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ELLIPTIC ROOK AND FILE NUMBERS

MICHAEL J. SCHLOSSER∗ AND MEESUE YOO∗∗

Abstract. Utilizing elliptic weights, we construct an elliptic analogue of rook num-
bers for Ferrers boards. Our elliptic rook numbers generalize Garsia and Remmel’s
q-rook numbers by two additional independent parameters a and b, and a nome p.
These are shown to satisfy an elliptic extension of a factorization theorem which in
the classical case was established by Goldman, Joichi and White and later was ex-
tended to the q-case by Garsia and Remmel. We obtain similar results for our elliptic
analogues of Garsia and Remmel’s q-file numbers for skyline boards. We also pro-
vide an elliptic extension of the j-attacking model introduced by Remmel and Wachs.
Various applications of our results include elliptic analogues of (generalized) Stirling
numbers of the first and second kind, Lah numbers, Abel numbers, and r-restricted
versions thereof.

1. Introduction

The theory of rook numbers was introduced by Kaplansky and Riordan [26] in 1946,
and since then it has been further studied and developed by many people. In 1975,
Goldman, Joichi and White [19] proved the following result for rook numbers on a
Ferrers board B = B(b1, . . . , bn) ⊂ [n] × N (see Section 2 for the precise definition of
rook numbers and of a Ferrers board):

n∏

i=1

(z + bi − i+ 1) =

n∑

k=0

rn−k(B) z(z − 1) . . . (z − k + 1). (1.1)

We refer to an identity of the form (1.1) as a product formula or factorization theorem.
In 1986 Garsia and Remmel [17] established a q-analogue of rook numbers on Ferrers

boards by considering a statistic involving rook cancellation. Among other results, they
were in particular able to extend the product formula in (1.1) to the q-case. In 1991
Wachs and White [44] introduced a (p, q)-analogue of rook numbers which was later
studied in more detail by Briggs and Remmel [3] and by Remmel and Wachs [32]. In
2001, Haglund and Remmel [23] considered a suitably modified statistic involving rook
cancellation on shifted Ferrers boards. In this way they were able to develop a rook

2010 Mathematics Subject Classification. Primary 05A19; Secondary 05A15, 05A30, 11B65, 11B73,
11B83.

Key words and phrases. rook numbers, file numbers, q-analogues, elliptic analogues, combinatorial
identities, Stirling numbers, Lah numbers, trees.

∗Partly supported by FWF Austrian Science Fund grant F50-08 within the SFB “Algorithmic and
enumerative combinatorics”.

∗∗Fully supported by FWF Austrian Science Fund grant F50-08 within the SFB “Algorithmic and
enumerative combinatorics”.

1

http://arxiv.org/abs/1512.01720v3


2 MICHAEL J. SCHLOSSER AND MEESUE YOO

theory for partial matchings of the complete graph K2n of 2n vertices and in particular
proved a product formula analogous to (1.1).
In the present work, we construct elliptic analogues of the rook numbers on Ferrers

boards by utilizing elliptic weights. Our elliptic rook numbers generalize Garsia and
Remmel’s q-rook numbers by two additional independent parameters a and b, and a
nome p. They also contain the aforementioned (p, q)-rook numbers of [3, 44] as a special
case. We show that the elliptic rook numbers satisfy an elliptic extension of (1.1). Our
elliptic rook numbers can be used to define elliptic analogues of the Stirling numbers of
the second kind, of the Lah numbers, and of certain “r-restricted” refinements of these
numbers, by specializing Ferrers boards.
We also provide an elliptic extension of the “-attacking model which was considered

by Remmel and Wachs [32]. As a consequence, we present elliptic extensions of the
generalized Stirling numbers of the first and the second kinds.
Similarly, we construct elliptic analogues of the file numbers on skyline boards which

in the classical case and in the q-case were first studied by Garsia and Remmel. We show
that the elliptic file numbers satisfy a factorization theorem, extending an analogous
result of Garsia and Remmel. Special cases of the elliptic file numbers include an elliptic
extension of the unsigned Stirling numbers of the first kind, an elliptic enumeration of
labeled forests of rooted trees which extends the work of Goldman and Haglund [20]
to the elliptic setting, and again, elliptic extensions of r-restricted refinements of these
numbers.
At this point, we would like to explain our motivation for this work. What is the rea-

son for “going elliptic”? People working in enumerative combinatorics often encounter
identities involving hypergeometric series (or more generally, special functions). On
one hand, the theory of hypergeometric series serves as a tool for solving combinatorial
problems, and on the other hand, combinatorial models can be used to prove or ex-
plain hypergeometric series identities. This phenomenon similarly also applies to other
areas, such as algebra and geometry, or mathematics and physics. Problems which lay
in the interface of two or more areas are often challenging and particularly interesting.
The development of tools which combine two different areas is promising and may ulti-
mately lead to a better understanding of both respective theories. Now, just as in many
classical instances where hypergeometric series emerge from problems in enumerative
combinatorics, q-hypergeometric or basic hypergeometric series frequently emerge from
problems in enumerative combinatorics involving some q-statistics (which is a refined
counting). On the contrary, given specific basic hypergeometric series identities, one
can ask for suitable models where a combinatorial explanation can be provided. Now
this is not the end of the story. There is in fact a natural hierarchy of hypergeometric
series: rational (i.e. “ordinary”), trigonometric (or “q”, i.e., “basic”), and elliptic (or
“q, p”, balanced and well-poised) hypergeometric series. Not such a long time ago, peo-
ple working in hypergeometric series have realized that the following three term relation
of theta functions,

θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p) (1.2)
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(see Section 3 for the notation), can be used as a key relation to build up a theory
of identities for series involving theta functions (see [15, 40, 41, 43] and the discussion
in [17, Chapter 11]), analogous to the classical theories of hypergeometric and of basic
hypergeometric series. This can be compared to the hierarchy of meromorphic solutions
of the Yang–Baxter equation, being rational, trigonometric, or elliptic, described in [25].
(Whereas trigonometric functions are periodic, elliptic functions are doubly periodic.
This cannot be pushed further, since by Liouville’s theorem, meromorphic functions
on C with three independent periods are constant.) In the last three decades the
theory of theta and elliptic hypergeometric functions has been developed to a great
extent from various points of view (including integrable systems, special functions, and
biorthogonal functions). But despite of their original appearance in lattice models in
statistical mechanics [9], elliptic hypergeometric series have not been studied much
yet from a combinatorial point of view. In [34], one of us enumerated lattice paths
with respect to suitable elliptic weight functions. This led to a combinatorial proof
of the Frenkel–Turaev 10V9 summation formula, a fundamental identity in the theory
of elliptic hypergeometric series. Further results from [34] included the closed form
elliptic enumeration of nonintersecting lattice paths. Similar elliptic weights have also
subsequently been used in [8] and in [2] to enumerate dimers and lozenge tilings. In
the quest of trying to better understand the connection between combinatorics and
elliptic hypergeometric series it is just natural to look for suitable general combinatorial
models where elliptic weights can be utilized. The goal is to obtain explicit results that
generalize the existing ones to the elliptic level, but which are still “attractive” (such
as results involving closed form products).
Although we were successful in our aim to extend the classical rook theory to the

elliptic setting, we were somehow disappointed to find that elliptic hypergeometric series
summations did not come out in this study. (See the discussion in Subsection 6.4.) This
is probably inherent to the model. Already in the well-studied q-case the only basic
hypergeometric series identities that arise in rook theory are those of Karlsson–Minton
type (see [21], and again Subsection 6.4). Nevertheless, we are able for the first time to
present a bunch of elliptic extensions of special numbers (Stirling, Lah, etc.). As these
are new (and this territory opens up a new theory, namely of elliptic special numbers),
we have put quite some attention to them in our exposition. A reader who is not so
much interested in all of these new special numbers, is advised to mainly focus on the
material leading to the main result of this paper, the product formula in Theorem 3.8
and to look at one or two specific examples of applications. Besides that, a reading of
Section 6 in the end also serves to give an idea about the “big story”.
The paper is outlined as follows. In Section 2 we give a gentle introduction to rook

theory, state the product formula and a recursion for q-rook numbers. In Section 3,
after introducing elliptic analogues of numbers and their properties, we generalize the
results in Section 2 to the elliptic case and highlight several special cases of interest. In
Section 4, we work out an elliptic extension of the “-attacking rook model. We consider
elliptic file numbers in Section 5 and highlight several special cases of interest there as
well. Lastly, we list some topics for future investigation in Section 6.
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2. Introduction to rook theory

Let N denote the set of positive integers and N0 the set of nonnegative integers. We
consider a board to be a finite subset of the N×N grid, and label the columns from left
to right with 1, 2, 3, . . . , and the rows from bottom to top with 1, 2, 3, . . . . We let (i, j)
denote the cell in the i-th column from the left and the j-th row from the bottom. If
a board has at most n columns and m rows, we consider it as a subset of the [n]× [m]
grid, where [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . , m}. For technical reasons, in our
proofs, we sometimes find it convenient to extend the N× N grid to N× Z where cells
may have a zero or negative integer row index.
Let B(b1, . . . , bn) denote the set of cells

B = B(b1, . . . , bn) = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ bi}.

If a board B can be represented by the set B(b1, . . . , bn) for some nonnegative integer
bi’s, then the board B is called a skyline board. If in addition those bi’s are nondecreas-
ing, then the board B = B(b1, . . . , bn) is called a Ferrers board.
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2

1

1 2 3 4 5

5

4

3

2

1

1 2 3 4 5

Figure 1. A skyline board B(4, 2, 1, 5, 3) and a Ferrers board B(0, 2, 3, 5, 5).

We say that we place k nonattacking rooks in B by choosing a k-subset of cells in
B such that no two elements have a common coordinate, that is, no two rooks lie in
the same row or in the same column. Let Nk(B) denote the set of all nonattacking
placements of k rooks. The k-th rook number of B is defined by rk(B) = |Nk(B)|. To
define the q-analogue of the rook numbers, we need the concept of rook cancellation.
Given a rook placement P ∈ Nk(B), a rook in P cancels all the cells to the right in the
same row and all the cells below it in the same column. Then Garsia and Remmel [17]
defined the q-analogue of the rook numbers for Ferrers boards by

rk(q;B) =
∑

P∈Nk(B)

quB(P ),

where q is an indeterminate and uB(P ) counts the number of cells in B which are
neither cancelled by rooks nor contain any rooks in a k-rook placement P . See Figure 2
for the set of cancelled cells (marked by thick dots) of a particular placement of four
rooks (marked by X’s) on the Ferrers board B(0, 2, 3, 5, 5).
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Figure 2. A rook cancellation in B(0, 2, 3, 5, 5).

Note that forB = [n]×[n], a nonattacking rook placement of n rooks in B corresponds
to a permutation of 1, 2, . . . , n. By considering all the rook placements corresponding
to the permutations of n numbers, it is not hard to see that

rn(q; [n]× [n]) = [n]q!. (2.1)

Here the q-falling factorial and q-factorial are defined by

[n]q ↓k= [n]q[n− 1]q . . . [n− k + 1]q, and [n]q! = [n]q ↓n

with [n]q ↓0= 1, respectively, where

[n]q =
1− qn

1− q

is the q-number of n. From (2.1) it can be concluded that the rook numbers satisfy
the Mahonian property (first defined in [14]), i.e. the two statistics, the number of
uncancelled cells of n nonattacking rooks on an [n] × [n] board and the number of
inversions of permutations of n elements, have the same distribution.
For a given Ferrers board B ⊂ [n] × N, let us denote by B∞ ⊂ [n] × Z the Ferrers

board obtained by appending below B the infinite board of width n. For convenience,
we denote by g the line separating B from the rest of B∞ and refer to it as the ground.
For a rook placement P in B∞, we let max(P ) denote the number of rows below the
ground in which the lowest rook of P is located. Let max(P ) = 0 if there are no rooks
below g in P . Garsia and Remmel [17, Equation (I.11)] showed the following identity.

Proposition 2.1. [17, Equation (I.11)] For any Ferrers board B = B(b1, . . . , bn),

1

1− z

∑

P∈Nn(B∞)

zmax(P )quB(P ) =
∑

k≥0

zk[k + b1]q[k + b2 − 1]q · · · [k + bn − n+ 1]q. (2.2)

Using this result, Garsia and Remmel [17, Equation (1.3)] proved the following fac-
torization theorem for q-rook numbers on Ferrers boards which extends the result of
Goldman, Joichi and White in (1.1).

Proposition 2.2. [17, Equation (1.3)] Let B = B(b1, . . . , bn) ⊂ [n] × N be a Ferrers
board. Then

n∏

i=1

[z + bi − i+ 1]q =

n∑

k=0

rn−k(q;B) [z]q ↓k . (2.3)
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We recover (1.1) when q → 1. By distinguishing whether there is a rook in the
last column or not, Garsia and Remmel also showed the following recursion [17, Theo-
rem 1.1].

Proposition 2.3. [17, Theorem 1.1] Let B be a Ferrers board of height at most m and
let B ∪ m denote the board obtained by adding a column of length m to B. Then for
any nonnegative integer k, we have

rk(q;B ∪m) = qm−krk(q;B) + [m− k + 1]q rk−1(q;B). (2.4)

Now we are ready to turn to the elliptic setting.

3. Elliptic analogues

A function is defined to be elliptic if it is meromorphic and doubly periodic. It is
well known (cf. e.g. [45]) that elliptic functions can be built from quotients of theta
functions.
Define a modified Jacobi theta function with argument x and nome p by

θ(x; p) =
∏

j≥0

((1− pjx)(1− pj+1/x)), θ(x1, . . . , xm; p) =
m∏

k=1

θ(xk; p),

where x, x1, . . . , xm 6= 0, |p| < 1. Further, we define the theta shifted factorial (or
q, p-shifted factorial) by

(a; q, p)n =





∏n−1
k=0 θ(aq

k; p), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1

k=0 θ(aqn+k; p), n = −1,−2, . . . ,

together with

(a1, a2, . . . , am; q, p)n =

m∏

k=1

(ak; q, p)n,

for compact notation. For p = 0 we have θ(x; 0) = 1− x and, hence, (a; q, 0)n = (a; q)n
is a q-shifted factorial in base q (see [18] for classical q-series notation, [18, Chapter 11]
treats the elliptic case). The parameters q and p in (a; q, p)n are called the base and
nome, respectively.
The modified Jacobi theta functions satisfy the following basic properties which are

essential in the theory of elliptic hypergeometric series:

θ(x; p) = −x θ(1/x; p), (3.1a)

θ(px; p) = −
1

x
θ(x; p), (3.1b)

and the addition formula

θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p) (3.1c)

(cf. [46, p. 451, Example 5]).
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As a matter of fact, the three-term relation in (3.1c), containing four variables and
four factors of theta functions in each term, is the “smallest” addition formula con-
necting products of theta functions with general arguments. Note that in the theta
function θ(x; p) we cannot let x → 0 (unless we first let p → 0) for x is a pole of infinite
order. This is the reason why elliptic analogues of q-series identities usually contain
many parameters.
The elliptic identities we shall consider all involve terms which are elliptic (with the

same periods) in all of its parameters (see e.g. Remark 3.1). Spiridonov [40] refers to
such multivariate functions as totally elliptic, and they are by nature well-poised and
balanced (see also [18, Chapter 11]).
Inspired by earlier work of the first author regarding weighted lattice paths and

elliptic binomial coefficients [34, 35], we now define the elliptic weights wa,b;q,p(k) and
Wa,b;q,p(k), depending on two independent parameters a and b, base q, nome p, and
integer parameter k by

wa,b;q,p(k) =
θ(aq2k+1, bqk, aqk−2/b; p)

θ(aq2k−1, bqk+2, aqk/b; p)
q, (3.2a)

and

Wa,b;q,p(k) =
θ(aq1+2k, bq, bq2, aq−1/b, a/b; p)

θ(aq, bqk+1, bqk+2, aqk−1/b, aqk/b; p)
qk, (3.2b)

respectively. Observe that if k is a positive integer, Equations (3.2a) and (3.2b) imply
that

Wa,b;q,p(k) =

k∏

j=1

wa,b;q,p(j). (3.2c)

We refer to the wa,b;q,p(k) as small weights and to the Wa,b;q,p(k) as big weights. Note
that the weights wa,b;q,p(k) and Wa,b;q,p(k) also can be defined for arbitrary (complex)
k which is clear from the definition.
Observe that

wa,b;q,p(k + n) = waq2k ,bqk;q,p(n), (3.3a)

and
Wa,b;q,p(k + n) = Wa,b;q,p(k)Waq2k,bqk;q,p(n), (3.3b)

for all k and n, which are elementary identities we frequently make use of.

Remark 3.1. The small weight wa,b;q,p(k) (and so the big one) is indeed elliptic in its
parameters (i.e., totally elliptic). If we write q = e2πiσ, p = e2πiτ , a = qα and b = qβ

with complex σ, τ , α, β and k, then the small weight wa,b;q,p(k) is clearly periodic in α
with period σ−1. A simple computation involving (3.1b) further shows that wa,b;q,p(k)
is also periodic in α with period τσ−1. The same applies to wa,b;q,p(k) as a function in
β (or k) with the same two periods σ−1 and τσ−1.

Remark 3.2. For p → 0, the small and big weights reduce to

wa,b;q(k) =
(1− aq2k+1)(1− bqk)(1− aqk−2/b)

(1− aq2k−1)(1− bqk+2)(1− aqk/b)
q, (3.4a)
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and

Wa,b;q(k) =
(1− aq1+2k)(1− bq)(1− bq2)(1− aq−1/b)(1− a/b)

(1− aq)(1− bqk+1)(1− bqk+2)(1− aqk−1/b)(1− aqk/b)
qk, (3.4b)

respectively. In the a, b; q-weights in (3.4), we may let b → 0 (or b → ∞) to obtain
“a, 0; q-weights”, or in short, “a; q-weights”:

wa;q(k) =
(1− aq2k+1)

(1− aq2k−1)
q−1, and Wa;q(k) =

(1− aq1+2k)

(1− aq)
q−k. (3.5)

Note that by writing q = eix and a = ei(2c+1)x, c ∈ N, the a; q-weights can be written
as quotients of Chebyshev polynomials of the second kind.
Also, in (3.4), we may let a → 0 (or a → ∞) to obtain “0, b; q-weights”. Importantly,

if in (3.4) we first let b → 0 and then a → ∞ (or, equivalently, first let a → 0 and then
b → 0), we obtain the familiar q-weights

wq(k) = q and Wq(k) = qk, (3.6)

respectively.

Next, for a variable z, we define an elliptic number of z by

[z]a,b;q,p =
θ(qz, aqz, bq2, a/b; p)

θ(q, aq, bqz+1, aqz−1/b; p)
. (3.7)

Using the addition formula for theta functions (3.1c), it is not difficult to verify that
the thus defined elliptic numbers satisfy

[z]a,b;q,p = [z − 1]a,b;q,p +Wa,b;q,p(z − 1). (3.8a)

In case z = n is a nonnegative integer, (3.8a) constitutes a recursion which, together
with Wa,b;q,p(0) = 1, uniquely defines any elliptic number [n]a,b;q,p. More generally, by
(3.1c) we have the following useful identity

[z]a,b;q,p = [y]a,b;q,p +Wa,b;q,p(y)[z − y]aq2y,bqy;q,p (3.8b)

which reduces to (3.8a) for y = z − 1.

Remark 3.3. In [35], the first author, in analogy to the q-binomial coefficients
[
n
k

]

q

:=
(q1+k; q)n−k

(q; q)n−k

=
[n]q!

[k]q![n− k]q!
,

defined the elliptic binomial coefficients
[
n
k

]

a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
. (3.9)

In [35] the elliptic binomial coefficients in (3.9) were shown to satisfy an elliptic binomial
theorem involving “elliptic commuting” variables. They were also shown to satisfy a
nice recursion, namely
[
0
0

]

a,b;q,p

= 1,

[
n
k

]

a,b;q,p

= 0 for n ∈ N0, and k ∈ −N or k > n, (3.10a)
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and
[
n + 1
k

]

a,b;q,p

=

[
n
k

]

a,b;q,p

+

[
n

k − 1

]

a,b;q,p

Waqk−1,bq2k−2;q,p(n + 1− k) for n, k ∈ N0.

(3.10b)

The recurrence in (3.10b) is a consequence of the addition formula (3.1c).
On the combinatorial side, the elliptic binomial coefficient in (3.9) can be interpreted

in terms of weighted lattice paths in Z2 (see [34]). In fact, (3.9) is the area generating
function for paths starting in (0, 0) and ending in (k, n−k) composed of unit steps going
north or east only, when the weight of each cell (with north-east corner (s, t)) “covered”
by the path is defined to be waqs−1,bq2s−2;q,p(t). Then it can be shown that the sum of
weighted areas below the paths satisfies the same recursion (3.10b) by distinguishing
the last step of the path which is either vertical or horizontal. The elliptic number
[n]a,b;q,p is nothing but a short-hand notation for

[n]a,b;q,p =

[
n
1

]

a,b;q,p

,

the weighted enumeration of all paths starting in (0, 0) and ending in (1, n− 1). Note
that the elliptic binomial coefficients are in general not symmetric with respect to
replacing k by n− k. However, the a; q-binomial coefficients

[
n
k

]

a;q

:=
(q1+k, aq1+k; q)n−k

(q, aq; q)n−k
qk(k−n) (3.11)

obtained from (3.9) by formally letting p → 0 followed by b → 0, are symmetric, i.e.,
they satisfy [

n
k

]

a;q

=

[
n

n− k

]

a;q

,

and this is a reason for the a; q-case being special (see e.g. Prop. 3.11). The q-binomial
coefficient is recovered by letting a → ∞.

Now we are ready to develop an elliptic analogue of the q-rook theory. We employ
the same rook cancellation as Garsia and Remmel considered in the q-case, i.e., a rook
cancels all the cells to the right and below of it. However, as already indicated, our
definition of an elliptic-weighted rook number requires a refined statistic depending on
the specific locations of the uncancelled cells.

Definition 3.4. Given a Ferrers board B = B(b1, . . . , bn), we define the elliptic ana-
logue of the k-th rook number by

rk(a, b; q, p;B) =
∑

P∈Nk(B)

wt(P ), (3.12a)

with

wt(P ) =
∏

(i,j)∈UB(P )

wa,b;q,p

(
i− j − r(i,j)(P )

)
, (3.12b)
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where the elliptic weight wa,b;q,p(l) of an integer l is defined in (3.2a), UB(P ) is the
set of cells in B which are neither cancelled by rooks nor contain any rooks of P , and
r(i,j)(P ) is the number of rooks in P which are in the north-west region of (i, j).

Example 3.5. Consider a Ferrers board B = B(3, 3, 3) and let P be the placement
of two rooks in (1, 3) and (3, 1) in B. Then the set of uncancelled cells UB(P ) is

3

2

1

1 2 3

•

•

• •

Figure 3. A rook placement in (1, 3) and (3, 1).

{(2, 1), (2, 2), (3, 2)}. Note that for all the uncancelled cells (i, j) ∈ UB(P ), r(i,j)(P ) = 1
due to the rook in (1, 3). Then wt(P ) is

wt(P ) = wa,b;q,p(2− 1− 1) · wa,b;q,p(2− 2− 1) · wa,b;q,p(3− 2− 1)

=
θ(aq−1, bq−1, aq−3/b; p)

θ(aq−3, bq, aq−1/b; p)
·
θ(aq, b, aq−2/b; p)2

θ(aq−1, bq2, a/b; p)2
q3.

If we place three rooks in all possible ways in B and compute r3(a, b; q, p;B), then

3

2

1

1 2 3

• •

• •

• • 3

2

1

1 2 3

• •

•

• • 3

2

1

1 2 3

• •

• •

• 3

2

1

1 2 3

••

• •

3

2

1

1 2 3

• •

•

• 3

2

1

1 2 3

•

•

•

Figure 4. Rook placements of three rooks in [3]× [3].

r3(a, b; q, p;B)

= 1 + wa,b;q,p(−1) + wa,b;q,p(−2) + 2 · wa,b;q,p(−2)wa,b;q,p(−1) + wa,b;q,p(−2)wa,b;q,p(−1)2

= (1 + waq−6,bq−3;q,p(1) + waq−6,bq−3;q,p(1)waq−6,bq−3;q,p(2))(1 + waq−6,bq−3;q,p(2))

= (1 +Waq−6,bq−3;q,p(1) +Waq−6,q−3b;q,p(2))(1 +Waq−4,bq−2;q,p(1))

= [3]aq−6,bq−3;q,p[2]aq−4,bq−2;q,p,

where we used the property (3.3a). In general, for B = B(n, n, . . . , n) = [n] × [n], we
have

rn(a, b; q, p;B) = [n]aq−2n,bq−n;q,p[n− 1]aq2−2n,bq1−n;q,p · · · [1]aq−2,bq−1;q,p. (3.13)

See Corollary 3.9 for a proof.

The following lemma plays an essential role in the subsequent developments leading
to the product formula in Theorem 3.8.
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Lemma 3.6. Let B = B(b1, . . . , bn) ⊂ [n] × N be a board of n columns and let Bk

denote the extended board by attaching an [n]× [k] board below B (the additional rows
being indexed by 0,−1, . . . ,−k + 1). Suppose that Q ∈ Nt(Bk) is a rook placement of t
rooks in the first i− 1 columns of Bk. Let Di(Q) denote the set of all rook placements
which extend Q by adding a rook in column i. Then we have

∑

P∈Di(Q)

wt(P ) = [bi + k − t]aq2(i−1−bi),bqi−1−bi ;q,pwt(Q). (3.14)

Proof. Let i = 1. We want to show that
∑

P∈D1(Q)

wt(P ) = [b1 + k]aq−2b1 ,bq−b1 ;q,p.

If we consider all possible rook placements P in the first column and sum up all the
weights of P , then we obtain

∑

P∈D1(Q)

wt(P ) = 1 + waq−2b1 ,bq−b1 ;q,p(1) + · · ·+
b1+k−1∏

j=1

waq−2b1 ,bq−b1 ;q,p(j)

= 1 +
b1+k−1∑

j=1

Waq−2b1 ,bq−b1 ;q,p(j)

= [b1 + k]aq−2b1 ,bq−b1 ;q,p,

where the sum telescopes according to (3.8a).
Now given Q, a rook placement of t rooks in the first i− 1 columns, we consider all

possible rook placements of one additional rook in the i-th column. If we place the i-th
rook in the topmost possible place, then it cancels all the empty cells below and so the
weight coming from that rook placement is 1. Say we placed the i-th rook in the second
topmost possible place. Then there is one empty cell which was the topmost possible
cell to place a rook. If the coordinate of that cell is (i, bi − l1), then that means there
are l1 many rooks in the north-west region of that cell. So the weight of this cell would
be

wa,b;q,p(i− bi + l1 − l1) = wa,b;q,p(i− 1− bi + 1)

= waq2(i−1−bi),bqi−1−bi ;q,p(1),

by (3.3a). If we place the i-th rook in the third topmost place, then the weight of the
second empty cell would be

wa,b;q,p(i− bi + l1 + l2 + 1− l1 − l2) = wa,b;q,p(i− 1− bi + 2)

= waq2(i−1−bi),bqi−1−bi ;q,p(2),

where l2 is the number of rows between the topmost empty cell and the second topmost
empty cell. If we place the i-th rook in the bottom-most possible cell, the weight coming
from that placement would be

bi+k−t−1∏

j=1

waq2(i+n−bi−1),bqi+n−bi−1;q,p(j).
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Hence by summing up all the weights coming from the all possible rook placements of
the (t+ 1)-st rook in the i-th column, we get

1 +

bi+k−t−1∑

s=1

s∏

j=1

waq2(i−1−bi),bqi−1−bi ;q,p(j) = 1 +

bi+k−t−1∑

s=1

Waq2(i−1−bi),bqi−1−bi ;q,p(s)

= [bi + k − t]aq2(i−1−bi),bqi−1−bi ;q,p.

Combining this with the weights coming from the placement Q, we obtain (3.14). �

The following proposition constitutes an elliptic extension of Proposition 2.1. As
before, B∞ denotes the Ferrers board obtained by appending below B the infinite
board of width n, and for a rook placement P in B∞, max(P ) denotes the number of
rows below the ground in which the lowest rook is located.

Proposition 3.7. For a Ferrers board B = B(b1, b2, . . . , bn), we have

1

1− z

∑

P∈Nn(B∞)

zmax(P ) · wt(P ) =
∑

k≥0

zk
n∏

i=1

[k + bi − i+ 1]aq2(i−1−bi),bqi−1−bi ;q,p. (3.15)

Proof. We first show the following identity

∑

P∈Nn(B∞)

wt(P ) · χ(max(P ) ≤ k) =

n∏

i=1

[k + bi − i+ 1]aq2(i−1−bi),bqi−1−bi ;q,p, (3.16)

where χ is the truth function, i.e. χ(A) = 1 if the statement A is true, otherwise
χ(A) = 0. This easily follows from Lemma 3.6 by iteration, using the fact that each
column of B∞ contains a rook. Then (3.15) is obtained by multiplying both sides of
(3.16) by zk and summing over all k ≥ 0. �

The following product formula is the main result of this section.

Theorem 3.8. Let B = B(b1, . . . , bn) be a Ferrers board. Then we have

n∑

k=0

rn−k(a, b; q, p;B)
k∏

j=1

[z − j + 1]aq2(j−1) ,bqj−1;q,p

=

n∏

i=1

[z + bi − i+ 1]aq2(i−1−bi),bqi−1−bi ;q,p. (3.17)

Proof. It suffices to prove the theorem for nonnegative integer values of z. The result
follows then by analytic continuation.
We consider the extended board Bz by attaching an [n] × [z] board below B and

compute ∑

P∈Nn(Bz)

wt(P ) (3.18)

in two different ways. On one hand, (3.18) can be evaluated using the k = z case of
(3.16) which thus explains the right-hand side of (3.17). On the other hand, in (3.18)
we can consider, for each 0 ≤ k ≤ n, the contributions from the k-rook configurations
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below the ground, yielding
∏k

j=1[z − j + 1]aq2(j−1) ,bqj−1;q,p, and those from the (n − k)

rooks in B, yielding rn−k(a, b; q, p;B), separately. This explains the left-hand side of
(3.17). �

The following corollary is an easy consequence of Theorem 3.8.

Corollary 3.9. Let B = B(b1, . . . , bn) be a Ferrers board. Then we have

rn(a, b; q, p;B) =
n∏

i=1

[bi − i+ 1]aq2(i−1−bi),bqi−1−bi ;q,p. (3.19)

In particular, for the square shape Ferrers board B = B(n, n, . . . , n) = [n] × [n], we
have

rn(a, b; q, p;B) = [n]aq−2n,bq−n;q,p[n− 1]aq2−2n,bq1−n;q,p . . . [1]aq−2,bq−1;q,p. (3.20)

Proof. In Theorem 3.8 we let z → 0. Since

k∏

j=1

[1− j]aq2(j−1) ,bqj−1;q,p = δk,0,

the left-hand side of (3.17) reduces to one term only, corresponding to k = 0. �

We also establish an elliptic analogue of Proposition 2.3, a recursion for elliptic rook
numbers.

Theorem 3.10. Let B be a Ferrers board with l columns of height at most m, and
B ∪ m denote the board obtained by adding the (l + 1)-st column of height m to B.
Then, for any integer k, we have

rk(a, b; q, p;B) = 0 for k < 0 or k > l, (3.21a)

r0(a, b; q, p;B) = 1 for l = 0, i.e. for B being the empty board, (3.21b)

and

rk(a, b; q, p;B ∪m) = Waq2(l−m) ,bql−m;q,p(m− k) rk(a, b; q, p;B)

+ [m− k + 1]aq2(l−m),bql−m;q,p rk−1(a, b; q, p;B). (3.21c)

Proof. This recursion stems from a weighted enumeration of placements of k nonattack-
ing rooks on B∪m. We distinguish the cases whether there is a rook in the last column
or not. The first term on the right-hand side of (3.21c) is obtained when there is no
rook in the last column. The weight multiplied in front of rk(a, b; q, p;B) comes from
the uncancelled (m − k) cells in the last column. The second term on the right-hand
side of (3.21c) is obtained when there is a rook in the last column. The coefficient in
front of rk−1(a, b; q, p;B) is a consequence of Lemma 3.6. �

For p → 0, followed by b → 0 the above recurrence relation (3.21c) reads

rk(a; q;B∪m) = Waq2(l−m) ;q(m−k) rk(a; q;B)+[m−k+1]aq2(l−m) ;q rk−1(a; q;B), (3.22)
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where according to (3.5) and the p → 0, then b → 0 case of (3.7),

Wa;q(k) =
(1− aq1+2k)

(1− aq)
q−k, and [z]a;q =

(1− qz)(1− aqz)

(1− q)(1− aq)
q1−z, (3.23)

and the a; q-rook numbers are given by

rk(a; q;B) = lim
b→0

(
lim
p→0

rk(a, b; q, p;B)

)
,

or

rk(a; q;B) =
∑

P∈Nk(B)


 ∏

(i,j)∈UB(P )

wa;q(i− j − r(i,j)(P ))


 .

As an immediate consequence of this recursion, we have the following product formula
for the a; q-rook numbers of a rectangular shape board B = [l] × [m] with l columns
and m rows.

Proposition 3.11.

rk(a; q; [l]× [m]) = q(
k+1
2 )−lm

[
l
k

]

q

[m]q!

[m− k]q!

(aql−m−k; q)k(aq
1+2l−2m; q2)m−k

(aq1−2m; q2)m
. (3.24)

Proof. This follows by induction on l, the l = 0 case being trivial. In the computation of
rk(a; q; [l+1]× [m]) as a sum of two explicit terms according to the recurrence relation
(3.22), after pulling out common factors, the sum of the two terms nicely factorizes due
to the simple identity

(1− ql−k+1)(1− aql−m−k)qk + (1− qk)(1− aq2l−m−k+1) = (1− ql+1)(1− aql−m).
�

Note that the elliptic rook numbers and even the a, b; q-rook numbers (obtained from
the elliptic rook numbers by letting p → 0), nor the 0, b; q-rook numbers, of rectangular
shape boards in general do not factorize (unless k = 0 or k = l). They in fact already
don’t factorize in the case l = 2 and k = 1 (and m > 1).
We now take a close look at several special cases of elliptic rook numbers of particular

interest.

3.1. Elliptic Stirling numbers of the second kind. The Stirling numbers of the
second kind admit a nice rook theoretic interpretation when B is a staircase board
Stn = B(0, 1, . . . , n − 1) (see [42, Corollary 2.4.2]). Namely, for each configuration of
n − k nonattacking rooks on Stn, we can associate a set partition of [n] in k blocks.
Whenever a cell (i, j) is occupied by a rook, i and j are put in the same block, and the
numbers which are not contained in any block in this way correspond to single blocks.
This describes a one-to-one correspondence between configurations of n−k nonattacking
rooks on Stn and set partitions of [n] into k blocks. Garsia and Remmel [17] extended
this to the q-case, thus providing a rook theoretic realization of Carlitz’ [6, 7] q-Stirling
numbers.



ELLIPTIC ROOK AND FILE NUMBERS 15

We consider the staircase board Stn to define an elliptic analogue of the Stirling
numbers of the second kind. For bi = i− 1, i = 1, . . . , n, Equation (3.17) becomes

([z]a,b;q,p)
n =

n∑

k=0

rn−k(a, b; q, p; Stn)
k∏

j=1

[z − j + 1]aq2(j−1) ,bqj−1;q,p. (3.25)

The rn−k(a, b; q, p; Stn) are actually the elliptic Stirling numbers of the second kind
Sa,b;q,p(n, k) which have recently been defined and studied (in a different setting) by
Zsófia Kereskényiné Balogh and the first author [27].
By using the y = k case of the elementary identity (3.8b), we obtain from (3.25) the

following recursion

Sa,b;q,p(n, k) = 0 for k < 0 or k > n,

Sa,b;q,p(0, 0) = 1,

and, for k ≥ 0,

Sa,b;q,p(n+ 1, k) = Wa,b;q,p(k − 1)Sa,b;q,p(n, k − 1) + [k]a,b;q,pSa,b;q,p(n, k), (3.26)

which also can be derived from Theorem 3.10.
An explicit formula for the elliptic Stirling numbers Sa,b;q,p(n, k) has not yet been

established. However, in [27] the following formulae for small k have been worked out.

Sa,b;q,p(n, 0) = δn,0, (3.27a)

Sa,b;q,p(n, 1) = 1− δn,0, (3.27b)

Sa,b;q,p(n, 2) = [2]n−1
a,b;q,p − 1, (3.27c)

Sa,b;q,p(n, 3) =
1

[2]aq2,bq;q,p

(
[3]n−1

a,b;q,p − [2]aq2,bq;q,p[2]
n−1
a,b;q,p + wa,b;q,p(2)

)
. (3.27d)

For p → 0, followed by a → 0 and b → 0, these explicit evaluations can be easily seen
to match the special instances k = 0, 1, 2, 3 of Carlitz’ [7, Equation (3.3)] well-known
formula

Sq(n, k) =
1

[k]q!

k∑

j=0

(−1)jq(
j

2)
[
k
j

]

q

[k − j]nq . (3.28)

As a matter of fact, the right-hand side of (3.28) can also be rewritten in terms of
basic hypergeometric series (see [18] for definitions and notation). As such, the q-
Stirling number of the second kind can be expressed as the following multiple of a basic
hypergeometric series of Karlsson–Minton type:

Sq(n, k) =
[k]nq
[k]q!

nφn−1

[
q1−k, q1−k, . . . , q1−k

q−k, . . . , q−k ; q, qk−n

]
. (3.29)

The existence of the latter series representation is not so surprising, if one recalls that
a big class of (q-)rook numbers generally admit a representation in terms of (basic)
hypergeometric series of Karlsson–Minton type, as revealed by Haglund [21].
Coming back to our quest for finding an explicit formula in the elliptic case, it is at

this moment still not entirely clear how the pattern in (3.27) for the elliptic Stirling
numbers can be extended to a formula for Sa,b;q,p(n, k) valid for general k.
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3.2. Elliptic r-restricted Stirling numbers of the second kind. The r-restricted
Stirling numbers of the second kind count the number of partitions of [n] into k blocks
such that each of the first r numbers 1, 2 . . . , r is in a different block (cf. [4] or [28]).
The case r = 1 (or r = 0) gives the usual Stirling numbers of the second kind. In the
literature, the r-restricted Stirling numbers of the second kind are usually just called
r-Stirling numbers of the second kind. Nevertheless, in [38, see sequences A143494,
A143495 and A143496] they are referred to as “r-restricted”, a terminology which we
adopt here, mainly to avoid confusion with the q-Stirling numbers of the second kind.
These numbers admit a rook theoretic interpretation when B is a cut-off staircase board
St

(r)
n = B(0, . . . , 0, r, r + 1, . . . , n − 1) of n columns, the first r columns being empty.

The correspondence between the n − k nonattacking rook placements in St
(r)
n and the

set partitions of [n] in k blocks works exactly in the same way as for the board Stn.

Then the shape of the board St
(r)
n puts 1, 2, . . . , r automatically in different blocks.

We use St(r)n in (3.17) to define an elliptic extension of the r-restricted Stirling numbers
of the second kind. For bi = 0 for i = 1, . . . , r, and bi = i − 1 for i = r + 1, . . . , n,
Equation (3.17) becomes

([z]a,b;q,p)
n−r

r∏

i=1

[z − i+ 1]aq2(i−1) ,bqi−1;q,p

=

n∑

k=0

rn−k(a, b; q, p; St
(r)
n )

k∏

j=1

[z − j + 1]aq2(j−1),bqj−1;q,p. (3.30)

Defining S(r)
a,b;q,p(n, k) := rn−k(a, b; q, p; St

(r)
n ) to be the elliptic r-restricted Stirling num-

bers of the second kind, we obtain from Theorem 3.10 the following recursion

S(r)
a,b;q,p(n, k) = 0 for k < r − 1 or k > n,

S(r)
a,b;q,p(r − 1, r − 1) = 1 (an artificial but felicitous initial condition),

and, for k ≥ r − 1,

S(r)
a,b;q,p(n + 1, k) = Wa,b;q,p(k − 1)S(r)

a,b;q,p(n, k − 1) + [k]a,b;q,pS
(r)
a,b;q,p(n, k). (3.31)

3.3. Elliptic Lah numbers. The q-Lah numbers Ln,k(q) have first been studied by
Garsia and Remmel in [16] by carrying out a q-counting of placements of n distin-
guishable balls in k nonempty indistinguishable tubes which have a linear order on its
elements. The same authors, in [17], subsequently gave a rook theoretic interpretation
by considering the board Ln = [n]× [n− 1] of n columns, each of height n− 1. In this
case, Proposition 2.2 gives

[z]q ↑n=
n∑

k=0

rn−k(q;B)[z]q ↓k,

where [z]q ↑n= [z]q[z + 1]q · · · [z + n− 1]q and [z]q ↓k= [z]q[z − 1]q · · · [z − k + 1]q. If we
let Ln,k(q) = rn−k(q; Ln), then the q-Lah numbers Ln,k(q) satisfy the recursion

Ln+1,k(q) = qn+k−1Ln,k−1(q) + [n+ k]qLn,k(q). (3.32)
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This can be established by placing n + 1 − k nonattacking rooks on Ln+1 and distin-
guishing the cases whether there is a rook or not in the union of the top row and the
last column. If there is no such rook, we remove the top row and last column (which
contributes weight qn+k−1) and consider n + 1 − k nonattacking rooks on the smaller
board Ln. If, for 1 ≤ j ≤ n + 1, there is a rook in the j-th position of the top row, the
weight of the uncancelled cells coming from this rook (which are located to the left of
the rook) will be qj−1. We then remove the top row and j-th column and are left with
a smaller board on which n − k nonattacking rooks are placed. If there is no rook in
the top row, there must be one in the last column (but not on the most top of that
column). The weight of the uncancelled cells (the top row included) coming from this
rook will be qn+l−1, for some 2 ≤ l ≤ k, depending on the position of the other n − k
rooks. The precise analysis is similar to that of the proof of Lemma 3.6. After removing
the top row and last column (the possible weights adding up to [n+ k]q), we are again
left with a smaller board on which n− k nonattacking rooks are placed.
Using the recursion in (3.32), one can verify that Ln,k(q) has the following closed

form

Ln,k(q) = qk(k−1)

[
n
k

]

q

[n− 1]q!

[k − 1]q!
. (3.33)

Now we turn to the elliptic setting. For the board Ln, Theorem 3.8 gives

[z + n− 1]aq2−2n,bq1−n;q,p[z + n− 2]aq4−2n,bq2−n;q,p · · · [z]a,b;q,p

=

n∑

k=1

rn−k(a, b; q, p; Ln) [z]a,b;q,p[z − 1]aq2,bq1;q,p · · · [z − k + 1]aq2k−2,bqk−1;q,p. (3.34)

Let Ln,k(a, b; q, p) denote rn−k(a, b; q, p; Ln). This defines an elliptic analogue of Lah
numbers and matches those which have been defined and studied (in a different setting)
by Kereskényiné Balogh and the first author [27]. Then by distinguishing whether there
is a rook in the union of the top row and the last column of the board Ln+1 or not, we
obtain the following recursion for Ln,k(a, b; q, p) :

Ln+1,k(a, b; q, p) = Waq−2n,bq−n;q,p(n+ k − 1)Ln,k−1(a, b; q, p)

+[n + k]aq−2n,bq−n;q,pLn,k(a, b; q, p). (3.35)

Unfortunately, this elliptic analogue of Lah number does not have a nice closed form,
but if we let p → 0, followed by b → 0, then it has the following closed form

Ln,k(a; q) = q(
k

2)−(
n

2)−n(k−1)

[
n
k

]

q

[n− 1]q!

[k − 1]q!

(aqk−n+1; q)n+k

(aq3−2n; q2)n(aq2; q2)k
, (3.36)

the formula being a consequence of the (l, m, k) 7→ (n, n − 1, n − k) case of Proposi-
tion 3.11. It is not difficult to verify that the a; q-Lah numbers Ln,k(a; q) converge to
the q-Lah numbers Ln,k(q) when a → ∞.

Remark 3.12. Goldman, Joichi and White [19] observed that if the left-hand sides of
the product formula (1.1) are equal for two different Ferrers boards B1 and B2, then
also the rook numbers for B1 and B2 must be the same. In this case the two Ferrers
boards B1 and B2 are called rook equivalent. By appealing to the q-analogue of the
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factorization theorem stated in Proposition 2.2, Garsia and Remmel [17] observed that
Goldman, Joichi and White’s observation readily extends to the q-case, i.e., two Ferrers
boards that have the same rook numbers must also have the same q-rook numbers. For
instance, the q-Lah number Ln,k(q) can also be obtained as the q-rook number of the
Ferrers board B(0, 2, 4, . . . , 2n− 2). Theorem 3.8 guarantees that this further extends
to the elliptic case, namely, two rook equivalent Ferrers boards have the same elliptic
rook numbers. In particular,

Ln,k(a, b; q, p) = rn−k(a, b; q, p;B1) = rn−k(a, b; q, p;B2),

for B1 = Ln = (n−1, . . . , n−1) (n occurrences of n−1) and B2 = B(0, 2, 4, . . . , 2n−2).
This appears to be not at all obvious from the combinatorial interpretation.

3.4. Elliptic r-restricted Lah numbers. The r-restricted Lah numbers count the
number of placements of the elements 1, 2, . . . , n into k nonempty tubes of linearly
ordered elements such that 1, 2, . . . , r are in distinct tubes, cf. [31] or [28]. The case r = 1
(or r = 0) gives the usual unsigned Lah numbers. In the literature, the r-restricted Lah
numbers are usually just called r-Lah numbers. We use ”restricted”, in accordance with
the terminology used in [38, see sequences A143497, A143498 and A143499], to avoid
confusion with the q-Lah numbers. These numbers admit a rook theoretic interpretation

when B is the board L
(r)
n = [n+r−1]×[n−r] of n+r−1 columns, each of height n−r. In

the following, we describe a simple correspondence between the rook configurations P of
n−k nonattacking rooks on the board B = [n+r−1]× [n−r] and the set of placements
T of the elements 1, 2, . . . , n into k nonempty tubes of linearly ordered elements such
that the first r numbers 1, 2, . . . , r are in distinct tubes: given a rook configuration of

n− k nonattacking rooks on L
(r)
n , we have n− k rows containing rooks and k − r rows

containing no rooks. We start with the trivial tube placement T0 = {(1), (2), . . . , (r)}
of singletons and want to successively build up the final tube placement by adding an
element for each of the n − r rows, depending on the existence and the positions of
the rooks. Now, as mentioned, there are exactly k − r rows without rooks, say in rows
l1, . . . , lk−r (without loss of generality, we may assume n−r ≥ l1 > l2 > · · · > lk−r ≥ 1).
These indices will determine the minimal elements of the new tubes which we append
to T0. These k − r additional elements shall remain minimal elements, and we shall
refer to them as designated tube leaders. (On the contrary, the elements 1, 2, . . . , r do
not necessarily remain as tube leaders in the final tube placement T .) We thus replace
T0 by T1 = {(1), (2), . . . , (r), (n+1−l1), . . . , (n+1−lk−r)}, and that is a new placement
of exactly k tubes of singletons. The n− k remaining rows in P contain rooks and are
indexed by [n − r] \ {l1, . . . , lk−r}. We add r to each of these indices, thus obtain the
index set I = ([n] \ [r]) \ {r + l1, . . . , r + lk−r} which contain exactly the numbers of
[n] which have not been already used in the tube T1. We remove the top-most rook
in P , say r1, and identity it with the smallest element in I, say ι1. Since there are
n + r − 1 columns in B of which n − k − 1 columns contain rooks below r1, there are
exactly k + r possibilities for r1 to be placed in its row. On the other side, there are
exactly (n+ r− 1)− (n− k − 1) = k + r possible positions for the smallest element ι1
of I to be added to T1. That is, ι1 can be placed on top of any element (which gives
k possibilities), or below any element except the k − r designated tube leaders (which



ELLIPTIC ROOK AND FILE NUMBERS 19

gives r additional possibilities). In total we have k+ r possible positions to insert ι1 in
T1, after which we obtain T2. We now remove r1 from P and also delete ι1 from I. In P ,
we turn to the next row from the top containing a rook, say r2, remove it and identify
it with the next smallest element in I \ {ι1} which we label ι2. Now there are k+ r+1
possibilities to place r2 in its row, and there are also exactly k + r + 1 possibilities for
ι2 to be inserted in T2. We iterate this, and in the end have n + r − 1 possibilities for
the (n−k)-th rook, say rn−k to be placed in its row, and accordingly, n+ r−1 possible
positions to insert the maximal element of I, say ιn−k, in the placement Tn−k of tubes
after which we finally obtain the final tube placement T .
In total we have (

n− r

k − r

)
(n+ r − 1)!

(k + r − 1)!
=

(
n+ r − 1

k + r − 1

)
(n− r)!

(k − r)!

such placements. This number matches the r-restricted Lah number.
For a concrete example of a rook configuration mapped to a placement of elements in

tubes, see Figure 5, where we have chosen n = 8, r = 2, k = 4. We consider a placement

r1

r2

r3

r4

⇐⇒

8
1

3
2
4

5 7
6

Figure 5. n = 8, r = 2, k = 4; B = [9]× [6]

of 4 nonattacking rooks on B = [9]× [6], the rooks being in the cells (9, 6), (3, 5), (6, 3),
and (8, 1) (from top to bottom). We start with putting the numbers 1 and 2 into the
(the first) two distinct tubes. Since the third and fifth row from the top of B contain
no rooks, we put the third and fifth smallest numbers not already used, i.e. 5 and 7,
into the third and fourth tubes, respectively. The numbers 5 and 7 are designated tube
leaders. They will remain to be the minimal elements of their tubes. Now consider
the top-most rook, r1, which is in (9, 6). If we remove it and decide to put it back
into the top row, we have 6 possibilities. The possible positions are (1, 6), (2, 6), (4, 6),
(5, 6), (7, 6) and (9, 6). From these (9, 6) is the sixth position. Accordingly, there are 6
different positions for the smallest number not already used in one of the tubes, i.e. 3,
to be placed in one of the tubes. The six different choices are as follows: the element 3
can be put on top of the element 1, on top of the element 2, on top of the element 5, on
top of the element 7, below the element 1, or below the element 2. (Nothing can be put
below 5 or below 7 since they are designated tube leaders.) We take the sixth option
(as (9, 6) was the sixth possible position of its row), which means that we put 3 below
2 (which is in the second tube). We chop off the top row of the board and consider
the next rook from the top, r2, which is in position (3, 5). This rook occupies the third
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possible position in its row, of 7 possible positions in total. Accordingly, we put the
element 4 (which is the smallest number not already used in the tube placement) on
top of the element 2 which is the third possible position of 7 possibilities (on top of 1,
on top of 3, on top of 2, on top of 5, on top of 7, below 1, or below 2.) We again chop
off the top row and also the empty row below it and turn to the next rook from the
top, r3, which is in position (6, 3). This rook occupies the sixth possible position in its
row, of 8 possible positions in total. Accordingly, we put the element 6 (which is the
smallest number not already used in the tube placement) on top of the element 7 which
is the sixth possible position of 8 possibilities (on top of 1, on top of 3, on top of 2, on
top of 4, on top of 5, on top of 7, below 1, or below 3.) We again chop off the top row
and also the empty row below it and turn to the last remaining rook, r4, which is in
position (8, 1). This is the eighth possible position of 9 possible positions in total. In
the tube placement, the eight possibility is the position below the element 1. Thus we
put the last element not yet appearing in the placements of tubes, i.e., the element 8,
below 1. Finally we have arrived at the placement {(8, 1), (3, 2, 4), (5), (7, 6)}, written
as a set of ordered lists.

Remark 3.13. Note that in the case when r = 1, this algorithm reduces to the case of the
original Lah numbers Ln,k which counts the number of ways placing n distinguishable
balls in k nonempty tubes. Garsia and Remmel [16] also provided a correspondence
between rn−k(Ln) and a placement of n balls in k tubes, but their correspondence is
different from ours explained above.

We use the board L
(r)
n in Theorem 3.8 to define an elliptic analogue of the r-restricted

Lah numbers. For B = L
(r)
n = [n+ r−1]× [n− r], i.e. bi = n− r for i = 1, . . . , n+ r−1,

Theorem 3.8 becomes

n+r−1∑

k=2r−1

rn+r−1−k(a, b; q, p; L
(r)
n )

k∏

j=1

[z − j + 1]aq2(j−1),bqj−1;q,p

=
n+r−1∏

i=1

[z + n− r − i+ 1]aq2(i−1−n+r),bqi−1−n+r ;q,p (3.37)

where we can readily start the index of summation with k = 2r − 1 since the lower
terms vanish, and after shifting the index as k 7→ k + r − 1 and cancelling common
factors on both sides of the sum we obtain

n∑

k=r

rn−k(a, b; q, p; L
(r)
n )

k∏

j=1

[z − r − j + 2]aq2(j+r−2),bqj+r−2;q,p

=
n−r∏

i=1

[z + n− r − i+ 1]aq2(i−1−n+r),bqi−1−n+r ;q,p

r∏

i=1

[z − r − i+ 2]aq2(i+r−2),bqi+r−2;q,p.
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For a more compact result, we replace (a, b, z) by (aq2(1−r), bq1−r, z+ r−1), after which
we obtain

n∑

k=r

rn−k(aq
2(1−r), bq1−r; q, p; L(r)n )

k∏

j=1

[z − j + 1]aq2(j−1) ,bqj−1;q,p

=

n−r∏

i=1

[z + n− i]aq2(i−n),bqi−n;q,p

r∏

i=1

[z − i+ 1]aq2(i−1) ,bqi−1;q,p. (3.38)

The elliptic r-restricted Lah numbers L(r)
n,k(a, b; q, p) := rn−k(aq

2(1−r), bq1−r; q, p; L
(r)
n )

satisfy the recursion

L(r)
n+1,k(a, b; q, p) = Waq−2n,bq−n;q,p(n+ k − 1)L(r)

n,k−1(a, b; q, p)

+[n + k]aq−2n,bq−n;q,pL
(r)
n,k(a, b; q, p), (3.39)

with initial conditions

L(r)
n,k(a, b; q, p) = 0 for k < r − 1 or k > n,

L(r)
r−1,r−1(a, b; q, p) = 1 (an artificial but felicitous initial condition). (3.40)

As in the elliptic Lah-number case, this elliptic analogue of r-restricted Lah number
does not have a nice closed form, but if we let p → 0, followed by b → 0, then it has
the following closed form

L(r)
n,k(a; q) = q(

k

2)−(
n

2)−n(k−1)+2(r2)
[
n+ r − 1
k + r − 1

]

q

[n− r]q!

[k − r]q!

(aq1−n+k; q)n−k(aq
1+2r; q2)k−r

(aq3−2n; q2)n−r

,

(3.41)
the formula being a consequence of the (a, l,m, k) 7→ (aq2(1−r), n + r − 1, n− r, n − k)
case of Proposition 3.11. For a → ∞ this a; q-analogue of r-restricted Lah numbers

L(r)
n,k(a; q) converges to the following q-analogue of r-restricted Lah numbers L(r)

n,k(q)

L(r)
n,k(q) = qk(k−1)−r(r−1)

[
n+ r − 1
k + r − 1

]

q

[n− r]q!

[k − r]q!
. (3.42)

3.5. p, q-Analogues. Briggs and Remmel [3] defined the p, q-analogue1 of rook num-
bers by using the (homogeneous) p, q-analogue of n and n! defined by

[n]p,q := p
n−1 + p

n−2q + · · ·+ pqn−2 + qn−1 =
pn − qn

p− q

and [n]p,q! = [n]p,q[n− 1]p,q · · · [1]p,q. They in particular proved that for a Ferrers board
B = B(b1, . . . , bn) ⊆ [n]× N, one has

n∏

i=1

[z + bi − (i− 1)]p,q =
n∑

k=0

rk,n(B, p, q) pzk+(
k+1
2 )

n−k∏

i=0

[z − i+ 1]p,q, (3.43a)

1In this subsection, we use the Fraktur letter p to denote the second base variable instead of the
common Latin-script letter p since in our elliptic setting, we have reserved p to denote the nome.
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where
rk,n(B, p, q) :=

∑

P∈Nk(B)

qαB(P )+ǫB(P )
p
βB(P )−(c1+···+ck), (3.43b)

for specifically defined αB(P ), βB(P ) and ǫB(P ), and where the c1, c2, . . . , ck are the
column labels of the k columns containing rooks of P . See [3] for the full details.
If in (3.2a) we let p = 0 and replace q by q/p, then the small weight function becomes

wa,b;q/p,0(k) =
(p2k+1 − aq2k+1)(pk − bqk)(bpk−2 − aqk−2)

(p2k−1 − aq2k−1)(pk+2 − bqk+2)(bpk − aqk)
pq, (3.44)

while the p, q-numbers become

[z]a,b;q/p,0 =
(pz − qz)(pz − aqz)(p2 − bq2)(b− a)

(p− q)(p− aq)(pz+1 − bqz+1)(bpz−1 − aqz−1)
. (3.45)

The use of this weight in Theorem 3.8 yields an a, b-extension of the above result of
Briggs and Remmel. By utilizing the weight function in (3.44) with the staircase board
Stn, an a, b-extension of the p, q-Stirling numbers defined by Wachs and White [44] can
be obtained.

4. “-attacking rook model

We develop an elliptic analogue of the “-attacking rook model of Remmel and Wachs
[32]. We recall their setting first. For a fixed integer “ ≥ 1, we say that a Ferrers board
B(b1, . . . , bn) is a “-attacking board if for all 1 ≤ i < n, bi 6= 0 implies bi+1 ≥ bi +“− 1.
Suppose that B(b1, . . . , bn) is a “-attacking board and P is a placement of rooks in
B(b1, . . . , bn) which has at most one rook in each column of B(b1, . . . , bn). Then for
any individual rook r ∈ P , we say that r “-attacks a cell c ∈ B(b1, . . . , bn) if c lies in
a column which is strictly to the right of the column of r and c lies in the first “ rows
which are weakly above the row of r and which are not “-attacked by any rook which
lies in a column that is strictly to the left of r. Figure 6 shows an example of “-attack
when “ = 2. In Figure 6, the cells which are attacked by the rook ri are denoted by i
in the cell. Let a rook r in B(b1, . . . , bn) cancel the cells below it and the cells which

r1 1 1 1 1 1
1 1 1 1 1

r2 2 2 2

2 2 2

r3 3
3

Figure 6. “ = 2, B = B(1, 2, 3, 5, 7, 8, 9).

are “-attacked by r. A placement P of k rooks in B is called “-nonattacking if each
column contains at most one rook and each rook does not “-attack other rooks. Given
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a “-attacking board B, we let N“

k(B) be the set of all placements P of k “-nonattacking
rooks in B.
Let B = B(b1, . . . , bn) be a “-attacking board. For any placement P ∈ N“

k(B), denote

the number of uncancelled cells in B −P as u“

B(P ). We define the q-rook number of B
by

r“

k(q;B) =
∑

P∈N
“

k
(B)

qu
“

B
(P ).

Then Remmel and Wachs [32] proved the following product formula.

Theorem 4.1. [32] Let B = B(b1, . . . , bn) be a “-attacking board. Then
n∏

i=1

[z + bi −“(i− 1)]q =
n∑

k=0

r“

n−k(q;B)[z]q ↓k,“,

where [z]q ↓0,“= 1 and for k > 0, [z]q ↓k,“= [z]q[z −“]q · · · [z − (k − 1)“]q.

Remark 4.2. Remmel and Wachs defined (p, q)-rook numbers including one more pa-
rameter p. Here we have set p = 1. As we remarked in Section 3.5, we can modify the
weight function to recover or extend the p, q-rook numbers.

Now we establish an elliptic analogue of the “-attacking rook model. Given a “-
attacking board B = B(b1, . . . , bn) and a placement P ∈ N“

k(B), let U“

B(P ) be the set
of uncancelled cells in B − P . Then define

wt“(P ) =
∏

(i,j)∈U“

B
(P )

wa,b;q,p(“(i− 1) + 1− j −“r(i,j)(P )),

where r(i,j)(P ) is the number of rooks in P which are in the north-west region of (i, j),
and define the k-th rook number of B by

r“

k(a, b; q, p;B) =
∑

P∈N
“

k
(B)

wt“(P ).

Then we have the following elliptic analogue of Theorem 4.1.

Theorem 4.3. Let B = B(b1, . . . , bn) be a “-attacking board. Then we have
n∏

i=1

[z + bi −“(i− 1)]aq2(“(i−1)−bi),bq“(i−1)−bi ;q,p

=

n∑

k=0

r“

n−k(a, b; q, p;B)

k∏

j=1

[z −“(j − 1)]aq2“(j−1),bq“(j−1);q,p. (4.1)

Proof. The idea of proof is basically the same as in the proof of the product formula
in the case when “ = 1. It is enough to prove (4.1) for all positive integers z ≥ “n. So
fix a positive integer z ≥ “n and consider Bz, the extended board obtained from B by
attaching a [n] × [z] board below B. We shall consider nonattacking placements of n
rooks in Bz. Recall that we denoted the line separating the board B and the extended
part below by g and called it ground. A rook r placed in B will “-attack as described
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above, and thus it only “-attacks cells which are above the ground. If a rook r is placed
below the ground, then it shall“-attack only the cells below the ground. More precisely,
if a rook r is placed below the ground g, then it“-attacks cells strictly to the right of the
column containing r and in the first “ rows which are weakly above the row containing
r and below the ground which contain no cells that are “-attacked by any other rook r′

to the left of r if there are such “ rows, and if there are t < “ such rows, then the rook
r “-attacks those t rows and the first “ − t rows below the row of r which contain no
cells that are “-attacked by any other rooks to the left of r. Then we define that a rook
placed below the ground cancels the cells below it and the cells which are “-attacked by
the rook.
Now let N“

n(Bz) denote the set of all placements P of n rooks in Bz such that there
is at most one rook in each row and column and no rooks “-attack another rook. For a
placement P ∈ N“

n(Bz), let U
“

Bz
(P ) be the set of uncancelled cells in Bz − P . Then we

show (4.1) by computing the sum
∑

P∈N
“
n(Bz)

wt“(P ), (4.2)

where

wt“(P ) =
∏

(i,j)∈U“

Bz
(P )

wa,b;q,p(“(i− 1) + 1− j −“r(i,j)(P )), (4.3)

in two different ways. First, we place rooks column by column from the left to right
and compute the contribution to the sum. If we place a rook in the first column in all
possible ways, it gives the weights

1 + wa,b;q,p(1− b1) + · · ·+ wa,b;q,p(1− b1) · · ·wa,b;q,p(z − 1)

= 1 + waq−2b1 ,bq−b1 (1) + waq−2b1 ,bq−b1 (1) · · ·waq−2b1 ,bq−b1 (b1 + z − 1)

= [b1 + z]aq−2b1 ,bq−b1 ;q,p.

This first rook cancels “ rows to the right of it and so, placing the second rook in the
second column gives [b2+z−“]aq2(“−b2),bq“−b2 . Note that the weights sum up to the elliptic
integer since the factor “r(i,j)(P ) compensates the possible gap in the row coordinates
due to the cancellation from the rook to the left. Placing n rooks in this way gives the
left-hand side of (4.1).
For the right hand side of (4.1), we place n−k rooks in B and k rooks in the extended

part below the ground and compute (4.2). Fix a placement Q of n− k rooks in B. We
want to compute

W (Q) =
∑

P∈N
“
n(Bz),

P∩B=Q

wt“(P ).

We put wt“(Q) for the weight contribution coming from the uncancelled cells in B and
compute the weight coming from the uncancelled cells below the ground. Let s denote
the first available column coordinate for the first rook below the ground. This means
that there are s − 1 rooks in the north-west region of this column. Then the possible
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placements of the first rook in this column give

1 + wa,b;q,p(“(s− 1) + 1−“(s− 1)) + · · ·+ wa,b;q,p(1) · · ·wa,b;q,p(z − 1) = [z]a,b;q,p.

This rook cancels “ rows to the right and so the second rook contributes [z−“]aq2“,bq“;q,p.
Finally, placing k rooks below the ground gives

k∏

j=1

[z −“(j − 1)]aq2“(j−1),bq“(j−1);q,p

to wt“(P ). Hence,
∑

Q∈N
“

n−k
(B)

W (Q) =
∑

Q∈N
“

n−k
(B)

∑

P∈N
“
n(Bz),

P∩B=Q

wt“(P )

=
∑

Q∈N
“

n−k
(B)

wt“(Q)
k∏

j=1

[z −“(j − 1)]aq2“(j−1),bq“(j−1);q,p

= r“

n−k(a, b; q, p;B)
k∏

j=1

[z −“(j − 1)]aq2“(j−1),bq“(j−1);q,p.

We get the right hand side of (4.1) by summing this over k = 0, . . . , n. �

It is clear that by taking z = 0 in (4.1) the following product formula is obtained.

Corollary 4.4. Let B = B(b1, . . . , bn) be a “-attacking board. Then we have

r“
n(a, b; q, p;B) =

n∏

i=1

[bi −“(i− 1)]aq2(“(i−1)−bi),bq“(i−1)−bi ;q,p.

4.1. Elliptic analogue of generalized Stirling numbers of the second kind.

Here we consider the generalized (p, q)-Stirling numbers of the second kind S̃“ı,“
n,k(p, q)

(here “ı is an additional nonnegative integer parameter) which were thoroughly investi-
gated by Remmel and Wachs [32]. They are defined by

S̃“ı,“
n+1,k(p, q) = q“ı+(k−1)“S̃“ı,“

n,k−1(p, q) + p
−(n+1)“[k“+“ı]p,qS̃

“ı,“
n,k(p, q), (4.4)

with S̃“ı,“
0,0(p, q) = 1 and S̃“ı,“

n,k(p, q) = 0 if k < 0 or k > n. They also satisfy

[z +“ı]np,q =

n∑

k=0

S̃“ı,“
n,k(p, q)p

z(n−k)+(n−k+1
2 )[z]p,q ↓k,“ .

While for “ı = 0 and “ = 1 they were introduced by Wachs and White [44], the rescaled

variant S“ı,“
n,k(p, q) = p(

n−k+1
2 )“−(n−k)(“ı−1)q−k“ı−(k2)“S̃“ı,“

n,k(p, q) was defined by de Médicis and
Leroux [10] by using 0-1 tableaux.

From now on, we set p = 1 and use the notation S̃“ı,“
n,k(q) = S̃“ı,“

n,k(1, q) and S“ı,“
n,k(q) =

S“ı,“
n,k(1, q) for S̃

“ı,“
n,k(q) = qk“ı+(k2)“S“ı,“

n,k(q).
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Let B“ı,“,n = B(“ı,“ı +“,“ı + 2“, . . . ,“ı + (n − 1)“). In [32], Remmel and Wachs showed
that

S̃“ı,“
n,k(q) = r“

n−k(q;B“ı,“,n).

If we let αB(P ) denote the number of uncancelled cells of B which lie above a rook in
P , then Remmel and Wachs also showed that

S“ı,“
n,k(q) =

∑

P∈N
“

n−k
(B“ı,“,n)

qαB(P ).

We use the board B = B“ı,“,n in (4.1) to define an elliptic analogue of S̃“ı,“
n,k(q). For this

board, the product formula becomes

([z +“ı]aq−2“ı,bq−“ı;q,p)
n =

n∑

k=0

r“

n−k(a, b; q, p;B“ı,“,n)
k∏

j=1

[z −“(j − 1)]aq2“(j−1),bq“(j−1);q,p. (4.5)

If we define S̃“ı,“
n,k(a, b; q, p) := r“

n−k(a, b; q, p;B“ı,“,n), then up to whether there is a rook
or not in the last column of B“ı,“,n, we get the following recursion

S̃“ı,“
n+1,k(a, b; q, p) = Waq−2“ı,bq−“ı;q,p(“ı+ (k − 1)“)S̃“ı,“

n,k−1(a, b; q, p)

+ [“ı+ k“]aq−2“ı,bq−“ı;q,pS̃
“ı,“
n,k(a, b; q, p). (4.6)

With the initial conditions S̃“ı,“
0,0(a, b; q, p) = 1 and S̃“ı,“

n,k(a, b; q, p) = 0 for k < 0 or k > n,

(4.6) can be used to characterize S̃“ı,“
n,k(a, b; q, p). In [32], Remmel and Wachs developed

a combinatorial interpretation for S“ı,“
n,k(q) in terms of permutation statistics, colored

partitions and restricted growth functions. We can modify their q-weight function to
give a combinatorial interpretation for S“ı,“

n,k(a, b; q, p) where

S̃“ı,“
n,k(a, b; q, p) =

(
k∏

j=1

Waq−2“ı,bq−“ı;q,p(“ı+ (j − 1)“)

)
S“ı,“
n,k(a, b; q, p).

We shall assume that 0 ≤ “ı ≤ “. Let CP be the collection of all set partitions of
{0, 1, . . . , n} whose nonzero elements are colored with colors in the set {0, 1, . . . , j−1}.
We refer to the block of a colored partition that contains 0 as the zero-block. Define
CP“ı,“

n,k to be the subset of CP consisting of partitions with k + 1 blocks where the
elements are colored so that

(a) the nonzero elements of the zero-block have colors in {0, . . . , i− 1}, and
(b) the smallest element of each block other than the zero-block has color 0.

Note that there is a natural way to encode the set partitions of [n] as restricted growth
functions. A restricted growth function is a word w1 · · ·wn over the alphabet [n] such
that w1 = 1 and for s = 2, . . . , n, we have ws ≤ 1 +max{w1, . . . , ws−1}. To a partition
π = 〈π1, . . . , πk〉, where min(π1) < · · · < min(πk), we associate the restricted growth
function w1w2 · · ·wn, where ws = t if s ∈ πt.
Now we generalize this encoding to colored partitions. Let π = 〈π0, . . . , πk〉 ∈ CP“ı,“

n,k

where min(π0) < · · · < min(πk) and let w(π) = w0w1 · · ·wn where for all 0 ≤ s ≤ n,
ws = t if s ∈ πt. Then we color w with the same color that s was colored with
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in π. For example, if π = 〈{0, 11, 40}, {20, 51}, {30, 62}〉 ∈ CP2,3
6,2 (here the expo-

nents of the elements are the respective colors), then w(π) = 0011020001122. We let

RG“ı,“
n,k = {w(π) = w0w

e1
1 · · ·wen

n | π ∈ CP“ı,“
n,k}. We also express the colored word

w = w0w
e1
1 · · ·wen

n ∈ RG“ı,“
n,k as a pair of words (w0w1 · · ·wn : e1 · · · en). Remmel and

Wachs [32, Theorem 18] showed that S“ı,“
n,k(1) = |RG“ı,“

n,k| = |CP“ı,“
n,k| by constructing a bi-

jection φ : RG“ı,“
n,k → N“

n−k(B“ı,“,n) as follows. Let (w : e) ∈ RG“ı,“
n,k. We place rooks from

left to right column by column so that in column s, a rook is placed in the (“ı+ws“−es)-th
available cell (that is not “-attacked) from the bottom. If no such cell is available then
we leave the column s empty. For example, (w : e) = (0012012 : 100012) corresponds
to the rook placement in Figure 7. In Figure 7, the “-attacked cells are denoted by •’s
and the uncancelled cells above rooks are denoted by ◦’s. We then define a q-statistic

X

X

X

X

• • • • •
• • • • •
• • • • •

• •
• •
• •

•
•
•

◦

◦
◦
◦
◦
◦
◦ ◦

◦
◦
◦

◦
◦

Figure 7. The rook placement corresponding to (0012012 : 100012) ∈ RG2,3
6,2.

for S“ı,“
q (n, k). For a given γ = (w : e) ∈ RG“ı,“

n,k, let ms(γ) = max{w1, . . . , ws−1}, for
each s = 1, . . . , n, and define

MAX = {s ∈ [n] : ws > max{w0, . . . , ws−1}},

inv(w : e) =“
∑

1≤s<t≤n

χ(ws > wt and s ∈ MAX (w : e)) +
n∑

s=1

es.

Then for

D“ı,“
n,k(q) =

∑

γ∈RG
“ı,“

n,k

qinv(γ),

Remmel and Wachs showed in [32, Theorem 19] that D“ı,“
n,k(q) = S“ı,“

n,k(q).
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Now for γ = (w : e) = (w0w1 · · ·wn : e1 · · · en) ∈ RG“ı,“
n,k, we define

D“ı,“
n,k(a, b; q, p) =

∑

γ∈RG
“ı,“

n,k

n∏

s=1

Waq−2“ı,bq−“ı;q,p(“|{t < s : wt > ws and t ∈ MAX (γ)}|+ es).

Proposition 4.5. For each γ ∈ RG“ı,“
n,k, we have

wt“(φ(γ)) =

n∏

s=1

Waq−2“ı,bq−“ı;q,p(“|{t < s : wt > ws and t ∈ MAX (γ)}|+ es),

and hence,
D“ı,“

n,k(a, b; q, p) = S“ı,“
n,k(a, b; q, p).

Proof. Let γ = (w : e) ∈ RG“ı,“
n,k. Observe that for each s = 1, . . . , n, column s of

φ(γ) has “ı +“ms(γ) cells that are not “-attacked by any rooks on the left, since there
would be (s − 1 − ms(γ)) many rooks in the first (s − 1)-columns, where ms(γ) =
max{w0, w1, . . . , ws−1}. This implies that the number of uncancelled cells above a rook
in column s is

“ı+“ms(γ)− (“ı+“ws − es) = “(ms(γ)− ws) + es

= “|{t < s : wt > ws and t ∈ MAX (γ)}|+ es.

The weight of the top-most uncancelled cell is wa,b;q,p(1−“ı), and so the product of the
weights of uncancelled cells in the column s is

wa,b;q,p(1−“ı)wa,b;q,p(2−“ı) · · ·wa,b;q,p(“|{t < s : wt > ws and t ∈ MAX (γ)}|+ es −“ı)

= waq−2“ı,bq−“ı;q,p(1) · · ·waq−2“ı,bq−“ı;q,p(“|{t < s : wt > ws and t ∈ MAX (γ)}|+ es)

= Waq−2“ı,bq−“ı;q,p(“|{t < s : wt > ws and t ∈ MAX (γ)}|+ es).

Thus wt“(φ(γ)) is obtained by multiplying the above weights over all s = 1, . . . , n. �

5. Elliptic file numbers

In this section, we consider an elliptic analogue of the file numbers. The file num-
bers and their q-analogue were first considered by Garsia and Remmel in 1984 upon
the introduction of q-rook numbers in [17] (but did not get into the final version of
their paper). The first time they actually appeared in literature under the name “file
numbers” was in [32] where already p, q-extensions were investigated. Other instances
where they appear include [5] and [29].
Given a board B ⊂ [n] × N, let Fk(B) be the set of placements Q of k rooks in B

such that no two rooks in Q lie in the same column. We refer to such a Q as a file
placement of k rooks in B. Thus in a file placement Q, we do allow the possibility that
two rooks lie in the same row. Given a placement Q ∈ Fk(B), we let each rook in Q
cancel all the cells below it in B. Let uB(Q) be the number of cells in B−Q which are
not cancelled by any rook in Q. Then the q-file numbers are defined by

fk(q;B) =
∑

Q∈Fk(B)

quB(Q). (5.1)
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Garsia and Remmel proved the following product formula involving the q-file numbers.

Theorem 5.1. For any skyline board B = B(c1, . . . , cn),
n∏

i=1

[z + ci]q =

n∑

k=0

fn−k(q;B)([z]q)
k. (5.2)

This product formula can be proved by computing the sum
∑

Q∈Fn(Bz)

quBz (Q),

where Bz again denotes the extended board obtained by attaching the board [n] × [z]
below B, in two different ways. We omit the details since we will prove the elliptic
extension of this result in Theorem 5.4.
By distinguishing the cases whether there is a rook or not in the last column, one

can also obtain the following recursion.

Proposition 5.2. Let B be a skyline board and let B ∪m denote the board obtained by
adding a column of length m to B. Then for any nonnegative integer k we have

fk(q;B ∪m) = qmfk(q;B) + [m]q fk−1(q;B). (5.3)

We can define an elliptic analogue of the q-file numbers by assuming the same rook
cancellation as in the q-case where elliptic weights are assigned to the uncancelled cells.

Definition 5.3. Given a skyline board B = B(c1, . . . , cn), we define the elliptic analogue
of the k-th file number by

fk(a, b; q, p;B) =
∑

Q∈Fk(B)

wtf(Q), (5.4a)

with
wtf(Q) =

∏

(i,j)∈UB(Q)

wa,b;q,p(1− j), (5.4b)

where the elliptic weight wa,b;q,p(l) of an integer l is defined in (3.2a).

Note that in this case, the elliptic weight of a cell only depends on its row coordinate.

Theorem 5.4. For any skyline board B = B(c1, . . . , cn), we have
n∏

i=1

[z + ci]aq−2ci ,bq−ci ;q,p =

n∑

k=0

fn−k(a, b; q, p;B)([z]a,b;q,p)
k. (5.5)

Proof. As before, it suffices to prove the theorem for nonnegative integer values of z.
We fix an integer z and consider the extended board Bz by attaching an [n]× [z] board
below the board B and consider the n-file placements Fn(Bz) in Bz. Then (5.5) can be
proved by computing the sum ∑

Q∈Fn(Bz)

wtf(Q) (5.6)

in two ways. The left-hand side of (5.5) computes the above sum by placing rooks
column by column. Since the elliptic weight used to define wtf(Q) does not depend on
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the column coordinate of the uncancelled cells, the weight sum in (5.6) is the product of
the weight sums coming from the possible placements in each column, which is exactly
the left-hand side of (5.5). The right-hand side computes (5.6) by considering the file
placements in B and in the extended part separately. �

We have the following recursion for the elliptic file numbers, which is an elliptic
extension of Proposition 5.2.

Theorem 5.5. Let B be a skyline board, and B∪m denote the board obtained by adding
a column of height m to B. Then, for any integer k, we have

fk(a, b; q, p;B) = 0 for k < 0, (5.7a)

f0(a, b; q, p;B) = 1 for B being the empty board, (5.7b)

and

fk(a, b; q, p;B ∪m) = Waq−2m,bq−m;q,p(m) fk(a, b; q, p;B)

+ [m]aq−2m,bq−m;q,p fk−1(a, b; q, p;B). (5.7c)

Proof. This recursion stems from a weighted enumeration of a file placement of k rooks
on B ∪ m. We distinguish the cases whether there is a rook in the last column or
not. The first term on the right-hand side of (5.7c) is obtained when there is no rook
in the last column. The weight multiplied in front of fk(a, b; q, p;B) comes from the
uncancelled m cells in the last column. The second term on the right-hand side of
(5.7c) is obtained when there is a rook in the last column. The coefficient in front of
fk−1 is a consequence of Lemma 3.6. �

Remark 5.6. It is analytically and combinatorially obvious that two skyline boards B1

and B2 for which the left-hand sides of (5.5) are equal (B2 then must consist of the
columns of B1 which may be permuted) have the same elliptic file numbers. In this
case we may refer to such boards B1 and B2 as file equivalent.

5.1. Elliptic Stirling numbers of the first kind. For the staircase board Stn =
B(0, 1, . . . , n− 1), the product formula in Theorem 5.4 becomes

n∏

i=1

[z + i− 1]aq2(1−i) ,bq1−i;q,p =
n∑

k=0

fn−k(a, b; q, p;B)([z]a,b;q,p)
k. (5.8)

The file numbers fn−k(a, b; q, p; Stn) are in fact the unsigned elliptic Stirling numbers of
the first kind ca,b;q,p(n, k) which have recently been defined and studied (in a different
setting) by Zsófia Kereskényiné Balogh and the first author [27]. For a bijection of
file placements of n − k rooks in Stn and permutations of [n] with k cycles, see the
subsequent subsection, where we consider a refinement of the Stirling numbers of the
first kind.
By using the (a, b, y, z) 7→ (aq−2n, bq−n, n, z+n) case of the elementary identity (3.8b),

or by distinguishing whether there is a rook or not in the last column, we obtain from
(5.8) the following recurrence relation

ca,b;q,p(n+ 1, k) = [n]aq−2n,bq−n;q,pca,b;q,p(n, k) +Waq−2n,bq−n;q,p(n)ca,b;q,p(n, k − 1). (5.9)
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With the conditions ca,b;q,p(0, 0) = 1 and ca,b;q,p(n, k) = 0 for k < 0 or k > n, the
recurrence relation (5.9) uniquely determines ca,b;q,p(n, k).

5.2. Elliptic r-restricted Stirling numbers of the first kind. The r-restricted
(signless) Stirling numbers of the first kind (these are usually called r-Stirling numbers
of the first kind but we adopt the terminology from [38, see the sequences A143491,
A143492 and A143493] to avoid possible confusion with the q-Stirling numbers), which
we denote by c(r)(n, k), are defined, for all positive r, by the number of permutations
of the set {1, . . . , n} having k cycles, such that the numbers 1, 2, . . . , r are in distinct
cycles. For r = 1 (or r = 0) they reduce to the usual Stirling numbers of the first kind.
They are treated with some detail in [4], where it is shown that the r-restricted Stirling
numbers of the first kind have the following generating function

n∑

k=0

c
(r)(n, k)zk =

{
zr(z + r)(z + r + 1) · · · (z + n− 1), n ≥ r ≥ 0,
0, otherwise.

(5.10)

As in subsection 3.2, let St
(r)
n denote the board St

(r)
n = B(c1, . . . , cn) such that ci = 0

for i = 1, . . . , r and ci = i − 1, for i = r + 1, . . . , n. Then for B = St
(r)
n and q → 1 the

product formula (5.2) becomes

zr(z + r)(z + r + 1) · · · (z + n− 1) =
n∑

k=0

fn−k(1; St
(r)
n )zk, (5.11)

which is the generating function for the r-restricted Stirling numbers of the first kind.
Thus we can identify c(r)(n, k) with fn−k(1; St

(r)
n ). We can construct a bijection between

file placements of n − k rooks in St
(r)
n and permutations of n numbers with k cycles,

such that the numbers 1, 2, . . . , r are in distinct cycles. We start from the right-most
rook. If this rook is placed in the cell (α, l), then place α to the left of l in the cycle
notation. Then move to the second rook to the left. If this second rook is in the cell
(β, l), then put β to the left of α in the same cycle ending with l, but if this rook is
in (β, k) for k 6= l, then construct a new cycle with β and k and put β to the left of
k. While iterating this procedure, if there is a rook in (l, h), then append h to the
right-most place of the cycle ending with l. The numbers which never occurred in the
cycle construction after reading all the rooks in the file placement are fix-points, i.e.,
cycles of one element. For example, given the file placement in Figure 8, the right-most
rook gives (8 3) in the cycle notation, and the second right-most rook gives (7 4). The
third right-most rook puts 6 to the left of 7 and gives (6 7 4). The fourth rook gives
(5 2) and the last rook puts 1 to the right of the cycle ending with 4 and gives (6 7 4 1).
Thus the permutation of 1, . . . , 8 corresponding to the given file placement in Figure 8
is (6 7 4 1)(5 2)(8 3).
Conversely, given a permutation in a cycle notation, we construct a file placement as

follows. In each cycle, put the smallest number at the end of cycle. Then start from the
left-most number, say α, find the left-most number to the right of α which is smaller
than α, say β. Then this places a rook in the cell (α, β). Continue this procedure to
the right. For example, given a permutation (6 7 4 1)(5 2)(8 3), we place rooks in (6, 4),
(7, 4), (4, 1), (5, 2) and (8, 3), which recovers the file placement in Figure 8.



32 MICHAEL J. SCHLOSSER AND MEESUE YOO

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

X
X

X X
X

⇐⇒ (6 7 4 1) (5 2) (8 3)

Figure 8. A file placement with r = 3, n = 8, n − k = 5, and corre-
sponding permutation in cycle notation.

We can define an elliptic analogue of the r-restricted Stirling numbers of the first
kind by using the product formula for the elliptic file numbers with board St

(r)
n as the

generating function :

([z]a,b;q,p)
r

n−r∏

i=1

[z+r+i−1]aq2(1−i−r) ,bq1−i−r ;q,p =

n∑

k=0

fn−k(a, b; q, p; St
(r)
n )([z]a,b;q,p)

k. (5.12)

Let c
(r)
a,b;q,p(n, k) denote fn−k(a, b; q, p; St

(r)
n ). Then, by distinguishing whether there is a

rook or not in the last column, we can deduce the recurrence relation of c
(r)
a,b;q,p(n, k),

namely, for k ≥ r − 1,

c
(r)
a,b;q,p(n+ 1, k) = [n]aq−2n,bq−n;q,pc

(r)
a,b;q,p(n, k) +Waq−2n,bq−n;q,p(n)c

(r)
a,b;q,p(n, k − 1). (5.13)

This recursion uniquely determines c
(r)
a,b;q,p(n, k) with the conditions

c
(r)
a,b;q,p(n, k) = 0 for k < r − 1 or k > n,

c
(r)
a,b;q,p(r − 1, r − 1) = 1.

5.3. Abel boards and weighted forests. Let An denote the Abel board, the [n−1]×
[n] board with column heights (0, n, . . . , n). For B = An, the product formula involving
the file numbers (5.2), when q → 1, becomes

z(z + n)n−1 =
n∑

k=0

fn−k(1;An)z
k.

These polynomials are a special case of the general Abel polynomials z(z + αn)n−1,
which we consider separately in the discussion following equation (5.18). The coeffi-
cient fn−k(1;An) = tn,k =

(
n−1
k−1

)
nn−k counts the number of labeled forests on n vertices

composed of k rooted trees [30]. Goldman and Haglund explained this equality bijec-
tively in [20]. More precisely, they construct a bijection between the set

Rn,k = {(Q, u), u ∈ {1, 2, . . . , n}},

where Q is a file placement of n− k rooks on An, and

Fn,k = {marked rooted forests of k rooted trees on n labeled vertices},
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where a marked rooted forest is a forest of rooted trees with one distinguished vertex in
the forest (the mark), via constructing bijections between Rn,k and Qn,k, and between
Qn,k and Fn,k, where Qn,k is a class of “marked” partial endofunctions. Thus Goldman
and Haglund actually proved nfn−k(1;An) = ntn,k. We present a new proof which
establishes fn−k(1;An) = tn,k directly. In the following, we describe a bijection between

Rn,k = {file placements of n− k rooks on An}

and

Fn,k = {rooted forests of k rooted trees on n labeled vertices}.

1 2 3 4 5 6 7 8 9 A B C D E F
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

X X

X
X X

X
X X X

X

X
X

⇐⇒

7

8

5

1

2 F

A D

3

6

C E

4

9

B

Figure 9. A file placement with n = 15, k = 3, and corresponding forest.

The bijection is best described by considering an example, see Figure 9, where for
nicer layout, we have labeled the indices by hexadecimal digits. (Moreover, in the forest,
we have circled the labels of the roots of the trees.) In this example, we have n = 15
and k = 3; we thus consider a 12-file placement of rooks on the A15 board. We shall
successively transform this file placement into a forest of 15 − 12 = 3 labeled trees.
The rooks are in positions (2, 1), (F, 1), (5, 5), (C, 6), (E, 6), (8, 7), (7, 8), (A, 8), (D, 8),
(B, 9), (3, D), (4, E), listed from bottom to top, left to right. Now we first identify
the indices of the k = 3 empty columns, which are 1, 6, 9. We let 1 (which is special
since the first column is always empty) be the preliminary label of the root of the first
tree, while the other two numbers, 6 and 9, be the labels of the respective roots of the
second and third trees. Note that these other roots shall not change whereas the first
root can change. Next we look at the positions of all the rooks, first row-wise from
bottom to top and then from left to right within each row. Now we interpret a rook
in position (i, j) as a directed edge (forming a simple path) from vertex j to vertex i.
After this we continue the path by looking for rooks in positions (l, i), in which case
the path continues to go from vertex i to vertex l, etc. We transitively collect all paths
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in the file placement (in the prescribed order) and finally obtain an ordered collection
of maximal chains (of paths which cannot be continued), and of disjoint cycles (where
vertices already visited are reached again). Numbers occurring in the cycles can also
appear in the chains. In our example, we have the following seven chains and two cycles.

maximal chains:
1 → 2, 1 → F , 6 → C, 6 → E → 4, 7 → 8 → A, 7 → 8 → D → 3, 9 → B.

cycles: (5), (7 8).

It is important to insist that the minimal elements of the respective cycles are listed
first. In the algorithm, the cycles are indeed obtained in the above order, i.e., by
left-to-right increasing order of their minimal elements. Now, say we have obtained l
cycles, γ1, . . . , γl, listed by increasing order of their minimal elements. We then reverse
the order of the l cycles, i.e., write out γl, . . . , γ1 in decreasing order of their minimal
elements while keeping the minimal elements of each cycle at the first position. In our
example, the two cycles are thus relisted as (7 8), (5).
Now we form a new chain using all the labels from left to right appearing in the

complete list of cycles, here 7 → 8 → 5, and place this in the first tree before 1 (i.e.,
we also put an edge leading from the last vertex 5 to 1). Hence, 7 is now the new root
of the first tree and we have a path leading to 1. (After a short moment of reflection,
this part of the correspondence is easily noticed to be reversible, since 5 is the minimal
element before 1, the minimal element before 5 is 7, etc., thus all the cycles can readily
be determined.)
What remains to be done is to translate the maximal chains obtained from the file

placement to form trees in the forest. This is done in the obvious way (and is clearly
reversible); see Figure 9 for the result.
Since there is at most one rook in each column of the file placement, it is guaranteed

that each vertex in the corresponding directed graph has at most one predecessor, i.e.
the resulting graph is indeed a forest. Thus, we can conclude that each forest of n
labeled vertices composed of k components corresponds to exactly one (n− k)-rook file
placement on the board An and vice versa.
For the Abel board An, the product formula in Theorem 5.4 becomes

[z]a,b;q,p([z + n]aq−2n,bq−n;q,p)
n−1 =

n∑

k=0

fn−k(a, b; q, p;An)([z]a,b;q,p)
k. (5.14)

As explained above, we can interpret the coefficient fn−k(a, b; q, p;An) as the weighted
sum of labeled forests on n vertices composed of k rooted trees. In the above algorithm
for obtaining the forest, we weight the edge j → i by

∏j−1
l=1 wa,b;q,p(l) which in the file

placement corresponds to the product of the weights of uncancelled cells above (i, j). If
there is an empty column containing no rooks, then we weight the vertex corresponding
to such a column by

∏n
l=1wa,b;q,p(l). This yields a weighted forest of k rooted labeled

trees on n vertices corresponding to a given (n− k)-file placement.
The coefficients in (5.14) have a nice closed form

fn−k(a, b; q, p;An) =

(
n− 1

k − 1

)
(Waq−2n,bq−n;q,p(n))

k−1 ([n]aq−2n,bq−n;q,p)
n−k , (5.15)
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which is easy to prove directly combinatorially, or by using the identity

[z + n]aq−2n,bq−n = [n]aq−2n,bq−n +Waq−2n,bq−n;q,p(n)[z]aq−2n,bq−n

(which is the (y, z, a, b) 7→ (n, z+n, aq−2n, bq−n) case of Equation (3.8b)), together with
the classical binomial theorem.
The above bijection easily extends to the case of r-restricted Abel boards A

(r)
n =

B(0, . . . , 0, n, . . . , n) of r columns of height zero and n− r columns of height n. Say, we

consider a file placement on A
(r)
n . Then the bijection transforms a file placement of n−k

rooks on this board to a forest of k components where the first r numbers 1, 2, . . . , r
are in distinct trees and the r − 1 numbers 2, . . . , r are roots. Now, by interchanging
the labels 1 and r we immediately obtain a forest of n vertices of k labeled trees, where
the first r numbers 1, 2, . . . , r are in distinct trees and where moreover the first r − 1
numbers 1, 2, . . . , r − 1 are all roots (among the k roots of the forest). The number of

such forests is fn−k(1;A
(r)
n ) = t

(r)
n,k =

(
n−r
k−r

)
nn−k. Given the analogy to the r-restricted

Stirling numbers of the first and second kinds and of the r-restricted Lah numbers,

it seems appropriate to refer to tn,k as Abel numbers and to t
(r)
n,k as r-restricted Abel

numbers.
For the r-restricted Abel board A

(r)
n , the product formula in Theorem 5.4 becomes

([z]a,b;q,p)
r([z + n]aq−2n,bq−n;q,p)

n−r =

n∑

k=r−1

fn−k(a, b; q, p;A
(r)
n )([z]a,b;q,p)

k. (5.16)

The coefficients in (5.16) have a nice closed form

fn−k(a, b; q, p;A
(r)
n ) =

(
n− r

k − r

)
(Waq−2n,bq−n;q,p(n))

k−r ([n]aq−2n,bq−n;q,p)
n−k . (5.17)

Lastly, we consider the general Abel board Aαn,n = B(0, αn, . . . , αn) = [n− 1]× [αn]
for a positive integer α. The coefficients of the Abel polynomials

z(z + αn)n−1 =

n∑

k=0

fn−k(1;Aαn,n)z
k (5.18)

have a very simple combinatorial interpretation. They count the number of forests of
n labeled vertices composed of k rooted trees where each of the vertices can have one
of α colors (distinct vertices may have the same color), where the k roots must all have
the first color. This number of course is αn−k times the usual monocolor case, since
each of the n− k vertices which are not roots can assume one of α colors. We therefore
have fn−k(1;Aαn,n) = tα,n,k =

(
n−1
k−1

)
(αn)n−k. This interpretation also easily comes out

of the file placement model as follows. If there is a rook in position (i, (c− 1)n+ j) for
1 ≤ i, j ≤ n and 1 ≤ c ≤ α, then form a directed path from j to i and assign color c to
the vertex i.
Even more generally, we could consider the Abel board Aαn,n with α = m

n
, i.e.,

Am,n = [n − 1] × [m] for a positive integer m. Even here it is not difficult to give a
combinatorial interpretation (which is consistent with the file placement model). The
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coefficients of the polynomials

z(z +m)n−1 =
n∑

k=0

fn−k(1;Am,n)z
k (5.19)

count the number of forests of n labeled vertices composed of k rooted trees where each
of the vertices can have one of ⌈m

n
⌉ colors (distinct vertices may have the same color),

the k roots must all have the first color, but only the successors of 1, 2, . . . , m−⌊m−1
n

⌋n
are allowed to assume the highest color ⌈m

n
⌉. Here ⌈x⌉ := min{y ∈ Z : y ≥ x} and

⌊x⌋ := max{y ∈ Z : y ≤ x} are the ceiling and floor functions, respectively.
For instance, if m = 4 and n = 3, Equation (5.19) becomes z(z+4)2 = z3+8z2+16z.

Accordingly, using the vertices 1, 2, 3 we form colored forests containing exactly k trees
where we may use two colors, say, black and white, to color the vertices but only the
successors of 1 can be white. There is exactly one forest containing three trees, each
consisting of only a root. There are 8 such forests containing two trees, see Figure 10,
and there are 16 such forests containing exactly one tree, see Figure 11, where for
convenience primed labels indicate white vertices.

1 2

3

1 3

2

1

2

3 1

2′

3 1

3

2 1

3′

2 2

1

3 3

1

2

Figure 10. Colored forests of two trees corresponding to the board A4,3.

1

2

3

1

2′

3

1

3

2

1

3′

2

2

1

3

2

1

3′

2

3

1

3

1

2

3

1
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2

1

1

2 3

1

2′ 3

1

2 3′

1

2′ 3′

2

1 3

3

1 2

Figure 11. Colored forests of one tree corresponding to the board A4,3.

The above generalized Abel case involving file placements on the board Am,n can
even be extended to the r-restricted case where for a nonnegative integer r we consider

the board A
(r)
m,n = [n− r]× [m]. We have the same combinatorial interpretation for the

colored forests but with the additional restriction that the numbers 1, 2, . . . , r are in
different trees and 1, 2 . . . , r − 1 are roots.
In the elliptic case, we have

([z]a,b;q,p)
r([z +m]aq−2m,bq−m;q,p)

n−r =
n∑

k=0

fn−k(a, b; q, p;A
(r)
m,n)([z]a,b;q,p)

k (5.20a)
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and for the coefficients we have the explicit formula

fn−k(a, b; q, p;A
(r)
m,n) =

(
n− r

k − r

)
(Waq−2m,bq−m;q,p(m))k−r ([m]aq−2m,bq−m;q,p)

n−k . (5.20b)

5.4. Elliptic analogue of generalized Stirling numbers of the first kind. Upon
the introduction of the generalized (p, q)-Stirling numbers of the second kind (see Sec-
tion 4.1 for the elliptic analogue of them), Remmel and Wachs [32] also introduced and

studied the generalized (p, q)-Stirling numbers of the first kind, denoted by c
“ı,“
n,k(p, q).

In [32], it is shown that c“ı,“n,k(p, q) satisfy c
“ı,“
0,0(p, q) = 1, c“ı,“n,k(p, q) = 0 if k < 0 or k > n,

and
c
“ı,“
n+1,k(p, q) = c

“ı,“
n,k−1(p, q) + [“ı+ n“]p,qc

“ı,“
n,k(p, q).

It is also shown that

([z]p,q+[“ı]p,q)([z]p,q+[“ı+“]p,q) · · · ([z]p,q+[“ı+(n−1)“]p,q) =

n∑

k=0

c
“ı,“
n,k(p, q)([z]p,q)

k. (5.21)

c
“ı,“
n,k(p, q) can be computed as a weighted sum of file placements in B“ı,“,n. Recall that
B“ı,“,n = B(“ı,“ı+“, . . . ,“ı+ (n− 1)“).
Given a file placement Q ∈ Fk(B), for B a skyline board, define

wp,q,B(Q) = qαB(Q)
p
βB(Q),

where

αB(Q) = the number of cells in B that lie above some rook r in Q,

βB(Q) = the number of cells in B that lie below some rook r in Q.

If we define
f̃k(p, q;B) =

∑

Q∈Fk(B)

wp,q,B(Q),

then for 0 ≤ k ≤ n it is shown in [32] that

c
“ı,“
n,k(p, q) = f̃n−k(p, q;B“ı,“,n).

We now establish an elliptic analogue of c“ı,“n,k(p, q) by modifying the weight function
wp,q,B(Q) to an elliptic function. Given a skyline board B, define

f̃k(a, b; q, p;B) =
∑

Q∈Fk(B)

w̃tf(Q),

where
w̃tf(Q) =

∏

(i,j)∈AB(Q)

wa,b;q,p(i− j), (5.22)

and AB(Q) is the set of cells in B that lie above some rook r in Q.

Proposition 5.7. For a skyline board B = B(c1, . . . , cn), we have
n∏

i=1

(
[z]a,b;q,p + [ci]aq2(i−1−ci),bqi−1−ci ;q,p

)
=

n∑

k=0

f̃n−k(a, b; q, p;B)([z]a,b;q,p)
k. (5.23)
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Proof. We consider the extended board Bz and compute the sum
∑

P∈Fn(Bz)

wtf (P )

in two different ways, where

wtf (P ) =
∏

(i,j)∈P

wa,b;q,p;Bz
(i, j),

wa,b;q,p;Bz
(i, j) =

{
Waq2(i−1−ci),bqi−1−ci ;q,p(ci − j), if (i, j) ∈ B,
Wa,b;q,p(−j), if (i, j) is below the ground.

Recall that the line separating the board B and the extended part of Bz is called the
ground, and the row coordinates below the ground are 0,−1,−2, . . . , 1 − z, from top
to bottom. To obtain the left-hand side of (5.23), we place n rooks column by column.
In i-th column, possible placements of a rook above the ground contribute

1 +Waq2(i−1−ci),bqi−1−ci ;q,p(1) + · · ·+Waq2(i−1−ci),bqi−1−ci ;q,p(ci − 1) = [ci]aq2(i−1−ci),bqi−1−ci ;q,p

and possible placements below the ground give

1 +Wa,b;q,p(1) + · · ·+Wa,b;q,p(z − 1) = [z]a,b;q,p.

Sum of [ci]aq2(i−1−ci),bqi−1−ci ;q,p and [z]a,b;q,p gives the i-th factor in the left-hand side of
(5.23).
To get the right-hand side of (5.23), we start with a file placement Q ∈ Fn−k(B)

and extend it to a file placement of n rooks by placing k rooks below the ground. In
each empty column, possible placements of a rook below the ground give [z]a,b;q,p, as
computed above, hence placements of k rooks below the ground will give the factor
([z]a,b;q,p)

k. Note that wa,b;q,p;Bz
(i, j) = Waq2(i−1−ci),bqi−1−ci ;q,p(ci − j) for (i, j) ∈ B is de-

fined so that wa,b;q,p;Bz
(i, j) equals to

∏ci
t=j+1wa,b;q,p(i−t) for (i, t) being the coordinates

of the cells above the rook in (i, j). Thus,

∑

P∈Fn(Bz)

wtf (P ) =
n∑

k=0


 ∑

Q∈Fn−k(B)

∏

(i,j)∈Q

wa,b;q,p;B(i, j)


 ([z]a,b;q,p)

k

=
n∑

k=0

f̃n−k(a, b; q, p;B)([z]a,b;q,p)
k.

�

If we apply Proposition 5.7 to the board B“ı,“,n, then we get

n∏

s=1

(
[z]a,b;q,p + [“ı+ (s− 1)“]aq−2(“ı+(s−1)(“−1)),bq−(“ı+(s−1)(“−1));q,p

)

=

n∑

k=0

f̃n−k(a, b; q, p;B“ı,“,n)([z]a,b;q,p)
k.
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We can define c
“ı,“
n,k(a, b; q, p) := f̃n−k(a, b; q, p;B“ı,“,n) which is an elliptic analogue of

c
“ı,“
n,k(p, q). Then, by considering whether there is a rook or not in the last column of
B“ı,“,n, we get the recurrence relation

c
“ı,“
n+1,k(a, b; q, p) = c

“ı,“
n,k−1(a, b; q, p) + [“ı+ n“]aq−2(“ı+n(“−1)),bq−(“ı+n(“−1));q,pc

“ı,“
n,k(a, b; q, p)

which determines c“ı,“n,k(a, b; q, p) with the conditions

c
“ı,“
0,0(a, b; q, p) = 1, and c

“ı,“
n,k(a, b; q, p) = 0 if k < 0 or k > n.

Remark 5.8. In [32], Remmel and Wachs showed that for s“ı,“
n,k(p, q) = (−1)n−kc

“ı,“
n,k(p, q),

the two matrices ||s“ı,“
n,k(p, q)|| and ||S“ı,“

n,k(p, q)|| are inverses of each other (we refer to

Section 4.1 for the definition of S“ı,“
n,k(p, q)), namely, for all 0 ≤ r ≤ n,

n∑

k=r

S“ı,“
n,k(p, q)s

“ı,“
k,r(p, q) = χ(r = n). (5.24)

Notice that the elliptic weights of the uncancelled cells used in (4.3) to define the
rook numbers are different from the elliptic weights used in (5.22), that is, the former
ones depend on the value “ whereas the latter ones only depend on the coordinates of
the cells, as opposed to them being the same in the q-case (or p, q-case). Hence, the
cancellation occurring in the process of proving (5.24) does not occur in the same way in
the elliptic case, and as a consequence, we do not have the property that the matrices
||s“ı,“

n,k(a, b; q, p)|| and ||S“ı,“
n,k(a, b; q, p)|| are inverses of each other, for s“ı,“

n,k(a, b; q, p) =

(−1)n−kc
“ı,“
n,k(a, b; q, p). However, if we set “ı = 0 and “ = 1, then the elliptic weights of

the cells used in the rook and file numbers are equal, and thus we can show that the
two matrices ||s0,1n,k(p, q)|| and ||S0,1

n,k(p, q)|| are inverses of each other.

6. Future perspectives

6.1. Elliptic rook numbers on augmented boards. In [29], Miceli and Remmel
introduced a generalized rook model by considering rook placements on augmented
boards and proved the corresponding product formula as well as the q-analogue of it.
This product formula can be specialized to all the known product formulas including
the i-creation model of Goldman and Haglund [20]. In a separate paper [36] we provide
an elliptic extension of the q-case of this model. In particular, the elliptic extension of
the product formula in [36] includes our elliptic product formula of the i-creation model
as a special case.

6.2. Elliptic rook theory for matchings. By considering rook placements on shifted
Ferrers boards subject to a suitable modification of rook cancellation, Haglund and
Remmel [23] developed a q-rook theory for matchings of graphs. We provide an elliptic
extension of this rook theory in [37]. We actually consider a more general model there
related to matchings on certain graphs which we call “l-lazy graphs” with respect to a
N -dimensional vector of positive integers l = (l1, . . . , lN). These matchings correspond
to rook placements on l-shifted boards for which we essentially employ the same rook
cancellation as in the ordinary shifted case considered by Haglund and Remmel. The
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elliptic case is more intricate than the q-case and requires a very careful choice of
weights. Our factorization theorem for elliptic rook numbers for matchings of l-lazy
graphs in [37] generalizes the factorization theorem by Haglund and Remmel already
in the ordinary case and the q-case. In the simplest case, our formula can be used to
deduce an elliptic extension of the numbers of perfect matchings of the complete graph
K2n.

6.3. Elliptic analogue of the hit numbers. Upon the introduction of the rook
numbers, Kaplansky and Riordan [26] also defined the hit numbers. Let Hn,k(B) be
the set of all placements of n rooks on [n] × [n] such that exactly k of these rooks lie
on B. Then hn,k(B) := |Hn,k(B)| is called the k-th hit number of B. Kaplansky and
Riordan [26] showed

n∑

k=0

rn−k(B)k!(z − 1)n−k =

n∑

k=0

hn,k(B)zk. (6.1)

Garsia and Remmel defined in [17] the q-hit numbers of a Ferrers board B ⊆ [n] × [n]
algebraically by the equation

n∑

k=0

rn−k(q;B)[k]q!z
k

n∏

i=k+1

(1− zqi) =
n∑

k=0

hn,k(q;B)zn−k (6.2)

and proved the existence of the statistic statn,B(P ) such that

hn,k(q;B) =
∑

P∈Hn,k(B)

qstatn,B(P ).

They did not give a specific description for statn,B(P ), but later, Dworkin [13] and
Haglund [22] independently found combinatorial descriptions. Hence the natural quest
is to establish an elliptic analogue of the relation (6.2) and define elliptic hit numbers
accordingly.
Similarly, together with the file numbers, Garsia and Remmel also defined the fit

numbers. Let Fn,k(B) be the set of all file placements of n rooks on [n] × [n] such
that exactly k of these rooks lie on B. Then fn,k(B) := |Fn,k(B)| is called the k-th fit
number of B. Garsia and Remmel (cf. [5]) showed

n∑

k=0

fn−k(B)nk(z − 1)n−k =

n∑

k=0

fn,k(B)zk. (6.3)

It would be interesting to find an elliptic analogue of (6.3). However, as a matter of
fact, not even a q-analogue of (6.3) has so far been established.
It should also be mentioned that Haglund and Remmel [23] defined and obtained

results for hit and q-hit numbers for rook placements on the shifted board B2n. It
would be interesting to find extensions of their results, either to the elliptic setting
or simply to results for l-shifted boards Bl

N (where rook placements are identified as
partial maximal matchings on l-lazy graphs) as we considered in [37].
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6.4. Elliptic hypergeometric series identities. The coefficients ck(q) in the expan-
sion

P (z; q) =
n∑

k=0

ck(q)[z]q[z − 1]q · · · [z − k + 1]q (6.4)

are uniquely determined by P (z; q). In particular, we have (see [24])

ck(q) =
1

[k]q!
z0∆

(k)P (z; q) (6.5a)

where z0 denotes the evaluation at z = 0 and

∆(k) = (ǫ− 1)(ǫ− q) · · · (ǫ− qk−1), (6.5b)

with ǫ the 1-shift operator, i.e., ǫP (z; q) = P (z+1; q). In fact, the formula (6.5a) for the
coefficients can be simply established by expanding (6.5b) by means of the q-binomial
theorem

(x+ y)(x+ qy) · · · (x+ qk−1y) =
k∑

j=0

q(
j

2)
[
k
j

]

q

yjxk−j . (6.6)

Taking P (z; q) =
∏n

i=1[z + bi − i+ 1]q, where B = B(b1, . . . , bn) ⊆ [n]× N is a Ferrers
board, the coefficients in (6.4) become ck(q) = rn−k(q;B), due to Proposition 2.2. Thus
one has

rn−k(q;B) =
1

[k]q!
z0∆

(k)
n∏

i=1

[z + bi − i+ 1]q. (6.7)

In [21, Equations (24) and (49)], Haglund has used an inversion argument involving
the q-Chu–Vandermonde summation to arrive at an identity equivalent to (6.7). For
“regular” boards (these are Ferrers boards whose shape correspond to Dyck paths), he
was then able to express q-rook numbers in terms of multiples of basic hypergeometric
series of Karlsson–Minton type (see [18] for the terminology). By analytic continuation
such formulas can also be obtained for some other boards which are not “regular” (such
as the staircase board Stn whose q-rook numbers are Stirling numbers of the second
kind which also admit a basic hypergeometric series representation of Karlsson–Minton
type, see (3.29)). Haglund further combined his results with identities involving q-hit
numbers to obtain transformation formulae for basic hypergeometric series of Karlsson–
Minton type.
Now it would be very nice if one could extend the analysis we described leading to

(6.7) to the elliptic setting, given that we were able to establish an elliptic analogue
of the product formula in Proposition 2.2, namely Theorem 3.8, and also given that
elliptic analogues of basic hypergeometric series of Karlsson–Minton type exist (see [33]
or [18, Chapter 11]). At first glance, the elliptic extension of this approach may appear
straightforward. What is needed is an explicit formula for the coefficients ck(a, b; q, p)
in

P (z; a, b; q, p) =
n∑

k=0

ck(a, b; q, p)[z]a,b;q,p[z−1]aq2,bq;q,p · · · [z−k+1]aq2(k−1) ,bqk−1;q,p, (6.8)
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and then take

P (z; a, b; q, p) =
n∏

i=1

[z + bi − i+ 1]aq2(i−1−bi),bqi−1−bi ;q,p.

Although we so far failed to find a correct elliptic extension of (6.5), a solution of this
problem does not seem to be completely out of reach.
For the reader to get a feeling for some of the difficulties in the elliptic setting,

compare Carlitz’ compact formula for the q-Stirling numbers of the second kind in (3.28)
(which, as mentioned, can also be written in terms of basic hypergeometric series of
Karlsson–Minton type, see (3.29)) with the (not so uniform) expressions for the elliptic
Stirling numbers of the second kind which we listed in (3.27). The latter appear not
to be instances of a multiple of an elliptic hypergeometric series of Karlsson–Minton
type. Nevertheless they may be instances of a series which is close to being elliptic
hypergeometric2.

6.5. Relations to algebraic varieties. Ding introduced the length function which
was first used as the length of rook matrices by Solomon in his work on the Iwahori
ring of Mn(Fq) [39]. Given a Ferrers board B = B(b1, . . . , bn) and a k-rook placement
P ∈ Nk(B), the length function lB(P ) is defined by

lB(P ) =
∑

(i,j)∈P

(n− i+ j − 1 + γ(i,j)),

where γ(i,j) is the number of rooks which are in the south-east region of the rook in

(i, j). Then, if we let CB,k =
∑n

i=1 bi −
k(k+1)

2
, we have

uB(P ) + lB(P ) = CB,k.

Thus, if we define the rook length polynomial by

rlk(q;B) =
∑

P∈Nk(B)

qlB(P ),

then the relation to the q-rook number is

rk(q;B) = qCB,krlk(q
−1;B).

In [11], Ding studied the geometric implication of rook length polynomials by intro-
ducing partition varieties. Partition varieties are projective varieties which have cel-
lular decomposition analogous to the cellular decomposition of the Grassmannian into
Schubert cells. These partition varieties have CW-complex structure with the rook
length polynomials being their Poincaré polynomials of cohomology. In [12], Ding even
generalized the study of partition varieties by replacing the Borel subgroup of upper
triangular matrices by more general parabolic subgroups of the general linear group.
For this purpose he introduced γ-compatible partitions, γ-compatible rook placements
and γ-compatible rook length polynomials, where γ is a composition.

2Following [18, Chapter 11], a series
∑

k≥0
ck is called elliptic hypergeometric if and only if the

quotient ck+1/ck is an elliptic (i.e., meromorphic and doubly periodic) function in k, where k is viewed
as a complex variable.
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It would be interesting to reveal any connection between elliptic analogues of rook
numbers and algebraic varieties.
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