

coefficient of zn1−1
1 w̄1z

n2−1
2 w2z̄

n3−1
3 w3z̄

n4−1
4 w̄4 is

√
n1n2n3n4

[
C

n1
2
,
n2
2
,
n1+n2

2

(n12 ,
n1−2

2 ),(n2−2
2

,
n2
2 ),(n1+n2−2

2
,
n1+n2−2

2 )

1

n1 + n2 + 1

+C
n1
2
,
n2
2
,
n1+n2−2

2

(n12 ,
n1−2

2 ),(n2−2
2

,
n2
2 ),(n1+n2−2

2
,
n1+n2−2

2 )

1

n1 + n2

]
=

2n1n2n3n4

(n1 + n2 − 1)(n1 + n2)(n1 + n2 + 1)
(159)

This again agrees with the coefficient obtained by expanding the RHS of (151).

C Equivariant maps related to Quantum Equations of

Motion

This section gives the explicit evaluation of the maps F1 and F2 which are introduced in

section 5.

C.1 Quantum equation of motion for x1

When we evaluate the map F1 with the exponential states inserted, we get an expression

which has a well defined expansion at small x1, x
′
2, x
′
3, x
′
4. Set h(x1, x

′
2, x
′
3, x
′
4) = F1(e

−iP ·x1v+++⊗
eiK·x

′
2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−). Then

∂h

∂xµ1
= −iF1(Pµe

−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

= iF1(e
−iP ·x1v+++ ⊗ PµeiK·x

′
2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

+iF1(e
−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ PµeiK·x

′
3v− ⊗ eiK·x′4v−)

+iF1(e
−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ PµeiK·x

′
4v−) (160)

where the last line follows from the so(4, 2) invariance of F1. Now,

Pµe
iK·x′3v− =

(
2ix′3µx

′
3 ·

∂

∂x′3
− ix′23

∂

∂x′3µ
+ 2ix′3µ

)
eiK·x

′
3v−
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= ix23
∂

∂xµ3

1

x23
eiK·x

′
3v− (161)

so that (160) becomes

∂h

∂xµ1
= −x22

∂

∂xµ2
(

1

x22
h)− x23

∂

∂xµ3
(

1

x23
h)− x24

∂

∂xµ4
(

1

x24
h) (162)

which can be written as

x22x
2
3x

2
4

(
∂

∂xµ1
+

∂

∂xµ2
+

∂

∂xµ3
+

∂

∂xµ4

)[
h

x22x
2
3x

2
4

]
= 0 (163)

This proves the map is only a function of the differences xµi − x
µ
j . Next, consider(

x1µ
∂

∂x1ν
− x1ν

∂

∂x1µ

)
h = F1(Mµνe

−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

= −F1(e
−iP ·x1v+++ ⊗Mµνe

iK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

− F1(e
−iP ·x1v+++ ⊗ eiK·x′2v− ⊗Mµνe

iK·x′3v− ⊗ eiK·x′4v−)

− F1(e
−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗Mµνe

iK·x′4v−)(164)

which after a little algebra can be written as

x22x
2
3x

2
4

(
x1µ

∂

∂x1ν
− x1ν

∂

∂x1µ
+ x2µ

∂

∂x2ν
− x2ν

∂

∂x2µ
+ x3µ

∂

∂x3ν
− x3ν

∂

∂x3µ

+x4µ
∂

∂x4ν
− x4ν

∂

∂x4µ

)[
h

x22x
2
3x

2
4

]
= 0 (165)

This proves the map is only a function of the magnitudes of the differences |xµi − x
µ
j |. Next,

consider(
x1 ·

∂

∂x1
+ 3

)
h = F1(e

−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

= −F1(e
−iP ·x1v+++ ⊗DeiK·x′2v− ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

− F1(e
−iP ·x1v+++ ⊗ eiK·x′2v− ⊗DeiK·x′3v− ⊗ eiK·x′4v−)

− F1(e
−iP ·x1v+++ ⊗ eiK·x′2v− ⊗ eiK·x′3v− ⊗DeiK·x′4v−) (166)

This can be rewritten as

x22x
2
3x

2
4

(
x1 ·

∂

∂x1
+ x2 ·

∂

∂x2
+ x3 ·

∂

∂x3
+ x4 ·

∂

∂x4
+ 12

)[
h

x22x
2
3x

2
4

]
= 0 (167)

This tells us the degree of the dependence on |xµi − x
µ
j |. Thus, at this stage we know that

h

x22x
2
3x

2
4

=
A

|x1 − x2|2α|x1 − x3|2β|x1 − x4|2γ|x2 − x3|2δ|x2 − x4|2η|x3 − x4|2τ
(168)

and α + β + γ + δ + η + τ = 6. Thus, the map has now been reduced to determining 7

numbers. To determine these numbers start by noting that at x1 = 0 and x′2 = x′3 = x′4 = 0

we have

h(0, 0, 0, 0) = F1(v
+++ ⊗ v− ⊗ v− ⊗ v−) = 1 (169)

i.e. h has no singularities and takes the constant value 1. This implies that δ = η = τ = 0,

α = β = γ = 1 and A = 1, which proves (86).
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C.2 Quantum equation of motion for x2

Using invariance of the map and the so(4, 2) algebra,we can easily prove (104). Towards this

end, recall some results which follow from the invariant pairing

η(e−iP ·x1v+, eiK·x
′
2v−) =

∞∑
n,m=0

im(−1)n

n!m!
xα1
1 · · ·xαn1 x′β12 · · ·x

′βm
2 Tα1···αnβ1···βm (170)

where

Tα1···αnβ1···βm = η(Pα1 · · ·Pαnv+, Kβ1 · · ·Kβmv
−)

= (−1)nη(v+, Pαn · · ·Pα1Kβ1 · · ·Kβmv
−)

= (−1)mη(Kβm · · ·Kβ1Pα1 · · ·Pαnv+, v−) (171)

and the last two lines above follow from the so(4, 2) invariance of the pairing. Now, setting

Kβm · · ·Kβ1Pα1 · · ·Pαnv+ = δnmtα1···αnβ1···βmv
+ (172)

Pαn · · ·Pα1Kβ1 · · ·Kβmv
− = δnmtα1···αnβ1···βmv

− (173)

we find

Tα1···αnβ1···βm = tα1···αnβ1···βm(−1)m (174)

and

∞∑
n=0

(−1)n

n!m!
xα1
1 · · ·xαn1 x′β12 · · · x

′βn
2 tα1···αnβ1···βn =

1

1− 2x′2 · x1 + x21x
′2
2

(175)

We will make use of (172), (173) and (175) below. Consider the complete expansion

F2(e
iP ·x1v+ ⊗ e−iP ·x2v+++ ⊗ eiK·x′3v− ⊗ eiK·x′4v−)

=
∞∑

n1,n3,n4=0

1

n1!n3!n4!
F2((iP · x1)n1v+ ⊗ e−iP ·x2v+++ ⊗ (iK · x′3)n3v− ⊗ (iK · x′4)n4v−)

(176)

Expand the remaining exponential and use equivariance of the map to transfer the P · x2
factors into the other three slots. Due to the twisting, when we move P · x2 into the first

slot we get

α(P · x2) =
1

x22
K · x2 = K · x′2 (177)

For a given term in the sum (i.e. a given n1, n3, n3) only a specific power of P · x2 from the

expansion of the exponential in slot 2 will contribute. Keeping only this power we have

F2(e
iP ·x1v+ ⊗ e−iP ·x2v+++ ⊗ eiK·x′3v− ⊗ eiK·x′4v−)
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=
∞∑

n1,n3,n4=0

1

n1!n3!n4!(n1 + n3 + n4)!

×F2((iP · x1)n1v+ ⊗ (−iP · x2)n1+n3+n4v+++ ⊗ (iK · x′3)n3v− ⊗ (iK · x′4)n4v−)

=
∞∑

n1,n3,n4=0

1

n1!n3!n4!(n1 + n3 + n4)!

(n1 + n3 + n4)!

n1!n3!n4!
(−1)n1+n3+n4

×F2((α(P · x2))n1(P · x1)n1v+ ⊗ v+++ ⊗ (P · x2)n3(K · x′3)n3v− ⊗ (P · x2)n4(K · x′4)n4v−)

=
∞∑
n1

(−1)n1

(n1!)2
xα1
1 · · ·x

αn1
1 x′β12 · · ·x

′βn1
2 tα1···αn1β1···βn1

×
∞∑
n3

(−1)n3

(n1!)2
xγ12 · · · x

γn3
2 x′δ13 · · ·x

′δn3
3 tγ1···γn3δ1···δn3

×
∞∑
n4

(−1)n4

(n1!)2
xµ12 · · ·x

µn4
2 x′ν14 · · ·x

′νn4
4 tµ1···µn4ν1···νn4F2(v

+ ⊗ v+++ ⊗ v− ⊗ v−)

=
1

1− 2x1 · x′2 + x21x
′2
2

1

1− 2x2 · x′3 + x22x
′2
3

1

1− 2x2 · x′4 + x22x
′2
4

=
x22x

3
3x

2
4

(x1 − x2)2(x2 − x3)2(x2 − x4)2
(178)

which proves the result (104).
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